2007-06-13 Claudio Fontana <claudio.fontana@gmail.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43 #include "dwarf2-frame.h"
44
45 #include "libbfd.h" /* for bfd_default_set_arch_mach */
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52
53 #include "solib-svr4.h"
54 #include "ppc-tdep.h"
55
56 #include "gdb_assert.h"
57 #include "dis-asm.h"
58
59 #include "trad-frame.h"
60 #include "frame-unwind.h"
61 #include "frame-base.h"
62
63 #include "rs6000-tdep.h"
64
65 /* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72 #define SIG_FRAME_PC_OFFSET 96
73 #define SIG_FRAME_LR_OFFSET 108
74 #define SIG_FRAME_FP_OFFSET 284
75
76 /* To be used by skip_prologue. */
77
78 struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
85 int saved_vr; /* smallest # of saved vr */
86 int saved_ev; /* smallest # of saved ev */
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
92 int vr_offset; /* offset of saved vrs from prev sp */
93 int ev_offset; /* offset of saved evs from prev sp */
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
96 int vrsave_offset; /* offset of saved vrsave register */
97 };
98
99 /* Description of a single register. */
100
101 struct reg
102 {
103 char *name; /* name of register */
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
106 unsigned char fpr; /* whether register is floating-point */
107 unsigned char pseudo; /* whether register is pseudo */
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
111 };
112
113 /* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
117 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137
138 /* Return true if REGNO is an SPE register, false otherwise. */
139 int
140 spe_register_p (int regno)
141 {
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168 }
169
170
171 /* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
173 int
174 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175 {
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
180 }
181
182
183 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
190 static void
191 set_sim_regno (int *table, int gdb_regno, int sim_regno)
192 {
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197 }
198
199
200 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
203 static void
204 init_sim_regno_table (struct gdbarch *arch)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281 }
282
283
284 /* Given a GDB register number REG, return the corresponding SIM
285 register number. */
286 static int
287 rs6000_register_sim_regno (int reg)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg
293 && reg <= gdbarch_num_regs (current_gdbarch)
294 + gdbarch_num_pseudo_regs (current_gdbarch));
295 sim_regno = tdep->sim_regno[reg];
296
297 if (sim_regno >= 0)
298 return sim_regno;
299 else
300 return LEGACY_SIM_REGNO_IGNORE;
301 }
302
303 \f
304
305 /* Register set support functions. */
306
307 static void
308 ppc_supply_reg (struct regcache *regcache, int regnum,
309 const gdb_byte *regs, size_t offset)
310 {
311 if (regnum != -1 && offset != -1)
312 regcache_raw_supply (regcache, regnum, regs + offset);
313 }
314
315 static void
316 ppc_collect_reg (const struct regcache *regcache, int regnum,
317 gdb_byte *regs, size_t offset)
318 {
319 if (regnum != -1 && offset != -1)
320 regcache_raw_collect (regcache, regnum, regs + offset);
321 }
322
323 /* Supply register REGNUM in the general-purpose register set REGSET
324 from the buffer specified by GREGS and LEN to register cache
325 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
326
327 void
328 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
329 int regnum, const void *gregs, size_t len)
330 {
331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 const struct ppc_reg_offsets *offsets = regset->descr;
334 size_t offset;
335 int i;
336
337 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
338 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
339 i++, offset += 4)
340 {
341 if (regnum == -1 || regnum == i)
342 ppc_supply_reg (regcache, i, gregs, offset);
343 }
344
345 if (regnum == -1 || regnum == PC_REGNUM)
346 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
347 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
348 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
349 gregs, offsets->ps_offset);
350 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
352 gregs, offsets->cr_offset);
353 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
355 gregs, offsets->lr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
358 gregs, offsets->ctr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
361 gregs, offsets->cr_offset);
362 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
363 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
364 }
365
366 /* Supply register REGNUM in the floating-point register set REGSET
367 from the buffer specified by FPREGS and LEN to register cache
368 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
369
370 void
371 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
372 int regnum, const void *fpregs, size_t len)
373 {
374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
376 const struct ppc_reg_offsets *offsets = regset->descr;
377 size_t offset;
378 int i;
379
380 gdb_assert (ppc_floating_point_unit_p (gdbarch));
381
382 offset = offsets->f0_offset;
383 for (i = tdep->ppc_fp0_regnum;
384 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
385 i++, offset += 8)
386 {
387 if (regnum == -1 || regnum == i)
388 ppc_supply_reg (regcache, i, fpregs, offset);
389 }
390
391 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
392 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
393 fpregs, offsets->fpscr_offset);
394 }
395
396 /* Collect register REGNUM in the general-purpose register set
397 REGSET. from register cache REGCACHE into the buffer specified by
398 GREGS and LEN. If REGNUM is -1, do this for all registers in
399 REGSET. */
400
401 void
402 ppc_collect_gregset (const struct regset *regset,
403 const struct regcache *regcache,
404 int regnum, void *gregs, size_t len)
405 {
406 struct gdbarch *gdbarch = get_regcache_arch (regcache);
407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
408 const struct ppc_reg_offsets *offsets = regset->descr;
409 size_t offset;
410 int i;
411
412 offset = offsets->r0_offset;
413 for (i = tdep->ppc_gp0_regnum;
414 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
415 i++, offset += 4)
416 {
417 if (regnum == -1 || regnum == i)
418 ppc_collect_reg (regcache, i, gregs, offset);
419 }
420
421 if (regnum == -1 || regnum == PC_REGNUM)
422 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
423 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
424 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
425 gregs, offsets->ps_offset);
426 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
428 gregs, offsets->cr_offset);
429 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
431 gregs, offsets->lr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
434 gregs, offsets->ctr_offset);
435 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
437 gregs, offsets->xer_offset);
438 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
439 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
440 gregs, offsets->mq_offset);
441 }
442
443 /* Collect register REGNUM in the floating-point register set
444 REGSET. from register cache REGCACHE into the buffer specified by
445 FPREGS and LEN. If REGNUM is -1, do this for all registers in
446 REGSET. */
447
448 void
449 ppc_collect_fpregset (const struct regset *regset,
450 const struct regcache *regcache,
451 int regnum, void *fpregs, size_t len)
452 {
453 struct gdbarch *gdbarch = get_regcache_arch (regcache);
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455 const struct ppc_reg_offsets *offsets = regset->descr;
456 size_t offset;
457 int i;
458
459 gdb_assert (ppc_floating_point_unit_p (gdbarch));
460
461 offset = offsets->f0_offset;
462 for (i = tdep->ppc_fp0_regnum;
463 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
464 i++, offset += 8)
465 {
466 if (regnum == -1 || regnum == i)
467 ppc_collect_reg (regcache, i, fpregs, offset);
468 }
469
470 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
471 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
472 fpregs, offsets->fpscr_offset);
473 }
474 \f
475
476 /* Read a LEN-byte address from debugged memory address MEMADDR. */
477
478 static CORE_ADDR
479 read_memory_addr (CORE_ADDR memaddr, int len)
480 {
481 return read_memory_unsigned_integer (memaddr, len);
482 }
483
484 static CORE_ADDR
485 rs6000_skip_prologue (CORE_ADDR pc)
486 {
487 struct rs6000_framedata frame;
488 CORE_ADDR limit_pc, func_addr;
489
490 /* See if we can determine the end of the prologue via the symbol table.
491 If so, then return either PC, or the PC after the prologue, whichever
492 is greater. */
493 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
494 {
495 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
496 if (post_prologue_pc != 0)
497 return max (pc, post_prologue_pc);
498 }
499
500 /* Can't determine prologue from the symbol table, need to examine
501 instructions. */
502
503 /* Find an upper limit on the function prologue using the debug
504 information. If the debug information could not be used to provide
505 that bound, then use an arbitrary large number as the upper bound. */
506 limit_pc = skip_prologue_using_sal (pc);
507 if (limit_pc == 0)
508 limit_pc = pc + 100; /* Magic. */
509
510 pc = skip_prologue (pc, limit_pc, &frame);
511 return pc;
512 }
513
514 static int
515 insn_changes_sp_or_jumps (unsigned long insn)
516 {
517 int opcode = (insn >> 26) & 0x03f;
518 int sd = (insn >> 21) & 0x01f;
519 int a = (insn >> 16) & 0x01f;
520 int subcode = (insn >> 1) & 0x3ff;
521
522 /* Changes the stack pointer. */
523
524 /* NOTE: There are many ways to change the value of a given register.
525 The ways below are those used when the register is R1, the SP,
526 in a funtion's epilogue. */
527
528 if (opcode == 31 && subcode == 444 && a == 1)
529 return 1; /* mr R1,Rn */
530 if (opcode == 14 && sd == 1)
531 return 1; /* addi R1,Rn,simm */
532 if (opcode == 58 && sd == 1)
533 return 1; /* ld R1,ds(Rn) */
534
535 /* Transfers control. */
536
537 if (opcode == 18)
538 return 1; /* b */
539 if (opcode == 16)
540 return 1; /* bc */
541 if (opcode == 19 && subcode == 16)
542 return 1; /* bclr */
543 if (opcode == 19 && subcode == 528)
544 return 1; /* bcctr */
545
546 return 0;
547 }
548
549 /* Return true if we are in the function's epilogue, i.e. after the
550 instruction that destroyed the function's stack frame.
551
552 1) scan forward from the point of execution:
553 a) If you find an instruction that modifies the stack pointer
554 or transfers control (except a return), execution is not in
555 an epilogue, return.
556 b) Stop scanning if you find a return instruction or reach the
557 end of the function or reach the hard limit for the size of
558 an epilogue.
559 2) scan backward from the point of execution:
560 a) If you find an instruction that modifies the stack pointer,
561 execution *is* in an epilogue, return.
