Thu Oct 13 15:51:20 1994 Jason Merrill (jason@phydeaux.cygnus.com)
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26
27 #include "xcoffsolib.h"
28
29 #include <a.out.h>
30
31 extern struct obstack frame_cache_obstack;
32
33 extern int errno;
34
35 /* Nonzero if we just simulated a single step break. */
36 int one_stepped;
37
38 /* Breakpoint shadows for the single step instructions will be kept here. */
39
40 static struct sstep_breaks {
41 /* Address, or 0 if this is not in use. */
42 CORE_ADDR address;
43 /* Shadow contents. */
44 char data[4];
45 } stepBreaks[2];
46
47 /* Static function prototypes */
48
49 static CORE_ADDR
50 find_toc_address PARAMS ((CORE_ADDR pc));
51
52 static CORE_ADDR
53 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
54
55 static void
56 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
57 struct aix_framedata *fdatap));
58
59 /*
60 * Calculate the destination of a branch/jump. Return -1 if not a branch.
61 */
62 static CORE_ADDR
63 branch_dest (opcode, instr, pc, safety)
64 int opcode;
65 int instr;
66 CORE_ADDR pc;
67 CORE_ADDR safety;
68 {
69 register long offset;
70 CORE_ADDR dest;
71 int immediate;
72 int absolute;
73 int ext_op;
74
75 absolute = (int) ((instr >> 1) & 1);
76
77 switch (opcode) {
78 case 18 :
79 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
80
81 case 16 :
82 if (opcode != 18) /* br conditional */
83 immediate = ((instr & ~3) << 16) >> 16;
84 if (absolute)
85 dest = immediate;
86 else
87 dest = pc + immediate;
88 break;
89
90 case 19 :
91 ext_op = (instr>>1) & 0x3ff;
92
93 if (ext_op == 16) /* br conditional register */
94 dest = read_register (LR_REGNUM) & ~3;
95
96 else if (ext_op == 528) /* br cond to count reg */
97 {
98 dest = read_register (CTR_REGNUM) & ~3;
99
100 /* If we are about to execute a system call, dest is something
101 like 0x22fc or 0x3b00. Upon completion the system call
102 will return to the address in the link register. */
103 if (dest < TEXT_SEGMENT_BASE)
104 dest = read_register (LR_REGNUM) & ~3;
105 }
106 else return -1;
107 break;
108
109 default: return -1;
110 }
111 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
112 }
113
114
115
116 /* AIX does not support PT_STEP. Simulate it. */
117
118 void
119 single_step (signal)
120 int signal;
121 {
122 #define INSNLEN(OPCODE) 4
123
124 static char breakp[] = BREAKPOINT;
125 int ii, insn;
126 CORE_ADDR loc;
127 CORE_ADDR breaks[2];
128 int opcode;
129
130 if (!one_stepped) {
131 loc = read_pc ();
132
133 read_memory (loc, (char *) &insn, 4);
134
135 breaks[0] = loc + INSNLEN(insn);
136 opcode = insn >> 26;
137 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
138
139 /* Don't put two breakpoints on the same address. */
140 if (breaks[1] == breaks[0])
141 breaks[1] = -1;
142
143 stepBreaks[1].address = 0;
144
145 for (ii=0; ii < 2; ++ii) {
146
147 /* ignore invalid breakpoint. */
148 if ( breaks[ii] == -1)
149 continue;
150
151 read_memory (breaks[ii], stepBreaks[ii].data, 4);
152
153 write_memory (breaks[ii], breakp, 4);
154 stepBreaks[ii].address = breaks[ii];
155 }
156
157 one_stepped = 1;
158 } else {
159
160 /* remove step breakpoints. */
161 for (ii=0; ii < 2; ++ii)
162 if (stepBreaks[ii].address != 0)
163 write_memory
164 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
165
166 one_stepped = 0;
167 }
168 errno = 0; /* FIXME, don't ignore errors! */
169 /* What errors? {read,write}_memory call error(). */
170 }
171
172
173 /* return pc value after skipping a function prologue. */
174
175 skip_prologue (pc)
176 CORE_ADDR pc;
177 {
178 char buf[4];
179 unsigned int tmp;
180 unsigned long op;
181
182 if (target_read_memory (pc, buf, 4))
183 return pc; /* Can't access it -- assume no prologue. */
184 op = extract_unsigned_integer (buf, 4);
185
186 /* Assume that subsequent fetches can fail with low probability. */
187
188 if (op == 0x7c0802a6) { /* mflr r0 */
189 pc += 4;
190 op = read_memory_integer (pc, 4);
191 }
192
193 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
194 pc += 4;
195 op = read_memory_integer (pc, 4);
196 }
197
198 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
199 pc += 4;
200 op = read_memory_integer (pc, 4);
201
202 /* At this point, make sure this is not a trampoline function
203 (a function that simply calls another functions, and nothing else).
