Catch error on close so runtest won't bomb.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25
26 #include "xcoffsolib.h"
27
28 #include <sys/param.h>
29 #include <sys/dir.h>
30 #include <sys/user.h>
31 #include <signal.h>
32 #include <sys/ioctl.h>
33 #include <fcntl.h>
34
35 #include <a.out.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/core.h>
39 #include <sys/ldr.h>
40
41
42 extern struct obstack frame_cache_obstack;
43
44 extern int errno;
45
46 /* Nonzero if we just simulated a single step break. */
47 int one_stepped;
48
49 /* Breakpoint shadows for the single step instructions will be kept here. */
50
51 static struct sstep_breaks {
52 int address;
53 int data;
54 } stepBreaks[2];
55
56 /* Static function prototypes */
57
58 static CORE_ADDR
59 find_toc_address PARAMS ((CORE_ADDR pc));
60
61 static CORE_ADDR
62 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
63
64 static void
65 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
66 struct aix_framedata *fdatap));
67
68 /*
69 * Calculate the destination of a branch/jump. Return -1 if not a branch.
70 */
71 static CORE_ADDR
72 branch_dest (opcode, instr, pc, safety)
73 int opcode;
74 int instr;
75 CORE_ADDR pc;
76 CORE_ADDR safety;
77 {
78 register long offset;
79 CORE_ADDR dest;
80 int immediate;
81 int absolute;
82 int ext_op;
83
84 absolute = (int) ((instr >> 1) & 1);
85
86 switch (opcode) {
87 case 18 :
88 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
89
90 case 16 :
91 if (opcode != 18) /* br conditional */
92 immediate = ((instr & ~3) << 16) >> 16;
93 if (absolute)
94 dest = immediate;
95 else
96 dest = pc + immediate;
97 break;
98
99 case 19 :
100 ext_op = (instr>>1) & 0x3ff;
101
102 if (ext_op == 16) /* br conditional register */
103 dest = read_register (LR_REGNUM) & ~3;
104
105 else if (ext_op == 528) /* br cond to count reg */
106 dest = read_register (CTR_REGNUM) & ~3;
107
108 else return -1;
109 break;
110
111 default: return -1;
112 }
113 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
114 }
115
116
117
118 /* AIX does not support PT_STEP. Simulate it. */
119
120 void
121 single_step (signal)
122 int signal;
123 {
124 #define INSNLEN(OPCODE) 4
125
126 static char breakp[] = BREAKPOINT;
127 int ii, insn, ret, loc;
128 int breaks[2], opcode;
129
130 if (!one_stepped) {
131 loc = read_pc ();
132
133 ret = read_memory (loc, &insn, sizeof (int));
134 if (ret)
135 printf ("Error in single_step()!!\n");
136
137 breaks[0] = loc + INSNLEN(insn);
138 opcode = insn >> 26;
139 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
140
141 /* Don't put two breakpoints on the same address. */
142 if (breaks[1] == breaks[0])
143 breaks[1] = -1;
144
145 stepBreaks[1].address = -1;
146
147 for (ii=0; ii < 2; ++ii) {
148
149 /* ignore invalid breakpoint. */
150 if ( breaks[ii] == -1)
151 continue;
152
153 read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
154
155 ret = write_memory (breaks[ii], breakp, sizeof(int));
156 stepBreaks[ii].address = breaks[ii];
157 }
158
159 one_stepped = 1;
160 } else {
161
162 /* remove step breakpoints. */
163 for (ii=0; ii < 2; ++ii)
164 if (stepBreaks[ii].address != -1)
165 write_memory
166 (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
167
168 one_stepped = 0;
169 }
170 errno = 0; /* FIXME, don't ignore errors! */
171 }
172
173
174 /* return pc value after skipping a function prologue. */
175
176 skip_prologue (pc)
177 CORE_ADDR pc;
178 {
179 unsigned int tmp;
180 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
181
182 if (target_read_memory (pc, (char *)&op, sizeof (op)))
183 return pc; /* Can't access it -- assume no prologue. */
184 SWAP_TARGET_AND_HOST (&op, sizeof (op));
185
186 /* Assume that subsequent fetches can fail with low probability. */
187
188 if (op == 0x7c0802a6) { /* mflr r0 */
189 pc += 4;
190 op = read_memory_integer (pc, 4);
191 }
192
193 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
194 pc += 4;
195 op = read_memory_integer (pc, 4);
196 }
197
198 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
199 pc += 4;
200 op = read_memory_integer (pc, 4);
201
202 /* At this point, make sure this is not a trampoline function
203 (a function that simply calls another functions, and nothing else).