562 b) Stop scanning if you reach an instruction that transfers
563 control or the beginning of the function or reach the hard
564 limit for the size of an epilogue. */
565
566 static int
567 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
568 {
569 bfd_byte insn_buf[PPC_INSN_SIZE];
570 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
571 unsigned long insn;
572 struct frame_info *curfrm;
573
574 /* Find the search limits based on function boundaries and hard limit. */
575
576 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
577 return 0;
578
579 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
580 if (epilogue_start < func_start) epilogue_start = func_start;
581
582 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
583 if (epilogue_end > func_end) epilogue_end = func_end;
584
585 curfrm = get_current_frame ();
586
587 /* Scan forward until next 'blr'. */
588
589 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
590 {
591 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
592 return 0;
593 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
594 if (insn == 0x4e800020)
595 break;
596 if (insn_changes_sp_or_jumps (insn))
597 return 0;
598 }
599
600 /* Scan backward until adjustment to stack pointer (R1). */
601
602 for (scan_pc = pc - PPC_INSN_SIZE;
603 scan_pc >= epilogue_start;
604 scan_pc -= PPC_INSN_SIZE)
605 {
606 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
607 return 0;
608 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
609 if (insn_changes_sp_or_jumps (insn))
610 return 1;
611 }
612
613 return 0;
614 }
615
616 /* Get the ith function argument for the current function. */
617 static CORE_ADDR
618 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
619 struct type *type)
620 {
621 return get_frame_register_unsigned (frame, 3 + argi);
622 }
623
624 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
625
626 static CORE_ADDR
627 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
628 {
629 CORE_ADDR dest;
630 int immediate;
631 int absolute;
632 int ext_op;
633
634 absolute = (int) ((instr >> 1) & 1);
635
636 switch (opcode)
637 {
638 case 18:
639 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
640 if (absolute)
641 dest = immediate;
642 else
643 dest = pc + immediate;
644 break;
645
646 case 16:
647 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
648 if (absolute)
649 dest = immediate;
650 else
651 dest = pc + immediate;
652 break;
653
654 case 19:
655 ext_op = (instr >> 1) & 0x3ff;
656
657 if (ext_op == 16) /* br conditional register */
658 {
659 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
660
661 /* If we are about to return from a signal handler, dest is
662 something like 0x3c90. The current frame is a signal handler
663 caller frame, upon completion of the sigreturn system call
664 execution will return to the saved PC in the frame. */
665 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
666 {
667 struct frame_info *fi;
668
669 fi = get_current_frame ();
670 if (fi != NULL)
671 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
672 gdbarch_tdep (current_gdbarch)->wordsize);
673 }
674 }
675
676 else if (ext_op == 528) /* br cond to count reg */
677 {
678 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
679
680 /* If we are about to execute a system call, dest is something
681 like 0x22fc or 0x3b00. Upon completion the system call
682 will return to the address in the link register. */
683 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
684 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
685 }
686 else
687 return -1;
688 break;
689
690 default:
691 return -1;
692 }
693 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
694 }
695
696
697 /* Sequence of bytes for breakpoint instruction. */
698
699 const static unsigned char *
700 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
701 {
702 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
703 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
704 *bp_size = 4;
705 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
706 return big_breakpoint;
707 else
708 return little_breakpoint;
709 }
710
711
712 /* Instruction masks used during single-stepping of atomic sequences. */
713 #define LWARX_MASK 0xfc0007fe
714 #define LWARX_INSTRUCTION 0x7c000028
715 #define LDARX_INSTRUCTION 0x7c0000A8
716 #define STWCX_MASK 0xfc0007ff
717 #define STWCX_INSTRUCTION 0x7c00012d
718 #define STDCX_INSTRUCTION 0x7c0001ad
719 #define BC_MASK 0xfc000000
720 #define BC_INSTRUCTION 0x40000000
721
722 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
723 instruction and ending with a STWCX/STDCX instruction. If such a sequence
724 is found, attempt to step through it. A breakpoint is placed at the end of
725 the sequence. */
726
727 static int
728 deal_with_atomic_sequence (struct regcache *regcache)
729 {
730 CORE_ADDR pc = read_pc ();
731 CORE_ADDR breaks[2] = {-1, -1};
732 CORE_ADDR loc = pc;
733 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
734 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
735 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
736 int insn_count;
737 int index;
738 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
739 const int atomic_sequence_length = 16; /* Instruction sequence length. */
740 int opcode; /* Branch instruction's OPcode. */
741 int bc_insn_count = 0; /* Conditional branch instruction count. */
742
743 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
744 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
745 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
746 return 0;
747
748 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
749 instructions. */
750 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
751 {
752 loc += PPC_INSN_SIZE;
753 insn = read_memory_integer (loc, PPC_INSN_SIZE);
754
755 /* Assume that there is at most one conditional branch in the atomic
756 sequence. If a conditional branch is found, put a breakpoint in
757 its destination address. */
758 if ((insn & BC_MASK) == BC_INSTRUCTION)
759 {
760 if (bc_insn_count >= 1)
761 return 0; /* More than one conditional branch found, fallback
762 to the standard single-step code. */
763
764 opcode = insn >> 26;
765 branch_bp = branch_dest (opcode, insn, pc, breaks[0]);
766
767 if (branch_bp != -1)
768 {
769 breaks[1] = branch_bp;
770 bc_insn_count++;
771 last_breakpoint++;
772 }
773 }
774
775 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
776 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
777 break;
778 }
779
780 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
781 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
782 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
783 return 0;
784
785 closing_insn = loc;
786 loc += PPC_INSN_SIZE;
787 insn = read_memory_integer (loc, PPC_INSN_SIZE);
788
789 /* Insert a breakpoint right after the end of the atomic sequence. */
790 breaks[0] = loc;
791
792 /* Check for duplicated breakpoints. Check also for a breakpoint
793 placed (branch instruction's destination) at the stwcx/stdcx
794 instruction, this resets the reservation and take us back to the
795 lwarx/ldarx instruction at the beginning of the atomic sequence. */
796 if (last_breakpoint && ((breaks[1] == breaks[0])
797 || (breaks[1] == closing_insn)))
798 last_breakpoint = 0;
799
800 /* Effectively inserts the breakpoints. */
801 for (index = 0; index <= last_breakpoint; index++)
802 insert_single_step_breakpoint (breaks[index]);
803
804 return 1;
805 }
806
807 /* AIX does not support PT_STEP. Simulate it. */
808
809 int
810 rs6000_software_single_step (struct regcache *regcache)
811 {
812 CORE_ADDR dummy;
813 int breakp_sz;
814 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
815 int ii, insn;
816 CORE_ADDR loc;
817 CORE_ADDR breaks[2];
818 int opcode;
819
820 loc = read_pc ();
821
822 insn = read_memory_integer (loc, 4);
823
824 if (deal_with_atomic_sequence (regcache))
825 return 1;
826
827 breaks[0] = loc + breakp_sz;
828 opcode = insn >> 26;
829 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
830
831 /* Don't put two breakpoints on the same address. */
832 if (breaks[1] == breaks[0])
833 breaks[1] = -1;
834
835 for (ii = 0; ii < 2; ++ii)
836 {
837 /* ignore invalid breakpoint. */
838 if (breaks[ii] == -1)
839 continue;
840 insert_single_step_breakpoint (breaks[ii]);
841 }
842
843 errno = 0; /* FIXME, don't ignore errors! */
844 /* What errors? {read,write}_memory call error(). */
845 return 1;
846 }
847
848
849 /* return pc value after skipping a function prologue and also return
850 information about a function frame.
851
852 in struct rs6000_framedata fdata:
853 - frameless is TRUE, if function does not have a frame.
854 - nosavedpc is TRUE, if function does not save %pc value in its frame.
855 - offset is the initial size of this stack frame --- the amount by
856 which we decrement the sp to allocate the frame.
857 - saved_gpr is the number of the first saved gpr.
858 - saved_fpr is the number of the first saved fpr.
859 - saved_vr is the number of the first saved vr.
860 - saved_ev is the number of the first saved ev.
861 - alloca_reg is the number of the register used for alloca() handling.
862 Otherwise -1.
863 - gpr_offset is the offset of the first saved gpr from the previous frame.
864 - fpr_offset is the offset of the first saved fpr from the previous frame.
865 - vr_offset is the offset of the first saved vr from the previous frame.
866 - ev_offset is the offset of the first saved ev from the previous frame.
867 - lr_offset is the offset of the saved lr
868 - cr_offset is the offset of the saved cr
869 - vrsave_offset is the offset of the saved vrsave register
870 */
871
872 #define SIGNED_SHORT(x) \
873 ((sizeof (short) == 2) \
874 ? ((int)(short)(x)) \
875 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
876
877 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
878
879 /* Limit the number of skipped non-prologue instructions, as the examining
880 of the prologue is expensive. */
881 static int max_skip_non_prologue_insns = 10;
882
883 /* Return nonzero if the given instruction OP can be part of the prologue
884 of a function and saves a parameter on the stack. FRAMEP should be
885 set if one of the previous instructions in the function has set the
886 Frame Pointer. */
887
888 static int
889 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
890 {
891 /* Move parameters from argument registers to temporary register. */
892 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
893 {
894 /* Rx must be scratch register r0. */
895 const int rx_regno = (op >> 16) & 31;
896 /* Ry: Only r3 - r10 are used for parameter passing. */
897 const int ry_regno = GET_SRC_REG (op);
898
899 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
900 {
901 *r0_contains_arg = 1;
902 return 1;
903 }
904 else
905 return 0;
906 }
907
908 /* Save a General Purpose Register on stack. */
909
910 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
911 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
912 {
913 /* Rx: Only r3 - r10 are used for parameter passing. */
914 const int rx_regno = GET_SRC_REG (op);
915
916 return (rx_regno >= 3 && rx_regno <= 10);
917 }
918
919 /* Save a General Purpose Register on stack via the Frame Pointer. */
920
921 if (framep &&
922 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
923 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
924 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
925 {
926 /* Rx: Usually, only r3 - r10 are used for parameter passing.
927 However, the compiler sometimes uses r0 to hold an argument. */
928 const int rx_regno = GET_SRC_REG (op);
929
930 return ((rx_regno >= 3 && rx_regno <= 10)
931 || (rx_regno == 0 && *r0_contains_arg));
932 }
933
934 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
935 {
936 /* Only f2 - f8 are used for parameter passing. */
937 const int src_regno = GET_SRC_REG (op);
938
939 return (src_regno >= 2 && src_regno <= 8);
940 }
941
942 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
943 {
944 /* Only f2 - f8 are used for parameter passing. */
945 const int src_regno = GET_SRC_REG (op);
946
947 return (src_regno >= 2 && src_regno <= 8);
948 }
949
950 /* Not an insn that saves a parameter on stack. */
951 return 0;
952 }
953
954 /* Assuming that INSN is a "bl" instruction located at PC, return
955 nonzero if the destination of the branch is a "blrl" instruction.
956
957 This sequence is sometimes found in certain function prologues.
958 It allows the function to load the LR register with a value that
959 they can use to access PIC data using PC-relative offsets. */
960
961 static int
962 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
963 {
964 const int opcode = 18;
965 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
966 int dest_insn;
967
968 if (dest == -1)
969 return 0; /* Should never happen, but just return zero to be safe. */
970
971 dest_insn = read_memory_integer (dest, 4);
972 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
973 return 1;
974
975 return 0;
976 }
977
978 static CORE_ADDR
979 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
980 {
981 CORE_ADDR orig_pc = pc;
982 CORE_ADDR last_prologue_pc = pc;
983 CORE_ADDR li_found_pc = 0;
984 gdb_byte buf[4];
985 unsigned long op;
986 long offset = 0;
987 long vr_saved_offset = 0;
988 int lr_reg = -1;
989 int cr_reg = -1;
990 int vr_reg = -1;
991 int ev_reg = -1;
992 long ev_offset = 0;
993 int vrsave_reg = -1;
994 int reg;
995 int framep = 0;
996 int minimal_toc_loaded = 0;
997 int prev_insn_was_prologue_insn = 1;
998 int num_skip_non_prologue_insns = 0;
999 int r0_contains_arg = 0;
1000 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
1001 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1002
1003 memset (fdata, 0, sizeof (struct rs6000_framedata));
1004 fdata->saved_gpr = -1;
1005 fdata->saved_fpr = -1;
1006 fdata->saved_vr = -1;
1007 fdata->saved_ev = -1;
1008 fdata->alloca_reg = -1;
1009 fdata->frameless = 1;
1010 fdata->nosavedpc = 1;
1011
1012 for (;; pc += 4)
1013 {
1014 /* Sometimes it isn't clear if an instruction is a prologue
1015 instruction or not. When we encounter one of these ambiguous
1016 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1017 Otherwise, we'll assume that it really is a prologue instruction. */
1018 if (prev_insn_was_prologue_insn)
1019 last_prologue_pc = pc;
1020
1021 /* Stop scanning if we've hit the limit. */
1022 if (pc >= lim_pc)
1023 break;
1024
1025 prev_insn_was_prologue_insn = 1;
1026
1027 /* Fetch the instruction and convert it to an integer. */
1028 if (target_read_memory (pc, buf, 4))
1029 break;
1030 op = extract_unsigned_integer (buf, 4);
1031
1032 if ((op & 0xfc1fffff) == 0x7c0802a6)
1033 { /* mflr Rx */
1034 /* Since shared library / PIC code, which needs to get its
1035 address at runtime, can appear to save more than one link
1036 register vis:
1037
1038 *INDENT-OFF*
1039 stwu r1,-304(r1)
1040 mflr r3
1041 bl 0xff570d0 (blrl)
1042 stw r30,296(r1)
1043 mflr r30
1044 stw r31,300(r1)
1045 stw r3,308(r1);
1046 ...
1047 *INDENT-ON*
1048
1049 remember just the first one, but skip over additional
1050 ones. */
1051 if (lr_reg == -1)
1052 lr_reg = (op & 0x03e00000);
1053 if (lr_reg == 0)
1054 r0_contains_arg = 0;
1055 continue;
1056 }
1057 else if ((op & 0xfc1fffff) == 0x7c000026)
1058 { /* mfcr Rx */
1059 cr_reg = (op & 0x03e00000);
1060 if (cr_reg == 0)
1061 r0_contains_arg = 0;
1062 continue;
1063
1064 }
1065 else if ((op & 0xfc1f0000) == 0xd8010000)
1066 { /* stfd Rx,NUM(r1) */
1067 reg = GET_SRC_REG (op);
1068 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1069 {
1070 fdata->saved_fpr = reg;
1071 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1072 }
1073 continue;
1074
1075 }
1076 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1077 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1078 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1079 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1080 {
1081
1082 reg = GET_SRC_REG (op);
1083 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1084 {
1085 fdata->saved_gpr = reg;
1086 if ((op & 0xfc1f0003) == 0xf8010000)
1087 op &= ~3UL;
1088 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1089 }
1090 continue;
1091
1092 }
1093 else if ((op & 0xffff0000) == 0x60000000)
1094 {
1095 /* nop */
1096 /* Allow nops in the prologue, but do not consider them to
1097 be part of the prologue unless followed by other prologue
1098 instructions. */
1099 prev_insn_was_prologue_insn = 0;
1100 continue;
1101
1102 }
1103 else if ((op & 0xffff0000) == 0x3c000000)
1104 { /* addis 0,0,NUM, used
1105 for >= 32k frames */
1106 fdata->offset = (op & 0x0000ffff) << 16;
1107 fdata->frameless = 0;
1108 r0_contains_arg = 0;
1109 continue;
1110
1111 }
1112 else if ((op & 0xffff0000) == 0x60000000)
1113 { /* ori 0,0,NUM, 2nd ha
1114 lf of >= 32k frames */
1115 fdata->offset |= (op & 0x0000ffff);
1116 fdata->frameless = 0;
1117 r0_contains_arg = 0;
1118 continue;
1119
1120 }
1121 else if (lr_reg >= 0 &&
1122 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1123 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1124 /* stw Rx, NUM(r1) */
1125 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1126 /* stwu Rx, NUM(r1) */
1127 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1128 { /* where Rx == lr */
1129 fdata->lr_offset = offset;
1130 fdata->nosavedpc = 0;
1131 /* Invalidate lr_reg, but don't set it to -1.
