Add "make pdf" and "make install-pdf", from Brooks Moses
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 #include "rs6000-tdep.h"
63
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
74
75 /* To be used by skip_prologue. */
76
77 struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
96 };
97
98 /* Description of a single register. */
99
100 struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
110 };
111
112 /* Hook for determining the TOC address when calling functions in the
113 inferior under AIX. The initialization code in rs6000-nat.c sets
114 this hook to point to find_toc_address. */
115
116 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
117
118 /* Static function prototypes */
119
120 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
121 CORE_ADDR safety);
122 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
123 struct rs6000_framedata *);
124
125 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
126 int
127 altivec_register_p (int regno)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
130 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
131 return 0;
132 else
133 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
134 }
135
136
137 /* Return true if REGNO is an SPE register, false otherwise. */
138 int
139 spe_register_p (int regno)
140 {
141 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
142
143 /* Is it a reference to EV0 -- EV31, and do we have those? */
144 if (tdep->ppc_ev0_regnum >= 0
145 && tdep->ppc_ev31_regnum >= 0
146 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
147 return 1;
148
149 /* Is it a reference to one of the raw upper GPR halves? */
150 if (tdep->ppc_ev0_upper_regnum >= 0
151 && tdep->ppc_ev0_upper_regnum <= regno
152 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
153 return 1;
154
155 /* Is it a reference to the 64-bit accumulator, and do we have that? */
156 if (tdep->ppc_acc_regnum >= 0
157 && tdep->ppc_acc_regnum == regno)
158 return 1;
159
160 /* Is it a reference to the SPE floating-point status and control register,
161 and do we have that? */
162 if (tdep->ppc_spefscr_regnum >= 0
163 && tdep->ppc_spefscr_regnum == regno)
164 return 1;
165
166 return 0;
167 }
168
169
170 /* Return non-zero if the architecture described by GDBARCH has
171 floating-point registers (f0 --- f31 and fpscr). */
172 int
173 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
174 {
175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
176
177 return (tdep->ppc_fp0_regnum >= 0
178 && tdep->ppc_fpscr_regnum >= 0);
179 }
180
181
182 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
183 set it to SIM_REGNO.
184
185 This is a helper function for init_sim_regno_table, constructing
186 the table mapping GDB register numbers to sim register numbers; we
187 initialize every element in that table to -1 before we start
188 filling it in. */
189 static void
190 set_sim_regno (int *table, int gdb_regno, int sim_regno)
191 {
192 /* Make sure we don't try to assign any given GDB register a sim
193 register number more than once. */
194 gdb_assert (table[gdb_regno] == -1);
195 table[gdb_regno] = sim_regno;
196 }
197
198
199 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
200 numbers to simulator register numbers, based on the values placed
201 in the ARCH->tdep->ppc_foo_regnum members. */
202 static void
203 init_sim_regno_table (struct gdbarch *arch)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
206 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
207 const struct reg *regs = tdep->regs;
208 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
209 int i;
210
211 /* Presume that all registers not explicitly mentioned below are
212 unavailable from the sim. */
213 for (i = 0; i < total_regs; i++)
214 sim_regno[i] = -1;
215
216 /* General-purpose registers. */
217 for (i = 0; i < ppc_num_gprs; i++)
218 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
219
220 /* Floating-point registers. */
221 if (tdep->ppc_fp0_regnum >= 0)
222 for (i = 0; i < ppc_num_fprs; i++)
223 set_sim_regno (sim_regno,
224 tdep->ppc_fp0_regnum + i,
225 sim_ppc_f0_regnum + i);
226 if (tdep->ppc_fpscr_regnum >= 0)
227 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
228
229 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
230 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
232
233 /* Segment registers. */
234 if (tdep->ppc_sr0_regnum >= 0)
235 for (i = 0; i < ppc_num_srs; i++)
236 set_sim_regno (sim_regno,
237 tdep->ppc_sr0_regnum + i,
238 sim_ppc_sr0_regnum + i);
239
240 /* Altivec registers. */
241 if (tdep->ppc_vr0_regnum >= 0)
242 {
243 for (i = 0; i < ppc_num_vrs; i++)
244 set_sim_regno (sim_regno,
245 tdep->ppc_vr0_regnum + i,
246 sim_ppc_vr0_regnum + i);
247
248 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
249 we can treat this more like the other cases. */
250 set_sim_regno (sim_regno,
251 tdep->ppc_vr0_regnum + ppc_num_vrs,
252 sim_ppc_vscr_regnum);
253 }
254 /* vsave is a special-purpose register, so the code below handles it. */
255
256 /* SPE APU (E500) registers. */
257 if (tdep->ppc_ev0_regnum >= 0)
258 for (i = 0; i < ppc_num_gprs; i++)
259 set_sim_regno (sim_regno,
260 tdep->ppc_ev0_regnum + i,
261 sim_ppc_ev0_regnum + i);
262 if (tdep->ppc_ev0_upper_regnum >= 0)
263 for (i = 0; i < ppc_num_gprs; i++)
264 set_sim_regno (sim_regno,
265 tdep->ppc_ev0_upper_regnum + i,
266 sim_ppc_rh0_regnum + i);
267 if (tdep->ppc_acc_regnum >= 0)
268 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
269 /* spefscr is a special-purpose register, so the code below handles it. */
270
271 /* Now handle all special-purpose registers. Verify that they
272 haven't mistakenly been assigned numbers by any of the above
273 code). */
274 for (i = 0; i < total_regs; i++)
275 if (regs[i].spr_num >= 0)
276 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
277
278 /* Drop the initialized array into place. */
279 tdep->sim_regno = sim_regno;
280 }
281
282
283 /* Given a GDB register number REG, return the corresponding SIM
284 register number. */
285 static int
286 rs6000_register_sim_regno (int reg)
287 {
288 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
289 int sim_regno;
290
291 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
292 sim_regno = tdep->sim_regno[reg];
293
294 if (sim_regno >= 0)
295 return sim_regno;
296 else
297 return LEGACY_SIM_REGNO_IGNORE;
298 }
299
300 \f
301
302 /* Register set support functions. */
303
304 static void
305 ppc_supply_reg (struct regcache *regcache, int regnum,
306 const gdb_byte *regs, size_t offset)
307 {
308 if (regnum != -1 && offset != -1)
309 regcache_raw_supply (regcache, regnum, regs + offset);
310 }
311
312 static void
313 ppc_collect_reg (const struct regcache *regcache, int regnum,
314 gdb_byte *regs, size_t offset)
315 {
316 if (regnum != -1 && offset != -1)
317 regcache_raw_collect (regcache, regnum, regs + offset);
318 }
319
320 /* Supply register REGNUM in the general-purpose register set REGSET
321 from the buffer specified by GREGS and LEN to register cache
322 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
323
324 void
325 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
326 int regnum, const void *gregs, size_t len)
327 {
328 struct gdbarch *gdbarch = get_regcache_arch (regcache);
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 const struct ppc_reg_offsets *offsets = regset->descr;
331 size_t offset;