204 If the next is not a nop, this branch was part of the function
205 prologue. */
206
207 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
208 op == 0x0)
209 return pc - 4; /* don't skip over this branch */
210 }
211
212 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
213 pc += 4; /* store floating register double */
214 op = read_memory_integer (pc, 4);
215 }
216
217 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
218 pc += 4;
219 op = read_memory_integer (pc, 4);
220 }
221
222 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
223 (tmp == 0x9421) || /* stu r1, NUM(r1) */
224 (tmp == 0x93e1)) /* st r31,NUM(r1) */
225 {
226 pc += 4;
227 op = read_memory_integer (pc, 4);
228 }
229
230 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
231 pc += 4; /* l r30, ... */
232 op = read_memory_integer (pc, 4);
233 }
234
235 /* store parameters into stack */
236 while(
237 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
238 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
239 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
240 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
241 {
242 pc += 4; /* store fpr double */
243 op = read_memory_integer (pc, 4);
244 }
245
246 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
247 pc += 4; /* this happens if r31 is used as */
248 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
249
250 tmp = 0;
251 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
252 pc += 4; /* st r4, NUM(r31), ... */
253 op = read_memory_integer (pc, 4);
254 tmp += 0x20;
255 }
256 }
257 #if 0
258 /* I have problems with skipping over __main() that I need to address
259 * sometime. Previously, I used to use misc_function_vector which
260 * didn't work as well as I wanted to be. -MGO */
261
262 /* If the first thing after skipping a prolog is a branch to a function,
263 this might be a call to an initializer in main(), introduced by gcc2.
264 We'd like to skip over it as well. Fortunately, xlc does some extra
265 work before calling a function right after a prologue, thus we can
266 single out such gcc2 behaviour. */
267
268
269 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
270 op = read_memory_integer (pc+4, 4);
271
272 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
273
274 /* check and see if we are in main. If so, skip over this initializer
275 function as well. */
276
277 tmp = find_pc_misc_function (pc);
278 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
279 return pc + 8;
280 }
281 }
282 #endif /* 0 */
283
284 return pc;
285 }
286
287
288 /*************************************************************************
289 Support for creating pushind a dummy frame into the stack, and popping
290 frames, etc.
291 *************************************************************************/
292
293 /* The total size of dummy frame is 436, which is;
294
295 32 gpr's - 128 bytes
296 32 fpr's - 256 "
297 7 the rest - 28 "
298 and 24 extra bytes for the callee's link area. The last 24 bytes
299 for the link area might not be necessary, since it will be taken
300 care of by push_arguments(). */
301
302 #define DUMMY_FRAME_SIZE 436
303
304 #define DUMMY_FRAME_ADDR_SIZE 10
305
306 /* Make sure you initialize these in somewhere, in case gdb gives up what it
307 was debugging and starts debugging something else. FIXMEibm */
308
309 static int dummy_frame_count = 0;
310 static int dummy_frame_size = 0;
311 static CORE_ADDR *dummy_frame_addr = 0;
312
313 extern int stop_stack_dummy;
314
315 /* push a dummy frame into stack, save all register. Currently we are saving
316 only gpr's and fpr's, which is not good enough! FIXMEmgo */
317
318 void
319 push_dummy_frame ()
320 {
321 /* stack pointer. */
322 CORE_ADDR sp;
323
324 /* link register. */
325 CORE_ADDR pc;
326 /* Same thing, target byte order. */
327 char pc_targ[4];
328
329 int ii;
330
331 target_fetch_registers (-1);
332
333 if (dummy_frame_count >= dummy_frame_size) {
334 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
335 if (dummy_frame_addr)
336 dummy_frame_addr = (CORE_ADDR*) xrealloc
337 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
338 else
339 dummy_frame_addr = (CORE_ADDR*)
340 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
341 }
342
343 sp = read_register(SP_REGNUM);
344 pc = read_register(PC_REGNUM);
345 memcpy (pc_targ, (char *) &pc, 4);
346
347 dummy_frame_addr [dummy_frame_count++] = sp;
348
349 /* Be careful! If the stack pointer is not decremented first, then kernel
350 thinks he is free to use the space underneath it. And kernel actually
351 uses that area for IPC purposes when executing ptrace(2) calls. So
352 before writing register values into the new frame, decrement and update
353 %sp first in order to secure your frame. */
354