1132 That would mean that it had never been set. */
1133 lr_reg = -2;
1134 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1135 (op & 0xfc000000) == 0x90000000) /* stw */
1136 {
1137 /* Does not update r1, so add displacement to lr_offset. */
1138 fdata->lr_offset += SIGNED_SHORT (op);
1139 }
1140 continue;
1141
1142 }
1143 else if (cr_reg >= 0 &&
1144 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1145 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1146 /* stw Rx, NUM(r1) */
1147 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1148 /* stwu Rx, NUM(r1) */
1149 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1150 { /* where Rx == cr */
1151 fdata->cr_offset = offset;
1152 /* Invalidate cr_reg, but don't set it to -1.
1153 That would mean that it had never been set. */
1154 cr_reg = -2;
1155 if ((op & 0xfc000003) == 0xf8000000 ||
1156 (op & 0xfc000000) == 0x90000000)
1157 {
1158 /* Does not update r1, so add displacement to cr_offset. */
1159 fdata->cr_offset += SIGNED_SHORT (op);
1160 }
1161 continue;
1162
1163 }
1164 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1165 {
1166 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1167 prediction bits. If the LR has already been saved, we can
1168 skip it. */
1169 continue;
1170 }
1171 else if (op == 0x48000005)
1172 { /* bl .+4 used in
1173 -mrelocatable */
1174 continue;
1175
1176 }
1177 else if (op == 0x48000004)
1178 { /* b .+4 (xlc) */
1179 break;
1180
1181 }
1182 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1183 in V.4 -mminimal-toc */
1184 (op & 0xffff0000) == 0x3bde0000)
1185 { /* addi 30,30,foo@l */
1186 continue;
1187
1188 }
1189 else if ((op & 0xfc000001) == 0x48000001)
1190 { /* bl foo,
1191 to save fprs??? */
1192
1193 fdata->frameless = 0;
1194
1195 /* If the return address has already been saved, we can skip
1196 calls to blrl (for PIC). */
1197 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1198 continue;
1199
1200 /* Don't skip over the subroutine call if it is not within
1201 the first three instructions of the prologue and either
1202 we have no line table information or the line info tells
1203 us that the subroutine call is not part of the line
1204 associated with the prologue. */
1205 if ((pc - orig_pc) > 8)
1206 {
1207 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1208 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1209
1210 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1211 break;
1212 }
1213
1214 op = read_memory_integer (pc + 4, 4);
1215
1216 /* At this point, make sure this is not a trampoline
1217 function (a function that simply calls another functions,
1218 and nothing else). If the next is not a nop, this branch
1219 was part of the function prologue. */
1220
1221 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1222 break; /* don't skip over
1223 this branch */
1224 continue;
1225
1226 }
1227 /* update stack pointer */
1228 else if ((op & 0xfc1f0000) == 0x94010000)
1229 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1230 fdata->frameless = 0;
1231 fdata->offset = SIGNED_SHORT (op);
1232 offset = fdata->offset;
1233 continue;
1234 }
1235 else if ((op & 0xfc1f016a) == 0x7c01016e)
1236 { /* stwux rX,r1,rY */
1237 /* no way to figure out what r1 is going to be */
1238 fdata->frameless = 0;
1239 offset = fdata->offset;
1240 continue;
1241 }
1242 else if ((op & 0xfc1f0003) == 0xf8010001)
1243 { /* stdu rX,NUM(r1) */
1244 fdata->frameless = 0;
1245 fdata->offset = SIGNED_SHORT (op & ~3UL);
1246 offset = fdata->offset;
1247 continue;
1248 }
1249 else if ((op & 0xfc1f016a) == 0x7c01016a)
1250 { /* stdux rX,r1,rY */
1251 /* no way to figure out what r1 is going to be */
1252 fdata->frameless = 0;
1253 offset = fdata->offset;
1254 continue;
1255 }
1256 else if ((op & 0xffff0000) == 0x38210000)
1257 { /* addi r1,r1,SIMM */
1258 fdata->frameless = 0;
1259 fdata->offset += SIGNED_SHORT (op);
1260 offset = fdata->offset;
1261 continue;
1262 }
1263 /* Load up minimal toc pointer. Do not treat an epilogue restore
1264 of r31 as a minimal TOC load. */
1265 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1266 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1267 && !framep
1268 && !minimal_toc_loaded)
1269 {
1270 minimal_toc_loaded = 1;
1271 continue;
1272
1273 /* move parameters from argument registers to local variable
1274 registers */
1275 }
1276 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1277 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1278 (((op >> 21) & 31) <= 10) &&
1279 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1280 {
1281 continue;
1282
1283 /* store parameters in stack */
1284 }
1285 /* Move parameters from argument registers to temporary register. */
1286 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1287 {
1288 continue;
1289
1290 /* Set up frame pointer */
1291 }
1292 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1293 || op == 0x7c3f0b78)
1294 { /* mr r31, r1 */
1295 fdata->frameless = 0;
1296 framep = 1;
1297 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1298 continue;
1299
1300 /* Another way to set up the frame pointer. */
1301 }
1302 else if ((op & 0xfc1fffff) == 0x38010000)
1303 { /* addi rX, r1, 0x0 */
1304 fdata->frameless = 0;
1305 framep = 1;
1306 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1307 + ((op & ~0x38010000) >> 21));
1308 continue;
1309 }
1310 /* AltiVec related instructions. */
1311 /* Store the vrsave register (spr 256) in another register for
1312 later manipulation, or load a register into the vrsave
1313 register. 2 instructions are used: mfvrsave and
1314 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1315 and mtspr SPR256, Rn. */
1316 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1317 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1318 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1319 {
1320 vrsave_reg = GET_SRC_REG (op);
1321 continue;
1322 }
1323 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1324 {
1325 continue;
1326 }
1327 /* Store the register where vrsave was saved to onto the stack:
1328 rS is the register where vrsave was stored in a previous
1329 instruction. */
1330 /* 100100 sssss 00001 dddddddd dddddddd */
1331 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1332 {
1333 if (vrsave_reg == GET_SRC_REG (op))
1334 {
1335 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1336 vrsave_reg = -1;
1337 }
1338 continue;
1339 }
1340 /* Compute the new value of vrsave, by modifying the register
1341 where vrsave was saved to. */
1342 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1343 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1344 {
1345 continue;
1346 }
1347 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1348 in a pair of insns to save the vector registers on the
1349 stack. */
1350 /* 001110 00000 00000 iiii iiii iiii iiii */
1351 /* 001110 01110 00000 iiii iiii iiii iiii */
1352 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1353 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1354 {
1355 if ((op & 0xffff0000) == 0x38000000)
1356 r0_contains_arg = 0;
1357 li_found_pc = pc;
1358 vr_saved_offset = SIGNED_SHORT (op);
1359
1360 /* This insn by itself is not part of the prologue, unless
1361 if part of the pair of insns mentioned above. So do not
1362 record this insn as part of the prologue yet. */
1363 prev_insn_was_prologue_insn = 0;
1364 }
1365 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1366 /* 011111 sssss 11111 00000 00111001110 */
1367 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1368 {
1369 if (pc == (li_found_pc + 4))
1370 {
1371 vr_reg = GET_SRC_REG (op);
1372 /* If this is the first vector reg to be saved, or if
1373 it has a lower number than others previously seen,
1374 reupdate the frame info. */
1375 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1376 {
1377 fdata->saved_vr = vr_reg;
1378 fdata->vr_offset = vr_saved_offset + offset;
1379 }
1380 vr_saved_offset = -1;
1381 vr_reg = -1;
1382 li_found_pc = 0;
1383 }
1384 }
1385 /* End AltiVec related instructions. */
1386
1387 /* Start BookE related instructions. */
1388 /* Store gen register S at (r31+uimm).
1389 Any register less than r13 is volatile, so we don't care. */
1390 /* 000100 sssss 11111 iiiii 01100100001 */
1391 else if (arch_info->mach == bfd_mach_ppc_e500
1392 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1393 {
1394 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1395 {
1396 unsigned int imm;
1397 ev_reg = GET_SRC_REG (op);
1398 imm = (op >> 11) & 0x1f;
1399 ev_offset = imm * 8;
1400 /* If this is the first vector reg to be saved, or if
1401 it has a lower number than others previously seen,
1402 reupdate the frame info. */
1403 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1404 {
1405 fdata->saved_ev = ev_reg;
1406 fdata->ev_offset = ev_offset + offset;
1407 }
1408 }
1409 continue;
1410 }
1411 /* Store gen register rS at (r1+rB). */
1412 /* 000100 sssss 00001 bbbbb 01100100000 */
1413 else if (arch_info->mach == bfd_mach_ppc_e500
1414 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1415 {
1416 if (pc == (li_found_pc + 4))
1417 {
1418 ev_reg = GET_SRC_REG (op);
1419 /* If this is the first vector reg to be saved, or if
1420 it has a lower number than others previously seen,
1421 reupdate the frame info. */
1422 /* We know the contents of rB from the previous instruction. */
1423 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1424 {
1425 fdata->saved_ev = ev_reg;
1426 fdata->ev_offset = vr_saved_offset + offset;
1427 }
1428 vr_saved_offset = -1;
1429 ev_reg = -1;
1430 li_found_pc = 0;
1431 }
1432 continue;
1433 }
1434 /* Store gen register r31 at (rA+uimm). */
1435 /* 000100 11111 aaaaa iiiii 01100100001 */
1436 else if (arch_info->mach == bfd_mach_ppc_e500
1437 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1438 {
1439 /* Wwe know that the source register is 31 already, but
1440 it can't hurt to compute it. */
1441 ev_reg = GET_SRC_REG (op);
1442 ev_offset = ((op >> 11) & 0x1f) * 8;
1443 /* If this is the first vector reg to be saved, or if
1444 it has a lower number than others previously seen,
1445 reupdate the frame info. */
1446 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1447 {
1448 fdata->saved_ev = ev_reg;
1449 fdata->ev_offset = ev_offset + offset;
1450 }
1451
1452 continue;
1453 }
1454 /* Store gen register S at (r31+r0).
1455 Store param on stack when offset from SP bigger than 4 bytes. */
1456 /* 000100 sssss 11111 00000 01100100000 */
1457 else if (arch_info->mach == bfd_mach_ppc_e500
1458 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1459 {
1460 if (pc == (li_found_pc + 4))
1461 {
1462 if ((op & 0x03e00000) >= 0x01a00000)
1463 {
1464 ev_reg = GET_SRC_REG (op);
1465 /* If this is the first vector reg to be saved, or if
1466 it has a lower number than others previously seen,
1467 reupdate the frame info. */
1468 /* We know the contents of r0 from the previous
1469 instruction. */
1470 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1471 {
1472 fdata->saved_ev = ev_reg;
1473 fdata->ev_offset = vr_saved_offset + offset;
1474 }
1475 ev_reg = -1;
1476 }
1477 vr_saved_offset = -1;
1478 li_found_pc = 0;
1479 continue;
1480 }
1481 }
1482 /* End BookE related instructions. */
1483
1484 else
1485 {
1486 /* Not a recognized prologue instruction.