332 int i;
333
334 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
335 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
336 i++, offset += 4)
337 {
338 if (regnum == -1 || regnum == i)
339 ppc_supply_reg (regcache, i, gregs, offset);
340 }
341
342 if (regnum == -1 || regnum == PC_REGNUM)
343 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
344 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
345 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
346 gregs, offsets->ps_offset);
347 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
348 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
349 gregs, offsets->cr_offset);
350 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
352 gregs, offsets->lr_offset);
353 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
355 gregs, offsets->ctr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
358 gregs, offsets->cr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
361 }
362
363 /* Supply register REGNUM in the floating-point register set REGSET
364 from the buffer specified by FPREGS and LEN to register cache
365 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
366
367 void
368 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
369 int regnum, const void *fpregs, size_t len)
370 {
371 struct gdbarch *gdbarch = get_regcache_arch (regcache);
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373 const struct ppc_reg_offsets *offsets = regset->descr;
374 size_t offset;
375 int i;
376
377 gdb_assert (ppc_floating_point_unit_p (gdbarch));
378
379 offset = offsets->f0_offset;
380 for (i = tdep->ppc_fp0_regnum;
381 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
382 i++, offset += 8)
383 {
384 if (regnum == -1 || regnum == i)
385 ppc_supply_reg (regcache, i, fpregs, offset);
386 }
387
388 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
389 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
390 fpregs, offsets->fpscr_offset);
391 }
392
393 /* Collect register REGNUM in the general-purpose register set
394 REGSET. from register cache REGCACHE into the buffer specified by
395 GREGS and LEN. If REGNUM is -1, do this for all registers in
396 REGSET. */
397
398 void
399 ppc_collect_gregset (const struct regset *regset,
400 const struct regcache *regcache,
401 int regnum, void *gregs, size_t len)
402 {
403 struct gdbarch *gdbarch = get_regcache_arch (regcache);
404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
405 const struct ppc_reg_offsets *offsets = regset->descr;
406 size_t offset;
407 int i;
408
409 offset = offsets->r0_offset;
410 for (i = tdep->ppc_gp0_regnum;
411 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
412 i++, offset += 4)
413 {
414 if (regnum == -1 || regnum == i)
415 ppc_collect_reg (regcache, i, gregs, offset);
416 }
417
418 if (regnum == -1 || regnum == PC_REGNUM)
419 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
420 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
421 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
422 gregs, offsets->ps_offset);
423 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
424 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
425 gregs, offsets->cr_offset);
426 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
428 gregs, offsets->lr_offset);
429 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
431 gregs, offsets->ctr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
434 gregs, offsets->xer_offset);
435 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
437 gregs, offsets->mq_offset);
438 }
439
440 /* Collect register REGNUM in the floating-point register set
441 REGSET. from register cache REGCACHE into the buffer specified by
442 FPREGS and LEN. If REGNUM is -1, do this for all registers in
443 REGSET. */
444
445 void
446 ppc_collect_fpregset (const struct regset *regset,
447 const struct regcache *regcache,
448 int regnum, void *fpregs, size_t len)
449 {
450 struct gdbarch *gdbarch = get_regcache_arch (regcache);
451 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
452 const struct ppc_reg_offsets *offsets = regset->descr;
453 size_t offset;
454 int i;
455
456 gdb_assert (ppc_floating_point_unit_p (gdbarch));
457
458 offset = offsets->f0_offset;
459 for (i = tdep->ppc_fp0_regnum;
460 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
461 i++, offset += 8)
462 {
463 if (regnum == -1 || regnum == i)
464 ppc_collect_reg (regcache, i, fpregs, offset);
465 }
466
467 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
468 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
469 fpregs, offsets->fpscr_offset);
470 }
471 \f
472
473 /* Read a LEN-byte address from debugged memory address MEMADDR. */
474
475 static CORE_ADDR
476 read_memory_addr (CORE_ADDR memaddr, int len)
477 {
478 return read_memory_unsigned_integer (memaddr, len);
479 }
480
481 static CORE_ADDR
482 rs6000_skip_prologue (CORE_ADDR pc)
483 {
484 struct rs6000_framedata frame;
485 CORE_ADDR limit_pc, func_addr;
486
487 /* See if we can determine the end of the prologue via the symbol table.
488 If so, then return either PC, or the PC after the prologue, whichever
489 is greater. */
490 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
491 {
492 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
493 if (post_prologue_pc != 0)
494 return max (pc, post_prologue_pc);
495 }
496
497 /* Can't determine prologue from the symbol table, need to examine
498 instructions. */
499
500 /* Find an upper limit on the function prologue using the debug
501 information. If the debug information could not be used to provide
502 that bound, then use an arbitrary large number as the upper bound. */
503 limit_pc = skip_prologue_using_sal (pc);
504 if (limit_pc == 0)
505 limit_pc = pc + 100; /* Magic. */
506
507 pc = skip_prologue (pc, limit_pc, &frame);
508 return pc;
509 }
510
511 static int
512 insn_changes_sp_or_jumps (unsigned long insn)
513 {
514 int opcode = (insn >> 26) & 0x03f;
515 int sd = (insn >> 21) & 0x01f;
516 int a = (insn >> 16) & 0x01f;
517 int subcode = (insn >> 1) & 0x3ff;
518
519 /* Changes the stack pointer. */
520
521 /* NOTE: There are many ways to change the value of a given register.
522 The ways below are those used when the register is R1, the SP,
523 in a funtion's epilogue. */
524
525 if (opcode == 31 && subcode == 444 && a == 1)
526 return 1; /* mr R1,Rn */
527 if (opcode == 14 && sd == 1)
528 return 1; /* addi R1,Rn,simm */
529 if (opcode == 58 && sd == 1)
530 return 1; /* ld R1,ds(Rn) */
531
532 /* Transfers control. */
533
534 if (opcode == 18)
535 return 1; /* b */
536 if (opcode == 16)
537 return 1; /* bc */
538 if (opcode == 19 && subcode == 16)
539 return 1; /* bclr */
540 if (opcode == 19 && subcode == 528)
541 return 1; /* bcctr */
542
543 return 0;
544 }
545
546 /* Return true if we are in the function's epilogue, i.e. after the
547 instruction that destroyed the function's stack frame.
548
549 1) scan forward from the point of execution:
550 a) If you find an instruction that modifies the stack pointer
551 or transfers control (except a return), execution is not in
552 an epilogue, return.
553 b) Stop scanning if you find a return instruction or reach the
554 end of the function or reach the hard limit for the size of
555 an epilogue.
556 2) scan backward from the point of execution:
557 a) If you find an instruction that modifies the stack pointer,
558 execution *is* in an epilogue, return.