204 If the next is not a nop, this branch was part of the function
205 prologue. */
206
207 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
208 op == 0x0)
209 return pc - 4; /* don't skip over this branch */
210 }
211
212 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
213 pc += 4; /* store floating register double */
214 op = read_memory_integer (pc, 4);
215 }
216
217 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
218 pc += 4;
219 op = read_memory_integer (pc, 4);
220 }
221
222 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
223 (tmp == 0x9421) || /* stu r1, NUM(r1) */
224 (tmp == 0x93e1)) /* st r31,NUM(r1) */
225 {
226 pc += 4;
227 op = read_memory_integer (pc, 4);
228 }
229
230 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
231 pc += 4; /* l r30, ... */
232 op = read_memory_integer (pc, 4);
233 }
234
235 /* store parameters into stack */
236 while(
237 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
238 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
239 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
240 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
241 {
242 pc += 4; /* store fpr double */
243 op = read_memory_integer (pc, 4);
244 }
245
246 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
247 pc += 4; /* this happens if r31 is used as */
248 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
249
250 tmp = 0;
251 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
252 pc += 4; /* st r4, NUM(r31), ... */
253 op = read_memory_integer (pc, 4);
254 tmp += 0x20;
255 }
256 }
257 #if 0
258 /* I have problems with skipping over __main() that I need to address
259 * sometime. Previously, I used to use misc_function_vector which
260 * didn't work as well as I wanted to be. -MGO */
261
262 /* If the first thing after skipping a prolog is a branch to a function,
263 this might be a call to an initializer in main(), introduced by gcc2.
264 We'd like to skip over it as well. Fortunately, xlc does some extra
265 work before calling a function right after a prologue, thus we can
266 single out such gcc2 behaviour. */
267
268
269 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
270 op = read_memory_integer (pc+4, 4);
271
272 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
273
274 /* check and see if we are in main. If so, skip over this initializer
275 function as well. */
276
277 tmp = find_pc_misc_function (pc);
278 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
279 return pc + 8;
280 }
281 }
282 #endif /* 0 */
283
284 return pc;
285 }
286
287
288 /*************************************************************************
289 Support for creating pushind a dummy frame into the stack, and popping
290 frames, etc.
291 *************************************************************************/
292
293 /* The total size of dummy frame is 436, which is;
294
295 32 gpr's - 128 bytes
296 32 fpr's - 256 "
297 7 the rest - 28 "
298 and 24 extra bytes for the callee's link area. The last 24 bytes
299 for the link area might not be necessary, since it will be taken
300 care of by push_arguments(). */
301
302 #define DUMMY_FRAME_SIZE 436
303
304 #define DUMMY_FRAME_ADDR_SIZE 10
305
306 /* Make sure you initialize these in somewhere, in case gdb gives up what it
307 was debugging and starts debugging something else. FIXMEibm */
308
309 static int dummy_frame_count = 0;
310 static int dummy_frame_size = 0;
311 static CORE_ADDR *dummy_frame_addr = 0;
312
313 extern int stop_stack_dummy;
314
315 /* push a dummy frame into stack, save all register. Currently we are saving
316 only gpr's and fpr's, which is not good enough! FIXMEmgo */
317
318 void
319 push_dummy_frame ()
320 {
321 int sp, pc; /* stack pointer and link register */
322 int ii;
323
324 target_fetch_registers (-1);
325
326 if (dummy_frame_count >= dummy_frame_size) {
327 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
328 if (dummy_frame_addr)
329 dummy_frame_addr = (CORE_ADDR*) xrealloc
330 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
331 else
332 dummy_frame_addr = (CORE_ADDR*)
333 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
334 }
335
336 sp = read_register(SP_REGNUM);
337 pc = read_register(PC_REGNUM);
338
339 dummy_frame_addr [dummy_frame_count++] = sp;
340
341 /* Be careful! If the stack pointer is not decremented first, then kernel
342 thinks he is free to use the space underneath it. And kernel actually
343 uses that area for IPC purposes when executing ptrace(2) calls. So
344 before writing register values into the new frame, decrement and update
345 %sp first in order to secure your frame. */
346
347 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
348
349 /* gdb relies on the state of current_frame. We'd better update it,
350 otherwise things like do_registers_info() wouldn't work properly! */
351
352 flush_cached_frames ();
353 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
354
355 /* save program counter in link register's space. */
356 write_memory (sp+8, &pc, 4);
357
358 /* save all floating point and general purpose registers here. */
359
360 /* fpr's, f0..f31 */
361 for (ii = 0; ii < 32; ++ii)
362 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
363
364 /* gpr's r0..r31 */
365 for (ii=1; ii <=32; ++ii)
366 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
367
368 /* so far, 32*2 + 32 words = 384 bytes have been written.