355 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
356
357 /* gdb relies on the state of current_frame. We'd better update it,
358 otherwise things like do_registers_info() wouldn't work properly! */
359
360 flush_cached_frames ();
361
362 /* save program counter in link register's space. */
363 write_memory (sp+8, pc_targ, 4);
364
365 /* save all floating point and general purpose registers here. */
366
367 /* fpr's, f0..f31 */
368 for (ii = 0; ii < 32; ++ii)
369 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
370
371 /* gpr's r0..r31 */
372 for (ii=1; ii <=32; ++ii)
373 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
374
375 /* so far, 32*2 + 32 words = 384 bytes have been written.
376 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
377
378 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
379 write_memory (sp-384-(ii*4),
380 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
381 }
382
383 /* Save sp or so called back chain right here. */
384 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
385 sp -= DUMMY_FRAME_SIZE;
386
387 /* And finally, this is the back chain. */
388 write_memory (sp+8, pc_targ, 4);
389 }
390
391
392 /* Pop a dummy frame.
393
394 In rs6000 when we push a dummy frame, we save all of the registers. This
395 is usually done before user calls a function explicitly.
396
397 After a dummy frame is pushed, some instructions are copied into stack,
398 and stack pointer is decremented even more. Since we don't have a frame
399 pointer to get back to the parent frame of the dummy, we start having
400 trouble poping it. Therefore, we keep a dummy frame stack, keeping
401 addresses of dummy frames as such. When poping happens and when we
402 detect that was a dummy frame, we pop it back to its parent by using
403 dummy frame stack (`dummy_frame_addr' array).
404
405 FIXME: This whole concept is broken. You should be able to detect
406 a dummy stack frame *on the user's stack itself*. When you do,
407 then you know the format of that stack frame -- including its
408 saved SP register! There should *not* be a separate stack in the
409 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
410 */
411
412 pop_dummy_frame ()
413 {
414 CORE_ADDR sp, pc;
415 int ii;
416 sp = dummy_frame_addr [--dummy_frame_count];
417
418 /* restore all fpr's. */
419 for (ii = 1; ii <= 32; ++ii)
420 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
421
422 /* restore all gpr's */
423 for (ii=1; ii <= 32; ++ii) {
424 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
425 }
426
427 /* restore the rest of the registers. */
428 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
429 read_memory (sp-384-(ii*4),
430 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
431
432 read_memory (sp-(DUMMY_FRAME_SIZE-8),
433 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
434
435 /* when a dummy frame was being pushed, we had to decrement %sp first, in
436 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
437 one we should restore. Change it with the one we need. */
438
439 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
440
441 /* Now we can restore all registers. */
442
443 target_store_registers (-1);
444 pc = read_pc ();
445 flush_cached_frames ();
446 }
447
448
449 /* pop the innermost frame, go back to the caller. */
450
451 void
452 pop_frame ()
453 {
454 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
455 struct aix_framedata fdata;
456 FRAME fr = get_current_frame ();
457 int addr, ii;
458
459 pc = read_pc ();
460 sp = FRAME_FP (fr);
461
462 if (stop_stack_dummy && dummy_frame_count) {
463 pop_dummy_frame ();
464 return;
465 }
466
467 /* figure out previous %pc value. If the function is frameless, it is
468 still in the link register, otherwise walk the frames and retrieve the
469 saved %pc value in the previous frame. */
470
471 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
472 function_frame_info (addr, &fdata);
473
474 prev_sp = read_memory_integer (sp, 4);
475 if (fdata.frameless)
476 lr = read_register (LR_REGNUM);
477 else
478 lr = read_memory_integer (prev_sp+8, 4);
479
480 /* reset %pc value. */
481 write_register (PC_REGNUM, lr);
482
483 /* reset register values if any was saved earlier. */
484 addr = prev_sp - fdata.offset;
485
486 if (fdata.saved_gpr != -1)
487 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
488 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
489 addr += 4;
490 }
491
492 if (fdata.saved_fpr != -1)
493 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
494 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
495 addr += 8;
496 }
497
498 write_register (SP_REGNUM, prev_sp);
499 target_store_registers (-1);
500 flush_cached_frames ();
501 }
502
503 /* fixup the call sequence of a dummy function, with the real function address.