559 b) Stop scanning if you reach an instruction that transfers
560 control or the beginning of the function or reach the hard
561 limit for the size of an epilogue. */
562
563 static int
564 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
565 {
566 bfd_byte insn_buf[PPC_INSN_SIZE];
567 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
568 unsigned long insn;
569 struct frame_info *curfrm;
570
571 /* Find the search limits based on function boundaries and hard limit. */
572
573 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
574 return 0;
575
576 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
577 if (epilogue_start < func_start) epilogue_start = func_start;
578
579 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
580 if (epilogue_end > func_end) epilogue_end = func_end;
581
582 curfrm = get_current_frame ();
583
584 /* Scan forward until next 'blr'. */
585
586 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
587 {
588 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
589 return 0;
590 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
591 if (insn == 0x4e800020)
592 break;
593 if (insn_changes_sp_or_jumps (insn))
594 return 0;
595 }
596
597 /* Scan backward until adjustment to stack pointer (R1). */
598
599 for (scan_pc = pc - PPC_INSN_SIZE;
600 scan_pc >= epilogue_start;
601 scan_pc -= PPC_INSN_SIZE)
602 {
603 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
604 return 0;
605 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
606 if (insn_changes_sp_or_jumps (insn))
607 return 1;
608 }
609
610 return 0;
611 }
612
613
614 /* Fill in fi->saved_regs */
615
616 struct frame_extra_info
617 {
618 /* Functions calling alloca() change the value of the stack
619 pointer. We need to use initial stack pointer (which is saved in
620 r31 by gcc) in such cases. If a compiler emits traceback table,
621 then we should use the alloca register specified in traceback
622 table. FIXME. */
623 CORE_ADDR initial_sp; /* initial stack pointer. */
624 };
625
626 /* Get the ith function argument for the current function. */
627 static CORE_ADDR
628 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
629 struct type *type)
630 {
631 return get_frame_register_unsigned (frame, 3 + argi);
632 }
633
634 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
635
636 static CORE_ADDR
637 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
638 {
639 CORE_ADDR dest;
640 int immediate;
641 int absolute;
642 int ext_op;
643
644 absolute = (int) ((instr >> 1) & 1);
645
646 switch (opcode)
647 {
648 case 18:
649 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
650 if (absolute)
651 dest = immediate;
652 else
653 dest = pc + immediate;
654 break;
655
656 case 16:
657 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
658 if (absolute)
659 dest = immediate;
660 else
661 dest = pc + immediate;
662 break;
663
664 case 19:
665 ext_op = (instr >> 1) & 0x3ff;
666
667 if (ext_op == 16) /* br conditional register */
668 {
669 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
670
671 /* If we are about to return from a signal handler, dest is
672 something like 0x3c90. The current frame is a signal handler
673 caller frame, upon completion of the sigreturn system call
674 execution will return to the saved PC in the frame. */
675 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
676 {
677 struct frame_info *fi;
678
679 fi = get_current_frame ();
680 if (fi != NULL)
681 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
682 gdbarch_tdep (current_gdbarch)->wordsize);
683 }
684 }
685
686 else if (ext_op == 528) /* br cond to count reg */
687 {
688 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
689
690 /* If we are about to execute a system call, dest is something
691 like 0x22fc or 0x3b00. Upon completion the system call
692 will return to the address in the link register. */
693 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
694 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
695 }
696 else
697 return -1;
698 break;
699
700 default:
701 return -1;
702 }
703 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
704 }
705
706
707 /* Sequence of bytes for breakpoint instruction. */
708
709 const static unsigned char *
710 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
711 {
712 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
713 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
714 *bp_size = 4;
715 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
716 return big_breakpoint;
717 else
718 return little_breakpoint;
719 }
720
721
722 /* AIX does not support PT_STEP. Simulate it. */
723
724 void
725 rs6000_software_single_step (enum target_signal signal,
726 int insert_breakpoints_p)
727 {
728 CORE_ADDR dummy;
729 int breakp_sz;
730 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
731 int ii, insn;
732 CORE_ADDR loc;
733 CORE_ADDR breaks[2];
734 int opcode;
735
736 if (insert_breakpoints_p)
737 {
738 loc = read_pc ();
739
740 insn = read_memory_integer (loc, 4);
741
742 breaks[0] = loc + breakp_sz;
743 opcode = insn >> 26;
744 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
745
746 /* Don't put two breakpoints on the same address. */
747 if (breaks[1] == breaks[0])
748 breaks[1] = -1;
749
750 for (ii = 0; ii < 2; ++ii)
751 {
752 /* ignore invalid breakpoint. */
753 if (breaks[ii] == -1)
754 continue;
755 insert_single_step_breakpoint (breaks[ii]);
756 }
757 }
758 else
759 remove_single_step_breakpoints ();
760
761 errno = 0; /* FIXME, don't ignore errors! */
762 /* What errors? {read,write}_memory call error(). */
763 }
764
765
766 /* return pc value after skipping a function prologue and also return
767 information about a function frame.
768
769 in struct rs6000_framedata fdata:
770 - frameless is TRUE, if function does not have a frame.
771 - nosavedpc is TRUE, if function does not save %pc value in its frame.
772 - offset is the initial size of this stack frame --- the amount by
773 which we decrement the sp to allocate the frame.
774 - saved_gpr is the number of the first saved gpr.
775 - saved_fpr is the number of the first saved fpr.
776 - saved_vr is the number of the first saved vr.
777 - saved_ev is the number of the first saved ev.
778 - alloca_reg is the number of the register used for alloca() handling.
779 Otherwise -1.
780 - gpr_offset is the offset of the first saved gpr from the previous frame.
781 - fpr_offset is the offset of the first saved fpr from the previous frame.
782 - vr_offset is the offset of the first saved vr from the previous frame.
783 - ev_offset is the offset of the first saved ev from the previous frame.
784 - lr_offset is the offset of the saved lr
785 - cr_offset is the offset of the saved cr
786 - vrsave_offset is the offset of the saved vrsave register
787 */
788
789 #define SIGNED_SHORT(x) \
790 ((sizeof (short) == 2) \
791 ? ((int)(short)(x)) \
792 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
793
794 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
795
796 /* Limit the number of skipped non-prologue instructions, as the examining
797 of the prologue is expensive. */
798 static int max_skip_non_prologue_insns = 10;
799
800 /* Return nonzero if the given instruction OP can be part of the prologue
801 of a function and saves a parameter on the stack. FRAMEP should be
802 set if one of the previous instructions in the function has set the
803 Frame Pointer. */
804
805 static int
806 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
807 {
808 /* Move parameters from argument registers to temporary register. */
809 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
810 {
811 /* Rx must be scratch register r0. */
812 const int rx_regno = (op >> 16) & 31;
813 /* Ry: Only r3 - r10 are used for parameter passing. */
814 const int ry_regno = GET_SRC_REG (op);
815
816 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
817 {
818 *r0_contains_arg = 1;
819 return 1;
820 }
821 else
822 return 0;
823 }
824
825 /* Save a General Purpose Register on stack. */
826
827 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
828 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
829 {
830 /* Rx: Only r3 - r10 are used for parameter passing. */
831 const int rx_regno = GET_SRC_REG (op);
832
833 return (rx_regno >= 3 && rx_regno <= 10);
834 }
835
836 /* Save a General Purpose Register on stack via the Frame Pointer. */
837
838 if (framep &&
839 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
840 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
841 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
842 {
843 /* Rx: Usually, only r3 - r10 are used for parameter passing.
844 However, the compiler sometimes uses r0 to hold an argument. */
845 const int rx_regno = GET_SRC_REG (op);
846
847 return ((rx_regno >= 3 && rx_regno <= 10)
848 || (rx_regno == 0 && *r0_contains_arg));
849 }
850
851 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
852 {
853 /* Only f2 - f8 are used for parameter passing. */
854 const int src_regno = GET_SRC_REG (op);
855
856 return (src_regno >= 2 && src_regno <= 8);
857 }
858
859 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
860 {
861 /* Only f2 - f8 are used for parameter passing. */
862 const int src_regno = GET_SRC_REG (op);
863
864 return (src_regno >= 2 && src_regno <= 8);
865 }
866
867 /* Not an insn that saves a parameter on stack. */
868 return 0;
869 }
870
871 /* Assuming that INSN is a "bl" instruction located at PC, return
872 nonzero if the destination of the branch is a "blrl" instruction.