369 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
370
371 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
372 write_memory (sp-384-(ii*4),
373 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
374 }
375
376 /* Save sp or so called back chain right here. */
377 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
378 sp -= DUMMY_FRAME_SIZE;
379
380 /* And finally, this is the back chain. */
381 write_memory (sp+8, &pc, 4);
382 }
383
384
385 /* Pop a dummy frame.
386
387 In rs6000 when we push a dummy frame, we save all of the registers. This
388 is usually done before user calls a function explicitly.
389
390 After a dummy frame is pushed, some instructions are copied into stack,
391 and stack pointer is decremented even more. Since we don't have a frame
392 pointer to get back to the parent frame of the dummy, we start having
393 trouble poping it. Therefore, we keep a dummy frame stack, keeping
394 addresses of dummy frames as such. When poping happens and when we
395 detect that was a dummy frame, we pop it back to its parent by using
396 dummy frame stack (`dummy_frame_addr' array).
397
398 FIXME: This whole concept is broken. You should be able to detect
399 a dummy stack frame *on the user's stack itself*. When you do,
400 then you know the format of that stack frame -- including its
401 saved SP register! There should *not* be a separate stack in the
402 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
403 */
404
405 pop_dummy_frame ()
406 {
407 CORE_ADDR sp, pc;
408 int ii;
409 sp = dummy_frame_addr [--dummy_frame_count];
410
411 /* restore all fpr's. */
412 for (ii = 1; ii <= 32; ++ii)
413 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
414
415 /* restore all gpr's */
416 for (ii=1; ii <= 32; ++ii) {
417 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
418 }
419
420 /* restore the rest of the registers. */
421 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
422 read_memory (sp-384-(ii*4),
423 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
424
425 read_memory (sp-(DUMMY_FRAME_SIZE-8),
426 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
427
428 /* when a dummy frame was being pushed, we had to decrement %sp first, in
429 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
430 one we should restore. Change it with the one we need. */
431
432 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
433
434 /* Now we can restore all registers. */
435
436 target_store_registers (-1);
437 pc = read_pc ();
438 flush_cached_frames ();
439 set_current_frame (create_new_frame (sp, pc));
440 }
441
442
443 /* pop the innermost frame, go back to the caller. */
444
445 void
446 pop_frame ()
447 {
448 int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
449 struct aix_framedata fdata;
450 FRAME fr = get_current_frame ();
451 int addr, ii;
452
453 pc = read_pc ();
454 sp = FRAME_FP (fr);
455
456 if (stop_stack_dummy && dummy_frame_count) {
457 pop_dummy_frame ();
458 return;
459 }
460
461 /* figure out previous %pc value. If the function is frameless, it is
462 still in the link register, otherwise walk the frames and retrieve the
463 saved %pc value in the previous frame. */
464
465 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
466 function_frame_info (addr, &fdata);
467
468 read_memory (sp, &prev_sp, 4);
469 if (fdata.frameless)
470 lr = read_register (LR_REGNUM);
471 else
472 read_memory (prev_sp+8, &lr, 4);
473
474 /* reset %pc value. */
475 write_register (PC_REGNUM, lr);
476
477 /* reset register values if any was saved earlier. */
478 addr = prev_sp - fdata.offset;
479
480 if (fdata.saved_gpr != -1)
481 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
482 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
483 addr += 4;
484 }
485
486 if (fdata.saved_fpr != -1)
487 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
488 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
489 addr += 8;
490 }
491
492 write_register (SP_REGNUM, prev_sp);
493 target_store_registers (-1);
494 flush_cached_frames ();
495 set_current_frame (create_new_frame (prev_sp, lr));
496 }
497
498
499 /* fixup the call sequence of a dummy function, with the real function address.