504 its argumets will be passed by gdb. */
505
506 void
507 fix_call_dummy(dummyname, pc, fun, nargs, type)
508 char *dummyname;
509 CORE_ADDR pc;
510 CORE_ADDR fun;
511 int nargs; /* not used */
512 int type; /* not used */
513 {
514 #define TOC_ADDR_OFFSET 20
515 #define TARGET_ADDR_OFFSET 28
516
517 int ii;
518 CORE_ADDR target_addr;
519 CORE_ADDR tocvalue;
520
521 target_addr = fun;
522 tocvalue = find_toc_address (target_addr);
523
524 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
525 ii = (ii & 0xffff0000) | (tocvalue >> 16);
526 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
527
528 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
529 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
530 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
531
532 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
533 ii = (ii & 0xffff0000) | (target_addr >> 16);
534 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
535
536 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
537 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
538 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
539 }
540
541
542 /* return information about a function frame.
543 in struct aix_frameinfo fdata:
544 - frameless is TRUE, if function does not have a frame.
545 - nosavedpc is TRUE, if function does not save %pc value in its frame.
546 - offset is the number of bytes used in the frame to save registers.
547 - saved_gpr is the number of the first saved gpr.
548 - saved_fpr is the number of the first saved fpr.
549 - alloca_reg is the number of the register used for alloca() handling.
550 Otherwise -1.
551 */
552 void
553 function_frame_info (pc, fdata)
554 CORE_ADDR pc;
555 struct aix_framedata *fdata;
556 {
557 unsigned int tmp;
558 register unsigned int op;
559
560 fdata->offset = 0;
561 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
562 fdata->frameless = 1;
563
564 op = read_memory_integer (pc, 4);
565 if (op == 0x7c0802a6) { /* mflr r0 */
566 pc += 4;
567 op = read_memory_integer (pc, 4);
568 fdata->nosavedpc = 0;
569 fdata->frameless = 0;
570 }
571 else /* else, pc is not saved */
572 fdata->nosavedpc = 1;
573
574 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
575 pc += 4;
576 op = read_memory_integer (pc, 4);
577 fdata->frameless = 0;
578 }
579
580 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
581 pc += 4;
582 op = read_memory_integer (pc, 4);
583 /* At this point, make sure this is not a trampoline function
584 (a function that simply calls another functions, and nothing else).