873
874 This sequence is sometimes found in certain function prologues.
875 It allows the function to load the LR register with a value that
876 they can use to access PIC data using PC-relative offsets. */
877
878 static int
879 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
880 {
881 const int opcode = 18;
882 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
883 int dest_insn;
884
885 if (dest == -1)
886 return 0; /* Should never happen, but just return zero to be safe. */
887
888 dest_insn = read_memory_integer (dest, 4);
889 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
890 return 1;
891
892 return 0;
893 }
894
895 static CORE_ADDR
896 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
897 {
898 CORE_ADDR orig_pc = pc;
899 CORE_ADDR last_prologue_pc = pc;
900 CORE_ADDR li_found_pc = 0;
901 gdb_byte buf[4];
902 unsigned long op;
903 long offset = 0;
904 long vr_saved_offset = 0;
905 int lr_reg = -1;
906 int cr_reg = -1;
907 int vr_reg = -1;
908 int ev_reg = -1;
909 long ev_offset = 0;
910 int vrsave_reg = -1;
911 int reg;
912 int framep = 0;
913 int minimal_toc_loaded = 0;
914 int prev_insn_was_prologue_insn = 1;
915 int num_skip_non_prologue_insns = 0;
916 int r0_contains_arg = 0;
917 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
918 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
919
920 memset (fdata, 0, sizeof (struct rs6000_framedata));
921 fdata->saved_gpr = -1;
922 fdata->saved_fpr = -1;
923 fdata->saved_vr = -1;
924 fdata->saved_ev = -1;
925 fdata->alloca_reg = -1;
926 fdata->frameless = 1;
927 fdata->nosavedpc = 1;
928
929 for (;; pc += 4)
930 {
931 /* Sometimes it isn't clear if an instruction is a prologue
932 instruction or not. When we encounter one of these ambiguous
933 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
934 Otherwise, we'll assume that it really is a prologue instruction. */
935 if (prev_insn_was_prologue_insn)
936 last_prologue_pc = pc;
937
938 /* Stop scanning if we've hit the limit. */
939 if (pc >= lim_pc)
940 break;
941
942 prev_insn_was_prologue_insn = 1;
943
944 /* Fetch the instruction and convert it to an integer. */
945 if (target_read_memory (pc, buf, 4))
946 break;
947 op = extract_unsigned_integer (buf, 4);
948
949 if ((op & 0xfc1fffff) == 0x7c0802a6)
950 { /* mflr Rx */
951 /* Since shared library / PIC code, which needs to get its
952 address at runtime, can appear to save more than one link
953 register vis:
954
955 *INDENT-OFF*
956 stwu r1,-304(r1)
957 mflr r3
958 bl 0xff570d0 (blrl)
959 stw r30,296(r1)
960 mflr r30
961 stw r31,300(r1)
962 stw r3,308(r1);
963 ...
964 *INDENT-ON*
965
966 remember just the first one, but skip over additional
967 ones. */
968 if (lr_reg == -1)
969 lr_reg = (op & 0x03e00000);
970 if (lr_reg == 0)
971 r0_contains_arg = 0;
972 continue;
973 }
974 else if ((op & 0xfc1fffff) == 0x7c000026)
975 { /* mfcr Rx */
976 cr_reg = (op & 0x03e00000);
977 if (cr_reg == 0)
978 r0_contains_arg = 0;
979 continue;
980
981 }
982 else if ((op & 0xfc1f0000) == 0xd8010000)
983 { /* stfd Rx,NUM(r1) */
984 reg = GET_SRC_REG (op);
985 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
986 {
987 fdata->saved_fpr = reg;
988 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
989 }
990 continue;
991
992 }
993 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
994 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
995 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
996 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
997 {
998
999 reg = GET_SRC_REG (op);
1000 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1001 {
1002 fdata->saved_gpr = reg;
1003 if ((op & 0xfc1f0003) == 0xf8010000)
1004 op &= ~3UL;
1005 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1006 }
1007 continue;
1008
1009 }
1010 else if ((op & 0xffff0000) == 0x60000000)
1011 {
1012 /* nop */
1013 /* Allow nops in the prologue, but do not consider them to
1014 be part of the prologue unless followed by other prologue
1015 instructions. */
1016 prev_insn_was_prologue_insn = 0;
1017 continue;
1018
1019 }
1020 else if ((op & 0xffff0000) == 0x3c000000)
1021 { /* addis 0,0,NUM, used
1022 for >= 32k frames */
1023 fdata->offset = (op & 0x0000ffff) << 16;
1024 fdata->frameless = 0;
1025 r0_contains_arg = 0;
1026 continue;
1027
1028 }
1029 else if ((op & 0xffff0000) == 0x60000000)
1030 { /* ori 0,0,NUM, 2nd ha
1031 lf of >= 32k frames */
1032 fdata->offset |= (op & 0x0000ffff);
1033 fdata->frameless = 0;
1034 r0_contains_arg = 0;
1035 continue;
1036
1037 }
1038 else if (lr_reg >= 0 &&
1039 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1040 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1041 /* stw Rx, NUM(r1) */
1042 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1043 /* stwu Rx, NUM(r1) */
1044 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1045 { /* where Rx == lr */
1046 fdata->lr_offset = offset;
1047 fdata->nosavedpc = 0;
1048 /* Invalidate lr_reg, but don't set it to -1.
1049 That would mean that it had never been set. */
1050 lr_reg = -2;
1051 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1052 (op & 0xfc000000) == 0x90000000) /* stw */
1053 {
1054 /* Does not update r1, so add displacement to lr_offset. */
1055 fdata->lr_offset += SIGNED_SHORT (op);
1056 }
1057 continue;
1058
1059 }
1060 else if (cr_reg >= 0 &&
1061 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1062 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1063 /* stw Rx, NUM(r1) */
1064 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1065 /* stwu Rx, NUM(r1) */
1066 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1067 { /* where Rx == cr */
1068 fdata->cr_offset = offset;
1069 /* Invalidate cr_reg, but don't set it to -1.