500 its argumets will be passed by gdb. */
501
502 void
503 fix_call_dummy(dummyname, pc, fun, nargs, type)
504 char *dummyname;
505 CORE_ADDR pc;
506 CORE_ADDR fun;
507 int nargs; /* not used */
508 int type; /* not used */
509 {
510 #define TOC_ADDR_OFFSET 20
511 #define TARGET_ADDR_OFFSET 28
512
513 int ii;
514 CORE_ADDR target_addr;
515 CORE_ADDR tocvalue;
516
517 target_addr = fun;
518 tocvalue = find_toc_address (target_addr);
519
520 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
521 ii = (ii & 0xffff0000) | (tocvalue >> 16);
522 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
523
524 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
525 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
526 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
527
528 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
529 ii = (ii & 0xffff0000) | (target_addr >> 16);
530 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
531
532 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
533 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
534 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
535 }
536
537
538 /* return information about a function frame.
539 in struct aix_frameinfo fdata:
540 - frameless is TRUE, if function does not have a frame.
541 - nosavedpc is TRUE, if function does not save %pc value in its frame.
542 - offset is the number of bytes used in the frame to save registers.
543 - saved_gpr is the number of the first saved gpr.
544 - saved_fpr is the number of the first saved fpr.
545 - alloca_reg is the number of the register used for alloca() handling.
546 Otherwise -1.
547 */
548 void
549 function_frame_info (pc, fdata)
550 CORE_ADDR pc;
551 struct aix_framedata *fdata;
552 {
553 unsigned int tmp;
554 register unsigned int op;
555
556 fdata->offset = 0;
557 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
558 fdata->frameless = 1;
559
560 op = read_memory_integer (pc, 4);
561 if (op == 0x7c0802a6) { /* mflr r0 */
562 pc += 4;
563 op = read_memory_integer (pc, 4);
564 fdata->nosavedpc = 0;
565 fdata->frameless = 0;
566 }
567 else /* else, pc is not saved */
568 fdata->nosavedpc = 1;
569
570 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
571 pc += 4;
572 op = read_memory_integer (pc, 4);
573 fdata->frameless = 0;
574 }
575
576 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
577 pc += 4;
578 op = read_memory_integer (pc, 4);
579 /* At this point, make sure this is not a trampoline function
580 (a function that simply calls another functions, and nothing else).
581 If the next is not a nop, this branch was part of the function
582 prologue. */
583
584 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
585 op == 0x0)
586 return; /* prologue is over */
587 fdata->frameless = 0;
588 }
589
590 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
591 pc += 4; /* store floating register double */
592 op = read_memory_integer (pc, 4);
593 fdata->frameless = 0;
594 }
595
596 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
597 int tmp2;
598 fdata->saved_gpr = (op >> 21) & 0x1f;
599 tmp2 = op & 0xffff;
600 if (tmp2 > 0x7fff)
601 tmp2 = (~0 &~ 0xffff) | tmp2;
602
603 if (tmp2 < 0) {
604 tmp2 = tmp2 * -1;
605 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
606 if ( fdata->saved_fpr > 0)
607 fdata->saved_fpr = 32 - fdata->saved_fpr;
608 else
609 fdata->saved_fpr = -1;
610 }
611 fdata->offset = tmp2;
612 pc += 4;
613 op = read_memory_integer (pc, 4);
614 fdata->frameless = 0;
615 }
616
617 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
618 (tmp == 0x9421) || /* stu r1, NUM(r1) */
619 (tmp == 0x93e1)) /* st r31, NUM(r1) */
620 {
621 int tmp2;
622
623 /* gcc takes a short cut and uses this instruction to save r31 only. */
624
625 if (tmp == 0x93e1) {
626 if (fdata->offset)
627 /* fatal ("Unrecognized prolog."); */
628 printf ("Unrecognized prolog!\n");
629
630 fdata->saved_gpr = 31;
631 tmp2 = op & 0xffff;
632 if (tmp2 > 0x7fff) {
633 tmp2 = - ((~0 &~ 0xffff) | tmp2);
634 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
635 if ( fdata->saved_fpr > 0)
636 fdata->saved_fpr = 32 - fdata->saved_fpr;
637 else
638 fdata->saved_fpr = -1;
639 }
640 fdata->offset = tmp2;
641 }
642 pc += 4;
643 op = read_memory_integer (pc, 4);
644 fdata->frameless = 0;
645 }
646
647 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
648 pc += 4; /* l r30, ... */
649 op = read_memory_integer (pc, 4);
650 fdata->frameless = 0;
651 }
652
653 /* store parameters into stack */
654 while(
655 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
656 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
657 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
658 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
659 {
660 pc += 4; /* store fpr double */
661 op = read_memory_integer (pc, 4);
662 fdata->frameless = 0;
663 }
664
665 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
666 fdata->alloca_reg = 31;
667 fdata->frameless = 0;
668 }
669 }
670
671
672 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
673 eight words of the argument list (that might be less than eight parameters if
674 some parameters occupy more than one word) are passed in r3..r11 registers.