585 If the next is not a nop, this branch was part of the function
586 prologue. */
587
588 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
589 op == 0x0)
590 return; /* prologue is over */
591 fdata->frameless = 0;
592 }
593
594 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
595 pc += 4; /* store floating register double */
596 op = read_memory_integer (pc, 4);
597 fdata->frameless = 0;
598 }
599
600 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
601 int tmp2;
602 fdata->saved_gpr = (op >> 21) & 0x1f;
603 tmp2 = op & 0xffff;
604 if (tmp2 > 0x7fff)
605 tmp2 = (~0 &~ 0xffff) | tmp2;
606
607 if (tmp2 < 0) {
608 tmp2 = tmp2 * -1;
609 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
610 if ( fdata->saved_fpr > 0)
611 fdata->saved_fpr = 32 - fdata->saved_fpr;
612 else
613 fdata->saved_fpr = -1;
614 }
615 fdata->offset = tmp2;
616 pc += 4;
617 op = read_memory_integer (pc, 4);
618 fdata->frameless = 0;
619 }
620
621 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
622 (tmp == 0x9421) || /* stu r1, NUM(r1) */
623 (tmp == 0x93e1)) /* st r31, NUM(r1) */
624 {
625 int tmp2;
626
627 /* gcc takes a short cut and uses this instruction to save r31 only. */
628
629 if (tmp == 0x93e1) {
630 if (fdata->offset)
631 /* fatal ("Unrecognized prolog."); */
632 printf_unfiltered ("Unrecognized prolog!\n");
633
634 fdata->saved_gpr = 31;
635 tmp2 = op & 0xffff;
636 if (tmp2 > 0x7fff) {
637 tmp2 = - ((~0 &~ 0xffff) | tmp2);
638 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
639 if ( fdata->saved_fpr > 0)
640 fdata->saved_fpr = 32 - fdata->saved_fpr;
641 else
642 fdata->saved_fpr = -1;
643 }
644 fdata->offset = tmp2;
645 }
646 pc += 4;
647 op = read_memory_integer (pc, 4);
648 fdata->frameless = 0;
649 }
650
651 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
652 pc += 4; /* l r30, ... */
653 op = read_memory_integer (pc, 4);
654 fdata->frameless = 0;
655 }
656
657 /* store parameters into stack */
658 while(
659 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
660 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
661 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
662 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
663 {
664 pc += 4; /* store fpr double */
665 op = read_memory_integer (pc, 4);
666 fdata->frameless = 0;
667 }
668
669 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
670 fdata->alloca_reg = 31;
671 fdata->frameless = 0;
672 }
673 }
674
675
676 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
677 eight words of the argument list (that might be less than eight parameters if
678 some parameters occupy more than one word) are passed in r3..r11 registers.
679 float and double parameters are passed in fpr's, in addition to that. Rest of
680 the parameters if any are passed in user stack. There might be cases in which
681 half of the parameter is copied into registers, the other half is pushed into
682 stack.
683
684 If the function is returning a structure, then the return address is passed
685 in r3, then the first 7 words of the parametes can be passed in registers,
686 starting from r4. */
687
688 CORE_ADDR
689 push_arguments (nargs, args, sp, struct_return, struct_addr)
690 int nargs;
691 value_ptr *args;
692 CORE_ADDR sp;
693 int struct_return;
694 CORE_ADDR struct_addr;
695 {
696 int ii, len;
697 int argno; /* current argument number */
698 int argbytes; /* current argument byte */
699 char tmp_buffer [50];
700 value_ptr arg;
701 int f_argno = 0; /* current floating point argno */
702
703 CORE_ADDR saved_sp, pc;
704
705 if ( dummy_frame_count <= 0)
706 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
707
708 /* The first eight words of ther arguments are passed in registers. Copy
709 them appropriately.
710
711 If the function is returning a `struct', then the first word (which
712 will be passed in r3) is used for struct return address. In that
713 case we should advance one word and start from r4 register to copy
714 parameters. */
715
716 ii = struct_return ? 1 : 0;
717
718 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
719
720 arg = value_arg_coerce (args[argno]);
721 len = TYPE_LENGTH (VALUE_TYPE (arg));
722
723 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
724
725 /* floating point arguments are passed in fpr's, as well as gpr's.