1487 Handle optimizer code motions into the prologue by continuing
1488 the search if we have no valid frame yet or if the return
1489 address is not yet saved in the frame. */
1490 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1491 break;
1492
1493 if (op == 0x4e800020 /* blr */
1494 || op == 0x4e800420) /* bctr */
1495 /* Do not scan past epilogue in frameless functions or
1496 trampolines. */
1497 break;
1498 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1499 /* Never skip branches. */
1500 break;
1501
1502 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1503 /* Do not scan too many insns, scanning insns is expensive with
1504 remote targets. */
1505 break;
1506
1507 /* Continue scanning. */
1508 prev_insn_was_prologue_insn = 0;
1509 continue;
1510 }
1511 }
1512
1513 #if 0
1514 /* I have problems with skipping over __main() that I need to address
1515 * sometime. Previously, I used to use misc_function_vector which
1516 * didn't work as well as I wanted to be. -MGO */
1517
1518 /* If the first thing after skipping a prolog is a branch to a function,
1519 this might be a call to an initializer in main(), introduced by gcc2.
1520 We'd like to skip over it as well. Fortunately, xlc does some extra
1521 work before calling a function right after a prologue, thus we can
1522 single out such gcc2 behaviour. */
1523
1524
1525 if ((op & 0xfc000001) == 0x48000001)
1526 { /* bl foo, an initializer function? */
1527 op = read_memory_integer (pc + 4, 4);
1528
1529 if (op == 0x4def7b82)
1530 { /* cror 0xf, 0xf, 0xf (nop) */
1531
1532 /* Check and see if we are in main. If so, skip over this
1533 initializer function as well. */
1534
1535 tmp = find_pc_misc_function (pc);
1536 if (tmp >= 0
1537 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1538 return pc + 8;
1539 }
1540 }
1541 #endif /* 0 */
1542
1543 fdata->offset = -fdata->offset;
1544 return last_prologue_pc;
1545 }
1546
1547
1548 /*************************************************************************
1549 Support for creating pushing a dummy frame into the stack, and popping
1550 frames, etc.
1551 *************************************************************************/
1552
1553
1554 /* All the ABI's require 16 byte alignment. */
1555 static CORE_ADDR
1556 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1557 {
1558 return (addr & -16);
1559 }
1560
1561 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1562 the first eight words of the argument list (that might be less than
1563 eight parameters if some parameters occupy more than one word) are
1564 passed in r3..r10 registers. float and double parameters are
1565 passed in fpr's, in addition to that. Rest of the parameters if any
1566 are passed in user stack. There might be cases in which half of the
1567 parameter is copied into registers, the other half is pushed into
1568 stack.
1569
1570 Stack must be aligned on 64-bit boundaries when synthesizing
1571 function calls.
1572
1573 If the function is returning a structure, then the return address is passed
1574 in r3, then the first 7 words of the parameters can be passed in registers,
1575 starting from r4. */
1576
1577 static CORE_ADDR
1578 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1579 struct regcache *regcache, CORE_ADDR bp_addr,
1580 int nargs, struct value **args, CORE_ADDR sp,
1581 int struct_return, CORE_ADDR struct_addr)
1582 {
1583 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1584 int ii;
1585 int len = 0;
1586 int argno; /* current argument number */
1587 int argbytes; /* current argument byte */
1588 gdb_byte tmp_buffer[50];
1589 int f_argno = 0; /* current floating point argno */
1590 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1591 CORE_ADDR func_addr = find_function_addr (function, NULL);
1592
1593 struct value *arg = 0;
1594 struct type *type;
1595
1596 ULONGEST saved_sp;
1597
1598 /* The calling convention this function implements assumes the
1599 processor has floating-point registers. We shouldn't be using it
1600 on PPC variants that lack them. */
1601 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1602
1603 /* The first eight words of ther arguments are passed in registers.
1604 Copy them appropriately. */
1605 ii = 0;
1606
1607 /* If the function is returning a `struct', then the first word
1608 (which will be passed in r3) is used for struct return address.
1609 In that case we should advance one word and start from r4
1610 register to copy parameters. */
1611 if (struct_return)
1612 {
1613 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1614 struct_addr);
1615 ii++;
1616 }
1617
1618 /*
1619 effectively indirect call... gcc does...
1620
1621 return_val example( float, int);
1622
1623 eabi:
1624 float in fp0, int in r3
1625 offset of stack on overflow 8/16
1626 for varargs, must go by type.
1627 power open:
1628 float in r3&r4, int in r5
1629 offset of stack on overflow different
1630 both:
1631 return in r3 or f0. If no float, must study how gcc emulates floats;
1632 pay attention to arg promotion.
1633 User may have to cast\args to handle promotion correctly
1634 since gdb won't know if prototype supplied or not.
1635 */
1636
1637 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1638 {
1639 int reg_size = register_size (current_gdbarch, ii + 3);
1640
1641 arg = args[argno];
1642 type = check_typedef (value_type (arg));
1643 len = TYPE_LENGTH (type);
1644
1645 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1646 {
1647
1648 /* Floating point arguments are passed in fpr's, as well as gpr's.
1649 There are 13 fpr's reserved for passing parameters. At this point
1650 there is no way we would run out of them. */
1651
1652 gdb_assert (len <= 8);
1653
1654 regcache_cooked_write (regcache,
1655 tdep->ppc_fp0_regnum + 1 + f_argno,
1656 value_contents (arg));
1657 ++f_argno;
1658 }
1659
1660 if (len > reg_size)
1661 {
1662
1663 /* Argument takes more than one register. */
1664 while (argbytes < len)
1665 {
1666 gdb_byte word[MAX_REGISTER_SIZE];
1667 memset (word, 0, reg_size);
1668 memcpy (word,
1669 ((char *) value_contents (arg)) + argbytes,
1670 (len - argbytes) > reg_size
1671 ? reg_size : len - argbytes);
1672 regcache_cooked_write (regcache,
1673 tdep->ppc_gp0_regnum + 3 + ii,
1674 word);
1675 ++ii, argbytes += reg_size;
1676
1677 if (ii >= 8)
1678 goto ran_out_of_registers_for_arguments;
1679 }
1680 argbytes = 0;
1681 --ii;
1682 }
1683 else
1684 {
1685 /* Argument can fit in one register. No problem. */
1686 int adj = gdbarch_byte_order (current_gdbarch)
1687 == BFD_ENDIAN_BIG ? reg_size - len : 0;
1688 gdb_byte word[MAX_REGISTER_SIZE];
1689
1690 memset (word, 0, reg_size);
1691 memcpy (word, value_contents (arg), len);
1692 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1693 }
1694 ++argno;
1695 }
1696
1697 ran_out_of_registers_for_arguments:
1698
1699 regcache_cooked_read_unsigned (regcache, SP_REGNUM, &saved_sp);
1700
1701 /* Location for 8 parameters are always reserved. */
1702 sp -= wordsize * 8;
1703
1704 /* Another six words for back chain, TOC register, link register, etc. */
1705 sp -= wordsize * 6;
1706
1707 /* Stack pointer must be quadword aligned. */
1708 sp &= -16;
1709
1710 /* If there are more arguments, allocate space for them in
1711 the stack, then push them starting from the ninth one. */
1712
1713 if ((argno < nargs) || argbytes)
1714 {
1715 int space = 0, jj;
1716
1717 if (argbytes)
1718 {
1719 space += ((len - argbytes + 3) & -4);
1720 jj = argno + 1;
1721 }
1722 else
1723 jj = argno;
1724
1725 for (; jj < nargs; ++jj)
1726 {
1727 struct value *val = args[jj];
1728 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1729 }
1730
1731 /* Add location required for the rest of the parameters. */
1732 space = (space + 15) & -16;
1733 sp -= space;
1734
1735 /* This is another instance we need to be concerned about
1736 securing our stack space. If we write anything underneath %sp
1737 (r1), we might conflict with the kernel who thinks he is free
1738 to use this area. So, update %sp first before doing anything
1739 else. */
1740
1741 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1742
1743 /* If the last argument copied into the registers didn't fit there
1744 completely, push the rest of it into stack. */
1745
1746 if (argbytes)
1747 {
1748 write_memory (sp + 24 + (ii * 4),
1749 value_contents (arg) + argbytes,
1750 len - argbytes);
1751 ++argno;
1752 ii += ((len - argbytes + 3) & -4) / 4;
1753 }
1754
1755 /* Push the rest of the arguments into stack. */
1756 for (; argno < nargs; ++argno)
1757 {
1758
1759 arg = args[argno];
1760 type = check_typedef (value_type (arg));
1761 len = TYPE_LENGTH (type);
1762
1763
1764 /* Float types should be passed in fpr's, as well as in the
1765 stack. */
1766 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1767 {
1768
1769 gdb_assert (len <= 8);
1770
1771 regcache_cooked_write (regcache,
1772 tdep->ppc_fp0_regnum + 1 + f_argno,
1773 value_contents (arg));
1774 ++f_argno;
1775 }
1776
1777 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1778 ii += ((len + 3) & -4) / 4;
1779 }
1780 }
1781
1782 /* Set the stack pointer. According to the ABI, the SP is meant to
1783 be set _before_ the corresponding stack space is used. On AIX,
1784 this even applies when the target has been completely stopped!
1785 Not doing this can lead to conflicts with the kernel which thinks
1786 that it still has control over this not-yet-allocated stack
1787 region. */
1788 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1789
1790 /* Set back chain properly. */
1791 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1792 write_memory (sp, tmp_buffer, wordsize);
1793
1794 /* Point the inferior function call's return address at the dummy's
1795 breakpoint. */
1796 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1797
1798 /* Set the TOC register, get the value from the objfile reader
1799 which, in turn, gets it from the VMAP table. */
1800 if (rs6000_find_toc_address_hook != NULL)
1801 {
1802 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1803 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1804 }
1805
1806 target_store_registers (regcache, -1);
1807 return sp;
1808 }
1809
1810 static enum return_value_convention
1811 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1812 struct regcache *regcache, gdb_byte *readbuf,
1813 const gdb_byte *writebuf)
1814 {
1815 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1816 gdb_byte buf[8];
1817
1818 /* The calling convention this function implements assumes the
1819 processor has floating-point registers. We shouldn't be using it
1820 on PowerPC variants that lack them. */
1821 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1822
1823 /* AltiVec extension: Functions that declare a vector data type as a
1824 return value place that return value in VR2. */
1825 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1826 && TYPE_LENGTH (valtype) == 16)
1827 {
1828 if (readbuf)
1829 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1830 if (writebuf)
1831 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1832
1833 return RETURN_VALUE_REGISTER_CONVENTION;
1834 }
1835
1836 /* If the called subprogram returns an aggregate, there exists an
1837 implicit first argument, whose value is the address of a caller-
1838 allocated buffer into which the callee is assumed to store its
1839 return value. All explicit parameters are appropriately
1840 relabeled. */
1841 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1842 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1843 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1844 return RETURN_VALUE_STRUCT_CONVENTION;
1845
1846 /* Scalar floating-point values are returned in FPR1 for float or
1847 double, and in FPR1:FPR2 for quadword precision. Fortran
1848 complex*8 and complex*16 are returned in FPR1:FPR2, and
1849 complex*32 is returned in FPR1:FPR4. */
1850 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1851 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1852 {
1853 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1854 gdb_byte regval[8];
1855
1856 /* FIXME: kettenis/2007-01-01: Add support for quadword
1857 precision and complex. */
1858
1859 if (readbuf)
1860 {
1861 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1862 convert_typed_floating (regval, regtype, readbuf, valtype);
1863 }
1864 if (writebuf)
1865 {
1866 convert_typed_floating (writebuf, valtype, regval, regtype);
1867 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1868 }
1869
1870 return RETURN_VALUE_REGISTER_CONVENTION;
1871 }
1872
1873 /* Values of the types int, long, short, pointer, and char (length
1874 is less than or equal to four bytes), as well as bit values of
1875 lengths less than or equal to 32 bits, must be returned right
1876 justified in GPR3 with signed values sign extended and unsigned
1877 values zero extended, as necessary. */
1878 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1879 {
1880 if (readbuf)
1881 {
1882 ULONGEST regval;
1883
1884 /* For reading we don't have to worry about sign extension. */
1885 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1886 &regval);
1887 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1888 }
1889 if (writebuf)
1890 {
1891 /* For writing, use unpack_long since that should handle any
1892 required sign extension. */
1893 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1894 unpack_long (valtype, writebuf));
1895 }
1896
1897 return RETURN_VALUE_REGISTER_CONVENTION;
1898 }
1899
1900 /* Eight-byte non-floating-point scalar values must be returned in
1901 GPR3:GPR4. */
1902
1903 if (TYPE_LENGTH (valtype) == 8)
1904 {
1905 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1906 gdb_assert (tdep->wordsize == 4);
1907
1908 if (readbuf)
1909 {
1910 gdb_byte regval[8];
1911
1912 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1913 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1914 regval + 4);
1915 memcpy (readbuf, regval, 8);
1916 }
1917 if (writebuf)
1918 {
1919 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1920 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1921 writebuf + 4);
1922 }
1923
1924 return RETURN_VALUE_REGISTER_CONVENTION;
1925 }
1926
1927 return RETURN_VALUE_STRUCT_CONVENTION;
1928 }
1929
1930 /* Return whether handle_inferior_event() should proceed through code
1931 starting at PC in function NAME when stepping.