675 float and double parameters are passed in fpr's, in addition to that. Rest of
676 the parameters if any are passed in user stack. There might be cases in which
677 half of the parameter is copied into registers, the other half is pushed into
678 stack.
679
680 If the function is returning a structure, then the return address is passed
681 in r3, then the first 7 words of the parametes can be passed in registers,
682 starting from r4. */
683
684 CORE_ADDR
685 push_arguments (nargs, args, sp, struct_return, struct_addr)
686 int nargs;
687 value *args;
688 CORE_ADDR sp;
689 int struct_return;
690 CORE_ADDR struct_addr;
691 {
692 int ii, len;
693 int argno; /* current argument number */
694 int argbytes; /* current argument byte */
695 char tmp_buffer [50];
696 value arg;
697 int f_argno = 0; /* current floating point argno */
698
699 CORE_ADDR saved_sp, pc;
700
701 if ( dummy_frame_count <= 0)
702 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
703
704 /* The first eight words of ther arguments are passed in registers. Copy
705 them appropriately.
706
707 If the function is returning a `struct', then the first word (which
708 will be passed in r3) is used for struct return address. In that
709 case we should advance one word and start from r4 register to copy
710 parameters. */
711
712 ii = struct_return ? 1 : 0;
713
714 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
715
716 arg = value_arg_coerce (args[argno]);
717 len = TYPE_LENGTH (VALUE_TYPE (arg));
718
719 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
720
721 /* floating point arguments are passed in fpr's, as well as gpr's.
722 There are 13 fpr's reserved for passing parameters. At this point
723 there is no way we would run out of them. */
724
725 if (len > 8)
726 printf (
727 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
728
729 bcopy (VALUE_CONTENTS (arg),
730 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
731 ++f_argno;
732 }
733
734 if (len > 4) {
735
736 /* Argument takes more than one register. */
737 while (argbytes < len) {
738
739 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
740 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
741 &registers[REGISTER_BYTE(ii+3)],
742 (len - argbytes) > 4 ? 4 : len - argbytes);
743 ++ii, argbytes += 4;
744
745 if (ii >= 8)
746 goto ran_out_of_registers_for_arguments;
747 }
748 argbytes = 0;
749 --ii;
750 }
751 else { /* Argument can fit in one register. No problem. */
752 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
753 bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
754 }
755 ++argno;
756 }
757
758 ran_out_of_registers_for_arguments:
759
760 /* location for 8 parameters are always reserved. */
761 sp -= 4 * 8;
762
763 /* another six words for back chain, TOC register, link register, etc. */
764 sp -= 24;
765
766 /* if there are more arguments, allocate space for them in
767 the stack, then push them starting from the ninth one. */
768
769 if ((argno < nargs) || argbytes) {
770 int space = 0, jj;
771 value val;
772
773 if (argbytes) {
774 space += ((len - argbytes + 3) & -4);
775 jj = argno + 1;
776 }
777 else
778 jj = argno;
779
780 for (; jj < nargs; ++jj) {
781 val = value_arg_coerce (args[jj]);
782 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
783 }
784
785 /* add location required for the rest of the parameters */
786 space = (space + 7) & -8;
787 sp -= space;
788
789 /* This is another instance we need to be concerned about securing our
790 stack space. If we write anything underneath %sp (r1), we might conflict
791 with the kernel who thinks he is free to use this area. So, update %sp
792 first before doing anything else. */
793
794 write_register (SP_REGNUM, sp);
795
796 /* if the last argument copied into the registers didn't fit there
797 completely, push the rest of it into stack. */