726 There are 13 fpr's reserved for passing parameters. At this point
727 there is no way we would run out of them. */
728
729 if (len > 8)
730 printf_unfiltered (
731 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
732
733 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
734 len);
735 ++f_argno;
736 }
737
738 if (len > 4) {
739
740 /* Argument takes more than one register. */
741 while (argbytes < len) {
742
743 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
744 memcpy (&registers[REGISTER_BYTE(ii+3)],
745 ((char*)VALUE_CONTENTS (arg))+argbytes,
746 (len - argbytes) > 4 ? 4 : len - argbytes);
747 ++ii, argbytes += 4;
748
749 if (ii >= 8)
750 goto ran_out_of_registers_for_arguments;
751 }
752 argbytes = 0;
753 --ii;
754 }
755 else { /* Argument can fit in one register. No problem. */
756 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
757 memcpy (&registers[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
758 }
759 ++argno;
760 }
761
762 ran_out_of_registers_for_arguments:
763
764 /* location for 8 parameters are always reserved. */
765 sp -= 4 * 8;
766
767 /* another six words for back chain, TOC register, link register, etc. */
768 sp -= 24;
769
770 /* if there are more arguments, allocate space for them in
771 the stack, then push them starting from the ninth one. */
772
773 if ((argno < nargs) || argbytes) {
774 int space = 0, jj;
775 value_ptr val;
776
777 if (argbytes) {
778 space += ((len - argbytes + 3) & -4);
779 jj = argno + 1;
780 }
781 else
782 jj = argno;
783
784 for (; jj < nargs; ++jj) {
785 val = value_arg_coerce (args[jj]);
786 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
787 }
788
789 /* add location required for the rest of the parameters */
790 space = (space + 7) & -8;
791 sp -= space;
792
793 /* This is another instance we need to be concerned about securing our
794 stack space. If we write anything underneath %sp (r1), we might conflict
795 with the kernel who thinks he is free to use this area. So, update %sp
796 first before doing anything else. */
797
798 write_register (SP_REGNUM, sp);
799
800 /* if the last argument copied into the registers didn't fit there
801 completely, push the rest of it into stack. */
802
803 if (argbytes) {
804 write_memory (
805 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
806 ++argno;
807 ii += ((len - argbytes + 3) & -4) / 4;
808 }
809
810 /* push the rest of the arguments into stack. */
811 for (; argno < nargs; ++argno) {
812
813 arg = value_arg_coerce (args[argno]);
814 len = TYPE_LENGTH (VALUE_TYPE (arg));
815
816
817 /* float types should be passed in fpr's, as well as in the stack. */
818 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
819
820 if (len > 8)
821 printf_unfiltered (
822 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
823
824 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
825 len);
826 ++f_argno;
827 }
828
829 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
830 ii += ((len + 3) & -4) / 4;
831 }
832 }
833 else
834 /* Secure stack areas first, before doing anything else. */
835 write_register (SP_REGNUM, sp);
836
837 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
838 read_memory (saved_sp, tmp_buffer, 24);
839 write_memory (sp, tmp_buffer, 24);
840
841 write_memory (sp, &saved_sp, 4); /* set back chain properly */
842
843 target_store_registers (-1);
844 return sp;
845 }
846
847 /* a given return value in `regbuf' with a type `valtype', extract and copy its
848 value into `valbuf' */
849
850 void
851 extract_return_value (valtype, regbuf, valbuf)
852 struct type *valtype;
853 char regbuf[REGISTER_BYTES];
854 char *valbuf;
855 {
856
857 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
858
859 double dd; float ff;
860 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
861 We need to truncate the return value into float size (4 byte) if
862 necessary. */
863
864 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
865 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
866 TYPE_LENGTH (valtype));
867 else { /* float */
868 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
869 ff = (float)dd;
870 memcpy (valbuf, &ff, sizeof(float));
871 }
872 }
873 else
874 /* return value is copied starting from r3. */
875 memcpy (valbuf, &regbuf[REGISTER_BYTE (3)], TYPE_LENGTH (valtype));
876 }
877
878
879 /* keep structure return address in this variable.
880 FIXME: This is a horrid kludge which should not be allowed to continue
881 living. This only allows a single nested call to a structure-returning
882 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
883
884 CORE_ADDR rs6000_struct_return_address;
885
886
887 /* Indirect function calls use a piece of trampoline code to do context
888 switching, i.e. to set the new TOC table. Skip such code if we are on
889 its first instruction (as when we have single-stepped to here).
890 Result is desired PC to step until, or NULL if we are not in
891 trampoline code. */
892
893 CORE_ADDR
894 skip_trampoline_code (pc)
895 CORE_ADDR pc;
896 {
897 register unsigned int ii, op;
898
899 static unsigned trampoline_code[] = {
900 0x800b0000, /* l r0,0x0(r11) */
901 0x90410014, /* st r2,0x14(r1) */
902 0x7c0903a6, /* mtctr r0 */
903 0x804b0004, /* l r2,0x4(r11) */
904 0x816b0008, /* l r11,0x8(r11) */
905 0x4e800420, /* bctr */
906 0x4e800020, /* br */
907 0
908 };
909
910 for (ii=0; trampoline_code[ii]; ++ii) {
911 op = read_memory_integer (pc + (ii*4), 4);
912 if (op != trampoline_code [ii])
913 return 0;
914 }
915 ii = read_register (11); /* r11 holds destination addr */
916 pc = read_memory_integer (ii, 4); /* (r11) value */
917 return pc;
918 }
919
920
921 /* Determines whether the function FI has a frame on the stack or not.