1932
1933 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1934 handle memory references that are too distant to fit in instructions
1935 generated by the compiler. For example, if 'foo' in the following
1936 instruction:
1937
1938 lwz r9,foo(r2)
1939
1940 is greater than 32767, the linker might replace the lwz with a branch to
1941 somewhere in @FIX1 that does the load in 2 instructions and then branches
1942 back to where execution should continue.
1943
1944 GDB should silently step over @FIX code, just like AIX dbx does.
1945 Unfortunately, the linker uses the "b" instruction for the
1946 branches, meaning that the link register doesn't get set.
1947 Therefore, GDB's usual step_over_function () mechanism won't work.
1948
1949 Instead, use the gdbarch_skip_trampoline_code and
1950 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
1951 @FIX code. */
1952
1953 int
1954 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1955 {
1956 return name && !strncmp (name, "@FIX", 4);
1957 }
1958
1959 /* Skip code that the user doesn't want to see when stepping:
1960
1961 1. Indirect function calls use a piece of trampoline code to do context
1962 switching, i.e. to set the new TOC table. Skip such code if we are on
1963 its first instruction (as when we have single-stepped to here).
1964
1965 2. Skip shared library trampoline code (which is different from
1966 indirect function call trampolines).
1967
1968 3. Skip bigtoc fixup code.
1969
1970 Result is desired PC to step until, or NULL if we are not in
1971 code that should be skipped. */
1972
1973 CORE_ADDR
1974 rs6000_skip_trampoline_code (CORE_ADDR pc)
1975 {
1976 unsigned int ii, op;
1977 int rel;
1978 CORE_ADDR solib_target_pc;
1979 struct minimal_symbol *msymbol;
1980
1981 static unsigned trampoline_code[] =
1982 {
1983 0x800b0000, /* l r0,0x0(r11) */
1984 0x90410014, /* st r2,0x14(r1) */
1985 0x7c0903a6, /* mtctr r0 */
1986 0x804b0004, /* l r2,0x4(r11) */
1987 0x816b0008, /* l r11,0x8(r11) */
1988 0x4e800420, /* bctr */
1989 0x4e800020, /* br */
1990 0
1991 };
1992
1993 /* Check for bigtoc fixup code. */
1994 msymbol = lookup_minimal_symbol_by_pc (pc);
1995 if (msymbol
1996 && rs6000_in_solib_return_trampoline (pc,
1997 DEPRECATED_SYMBOL_NAME (msymbol)))
1998 {
1999 /* Double-check that the third instruction from PC is relative "b". */
2000 op = read_memory_integer (pc + 8, 4);
2001 if ((op & 0xfc000003) == 0x48000000)
2002 {
2003 /* Extract bits 6-29 as a signed 24-bit relative word address and
2004 add it to the containing PC. */
2005 rel = ((int)(op << 6) >> 6);
2006 return pc + 8 + rel;
2007 }
2008 }
2009
2010 /* If pc is in a shared library trampoline, return its target. */
2011 solib_target_pc = find_solib_trampoline_target (pc);
2012 if (solib_target_pc)
2013 return solib_target_pc;
2014
2015 for (ii = 0; trampoline_code[ii]; ++ii)
2016 {
2017 op = read_memory_integer (pc + (ii * 4), 4);
2018 if (op != trampoline_code[ii])
2019 return 0;
2020 }
2021 ii = read_register (11); /* r11 holds destination addr */
2022 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
2023 return pc;
2024 }
2025
2026 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
2027 isn't available with that word size, return 0. */
2028
2029 static int
2030 regsize (const struct reg *reg, int wordsize)
2031 {
2032 return wordsize == 8 ? reg->sz64 : reg->sz32;
2033 }
2034
2035 /* Return the name of register number N, or null if no such register exists
2036 in the current architecture. */
2037
2038 static const char *
2039 rs6000_register_name (int n)
2040 {
2041 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2042 const struct reg *reg = tdep->regs + n;
2043
2044 if (!regsize (reg, tdep->wordsize))
2045 return NULL;
2046 return reg->name;
2047 }
2048
2049 /* Return the GDB type object for the "standard" data type
2050 of data in register N. */
2051
2052 static struct type *
2053 rs6000_register_type (struct gdbarch *gdbarch, int n)
2054 {
2055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2056 const struct reg *reg = tdep->regs + n;
2057
2058 if (reg->fpr)
2059 return builtin_type_double;
2060 else
2061 {
2062 int size = regsize (reg, tdep->wordsize);
2063 switch (size)
2064 {
2065 case 0:
2066 return builtin_type_int0;
2067 case 4:
2068 return builtin_type_uint32;
2069 case 8:
2070 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2071 return builtin_type_vec64;
2072 else
2073 return builtin_type_uint64;
2074 break;
2075 case 16:
2076 return builtin_type_vec128;
2077 break;
2078 default:
2079 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
2080 n, size);
2081 }
2082 }
2083 }
2084
2085 /* Is REGNUM a member of REGGROUP? */
2086 static int
2087 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2088 struct reggroup *group)
2089 {
2090 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2091 int float_p;
2092 int vector_p;
2093 int general_p;
2094
2095 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2096 || *gdbarch_register_name (current_gdbarch, regnum) == '\0')
2097 return 0;
2098 if (group == all_reggroup)
2099 return 1;
2100
2101 float_p = (regnum == tdep->ppc_fpscr_regnum
2102 || (regnum >= tdep->ppc_fp0_regnum
2103 && regnum < tdep->ppc_fp0_regnum + 32));
2104 if (group == float_reggroup)
2105 return float_p;
2106
2107 vector_p = ((tdep->ppc_vr0_regnum >= 0
2108 && regnum >= tdep->ppc_vr0_regnum
2109 && regnum < tdep->ppc_vr0_regnum + 32)
2110 || (tdep->ppc_ev0_regnum >= 0
2111 && regnum >= tdep->ppc_ev0_regnum
2112 && regnum < tdep->ppc_ev0_regnum + 32)
2113 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2114 || regnum == tdep->ppc_vrsave_regnum
2115 || regnum == tdep->ppc_acc_regnum
2116 || regnum == tdep->ppc_spefscr_regnum);
2117 if (group == vector_reggroup)
2118 return vector_p;
2119
2120 /* Note that PS aka MSR isn't included - it's a system register (and
2121 besides, due to GCC's CFI foobar you do not want to restore
2122 it). */
2123 general_p = ((regnum >= tdep->ppc_gp0_regnum
2124 && regnum < tdep->ppc_gp0_regnum + 32)
2125 || regnum == tdep->ppc_toc_regnum
2126 || regnum == tdep->ppc_cr_regnum
2127 || regnum == tdep->ppc_lr_regnum
2128 || regnum == tdep->ppc_ctr_regnum
2129 || regnum == tdep->ppc_xer_regnum
2130 || regnum == PC_REGNUM);
2131 if (group == general_reggroup)
2132 return general_p;
2133
2134 if (group == save_reggroup || group == restore_reggroup)
2135 return general_p || vector_p || float_p;
2136
2137 return 0;
2138 }
2139
2140 /* The register format for RS/6000 floating point registers is always
2141 double, we need a conversion if the memory format is float. */
2142
2143 static int
2144 rs6000_convert_register_p (int regnum, struct type *type)
2145 {
2146 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2147
2148 return (reg->fpr
2149 && TYPE_CODE (type) == TYPE_CODE_FLT
2150 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2151 }
2152
2153 static void
2154 rs6000_register_to_value (struct frame_info *frame,
2155 int regnum,
2156 struct type *type,
2157 gdb_byte *to)
2158 {
2159 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2160 gdb_byte from[MAX_REGISTER_SIZE];
2161
2162 gdb_assert (reg->fpr);
2163 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2164
2165 get_frame_register (frame, regnum, from);
2166 convert_typed_floating (from, builtin_type_double, to, type);
2167 }
2168
2169 static void
2170 rs6000_value_to_register (struct frame_info *frame,
2171 int regnum,
2172 struct type *type,
2173 const gdb_byte *from)
2174 {
2175 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2176 gdb_byte to[MAX_REGISTER_SIZE];
2177
2178 gdb_assert (reg->fpr);
2179 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2180
2181 convert_typed_floating (from, type, to, builtin_type_double);
2182 put_frame_register (frame, regnum, to);
2183 }
2184
2185 /* Move SPE vector register values between a 64-bit buffer and the two
2186 32-bit raw register halves in a regcache. This function handles
2187 both splitting a 64-bit value into two 32-bit halves, and joining
2188 two halves into a whole 64-bit value, depending on the function
2189 passed as the MOVE argument.
2190
2191 EV_REG must be the number of an SPE evN vector register --- a
2192 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2193 64-bit buffer.
2194
2195 Call MOVE once for each 32-bit half of that register, passing
2196 REGCACHE, the number of the raw register corresponding to that
2197 half, and the address of the appropriate half of BUFFER.
2198
2199 For example, passing 'regcache_raw_read' as the MOVE function will
2200 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2201 'regcache_raw_supply' will supply the contents of BUFFER to the
2202 appropriate pair of raw registers in REGCACHE.
2203
2204 You may need to cast away some 'const' qualifiers when passing
2205 MOVE, since this function can't tell at compile-time which of
2206 REGCACHE or BUFFER is acting as the source of the data. If C had
2207 co-variant type qualifiers, ... */
2208 static void
2209 e500_move_ev_register (void (*move) (struct regcache *regcache,
2210 int regnum, gdb_byte *buf),
2211 struct regcache *regcache, int ev_reg,
2212 gdb_byte *buffer)
2213 {
2214 struct gdbarch *arch = get_regcache_arch (regcache);
2215 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2216 int reg_index;
2217 gdb_byte *byte_buffer = buffer;
2218
2219 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2220 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2221
2222 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2223
2224 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2225 {
2226 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2227 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2228 }
2229 else
2230 {
2231 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2232 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2233 }
2234 }
2235
2236 static void
2237 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2238 int reg_nr, gdb_byte *buffer)
2239 {
2240 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2242
2243 gdb_assert (regcache_arch == gdbarch);
2244
2245 if (tdep->ppc_ev0_regnum <= reg_nr
2246 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2247 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2248 else
2249 internal_error (__FILE__, __LINE__,
2250 _("e500_pseudo_register_read: "
2251 "called on unexpected register '%s' (%d)"),
2252 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2253 }
2254
2255 static void
2256 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2257 int reg_nr, const gdb_byte *buffer)
2258 {
2259 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2261
2262 gdb_assert (regcache_arch == gdbarch);
2263
2264 if (tdep->ppc_ev0_regnum <= reg_nr
2265 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2266 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2267 regcache_raw_write,
2268 regcache, reg_nr, (gdb_byte *) buffer);
2269 else
2270 internal_error (__FILE__, __LINE__,
2271 _("e500_pseudo_register_read: "
2272 "called on unexpected register '%s' (%d)"),
2273 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2274 }
2275
2276 /* The E500 needs a custom reggroup function: it has anonymous raw
2277 registers, and default_register_reggroup_p assumes that anonymous
2278 registers are not members of any reggroup. */
2279 static int
2280 e500_register_reggroup_p (struct gdbarch *gdbarch,
2281 int regnum,
2282 struct reggroup *group)
2283 {
2284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2285
2286 /* The save and restore register groups need to include the
2287 upper-half registers, even though they're anonymous. */
2288 if ((group == save_reggroup
2289 || group == restore_reggroup)
2290 && (tdep->ppc_ev0_upper_regnum <= regnum
2291 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2292 return 1;
2293
2294 /* In all other regards, the default reggroup definition is fine. */
2295 return default_register_reggroup_p (gdbarch, regnum, group);
2296 }
2297
2298 /* Convert a DBX STABS register number to a GDB register number. */
2299 static int
2300 rs6000_stab_reg_to_regnum (int num)
2301 {
2302 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2303
2304 if (0 <= num && num <= 31)
2305 return tdep->ppc_gp0_regnum + num;
2306 else if (32 <= num && num <= 63)
2307 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2308 specifies registers the architecture doesn't have? Our
2309 callers don't check the value we return. */
2310 return tdep->ppc_fp0_regnum + (num - 32);
2311 else if (77 <= num && num <= 108)
2312 return tdep->ppc_vr0_regnum + (num - 77);
2313 else if (1200 <= num && num < 1200 + 32)
2314 return tdep->ppc_ev0_regnum + (num - 1200);
2315 else
2316 switch (num)
2317 {
2318 case 64:
2319 return tdep->ppc_mq_regnum;
2320 case 65:
2321 return tdep->ppc_lr_regnum;
2322 case 66:
2323 return tdep->ppc_ctr_regnum;
2324 case 76:
2325 return tdep->ppc_xer_regnum;
2326 case 109:
2327 return tdep->ppc_vrsave_regnum;
2328 case 110:
2329 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2330 case 111:
2331 return tdep->ppc_acc_regnum;
2332 case 112:
2333 return tdep->ppc_spefscr_regnum;
2334 default:
2335 return num;
2336 }
2337 }
2338
2339
2340 /* Convert a Dwarf 2 register number to a GDB register number. */
2341 static int
2342 rs6000_dwarf2_reg_to_regnum (int num)
2343 {
2344 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2345
2346 if (0 <= num && num <= 31)
2347 return tdep->ppc_gp0_regnum + num;
2348 else if (32 <= num && num <= 63)
2349 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2350 specifies registers the architecture doesn't have? Our
2351 callers don't check the value we return. */
2352 return tdep->ppc_fp0_regnum + (num - 32);
2353 else if (1124 <= num && num < 1124 + 32)
2354 return tdep->ppc_vr0_regnum + (num - 1124);
2355 else if (1200 <= num && num < 1200 + 32)
2356 return tdep->ppc_ev0_regnum + (num - 1200);
2357 else
2358 switch (num)
2359 {
2360 case 64:
2361 return tdep->ppc_cr_regnum;
2362 case 67:
2363 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2364 case 99:
2365 return tdep->ppc_acc_regnum;
2366 case 100:
2367 return tdep->ppc_mq_regnum;
2368 case 101:
2369 return tdep->ppc_xer_regnum;
2370 case 108:
2371 return tdep->ppc_lr_regnum;
2372 case 109:
2373 return tdep->ppc_ctr_regnum;
2374 case 356:
2375 return tdep->ppc_vrsave_regnum;
2376 case 612:
2377 return tdep->ppc_spefscr_regnum;
2378 default:
2379 return num;
2380 }
2381 }
2382
2383 /* Translate a .eh_frame register to DWARF register, or adjust a
2384 .debug_frame register. */
2385
2386 static int
2387 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2388 {
2389 /* GCC releases before 3.4 use GCC internal register numbering in
2390 .debug_frame (and .debug_info, et cetera). The numbering is
2391 different from the standard SysV numbering for everything except
2392 for GPRs and FPRs. We can not detect this problem in most cases
2393 - to get accurate debug info for variables living in lr, ctr, v0,
2394 et cetera, use a newer version of GCC. But we must detect
2395 one important case - lr is in column 65 in .debug_frame output,
2396 instead of 108.