798
799 if (argbytes) {
800 write_memory (
801 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
802 ++argno;
803 ii += ((len - argbytes + 3) & -4) / 4;
804 }
805
806 /* push the rest of the arguments into stack. */
807 for (; argno < nargs; ++argno) {
808
809 arg = value_arg_coerce (args[argno]);
810 len = TYPE_LENGTH (VALUE_TYPE (arg));
811
812
813 /* float types should be passed in fpr's, as well as in the stack. */
814 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
815
816 if (len > 8)
817 printf (
818 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
819
820 bcopy (VALUE_CONTENTS (arg),
821 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
822 ++f_argno;
823 }
824
825 write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
826 ii += ((len + 3) & -4) / 4;
827 }
828 }
829 else
830 /* Secure stack areas first, before doing anything else. */
831 write_register (SP_REGNUM, sp);
832
833 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
834 read_memory (saved_sp, tmp_buffer, 24);
835 write_memory (sp, tmp_buffer, 24);
836
837 write_memory (sp, &saved_sp, 4); /* set back chain properly */
838
839 target_store_registers (-1);
840 return sp;
841 }
842
843 /* a given return value in `regbuf' with a type `valtype', extract and copy its
844 value into `valbuf' */
845
846 void
847 extract_return_value (valtype, regbuf, valbuf)
848 struct type *valtype;
849 char regbuf[REGISTER_BYTES];
850 char *valbuf;
851 {
852
853 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
854
855 double dd; float ff;
856 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
857 We need to truncate the return value into float size (4 byte) if
858 necessary. */
859
860 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
861 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
862 TYPE_LENGTH (valtype));
863 else { /* float */
864 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
865 ff = (float)dd;
866 bcopy (&ff, valbuf, sizeof(float));
867 }
868 }
869 else
870 /* return value is copied starting from r3. */
871 bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
872 }
873
874
875 /* keep structure return address in this variable.
876 FIXME: This is a horrid kludge which should not be allowed to continue
877 living. This only allows a single nested call to a structure-returning
878 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
879
880 CORE_ADDR rs6000_struct_return_address;
881
882
883 /* Throw away this debugging code. FIXMEmgo. */
884 void
885 print_frame(fram)
886 int fram;
887 {
888 int ii, val;
889 for (ii=0; ii<40; ++ii) {
890 if ((ii % 4) == 0)
891 printf ("\n");
892 val = read_memory_integer (fram + ii * 4, 4);
893 printf ("0x%08x\t", val);
894 }
895 printf ("\n");
896 }
897
898
899
900 /* Indirect function calls use a piece of trampoline code to do context
901 switching, i.e. to set the new TOC table. Skip such code if we are on
902 its first instruction (as when we have single-stepped to here).
903 Result is desired PC to step until, or NULL if we are not in
904 trampoline code. */
905
906 CORE_ADDR
907 skip_trampoline_code (pc)
908 CORE_ADDR pc;
909 {
910 register unsigned int ii, op;
911
912 static unsigned trampoline_code[] = {
913 0x800b0000, /* l r0,0x0(r11) */
914 0x90410014, /* st r2,0x14(r1) */
915 0x7c0903a6, /* mtctr r0 */
916 0x804b0004, /* l r2,0x4(r11) */
917 0x816b0008, /* l r11,0x8(r11) */
918 0x4e800420, /* bctr */
919 0x4e800020, /* br */
920 0
921 };
922
923 for (ii=0; trampoline_code[ii]; ++ii) {
924 op = read_memory_integer (pc + (ii*4), 4);
925 if (op != trampoline_code [ii])
926 return NULL;
927 }
928 ii = read_register (11); /* r11 holds destination addr */
929 pc = read_memory_integer (ii, 4); /* (r11) value */
930 return pc;
931 }
932
933
934 /* Determines whether the function FI has a frame on the stack or not.