1070 That would mean that it had never been set. */
1071 cr_reg = -2;
1072 if ((op & 0xfc000003) == 0xf8000000 ||
1073 (op & 0xfc000000) == 0x90000000)
1074 {
1075 /* Does not update r1, so add displacement to cr_offset. */
1076 fdata->cr_offset += SIGNED_SHORT (op);
1077 }
1078 continue;
1079
1080 }
1081 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1082 {
1083 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1084 prediction bits. If the LR has already been saved, we can
1085 skip it. */
1086 continue;
1087 }
1088 else if (op == 0x48000005)
1089 { /* bl .+4 used in
1090 -mrelocatable */
1091 continue;
1092
1093 }
1094 else if (op == 0x48000004)
1095 { /* b .+4 (xlc) */
1096 break;
1097
1098 }
1099 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1100 in V.4 -mminimal-toc */
1101 (op & 0xffff0000) == 0x3bde0000)
1102 { /* addi 30,30,foo@l */
1103 continue;
1104
1105 }
1106 else if ((op & 0xfc000001) == 0x48000001)
1107 { /* bl foo,
1108 to save fprs??? */
1109
1110 fdata->frameless = 0;
1111
1112 /* If the return address has already been saved, we can skip
1113 calls to blrl (for PIC). */
1114 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1115 continue;
1116
1117 /* Don't skip over the subroutine call if it is not within
1118 the first three instructions of the prologue and either
1119 we have no line table information or the line info tells
1120 us that the subroutine call is not part of the line
1121 associated with the prologue. */
1122 if ((pc - orig_pc) > 8)
1123 {
1124 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1125 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1126
1127 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1128 break;
1129 }
1130
1131 op = read_memory_integer (pc + 4, 4);
1132
1133 /* At this point, make sure this is not a trampoline
1134 function (a function that simply calls another functions,
1135 and nothing else). If the next is not a nop, this branch
1136 was part of the function prologue. */
1137
1138 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1139 break; /* don't skip over
1140 this branch */
1141 continue;
1142
1143 }
1144 /* update stack pointer */
1145 else if ((op & 0xfc1f0000) == 0x94010000)
1146 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1147 fdata->frameless = 0;
1148 fdata->offset = SIGNED_SHORT (op);
1149 offset = fdata->offset;
1150 continue;
1151 }
1152 else if ((op & 0xfc1f016a) == 0x7c01016e)
1153 { /* stwux rX,r1,rY */
1154 /* no way to figure out what r1 is going to be */
1155 fdata->frameless = 0;
1156 offset = fdata->offset;
1157 continue;
1158 }
1159 else if ((op & 0xfc1f0003) == 0xf8010001)
1160 { /* stdu rX,NUM(r1) */
1161 fdata->frameless = 0;
1162 fdata->offset = SIGNED_SHORT (op & ~3UL);
1163 offset = fdata->offset;
1164 continue;
1165 }
1166 else if ((op & 0xfc1f016a) == 0x7c01016a)
1167 { /* stdux rX,r1,rY */
1168 /* no way to figure out what r1 is going to be */
1169 fdata->frameless = 0;
1170 offset = fdata->offset;
1171 continue;
1172 }
1173 else if ((op & 0xffff0000) == 0x38210000)
1174 { /* addi r1,r1,SIMM */
1175 fdata->frameless = 0;
1176 fdata->offset += SIGNED_SHORT (op);
1177 offset = fdata->offset;
1178 continue;
1179 }
1180 /* Load up minimal toc pointer. Do not treat an epilogue restore
1181 of r31 as a minimal TOC load. */
1182 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1183 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1184 && !framep
1185 && !minimal_toc_loaded)
1186 {
1187 minimal_toc_loaded = 1;
1188 continue;
1189
1190 /* move parameters from argument registers to local variable
1191 registers */
1192 }
1193 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1194 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1195 (((op >> 21) & 31) <= 10) &&
1196 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1197 {
1198 continue;
1199
1200 /* store parameters in stack */
1201 }
1202 /* Move parameters from argument registers to temporary register. */
1203 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1204 {
1205 continue;
1206
1207 /* Set up frame pointer */
1208 }
1209 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1210 || op == 0x7c3f0b78)
1211 { /* mr r31, r1 */
1212 fdata->frameless = 0;
1213 framep = 1;
1214 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1215 continue;
1216
1217 /* Another way to set up the frame pointer. */
1218 }
1219 else if ((op & 0xfc1fffff) == 0x38010000)
1220 { /* addi rX, r1, 0x0 */
1221 fdata->frameless = 0;
1222 framep = 1;
1223 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1224 + ((op & ~0x38010000) >> 21));
1225 continue;
1226 }
1227 /* AltiVec related instructions. */
1228 /* Store the vrsave register (spr 256) in another register for
1229 later manipulation, or load a register into the vrsave
1230 register. 2 instructions are used: mfvrsave and
1231 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1232 and mtspr SPR256, Rn. */
1233 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1234 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1235 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1236 {
1237 vrsave_reg = GET_SRC_REG (op);
1238 continue;
1239 }
1240 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1241 {
1242 continue;
1243 }
1244 /* Store the register where vrsave was saved to onto the stack:
1245 rS is the register where vrsave was stored in a previous
1246 instruction. */
1247 /* 100100 sssss 00001 dddddddd dddddddd */
1248 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1249 {
1250 if (vrsave_reg == GET_SRC_REG (op))
1251 {
1252 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1253 vrsave_reg = -1;
1254 }
1255 continue;
1256 }
1257 /* Compute the new value of vrsave, by modifying the register
1258 where vrsave was saved to. */
1259 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1260 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1261 {
1262 continue;
1263 }
1264 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1265 in a pair of insns to save the vector registers on the
1266 stack. */
1267 /* 001110 00000 00000 iiii iiii iiii iiii */
1268 /* 001110 01110 00000 iiii iiii iiii iiii */
1269 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1270 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1271 {
1272 if ((op & 0xffff0000) == 0x38000000)
1273 r0_contains_arg = 0;
1274 li_found_pc = pc;
1275 vr_saved_offset = SIGNED_SHORT (op);
1276
1277 /* This insn by itself is not part of the prologue, unless
1278 if part of the pair of insns mentioned above. So do not
1279 record this insn as part of the prologue yet. */
1280 prev_insn_was_prologue_insn = 0;
1281 }
1282 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1283 /* 011111 sssss 11111 00000 00111001110 */
1284 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1285 {
1286 if (pc == (li_found_pc + 4))
1287 {
1288 vr_reg = GET_SRC_REG (op);
1289 /* If this is the first vector reg to be saved, or if
1290 it has a lower number than others previously seen,
1291 reupdate the frame info. */
1292 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1293 {
1294 fdata->saved_vr = vr_reg;
1295 fdata->vr_offset = vr_saved_offset + offset;
1296 }
1297 vr_saved_offset = -1;
1298 vr_reg = -1;
1299 li_found_pc = 0;
1300 }
1301 }
1302 /* End AltiVec related instructions. */
1303
1304 /* Start BookE related instructions. */
1305 /* Store gen register S at (r31+uimm).
1306 Any register less than r13 is volatile, so we don't care. */
1307 /* 000100 sssss 11111 iiiii 01100100001 */
1308 else if (arch_info->mach == bfd_mach_ppc_e500
1309 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1310 {
1311 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1312 {
1313 unsigned int imm;
1314 ev_reg = GET_SRC_REG (op);
1315 imm = (op >> 11) & 0x1f;
1316 ev_offset = imm * 8;
1317 /* If this is the first vector reg to be saved, or if
1318 it has a lower number than others previously seen,
1319 reupdate the frame info. */
1320 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1321 {
1322 fdata->saved_ev = ev_reg;
1323 fdata->ev_offset = ev_offset + offset;
1324 }
1325 }
1326 continue;
1327 }
1328 /* Store gen register rS at (r1+rB). */
1329 /* 000100 sssss 00001 bbbbb 01100100000 */
1330 else if (arch_info->mach == bfd_mach_ppc_e500
1331 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1332 {
1333 if (pc == (li_found_pc + 4))
1334 {
1335 ev_reg = GET_SRC_REG (op);
1336 /* If this is the first vector reg to be saved, or if
1337 it has a lower number than others previously seen,
1338 reupdate the frame info. */
1339 /* We know the contents of rB from the previous instruction. */
1340 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1341 {
1342 fdata->saved_ev = ev_reg;
1343 fdata->ev_offset = vr_saved_offset + offset;
1344 }
1345 vr_saved_offset = -1;
1346 ev_reg = -1;
1347 li_found_pc = 0;
1348 }
1349 continue;
1350 }
1351 /* Store gen register r31 at (rA+uimm). */
1352 /* 000100 11111 aaaaa iiiii 01100100001 */
1353 else if (arch_info->mach == bfd_mach_ppc_e500
1354 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1355 {
1356 /* Wwe know that the source register is 31 already, but
1357 it can't hurt to compute it. */
1358 ev_reg = GET_SRC_REG (op);
1359 ev_offset = ((op >> 11) & 0x1f) * 8;
1360 /* If this is the first vector reg to be saved, or if
1361 it has a lower number than others previously seen,
1362 reupdate the frame info. */
1363 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1364 {
1365 fdata->saved_ev = ev_reg;
1366 fdata->ev_offset = ev_offset + offset;
1367 }
1368
1369 continue;
1370 }
1371 /* Store gen register S at (r31+r0).