922 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
923 second argument of 0, and from the FRAME_SAVED_PC macro with a
924 second argument of 1. */
925
926 int
927 frameless_function_invocation (fi, pcsaved)
928 struct frame_info *fi;
929 int pcsaved;
930 {
931 CORE_ADDR func_start;
932 struct aix_framedata fdata;
933
934 if (fi->next != NULL)
935 /* Don't even think about framelessness except on the innermost frame. */
936 /* FIXME: Can also be frameless if fi->next->signal_handler_caller (if
937 a signal happens while executing in a frameless function). */
938 return 0;
939
940 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
941
942 /* If we failed to find the start of the function, it is a mistake
943 to inspect the instructions. */
944
945 if (!func_start)
946 return 0;
947
948 function_frame_info (func_start, &fdata);
949 return pcsaved ? fdata.nosavedpc : fdata.frameless;
950 }
951
952
953 /* If saved registers of frame FI are not known yet, read and cache them.
954 &FDATAP contains aix_framedata; TDATAP can be NULL,
955 in which case the framedata are read. */
956
957 static void
958 frame_get_cache_fsr (fi, fdatap)
959 struct frame_info *fi;
960 struct aix_framedata *fdatap;
961 {
962 int ii;
963 CORE_ADDR frame_addr;
964 struct aix_framedata work_fdata;
965
966 if (fi->cache_fsr)
967 return;
968
969 if (fdatap == NULL) {
970 fdatap = &work_fdata;
971 function_frame_info (get_pc_function_start (fi->pc), fdatap);
972 }
973
974 fi->cache_fsr = (struct frame_saved_regs *)
975 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
976 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
977
978 if (fi->prev && fi->prev->frame)
979 frame_addr = fi->prev->frame;
980 else
981 frame_addr = read_memory_integer (fi->frame, 4);
982
983 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
984 All fpr's from saved_fpr to fp31 are saved right underneath caller
985 stack pointer, starting from fp31 first. */
986
987 if (fdatap->saved_fpr >= 0) {
988 for (ii=31; ii >= fdatap->saved_fpr; --ii)
989 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
990 frame_addr -= (32 - fdatap->saved_fpr) * 8;
991 }
992
993 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
994 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
995 starting from r31 first. */
996
997 if (fdatap->saved_gpr >= 0)
998 for (ii=31; ii >= fdatap->saved_gpr; --ii)
999 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1000 }
1001
1002 /* Return the address of a frame. This is the inital %sp value when the frame
1003 was first allocated. For functions calling alloca(), it might be saved in
1004 an alloca register. */
1005
1006 CORE_ADDR
1007 frame_initial_stack_address (fi)
1008 struct frame_info *fi;
1009 {
1010 CORE_ADDR tmpaddr;
1011 struct aix_framedata fdata;
1012 struct frame_info *callee_fi;
1013
1014 /* if the initial stack pointer (frame address) of this frame is known,
1015 just return it. */
1016
1017 if (fi->initial_sp)
1018 return fi->initial_sp;
1019
1020 /* find out if this function is using an alloca register.. */
1021
1022 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1023
1024 /* if saved registers of this frame are not known yet, read and cache them. */
1025
1026 if (!fi->cache_fsr)
1027 frame_get_cache_fsr (fi, &fdata);
1028
1029 /* If no alloca register used, then fi->frame is the value of the %sp for
1030 this frame, and it is good enough. */
1031
1032 if (fdata.alloca_reg < 0) {
1033 fi->initial_sp = fi->frame;
1034 return fi->initial_sp;
1035 }
1036
1037 /* This function has an alloca register. If this is the top-most frame
1038 (with the lowest address), the value in alloca register is good. */
1039
1040 if (!fi->next)
1041 return fi->initial_sp = read_register (fdata.alloca_reg);
1042
1043 /* Otherwise, this is a caller frame. Callee has usually already saved
1044 registers, but there are exceptions (such as when the callee
1045 has no parameters). Find the address in which caller's alloca
1046 register is saved. */
1047