935 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
936 second argument of 0, and from the FRAME_SAVED_PC macro with a
937 second argument of 1. */
938
939 int
940 frameless_function_invocation (fi, pcsaved)
941 struct frame_info *fi;
942 int pcsaved;
943 {
944 CORE_ADDR func_start;
945 struct aix_framedata fdata;
946
947 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
948
949 /* If we failed to find the start of the function, it is a mistake
950 to inspect the instructions. */
951
952 if (!func_start)
953 return 0;
954
955 function_frame_info (func_start, &fdata);
956 return pcsaved ? fdata.nosavedpc : fdata.frameless;
957 }
958
959
960 /* If saved registers of frame FI are not known yet, read and cache them.
961 &FDATAP contains aix_framedata; TDATAP can be NULL,
962 in which case the framedata are read. */
963
964 static void
965 frame_get_cache_fsr (fi, fdatap)
966 struct frame_info *fi;
967 struct aix_framedata *fdatap;
968 {
969 int ii;
970 CORE_ADDR frame_addr;
971 struct aix_framedata work_fdata;
972
973 if (fi->cache_fsr)
974 return;
975
976 if (fdatap == NULL) {
977 fdatap = &work_fdata;
978 function_frame_info (get_pc_function_start (fi->pc), fdatap);
979 }
980
981 fi->cache_fsr = (struct frame_saved_regs *)
982 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
983 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
984
985 if (fi->prev && fi->prev->frame)
986 frame_addr = fi->prev->frame;
987 else
988 frame_addr = read_memory_integer (fi->frame, 4);
989
990 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
991 All fpr's from saved_fpr to fp31 are saved right underneath caller
992 stack pointer, starting from fp31 first. */
993
994 if (fdatap->saved_fpr >= 0) {
995 for (ii=31; ii >= fdatap->saved_fpr; --ii)
996 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
997 frame_addr -= (32 - fdatap->saved_fpr) * 8;
998 }
999
1000 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1001 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1002 starting from r31 first. */
1003
1004 if (fdatap->saved_gpr >= 0)
1005 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1006 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1007 }
1008
1009 /* Return the address of a frame. This is the inital %sp value when the frame
1010 was first allocated. For functions calling alloca(), it might be saved in
1011 an alloca register. */
1012
1013 CORE_ADDR
1014 frame_initial_stack_address (fi)
1015 struct frame_info *fi;
1016 {
1017 CORE_ADDR tmpaddr;
1018 struct aix_framedata fdata;
1019 struct frame_info *callee_fi;
1020
1021 /* if the initial stack pointer (frame address) of this frame is known,
1022 just return it. */
1023
1024 if (fi->initial_sp)
1025 return fi->initial_sp;
1026
1027 /* find out if this function is using an alloca register.. */
1028
1029 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1030
1031 /* if saved registers of this frame are not known yet, read and cache them. */
1032
1033 if (!fi->cache_fsr)
1034 frame_get_cache_fsr (fi, &fdata);
1035
1036 /* If no alloca register used, then fi->frame is the value of the %sp for
1037 this frame, and it is good enough. */
1038
1039 if (fdata.alloca_reg < 0) {
1040 fi->initial_sp = fi->frame;
1041 return fi->initial_sp;
1042 }
1043
1044 /* This function has an alloca register. If this is the top-most frame
1045 (with the lowest address), the value in alloca register is good. */
1046
1047 if (!fi->next)
1048 return fi->initial_sp = read_register (fdata.alloca_reg);
1049
1050 /* Otherwise, this is a caller frame. Callee has usually already saved
1051 registers, but there are exceptions (such as when the callee
1052 has no parameters). Find the address in which caller's alloca
1053 register is saved. */
1054
1055 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1056
1057 if (!callee_fi->cache_fsr)
1058 frame_get_cache_fsr (callee_fi, NULL);
1059
1060 /* this is the address in which alloca register is saved. */
1061
1062 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1063 if (tmpaddr) {
1064 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1065 return fi->initial_sp;
1066 }
1067
1068 /* Go look into deeper levels of the frame chain to see if any one of
1069 the callees has saved alloca register. */
1070 }
1071
1072 /* If alloca register was not saved, by the callee (or any of its callees)
1073 then the value in the register is still good. */
1074
1075 return fi->initial_sp = read_register (fdata.alloca_reg);
1076 }
1077
1078 /* xcoff_relocate_symtab - hook for symbol table relocation.