1372 Store param on stack when offset from SP bigger than 4 bytes. */
1373 /* 000100 sssss 11111 00000 01100100000 */
1374 else if (arch_info->mach == bfd_mach_ppc_e500
1375 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1376 {
1377 if (pc == (li_found_pc + 4))
1378 {
1379 if ((op & 0x03e00000) >= 0x01a00000)
1380 {
1381 ev_reg = GET_SRC_REG (op);
1382 /* If this is the first vector reg to be saved, or if
1383 it has a lower number than others previously seen,
1384 reupdate the frame info. */
1385 /* We know the contents of r0 from the previous
1386 instruction. */
1387 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1388 {
1389 fdata->saved_ev = ev_reg;
1390 fdata->ev_offset = vr_saved_offset + offset;
1391 }
1392 ev_reg = -1;
1393 }
1394 vr_saved_offset = -1;
1395 li_found_pc = 0;
1396 continue;
1397 }
1398 }
1399 /* End BookE related instructions. */
1400
1401 else
1402 {
1403 /* Not a recognized prologue instruction.
1404 Handle optimizer code motions into the prologue by continuing
1405 the search if we have no valid frame yet or if the return
1406 address is not yet saved in the frame. */
1407 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1408 break;
1409
1410 if (op == 0x4e800020 /* blr */
1411 || op == 0x4e800420) /* bctr */
1412 /* Do not scan past epilogue in frameless functions or
1413 trampolines. */
1414 break;
1415 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1416 /* Never skip branches. */
1417 break;
1418
1419 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1420 /* Do not scan too many insns, scanning insns is expensive with
1421 remote targets. */
1422 break;
1423
1424 /* Continue scanning. */
1425 prev_insn_was_prologue_insn = 0;
1426 continue;
1427 }
1428 }
1429
1430 #if 0
1431 /* I have problems with skipping over __main() that I need to address
1432 * sometime. Previously, I used to use misc_function_vector which
1433 * didn't work as well as I wanted to be. -MGO */
1434
1435 /* If the first thing after skipping a prolog is a branch to a function,
1436 this might be a call to an initializer in main(), introduced by gcc2.
1437 We'd like to skip over it as well. Fortunately, xlc does some extra
1438 work before calling a function right after a prologue, thus we can
1439 single out such gcc2 behaviour. */
1440
1441
1442 if ((op & 0xfc000001) == 0x48000001)
1443 { /* bl foo, an initializer function? */
1444 op = read_memory_integer (pc + 4, 4);
1445
1446 if (op == 0x4def7b82)
1447 { /* cror 0xf, 0xf, 0xf (nop) */
1448
1449 /* Check and see if we are in main. If so, skip over this
1450 initializer function as well. */
1451
1452 tmp = find_pc_misc_function (pc);
1453 if (tmp >= 0
1454 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1455 return pc + 8;
1456 }
1457 }
1458 #endif /* 0 */
1459
1460 fdata->offset = -fdata->offset;
1461 return last_prologue_pc;
1462 }
1463
1464
1465 /*************************************************************************
1466 Support for creating pushing a dummy frame into the stack, and popping
1467 frames, etc.
1468 *************************************************************************/
1469
1470
1471 /* All the ABI's require 16 byte alignment. */
1472 static CORE_ADDR
1473 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1474 {
1475 return (addr & -16);
1476 }
1477
1478 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1479 the first eight words of the argument list (that might be less than
1480 eight parameters if some parameters occupy more than one word) are
1481 passed in r3..r10 registers. float and double parameters are
1482 passed in fpr's, in addition to that. Rest of the parameters if any
1483 are passed in user stack. There might be cases in which half of the
1484 parameter is copied into registers, the other half is pushed into
1485 stack.
1486
1487 Stack must be aligned on 64-bit boundaries when synthesizing
1488 function calls.
1489
1490 If the function is returning a structure, then the return address is passed
1491 in r3, then the first 7 words of the parameters can be passed in registers,
1492 starting from r4. */
1493
1494 static CORE_ADDR
1495 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1496 struct regcache *regcache, CORE_ADDR bp_addr,
1497 int nargs, struct value **args, CORE_ADDR sp,
1498 int struct_return, CORE_ADDR struct_addr)
1499 {
1500 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1501 int ii;
1502 int len = 0;
1503 int argno; /* current argument number */
1504 int argbytes; /* current argument byte */
1505 gdb_byte tmp_buffer[50];
1506 int f_argno = 0; /* current floating point argno */
1507 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1508 CORE_ADDR func_addr = find_function_addr (function, NULL);
1509
1510 struct value *arg = 0;
1511 struct type *type;
1512
1513 CORE_ADDR saved_sp;
1514
1515 /* The calling convention this function implements assumes the
1516 processor has floating-point registers. We shouldn't be using it
1517 on PPC variants that lack them. */
1518 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1519
1520 /* The first eight words of ther arguments are passed in registers.
1521 Copy them appropriately. */
1522 ii = 0;
1523
1524 /* If the function is returning a `struct', then the first word
1525 (which will be passed in r3) is used for struct return address.
1526 In that case we should advance one word and start from r4
1527 register to copy parameters. */
1528 if (struct_return)
1529 {
1530 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1531 struct_addr);
1532 ii++;
1533 }
1534
1535 /*
1536 effectively indirect call... gcc does...
1537
1538 return_val example( float, int);
1539
1540 eabi:
1541 float in fp0, int in r3
1542 offset of stack on overflow 8/16
1543 for varargs, must go by type.
1544 power open:
1545 float in r3&r4, int in r5
1546 offset of stack on overflow different
1547 both:
1548 return in r3 or f0. If no float, must study how gcc emulates floats;
1549 pay attention to arg promotion.
1550 User may have to cast\args to handle promotion correctly
1551 since gdb won't know if prototype supplied or not.
1552 */
1553
1554 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1555 {
1556 int reg_size = register_size (current_gdbarch, ii + 3);
1557
1558 arg = args[argno];
1559 type = check_typedef (value_type (arg));
1560 len = TYPE_LENGTH (type);
1561
1562 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1563 {
1564
1565 /* Floating point arguments are passed in fpr's, as well as gpr's.