2397
2398 GCC 3.4, and the "hammer" branch, have a related problem. They
2399 record lr register saves in .debug_frame as 108, but still record
2400 the return column as 65. We fix that up too.
2401
2402 We can do this because 65 is assigned to fpsr, and GCC never
2403 generates debug info referring to it. To add support for
2404 handwritten debug info that restores fpsr, we would need to add a
2405 producer version check to this. */
2406 if (!eh_frame_p)
2407 {
2408 if (num == 65)
2409 return 108;
2410 else
2411 return num;
2412 }
2413
2414 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2415 internal register numbering; translate that to the standard DWARF2
2416 register numbering. */
2417 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2418 return num;
2419 else if (68 <= num && num <= 75) /* cr0-cr8 */
2420 return num - 68 + 86;
2421 else if (77 <= num && num <= 108) /* vr0-vr31 */
2422 return num - 77 + 1124;
2423 else
2424 switch (num)
2425 {
2426 case 64: /* mq */
2427 return 100;
2428 case 65: /* lr */
2429 return 108;
2430 case 66: /* ctr */
2431 return 109;
2432 case 76: /* xer */
2433 return 101;
2434 case 109: /* vrsave */
2435 return 356;
2436 case 110: /* vscr */
2437 return 67;
2438 case 111: /* spe_acc */
2439 return 99;
2440 case 112: /* spefscr */
2441 return 612;
2442 default:
2443 return num;
2444 }
2445 }
2446 \f
2447 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2448
2449 Usually a function pointer's representation is simply the address
2450 of the function. On the RS/6000 however, a function pointer is
2451 represented by a pointer to an OPD entry. This OPD entry contains
2452 three words, the first word is the address of the function, the
2453 second word is the TOC pointer (r2), and the third word is the
2454 static chain value. Throughout GDB it is currently assumed that a
2455 function pointer contains the address of the function, which is not
2456 easy to fix. In addition, the conversion of a function address to
2457 a function pointer would require allocation of an OPD entry in the
2458 inferior's memory space, with all its drawbacks. To be able to
2459 call C++ virtual methods in the inferior (which are called via
2460 function pointers), find_function_addr uses this function to get the
2461 function address from a function pointer. */
2462
2463 /* Return real function address if ADDR (a function pointer) is in the data
2464 space and is therefore a special function pointer. */
2465
2466 static CORE_ADDR
2467 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2468 CORE_ADDR addr,
2469 struct target_ops *targ)
2470 {
2471 struct obj_section *s;
2472
2473 s = find_pc_section (addr);
2474 if (s && s->the_bfd_section->flags & SEC_CODE)
2475 return addr;
2476
2477 /* ADDR is in the data space, so it's a special function pointer. */
2478 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2479 }
2480 \f
2481
2482 /* Handling the various POWER/PowerPC variants. */
2483
2484
2485 /* The arrays here called registers_MUMBLE hold information about available
2486 registers.
2487
2488 For each family of PPC variants, I've tried to isolate out the
2489 common registers and put them up front, so that as long as you get
2490 the general family right, GDB will correctly identify the registers
2491 common to that family. The common register sets are:
2492
2493 For the 60x family: hid0 hid1 iabr dabr pir
2494
2495 For the 505 and 860 family: eie eid nri
2496
2497 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2498 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2499 pbu1 pbl2 pbu2
2500
2501 Most of these register groups aren't anything formal. I arrived at
2502 them by looking at the registers that occurred in more than one
2503 processor.
2504
2505 Note: kevinb/2002-04-30: Support for the fpscr register was added
2506 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2507 for Power. For PowerPC, slot 70 was unused and was already in the
2508 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2509 slot 70 was being used for "mq", so the next available slot (71)
2510 was chosen. It would have been nice to be able to make the
2511 register numbers the same across processor cores, but this wasn't
2512 possible without either 1) renumbering some registers for some
2513 processors or 2) assigning fpscr to a really high slot that's
2514 larger than any current register number. Doing (1) is bad because
2515 existing stubs would break. Doing (2) is undesirable because it
2516 would introduce a really large gap between fpscr and the rest of
2517 the registers for most processors. */
2518
2519 /* Convenience macros for populating register arrays. */
2520
2521 /* Within another macro, convert S to a string. */
2522
2523 #define STR(s) #s
2524
2525 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2526 and 64 bits on 64-bit systems. */
2527 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2528
2529 /* Return a struct reg defining register NAME that's 32 bits on all
2530 systems. */
2531 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2532
2533 /* Return a struct reg defining register NAME that's 64 bits on all
2534 systems. */
2535 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2536
2537 /* Return a struct reg defining register NAME that's 128 bits on all
2538 systems. */
2539 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2540
2541 /* Return a struct reg defining floating-point register NAME. */
2542 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2543
2544 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2545 long on all systems. */
2546 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2547
2548 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2549 systems and that doesn't exist on 64-bit systems. */
2550 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2551
2552 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2553 systems and that doesn't exist on 32-bit systems. */
2554 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2555
2556 /* Return a struct reg placeholder for a register that doesn't exist. */
2557 #define R0 { 0, 0, 0, 0, 0, -1 }
2558
2559 /* Return a struct reg defining an anonymous raw register that's 32
2560 bits on all systems. */
2561 #define A4 { 0, 4, 4, 0, 0, -1 }
2562
2563 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2564 32-bit systems and 64 bits on 64-bit systems. */
2565 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2566
2567 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2568 all systems. */
2569 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2570
2571 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2572 all systems, and whose SPR number is NUMBER. */
2573 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2574
2575 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2576 64-bit systems and that doesn't exist on 32-bit systems. */
2577 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2578
2579 /* UISA registers common across all architectures, including POWER. */
2580
2581 #define COMMON_UISA_REGS \
2582 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2583 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2584 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2585 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2586 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2587 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2588 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2589 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2590 /* 64 */ R(pc), R(ps)
2591
2592 /* UISA-level SPRs for PowerPC. */
2593 #define PPC_UISA_SPRS \
2594 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2595
2596 /* UISA-level SPRs for PowerPC without floating point support. */
2597 #define PPC_UISA_NOFP_SPRS \
2598 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2599
2600 /* Segment registers, for PowerPC. */
2601 #define PPC_SEGMENT_REGS \
2602 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2603 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2604 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2605 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2606
2607 /* OEA SPRs for PowerPC. */
2608 #define PPC_OEA_SPRS \
2609 /* 87 */ S4(pvr), \
2610 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2611 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2612 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2613 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2614 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2615 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2616 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2617 /* 116 */ S4(dec), S(dabr), S4(ear)
2618
2619 /* AltiVec registers. */
2620 #define PPC_ALTIVEC_REGS \
2621 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2622 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2623 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2624 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2625 /*151*/R4(vscr), R4(vrsave)
2626
2627
2628 /* On machines supporting the SPE APU, the general-purpose registers
2629 are 64 bits long. There are SIMD vector instructions to treat them
2630 as pairs of floats, but the rest of the instruction set treats them
2631 as 32-bit registers, and only operates on their lower halves.
2632
2633 In the GDB regcache, we treat their high and low halves as separate
2634 registers. The low halves we present as the general-purpose
2635 registers, and then we have pseudo-registers that stitch together
2636 the upper and lower halves and present them as pseudo-registers. */
2637
2638 /* SPE GPR lower halves --- raw registers. */
2639 #define PPC_SPE_GP_REGS \
2640 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2641 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2642 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2643 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2644
2645 /* SPE GPR upper halves --- anonymous raw registers. */
2646 #define PPC_SPE_UPPER_GP_REGS \
2647 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2648 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2649 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2650 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2651
2652 /* SPE GPR vector registers --- pseudo registers based on underlying
2653 gprs and the anonymous upper half raw registers. */
2654 #define PPC_EV_PSEUDO_REGS \
2655 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2656 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2657 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2658 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2659
2660 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2661 user-level SPR's. */
2662 static const struct reg registers_power[] =
2663 {
2664 COMMON_UISA_REGS,
2665 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2666 /* 71 */ R4(fpscr)
2667 };
2668
2669 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2670 view of the PowerPC. */
2671 static const struct reg registers_powerpc[] =
2672 {
2673 COMMON_UISA_REGS,
2674 PPC_UISA_SPRS,
2675 PPC_ALTIVEC_REGS
2676 };
2677
2678 /* IBM PowerPC 403.
2679
2680 Some notes about the "tcr" special-purpose register:
2681 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2682 403's programmable interval timer, fixed interval timer, and
2683 watchdog timer.
2684 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2685 watchdog timer, and nothing else.
2686
2687 Some of the fields are similar between the two, but they're not
2688 compatible with each other. Since the two variants have different
2689 registers, with different numbers, but the same name, we can't
2690 splice the register name to get the SPR number. */
2691 static const struct reg registers_403[] =
2692 {
2693 COMMON_UISA_REGS,
2694 PPC_UISA_SPRS,
2695 PPC_SEGMENT_REGS,
2696 PPC_OEA_SPRS,
2697 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2698 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2699 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2700 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2701 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2702 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2703 };
2704
2705 /* IBM PowerPC 403GC.