1079 also reads shared libraries.. */
1080
1081 xcoff_relocate_symtab (pid)
1082 unsigned int pid;
1083 {
1084 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1085
1086 struct ld_info *ldi;
1087 int temp;
1088
1089 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1090
1091 /* According to my humble theory, AIX has some timing problems and
1092 when the user stack grows, kernel doesn't update stack info in time
1093 and ptrace calls step on user stack. That is why we sleep here a little,
1094 and give kernel to update its internals. */
1095
1096 usleep (36000);
1097
1098 errno = 0;
1099 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1100 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1101 if (errno) {
1102 perror_with_name ("ptrace ldinfo");
1103 return 0;
1104 }
1105
1106 vmap_ldinfo(ldi);
1107
1108 do {
1109 add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
1110 } while (ldi->ldinfo_next
1111 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1112
1113 #if 0
1114 /* Now that we've jumbled things around, re-sort them. */
1115 sort_minimal_symbols ();
1116 #endif
1117
1118 /* relocate the exec and core sections as well. */
1119 vmap_exec ();
1120 }
1121 \f
1122 /* Keep an array of load segment information and their TOC table addresses.
1123 This info will be useful when calling a shared library function by hand. */
1124
1125 struct loadinfo {
1126 CORE_ADDR textorg, dataorg;
1127 unsigned long toc_offset;
1128 };
1129
1130 #define LOADINFOLEN 10
1131
1132 /* FIXME Warning -- loadinfotextindex is used for a nefarious purpose by
1133 tm-rs6000.h. */
1134
1135 static struct loadinfo *loadinfo = NULL;
1136 static int loadinfolen = 0;
1137 static int loadinfotocindex = 0;
1138 int loadinfotextindex = 0;
1139
1140
1141 void
1142 xcoff_init_loadinfo ()
1143 {
1144 loadinfotocindex = 0;
1145 loadinfotextindex = 0;
1146
1147 if (loadinfolen == 0) {
1148 loadinfo = (struct loadinfo *)
1149 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1150 loadinfolen = LOADINFOLEN;
1151 }
1152 }
1153
1154
1155 /* FIXME -- this is never called! */
1156 void
1157 free_loadinfo ()
1158 {
1159 if (loadinfo)
1160 free (loadinfo);
1161 loadinfo = NULL;
1162 loadinfolen = 0;
1163 loadinfotocindex = 0;
1164 loadinfotextindex = 0;
1165 }
1166
1167 /* this is called from xcoffread.c */
1168
1169 void
1170 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1171 {
1172 while (loadinfotocindex >= loadinfolen) {
1173 loadinfolen += LOADINFOLEN;
1174 loadinfo = (struct loadinfo *)
1175 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1176 }
1177 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1178 }
1179
1180
1181 void
1182 add_text_to_loadinfo (textaddr, dataaddr)
1183 CORE_ADDR textaddr;
1184 CORE_ADDR dataaddr;
1185 {
1186 while (loadinfotextindex >= loadinfolen) {
1187 loadinfolen += LOADINFOLEN;
1188 loadinfo = (struct loadinfo *)
1189 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1190 }
1191 loadinfo [loadinfotextindex].textorg = textaddr;
1192 loadinfo [loadinfotextindex].dataorg = dataaddr;
1193 ++loadinfotextindex;
1194 }
1195
1196
1197 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1198 of a member of this array are correlated with the "toc_offset"
1199 element of the same member. But they are sequentially assigned in wildly
1200 different places, and probably there is no correlation. FIXME! */
1201
1202 static CORE_ADDR
1203 find_toc_address (pc)
1204 CORE_ADDR pc;
1205 {
1206 int ii, toc_entry, tocbase = 0;
1207
1208 for (ii=0; ii < loadinfotextindex; ++ii)
1209 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1210 toc_entry = ii;
1211 tocbase = loadinfo[ii].textorg;
1212 }
1213
1214 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1215 }
This page took 0.053638 seconds and 4 git commands to generate.