1048 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1049
1050 if (!callee_fi->cache_fsr)
1051 frame_get_cache_fsr (callee_fi, NULL);
1052
1053 /* this is the address in which alloca register is saved. */
1054
1055 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1056 if (tmpaddr) {
1057 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1058 return fi->initial_sp;
1059 }
1060
1061 /* Go look into deeper levels of the frame chain to see if any one of
1062 the callees has saved alloca register. */
1063 }
1064
1065 /* If alloca register was not saved, by the callee (or any of its callees)
1066 then the value in the register is still good. */
1067
1068 return fi->initial_sp = read_register (fdata.alloca_reg);
1069 }
1070
1071 FRAME_ADDR
1072 rs6000_frame_chain (thisframe)
1073 struct frame_info *thisframe;
1074 {
1075 FRAME_ADDR fp;
1076 if (inside_entry_file ((thisframe)->pc))
1077 return 0;
1078 if (thisframe->signal_handler_caller)
1079 {
1080 /* This was determined by experimentation on AIX 3.2. Perhaps
1081 it corresponds to some offset in /usr/include/sys/user.h or
1082 something like that. Using some system include file would
1083 have the advantage of probably being more robust in the face
1084 of OS upgrades, but the disadvantage of being wrong for
1085 cross-debugging. */
1086
1087 #define SIG_FRAME_FP_OFFSET 284
1088 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1089 }
1090 else
1091 fp = read_memory_integer ((thisframe)->frame, 4);
1092
1093 return fp;
1094 }
1095 \f
1096 /* Keep an array of load segment information and their TOC table addresses.
1097 This info will be useful when calling a shared library function by hand. */
1098
1099 struct loadinfo {
1100 CORE_ADDR textorg, dataorg;
1101 unsigned long toc_offset;
1102 };
1103
1104 #define LOADINFOLEN 10
1105
1106 static struct loadinfo *loadinfo = NULL;
1107 static int loadinfolen = 0;
1108 static int loadinfotocindex = 0;
1109 static int loadinfotextindex = 0;
1110
1111
1112 void
1113 xcoff_init_loadinfo ()
1114 {
1115 loadinfotocindex = 0;
1116 loadinfotextindex = 0;
1117
1118 if (loadinfolen == 0) {
1119 loadinfo = (struct loadinfo *)
1120 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1121 loadinfolen = LOADINFOLEN;
1122 }
1123 }
1124
1125
1126 /* FIXME -- this is never called! */
1127 void
1128 free_loadinfo ()
1129 {
1130 if (loadinfo)
1131 free (loadinfo);
1132 loadinfo = NULL;
1133 loadinfolen = 0;
1134 loadinfotocindex = 0;
1135 loadinfotextindex = 0;
1136 }
1137
1138 /* this is called from xcoffread.c */
1139
1140 void
1141 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1142 {
1143 while (loadinfotocindex >= loadinfolen) {
1144 loadinfolen += LOADINFOLEN;
1145 loadinfo = (struct loadinfo *)
1146 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1147 }
1148 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1149 }
1150
1151 void
1152 add_text_to_loadinfo (textaddr, dataaddr)
1153 CORE_ADDR textaddr;
1154 CORE_ADDR dataaddr;
1155 {
1156 while (loadinfotextindex >= loadinfolen) {
1157 loadinfolen += LOADINFOLEN;
1158 loadinfo = (struct loadinfo *)
1159 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1160 }
1161 loadinfo [loadinfotextindex].textorg = textaddr;
1162 loadinfo [loadinfotextindex].dataorg = dataaddr;
1163 ++loadinfotextindex;
1164 }
1165
1166
1167 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1168 of a member of this array are correlated with the "toc_offset"
1169 element of the same member. But they are sequentially assigned in wildly
1170 different places, and probably there is no correlation. FIXME! */
1171
1172 static CORE_ADDR
1173 find_toc_address (pc)
1174 CORE_ADDR pc;
1175 {
1176 int ii, toc_entry, tocbase = 0;
1177
1178 for (ii=0; ii < loadinfotextindex; ++ii)
1179 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1180 toc_entry = ii;
1181 tocbase = loadinfo[ii].textorg;
1182 }
1183
1184 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1185 }
This page took 0.055779 seconds and 4 git commands to generate.