2706 See the comments about 'tcr' for the 403, above. */
2707 static const struct reg registers_403GC[] =
2708 {
2709 COMMON_UISA_REGS,
2710 PPC_UISA_SPRS,
2711 PPC_SEGMENT_REGS,
2712 PPC_OEA_SPRS,
2713 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2714 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2715 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2716 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2717 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2718 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2719 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2720 /* 147 */ S(tbhu), S(tblu)
2721 };
2722
2723 /* Motorola PowerPC 505. */
2724 static const struct reg registers_505[] =
2725 {
2726 COMMON_UISA_REGS,
2727 PPC_UISA_SPRS,
2728 PPC_SEGMENT_REGS,
2729 PPC_OEA_SPRS,
2730 /* 119 */ S(eie), S(eid), S(nri)
2731 };
2732
2733 /* Motorola PowerPC 860 or 850. */
2734 static const struct reg registers_860[] =
2735 {
2736 COMMON_UISA_REGS,
2737 PPC_UISA_SPRS,
2738 PPC_SEGMENT_REGS,
2739 PPC_OEA_SPRS,
2740 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2741 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2742 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2743 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2744 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2745 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2746 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2747 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2748 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2749 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2750 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2751 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2752 };
2753
2754 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2755 for reading and writing RTCU and RTCL. However, how one reads and writes a
2756 register is the stub's problem. */
2757 static const struct reg registers_601[] =
2758 {
2759 COMMON_UISA_REGS,
2760 PPC_UISA_SPRS,
2761 PPC_SEGMENT_REGS,
2762 PPC_OEA_SPRS,
2763 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2764 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2765 };
2766
2767 /* Motorola PowerPC 602.
2768 See the notes under the 403 about 'tcr'. */
2769 static const struct reg registers_602[] =
2770 {
2771 COMMON_UISA_REGS,
2772 PPC_UISA_SPRS,
2773 PPC_SEGMENT_REGS,
2774 PPC_OEA_SPRS,
2775 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2776 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2777 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2778 };
2779
2780 /* Motorola/IBM PowerPC 603 or 603e. */
2781 static const struct reg registers_603[] =
2782 {
2783 COMMON_UISA_REGS,
2784 PPC_UISA_SPRS,
2785 PPC_SEGMENT_REGS,
2786 PPC_OEA_SPRS,
2787 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2788 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2789 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2790 };
2791
2792 /* Motorola PowerPC 604 or 604e. */
2793 static const struct reg registers_604[] =
2794 {
2795 COMMON_UISA_REGS,
2796 PPC_UISA_SPRS,
2797 PPC_SEGMENT_REGS,
2798 PPC_OEA_SPRS,
2799 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2800 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2801 /* 127 */ S(sia), S(sda)
2802 };
2803
2804 /* Motorola/IBM PowerPC 750 or 740. */
2805 static const struct reg registers_750[] =
2806 {
2807 COMMON_UISA_REGS,
2808 PPC_UISA_SPRS,
2809 PPC_SEGMENT_REGS,
2810 PPC_OEA_SPRS,
2811 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2812 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2813 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2814 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2815 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2816 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2817 };
2818
2819
2820 /* Motorola PowerPC 7400. */
2821 static const struct reg registers_7400[] =
2822 {
2823 /* gpr0-gpr31, fpr0-fpr31 */
2824 COMMON_UISA_REGS,
2825 /* cr, lr, ctr, xer, fpscr */
2826 PPC_UISA_SPRS,
2827 /* sr0-sr15 */
2828 PPC_SEGMENT_REGS,
2829 PPC_OEA_SPRS,
2830 /* vr0-vr31, vrsave, vscr */
2831 PPC_ALTIVEC_REGS
2832 /* FIXME? Add more registers? */
2833 };
2834
2835 /* Motorola e500. */
2836 static const struct reg registers_e500[] =
2837 {
2838 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2839 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2840 /* 64 .. 65 */ R(pc), R(ps),
2841 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2842 /* 71 .. 72 */ R8(acc), S4(spefscr),
2843 /* NOTE: Add new registers here the end of the raw register
2844 list and just before the first pseudo register. */
2845 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2846 };
2847
2848 /* Information about a particular processor variant. */
2849
2850 struct variant
2851 {
2852 /* Name of this variant. */
2853 char *name;
2854
2855 /* English description of the variant. */
2856 char *description;
2857
2858 /* bfd_arch_info.arch corresponding to variant. */
2859 enum bfd_architecture arch;
2860
2861 /* bfd_arch_info.mach corresponding to variant. */
2862 unsigned long mach;
2863
2864 /* Number of real registers. */
2865 int nregs;
2866
2867 /* Number of pseudo registers. */
2868 int npregs;
2869
2870 /* Number of total registers (the sum of nregs and npregs). */
2871 int num_tot_regs;
2872
2873 /* Table of register names; registers[R] is the name of the register
2874 number R. */
2875 const struct reg *regs;
2876 };
2877
2878 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2879
2880 static int
2881 num_registers (const struct reg *reg_list, int num_tot_regs)
2882 {
2883 int i;
2884 int nregs = 0;
2885
2886 for (i = 0; i < num_tot_regs; i++)
2887 if (!reg_list[i].pseudo)
2888 nregs++;
2889
2890 return nregs;
2891 }
2892
2893 static int
2894 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2895 {
2896 int i;
2897 int npregs = 0;
2898
2899 for (i = 0; i < num_tot_regs; i++)
2900 if (reg_list[i].pseudo)
2901 npregs ++;
2902
2903 return npregs;
2904 }
2905
2906 /* Information in this table comes from the following web sites:
2907 IBM: http://www.chips.ibm.com:80/products/embedded/
2908 Motorola: http://www.mot.com/SPS/PowerPC/
2909
2910 I'm sure I've got some of the variant descriptions not quite right.
2911 Please report any inaccuracies you find to GDB's maintainer.
2912
2913 If you add entries to this table, please be sure to allow the new
2914 value as an argument to the --with-cpu flag, in configure.in. */
2915
2916 static struct variant variants[] =
2917 {
2918
2919 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2920 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2921 registers_powerpc},
2922 {"power", "POWER user-level", bfd_arch_rs6000,
2923 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2924 registers_power},
2925 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2926 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2927 registers_403},
2928 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2929 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2930 registers_601},
2931 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2932 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2933 registers_602},
2934 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2935 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2936 registers_603},
2937 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2938 604, -1, -1, tot_num_registers (registers_604),
2939 registers_604},
2940 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2941 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2942 registers_403GC},
2943 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2944 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2945 registers_505},
2946 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2947 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2948 registers_860},
2949 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2950 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2951 registers_750},
2952 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2953 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2954 registers_7400},
2955 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2956 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2957 registers_e500},
2958
2959 /* 64-bit */
2960 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2961 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2962 registers_powerpc},
2963 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2964 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2965 registers_powerpc},
2966 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2967 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2968 registers_powerpc},
2969 {"a35", "PowerPC A35", bfd_arch_powerpc,
2970 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2971 registers_powerpc},
2972 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2973 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2974 registers_powerpc},
2975 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2976 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2977 registers_powerpc},
2978
2979 /* FIXME: I haven't checked the register sets of the following. */
2980 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2981 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2982 registers_power},
2983 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2984 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2985 registers_power},
2986 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2987 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2988 registers_power},
2989
2990 {0, 0, 0, 0, 0, 0, 0, 0}
2991 };
2992
2993 /* Initialize the number of registers and pseudo registers in each variant. */
2994
2995 static void
2996 init_variants (void)
2997 {
2998 struct variant *v;
2999
3000 for (v = variants; v->name; v++)
3001 {
3002 if (v->nregs == -1)
3003 v->nregs = num_registers (v->regs, v->num_tot_regs);
3004 if (v->npregs == -1)
3005 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
3006 }
3007 }
3008
3009 /* Return the variant corresponding to architecture ARCH and machine number
3010 MACH. If no such variant exists, return null. */
3011
3012 static const struct variant *
3013 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3014 {
3015 const struct variant *v;
3016
3017 for (v = variants; v->name; v++)
3018 if (arch == v->arch && mach == v->mach)
3019 return v;
3020
3021 return NULL;
3022 }
3023
3024 static int
3025 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3026 {
3027 if (!info->disassembler_options)
3028 info->disassembler_options = "any";
3029
3030 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3031 return print_insn_big_powerpc (memaddr, info);
3032 else
3033 return print_insn_little_powerpc (memaddr, info);
3034 }
3035 \f
3036 static CORE_ADDR
3037 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3038 {
3039 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
3040 }
3041
3042 static struct frame_id
3043 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3044 {
3045 return frame_id_build (frame_unwind_register_unsigned (next_frame,
3046 SP_REGNUM),
3047 frame_pc_unwind (next_frame));
3048 }
3049
3050 struct rs6000_frame_cache
3051 {
3052 CORE_ADDR base;
3053 CORE_ADDR initial_sp;
3054 struct trad_frame_saved_reg *saved_regs;
3055 };
3056
3057 static struct rs6000_frame_cache *
3058 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3059 {
3060 struct rs6000_frame_cache *cache;
3061 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063 struct rs6000_framedata fdata;
3064 int wordsize = tdep->wordsize;
3065 CORE_ADDR func, pc;
3066
3067 if ((*this_cache) != NULL)
3068 return (*this_cache);
3069 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3070 (*this_cache) = cache;
3071 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3072
3073 func = frame_func_unwind (next_frame, NORMAL_FRAME);
3074 pc = frame_pc_unwind (next_frame);
3075 skip_prologue (func, pc, &fdata);
3076
3077 /* Figure out the parent's stack pointer. */
3078
3079 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3080 address of the current frame. Things might be easier if the
3081 ->frame pointed to the outer-most address of the frame. In
3082 the mean time, the address of the prev frame is used as the
3083 base address of this frame. */
3084 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3085
3086 /* If the function appears to be frameless, check a couple of likely
3087 indicators that we have simply failed to find the frame setup.
3088 Two common cases of this are missing symbols (i.e.
3089 frame_func_unwind returns the wrong address or 0), and assembly
3090 stubs which have a fast exit path but set up a frame on the slow
3091 path.
3092
3093 If the LR appears to return to this function, then presume that
3094 we have an ABI compliant frame that we failed to find. */
3095 if (fdata.frameless && fdata.lr_offset == 0)
3096 {
3097 CORE_ADDR saved_lr;
3098 int make_frame = 0;
3099
3100 saved_lr = frame_unwind_register_unsigned (next_frame,
3101 tdep->ppc_lr_regnum);
3102 if (func == 0 && saved_lr == pc)
3103 make_frame = 1;
3104 else if (func != 0)
3105 {
3106 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3107 if (func == saved_func)
3108 make_frame = 1;
3109 }
3110
3111 if (make_frame)
3112 {
3113 fdata.frameless = 0;
3114 fdata.lr_offset = tdep->lr_frame_offset;
3115 }
3116 }
3117
3118 if (!fdata.frameless)
3119 /* Frameless really means stackless. */
3120 cache->base = read_memory_addr (cache->base, wordsize);
3121
3122 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3123
3124 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3125 All fpr's from saved_fpr to fp31 are saved. */
3126
3127 if (fdata.saved_fpr >= 0)
3128 {
3129 int i;
3130 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3131
3132 /* If skip_prologue says floating-point registers were saved,
3133 but the current architecture has no floating-point registers,
3134 then that's strange. But we have no indices to even record
3135 the addresses under, so we just ignore it. */
3136 if (ppc_floating_point_unit_p (gdbarch))
3137 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3138 {
3139 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3140 fpr_addr += 8;
3141 }
3142 }
3143
3144 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3145 All gpr's from saved_gpr to gpr31 are saved. */
3146
3147 if (fdata.saved_gpr >= 0)
3148 {
3149 int i;
3150 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3151 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3152 {
3153 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3154 gpr_addr += wordsize;
3155 }
3156 }
3157
3158 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3159 All vr's from saved_vr to vr31 are saved. */
3160 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3161 {
3162 if (fdata.saved_vr >= 0)
3163 {
3164 int i;
3165 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3166 for (i = fdata.saved_vr; i < 32; i++)
3167 {
3168 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3169 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3170 }
3171 }
3172 }
3173
3174 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3175 All vr's from saved_ev to ev31 are saved. ????? */
3176 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3177 {
3178 if (fdata.saved_ev >= 0)
3179 {
3180 int i;
3181 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3182 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3183 {
3184 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3185 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3186 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3187 }
3188 }
3189 }
3190
3191 /* If != 0, fdata.cr_offset is the offset from the frame that
3192 holds the CR. */
3193 if (fdata.cr_offset != 0)
3194 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3195
3196 /* If != 0, fdata.lr_offset is the offset from the frame that
3197 holds the LR. */
3198 if (fdata.lr_offset != 0)
3199 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3200 /* The PC is found in the link register. */
3201 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3202
3203 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3204 holds the VRSAVE. */
3205 if (fdata.vrsave_offset != 0)
3206 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3207
3208 if (fdata.alloca_reg < 0)
3209 /* If no alloca register used, then fi->frame is the value of the
3210 %sp for this frame, and it is good enough. */
3211 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3212 else
3213 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3214 fdata.alloca_reg);
3215
3216 return cache;
3217 }
3218
3219 static void
3220 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3221 struct frame_id *this_id)
3222 {
3223 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3224 this_cache);
3225 (*this_id) = frame_id_build (info->base,
3226 frame_func_unwind (next_frame, NORMAL_FRAME));
3227 }
3228
3229 static void
3230 rs6000_frame_prev_register (struct frame_info *next_frame,
3231 void **this_cache,
3232 int regnum, int *optimizedp,
3233 enum lval_type *lvalp, CORE_ADDR *addrp,
3234 int *realnump, gdb_byte *valuep)
3235 {
3236 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3237 this_cache);
3238 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3239 optimizedp, lvalp, addrp, realnump, valuep);
3240 }
3241
3242 static const struct frame_unwind rs6000_frame_unwind =
3243 {
3244 NORMAL_FRAME,
3245 rs6000_frame_this_id,
3246 rs6000_frame_prev_register
3247 };
3248
3249 static const struct frame_unwind *
3250 rs6000_frame_sniffer (struct frame_info *next_frame)
3251 {
3252 return &rs6000_frame_unwind;
3253 }
3254
3255 \f
3256
3257 static CORE_ADDR
3258 rs6000_frame_base_address (struct frame_info *next_frame,
3259 void **this_cache)
3260 {
3261 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3262 this_cache);
3263 return info->initial_sp;
3264 }
3265
3266 static const struct frame_base rs6000_frame_base = {
3267 &rs6000_frame_unwind,
3268 rs6000_frame_base_address,
3269 rs6000_frame_base_address,
3270 rs6000_frame_base_address
3271 };
3272
3273 static const struct frame_base *
3274 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3275 {
3276 return &rs6000_frame_base;
3277 }
3278
3279 /* Initialize the current architecture based on INFO. If possible, re-use an
3280 architecture from ARCHES, which is a list of architectures already created
3281 during this debugging session.