1566 There are 13 fpr's reserved for passing parameters. At this point
1567 there is no way we would run out of them. */
1568
1569 gdb_assert (len <= 8);
1570
1571 regcache_cooked_write (regcache,
1572 tdep->ppc_fp0_regnum + 1 + f_argno,
1573 value_contents (arg));
1574 ++f_argno;
1575 }
1576
1577 if (len > reg_size)
1578 {
1579
1580 /* Argument takes more than one register. */
1581 while (argbytes < len)
1582 {
1583 gdb_byte word[MAX_REGISTER_SIZE];
1584 memset (word, 0, reg_size);
1585 memcpy (word,
1586 ((char *) value_contents (arg)) + argbytes,
1587 (len - argbytes) > reg_size
1588 ? reg_size : len - argbytes);
1589 regcache_cooked_write (regcache,
1590 tdep->ppc_gp0_regnum + 3 + ii,
1591 word);
1592 ++ii, argbytes += reg_size;
1593
1594 if (ii >= 8)
1595 goto ran_out_of_registers_for_arguments;
1596 }
1597 argbytes = 0;
1598 --ii;
1599 }
1600 else
1601 {
1602 /* Argument can fit in one register. No problem. */
1603 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1604 gdb_byte word[MAX_REGISTER_SIZE];
1605
1606 memset (word, 0, reg_size);
1607 memcpy (word, value_contents (arg), len);
1608 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1609 }
1610 ++argno;
1611 }
1612
1613 ran_out_of_registers_for_arguments:
1614
1615 saved_sp = read_sp ();
1616
1617 /* Location for 8 parameters are always reserved. */
1618 sp -= wordsize * 8;
1619
1620 /* Another six words for back chain, TOC register, link register, etc. */
1621 sp -= wordsize * 6;
1622
1623 /* Stack pointer must be quadword aligned. */
1624 sp &= -16;
1625
1626 /* If there are more arguments, allocate space for them in
1627 the stack, then push them starting from the ninth one. */
1628
1629 if ((argno < nargs) || argbytes)
1630 {
1631 int space = 0, jj;
1632
1633 if (argbytes)
1634 {
1635 space += ((len - argbytes + 3) & -4);
1636 jj = argno + 1;
1637 }
1638 else
1639 jj = argno;
1640
1641 for (; jj < nargs; ++jj)
1642 {
1643 struct value *val = args[jj];
1644 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1645 }
1646
1647 /* Add location required for the rest of the parameters. */
1648 space = (space + 15) & -16;
1649 sp -= space;
1650
1651 /* This is another instance we need to be concerned about
1652 securing our stack space. If we write anything underneath %sp
1653 (r1), we might conflict with the kernel who thinks he is free
1654 to use this area. So, update %sp first before doing anything
1655 else. */
1656
1657 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1658
1659 /* If the last argument copied into the registers didn't fit there
1660 completely, push the rest of it into stack. */
1661
1662 if (argbytes)
1663 {
1664 write_memory (sp + 24 + (ii * 4),
1665 value_contents (arg) + argbytes,
1666 len - argbytes);
1667 ++argno;
1668 ii += ((len - argbytes + 3) & -4) / 4;
1669 }
1670
1671 /* Push the rest of the arguments into stack. */
1672 for (; argno < nargs; ++argno)
1673 {
1674
1675 arg = args[argno];
1676 type = check_typedef (value_type (arg));
1677 len = TYPE_LENGTH (type);
1678
1679
1680 /* Float types should be passed in fpr's, as well as in the
1681 stack. */
1682 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1683 {
1684
1685 gdb_assert (len <= 8);
1686
1687 regcache_cooked_write (regcache,
1688 tdep->ppc_fp0_regnum + 1 + f_argno,
1689 value_contents (arg));
1690 ++f_argno;
1691 }
1692
1693 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1694 ii += ((len + 3) & -4) / 4;
1695 }
1696 }
1697
1698 /* Set the stack pointer. According to the ABI, the SP is meant to
1699 be set _before_ the corresponding stack space is used. On AIX,
1700 this even applies when the target has been completely stopped!
1701 Not doing this can lead to conflicts with the kernel which thinks
1702 that it still has control over this not-yet-allocated stack
1703 region. */
1704 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1705
1706 /* Set back chain properly. */
1707 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1708 write_memory (sp, tmp_buffer, wordsize);
1709
1710 /* Point the inferior function call's return address at the dummy's
1711 breakpoint. */
1712 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1713
1714 /* Set the TOC register, get the value from the objfile reader
1715 which, in turn, gets it from the VMAP table. */
1716 if (rs6000_find_toc_address_hook != NULL)
1717 {
1718 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1719 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1720 }
1721
1722 target_store_registers (-1);
1723 return sp;
1724 }
1725
1726 static enum return_value_convention
1727 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1728 struct regcache *regcache, gdb_byte *readbuf,
1729 const gdb_byte *writebuf)
1730 {
1731 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1732 gdb_byte buf[8];
1733
1734 /* The calling convention this function implements assumes the
1735 processor has floating-point registers. We shouldn't be using it
1736 on PowerPC variants that lack them. */
1737 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1738
1739 /* AltiVec extension: Functions that declare a vector data type as a
1740 return value place that return value in VR2. */
1741 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1742 && TYPE_LENGTH (valtype) == 16)
1743 {
1744 if (readbuf)
1745 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1746 if (writebuf)
1747 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1748
1749 return RETURN_VALUE_REGISTER_CONVENTION;
1750 }
1751
1752 /* If the called subprogram returns an aggregate, there exists an
1753 implicit first argument, whose value is the address of a caller-
1754 allocated buffer into which the callee is assumed to store its
1755 return value. All explicit parameters are appropriately
1756 relabeled. */
1757 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1758 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1759 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1760 return RETURN_VALUE_STRUCT_CONVENTION;
1761
1762 /* Scalar floating-point values are returned in FPR1 for float or
1763 double, and in FPR1:FPR2 for quadword precision. Fortran
1764 complex*8 and complex*16 are returned in FPR1:FPR2, and
1765 complex*32 is returned in FPR1:FPR4. */
1766 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1767 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1768 {
1769 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1770 gdb_byte regval[8];
1771
1772 /* FIXME: kettenis/2007-01-01: Add support for quadword
1773 precision and complex. */
1774
1775 if (readbuf)
1776 {
1777 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1778 convert_typed_floating (regval, regtype, readbuf, valtype);
1779 }
1780 if (writebuf)
1781 {
1782 convert_typed_floating (writebuf, valtype, regval, regtype);
1783 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1784 }
1785
1786 return RETURN_VALUE_REGISTER_CONVENTION;
1787 }
1788
1789 /* Values of the types int, long, short, pointer, and char (length
1790 is less than or equal to four bytes), as well as bit values of
1791 lengths less than or equal to 32 bits, must be returned right
1792 justified in GPR3 with signed values sign extended and unsigned
1793 values zero extended, as necessary. */
1794 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1795 {
1796 if (readbuf)
1797 {
1798 ULONGEST regval;
1799
1800 /* For reading we don't have to worry about sign extension. */
1801 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1802 &regval);
1803 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1804 }
1805 if (writebuf)
1806 {
1807 /* For writing, use unpack_long since that should handle any
1808 required sign extension. */
1809 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1810 unpack_long (valtype, writebuf));
1811 }
1812
1813 return RETURN_VALUE_REGISTER_CONVENTION;
1814 }
1815
1816 /* Eight-byte non-floating-point scalar values must be returned in
1817 GPR3:GPR4. */
1818
1819 if (TYPE_LENGTH (valtype) == 8)
1820 {
1821 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1822 gdb_assert (tdep->wordsize == 4);
1823
1824 if (readbuf)
1825 {
1826 gdb_byte regval[8];
1827
1828 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1829 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1830 regval + 4);
1831 memcpy (readbuf, regval, 8);
1832 }
1833 if (writebuf)
1834 {
1835 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1836 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1837 writebuf + 4);
1838 }
1839
1840 return RETURN_VALUE_REGISTER_CONVENTION;
1841 }
1842
1843 return RETURN_VALUE_STRUCT_CONVENTION;
1844 }
1845
1846 /* Return whether handle_inferior_event() should proceed through code
1847 starting at PC in function NAME when stepping.