3282
3283 Called e.g. at program startup, when reading a core file, and when reading
3284 a binary file. */
3285
3286 static struct gdbarch *
3287 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3288 {
3289 struct gdbarch *gdbarch;
3290 struct gdbarch_tdep *tdep;
3291 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3292 struct reg *regs;
3293 const struct variant *v;
3294 enum bfd_architecture arch;
3295 unsigned long mach;
3296 bfd abfd;
3297 int sysv_abi;
3298 asection *sect;
3299
3300 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3301 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3302
3303 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3304 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3305
3306 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3307
3308 /* Check word size. If INFO is from a binary file, infer it from
3309 that, else choose a likely default. */
3310 if (from_xcoff_exec)
3311 {
3312 if (bfd_xcoff_is_xcoff64 (info.abfd))
3313 wordsize = 8;
3314 else
3315 wordsize = 4;
3316 }
3317 else if (from_elf_exec)
3318 {
3319 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3320 wordsize = 8;
3321 else
3322 wordsize = 4;
3323 }
3324 else
3325 {
3326 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3327 wordsize = info.bfd_arch_info->bits_per_word /
3328 info.bfd_arch_info->bits_per_byte;
3329 else
3330 wordsize = 4;
3331 }
3332
3333 /* Find a candidate among extant architectures. */
3334 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3335 arches != NULL;
3336 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3337 {
3338 /* Word size in the various PowerPC bfd_arch_info structs isn't
3339 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3340 separate word size check. */
3341 tdep = gdbarch_tdep (arches->gdbarch);
3342 if (tdep && tdep->wordsize == wordsize)
3343 return arches->gdbarch;
3344 }
3345
3346 /* None found, create a new architecture from INFO, whose bfd_arch_info
3347 validity depends on the source:
3348 - executable useless
3349 - rs6000_host_arch() good
3350 - core file good
3351 - "set arch" trust blindly
3352 - GDB startup useless but harmless */
3353
3354 if (!from_xcoff_exec)
3355 {
3356 arch = info.bfd_arch_info->arch;
3357 mach = info.bfd_arch_info->mach;
3358 }
3359 else
3360 {
3361 arch = bfd_arch_powerpc;
3362 bfd_default_set_arch_mach (&abfd, arch, 0);
3363 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3364 mach = info.bfd_arch_info->mach;
3365 }
3366 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3367 tdep->wordsize = wordsize;
3368
3369 /* For e500 executables, the apuinfo section is of help here. Such
3370 section contains the identifier and revision number of each
3371 Application-specific Processing Unit that is present on the
3372 chip. The content of the section is determined by the assembler
3373 which looks at each instruction and determines which unit (and
3374 which version of it) can execute it. In our case we just look for
3375 the existance of the section. */
3376
3377 if (info.abfd)
3378 {
3379 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3380 if (sect)
3381 {
3382 arch = info.bfd_arch_info->arch;
3383 mach = bfd_mach_ppc_e500;
3384 bfd_default_set_arch_mach (&abfd, arch, mach);
3385 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3386 }
3387 }
3388
3389 gdbarch = gdbarch_alloc (&info, tdep);
3390
3391 /* Initialize the number of real and pseudo registers in each variant. */
3392 init_variants ();
3393
3394 /* Choose variant. */
3395 v = find_variant_by_arch (arch, mach);
3396 if (!v)
3397 return NULL;
3398
3399 tdep->regs = v->regs;
3400
3401 tdep->ppc_gp0_regnum = 0;
3402 tdep->ppc_toc_regnum = 2;
3403 tdep->ppc_ps_regnum = 65;
3404 tdep->ppc_cr_regnum = 66;
3405 tdep->ppc_lr_regnum = 67;
3406 tdep->ppc_ctr_regnum = 68;
3407 tdep->ppc_xer_regnum = 69;
3408 if (v->mach == bfd_mach_ppc_601)
3409 tdep->ppc_mq_regnum = 124;
3410 else if (arch == bfd_arch_rs6000)
3411 tdep->ppc_mq_regnum = 70;
3412 else
3413 tdep->ppc_mq_regnum = -1;
3414 tdep->ppc_fp0_regnum = 32;
3415 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3416 tdep->ppc_sr0_regnum = 71;
3417 tdep->ppc_vr0_regnum = -1;
3418 tdep->ppc_vrsave_regnum = -1;
3419 tdep->ppc_ev0_upper_regnum = -1;
3420 tdep->ppc_ev0_regnum = -1;
3421 tdep->ppc_ev31_regnum = -1;
3422 tdep->ppc_acc_regnum = -1;
3423 tdep->ppc_spefscr_regnum = -1;
3424
3425 set_gdbarch_pc_regnum (gdbarch, 64);
3426 set_gdbarch_sp_regnum (gdbarch, 1);
3427 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3428 set_gdbarch_fp0_regnum (gdbarch, 32);
3429 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3430 if (sysv_abi && wordsize == 8)
3431 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3432 else if (sysv_abi && wordsize == 4)
3433 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3434 else
3435 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3436
3437 /* Set lr_frame_offset. */
3438 if (wordsize == 8)
3439 tdep->lr_frame_offset = 16;
3440 else if (sysv_abi)
3441 tdep->lr_frame_offset = 4;
3442 else
3443 tdep->lr_frame_offset = 8;
3444
3445 if (v->arch == bfd_arch_rs6000)
3446 tdep->ppc_sr0_regnum = -1;
3447 else if (v->arch == bfd_arch_powerpc)
3448 switch (v->mach)
3449 {
3450 case bfd_mach_ppc:
3451 tdep->ppc_sr0_regnum = -1;
3452 tdep->ppc_vr0_regnum = 71;
3453 tdep->ppc_vrsave_regnum = 104;
3454 break;
3455 case bfd_mach_ppc_7400:
3456 tdep->ppc_vr0_regnum = 119;
3457 tdep->ppc_vrsave_regnum = 152;
3458 break;
3459 case bfd_mach_ppc_e500:
3460 tdep->ppc_toc_regnum = -1;
3461 tdep->ppc_ev0_upper_regnum = 32;
3462 tdep->ppc_ev0_regnum = 73;
3463 tdep->ppc_ev31_regnum = 104;
3464 tdep->ppc_acc_regnum = 71;
3465 tdep->ppc_spefscr_regnum = 72;
3466 tdep->ppc_fp0_regnum = -1;
3467 tdep->ppc_fpscr_regnum = -1;
3468 tdep->ppc_sr0_regnum = -1;
3469 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3470 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3471 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3472 break;
3473
3474 case bfd_mach_ppc64:
3475 case bfd_mach_ppc_620:
3476 case bfd_mach_ppc_630:
3477 case bfd_mach_ppc_a35:
3478 case bfd_mach_ppc_rs64ii:
3479 case bfd_mach_ppc_rs64iii:
3480 /* These processor's register sets don't have segment registers. */
3481 tdep->ppc_sr0_regnum = -1;
3482 break;
3483 }
3484 else
3485 internal_error (__FILE__, __LINE__,
3486 _("rs6000_gdbarch_init: "
3487 "received unexpected BFD 'arch' value"));
3488
3489 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3490
3491 /* Sanity check on registers. */
3492 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3493
3494 /* Select instruction printer. */
3495 if (arch == bfd_arch_rs6000)
3496 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3497 else
3498 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3499
3500 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3501
3502 set_gdbarch_num_regs (gdbarch, v->nregs);
3503 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3504 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3505 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3506 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3507
3508 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3509 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3510 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3511 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3512 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3513 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3514 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3515 if (sysv_abi)
3516 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3517 else
3518 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3519 set_gdbarch_char_signed (gdbarch, 0);
3520
3521 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3522 if (sysv_abi && wordsize == 8)
3523 /* PPC64 SYSV. */
3524 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3525 else if (!sysv_abi && wordsize == 4)
3526 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3527 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3528 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3529 224. */
3530 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3531
3532 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3533 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3534 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3535
3536 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3537 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3538
3539 if (sysv_abi && wordsize == 4)
3540 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3541 else if (sysv_abi && wordsize == 8)
3542 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3543 else
3544 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3545
3546 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3547 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3548
3549 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3550 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3551
3552 /* Handles single stepping of atomic sequences. */
3553 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3554
3555 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3556 for the descriptor and ".FN" for the entry-point -- a user
3557 specifying "break FN" will unexpectedly end up with a breakpoint
3558 on the descriptor and not the function. This architecture method
3559 transforms any breakpoints on descriptors into breakpoints on the
3560 corresponding entry point. */
3561 if (sysv_abi && wordsize == 8)
3562 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3563
3564 /* Not sure on this. FIXMEmgo */
3565 set_gdbarch_frame_args_skip (gdbarch, 8);
3566
3567 if (!sysv_abi)
3568 {
3569 /* Handle RS/6000 function pointers (which are really function
3570 descriptors). */
3571 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3572 rs6000_convert_from_func_ptr_addr);
3573 }
3574
3575 /* Helpers for function argument information. */
3576 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3577
3578 /* Trampoline. */
3579 set_gdbarch_in_solib_return_trampoline
3580 (gdbarch, rs6000_in_solib_return_trampoline);
3581 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3582
3583 /* Hook in the DWARF CFI frame unwinder. */
3584 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3585 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3586
3587 /* Hook in ABI-specific overrides, if they have been registered. */
3588 gdbarch_init_osabi (info, gdbarch);
3589
3590 switch (info.osabi)
3591 {
3592 case GDB_OSABI_LINUX:
3593 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3594 have altivec registers. If not, ptrace will fail the first time it's
3595 called to access one and will not be called again. This wart will
3596 be removed when Daniel Jacobowitz's proposal for autodetecting target
3597 registers is implemented. */
3598 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3599 {
3600 tdep->ppc_vr0_regnum = 71;
3601 tdep->ppc_vrsave_regnum = 104;
3602 }
3603 /* Fall Thru */
3604 case GDB_OSABI_NETBSD_AOUT:
3605 case GDB_OSABI_NETBSD_ELF:
3606 case GDB_OSABI_UNKNOWN:
3607 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3608 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3609 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3610 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3611 break;
3612 default:
3613 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3614
3615 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3616 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3617 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3618 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3619 }
3620
3621 init_sim_regno_table (gdbarch);
3622
3623 return gdbarch;
3624 }
3625
3626 static void
3627 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3628 {
3629 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3630
3631 if (tdep == NULL)
3632 return;
3633
3634 /* FIXME: Dump gdbarch_tdep. */
3635 }
3636
3637 /* Initialization code. */
3638
3639 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3640
3641 void
3642 _initialize_rs6000_tdep (void)
3643 {
3644 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3645 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3646 }
This page took 0.105028 seconds and 4 git commands to generate.