1848
1849 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1850 handle memory references that are too distant to fit in instructions
1851 generated by the compiler. For example, if 'foo' in the following
1852 instruction:
1853
1854 lwz r9,foo(r2)
1855
1856 is greater than 32767, the linker might replace the lwz with a branch to
1857 somewhere in @FIX1 that does the load in 2 instructions and then branches
1858 back to where execution should continue.
1859
1860 GDB should silently step over @FIX code, just like AIX dbx does.
1861 Unfortunately, the linker uses the "b" instruction for the
1862 branches, meaning that the link register doesn't get set.
1863 Therefore, GDB's usual step_over_function () mechanism won't work.
1864
1865 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1866 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1867 @FIX code. */
1868
1869 int
1870 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1871 {
1872 return name && !strncmp (name, "@FIX", 4);
1873 }
1874
1875 /* Skip code that the user doesn't want to see when stepping:
1876
1877 1. Indirect function calls use a piece of trampoline code to do context
1878 switching, i.e. to set the new TOC table. Skip such code if we are on
1879 its first instruction (as when we have single-stepped to here).
1880
1881 2. Skip shared library trampoline code (which is different from
1882 indirect function call trampolines).
1883
1884 3. Skip bigtoc fixup code.
1885
1886 Result is desired PC to step until, or NULL if we are not in
1887 code that should be skipped. */
1888
1889 CORE_ADDR
1890 rs6000_skip_trampoline_code (CORE_ADDR pc)
1891 {
1892 unsigned int ii, op;
1893 int rel;
1894 CORE_ADDR solib_target_pc;
1895 struct minimal_symbol *msymbol;
1896
1897 static unsigned trampoline_code[] =
1898 {
1899 0x800b0000, /* l r0,0x0(r11) */
1900 0x90410014, /* st r2,0x14(r1) */
1901 0x7c0903a6, /* mtctr r0 */
1902 0x804b0004, /* l r2,0x4(r11) */
1903 0x816b0008, /* l r11,0x8(r11) */
1904 0x4e800420, /* bctr */
1905 0x4e800020, /* br */
1906 0
1907 };
1908
1909 /* Check for bigtoc fixup code. */
1910 msymbol = lookup_minimal_symbol_by_pc (pc);
1911 if (msymbol
1912 && rs6000_in_solib_return_trampoline (pc,
1913 DEPRECATED_SYMBOL_NAME (msymbol)))
1914 {
1915 /* Double-check that the third instruction from PC is relative "b". */
1916 op = read_memory_integer (pc + 8, 4);
1917 if ((op & 0xfc000003) == 0x48000000)
1918 {
1919 /* Extract bits 6-29 as a signed 24-bit relative word address and
1920 add it to the containing PC. */
1921 rel = ((int)(op << 6) >> 6);
1922 return pc + 8 + rel;
1923 }
1924 }
1925
1926 /* If pc is in a shared library trampoline, return its target. */
1927 solib_target_pc = find_solib_trampoline_target (pc);
1928 if (solib_target_pc)
1929 return solib_target_pc;
1930
1931 for (ii = 0; trampoline_code[ii]; ++ii)
1932 {
1933 op = read_memory_integer (pc + (ii * 4), 4);
1934 if (op != trampoline_code[ii])
1935 return 0;
1936 }
1937 ii = read_register (11); /* r11 holds destination addr */
1938 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1939 return pc;
1940 }
1941
1942 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1943 isn't available with that word size, return 0. */
1944
1945 static int
1946 regsize (const struct reg *reg, int wordsize)
1947 {
1948 return wordsize == 8 ? reg->sz64 : reg->sz32;
1949 }
1950
1951 /* Return the name of register number N, or null if no such register exists
1952 in the current architecture. */
1953
1954 static const char *
1955 rs6000_register_name (int n)
1956 {
1957 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1958 const struct reg *reg = tdep->regs + n;
1959
1960 if (!regsize (reg, tdep->wordsize))
1961 return NULL;
1962 return reg->name;
1963 }
1964
1965 /* Return the GDB type object for the "standard" data type
1966 of data in register N. */
1967
1968 static struct type *
1969 rs6000_register_type (struct gdbarch *gdbarch, int n)
1970 {
1971 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1972 const struct reg *reg = tdep->regs + n;
1973
1974 if (reg->fpr)
1975 return builtin_type_double;
1976 else
1977 {
1978 int size = regsize (reg, tdep->wordsize);
1979 switch (size)
1980 {
1981 case 0:
1982 return builtin_type_int0;
1983 case 4:
1984 return builtin_type_uint32;
1985 case 8:
1986 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1987 return builtin_type_vec64;
1988 else
1989 return builtin_type_uint64;
1990 break;
1991 case 16:
1992 return builtin_type_vec128;
1993 break;
1994 default:
1995 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1996 n, size);
1997 }
1998 }
1999 }
2000
2001 /* Is REGNUM a member of REGGROUP? */
2002 static int
2003 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2004 struct reggroup *group)
2005 {
2006 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2007 int float_p;
2008 int vector_p;
2009 int general_p;
2010
2011 if (REGISTER_NAME (regnum) == NULL
2012 || *REGISTER_NAME (regnum) == '\0')
2013 return 0;
2014 if (group == all_reggroup)
2015 return 1;
2016
2017 float_p = (regnum == tdep->ppc_fpscr_regnum
2018 || (regnum >= tdep->ppc_fp0_regnum
2019 && regnum < tdep->ppc_fp0_regnum + 32));
2020 if (group == float_reggroup)
2021 return float_p;
2022
2023 vector_p = ((tdep->ppc_vr0_regnum >= 0
2024 && regnum >= tdep->ppc_vr0_regnum
2025 && regnum < tdep->ppc_vr0_regnum + 32)
2026 || (tdep->ppc_ev0_regnum >= 0
2027 && regnum >= tdep->ppc_ev0_regnum
2028 && regnum < tdep->ppc_ev0_regnum + 32)
2029 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2030 || regnum == tdep->ppc_vrsave_regnum
2031 || regnum == tdep->ppc_acc_regnum
2032 || regnum == tdep->ppc_spefscr_regnum);
2033 if (group == vector_reggroup)
2034 return vector_p;
2035
2036 /* Note that PS aka MSR isn't included - it's a system register (and
2037 besides, due to GCC's CFI foobar you do not want to restore
2038 it). */
2039 general_p = ((regnum >= tdep->ppc_gp0_regnum
2040 && regnum < tdep->ppc_gp0_regnum + 32)
2041 || regnum == tdep->ppc_toc_regnum
2042 || regnum == tdep->ppc_cr_regnum
2043 || regnum == tdep->ppc_lr_regnum
2044 || regnum == tdep->ppc_ctr_regnum
2045 || regnum == tdep->ppc_xer_regnum
2046 || regnum == PC_REGNUM);
2047 if (group == general_reggroup)
2048 return general_p;
2049
2050 if (group == save_reggroup || group == restore_reggroup)
2051 return general_p || vector_p || float_p;
2052
2053 return 0;
2054 }
2055
2056 /* The register format for RS/6000 floating point registers is always
2057 double, we need a conversion if the memory format is float. */
2058
2059 static int
2060 rs6000_convert_register_p (int regnum, struct type *type)
2061 {
2062 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2063
2064 return (reg->fpr
2065 && TYPE_CODE (type) == TYPE_CODE_FLT
2066 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2067 }
2068
2069 static void
2070 rs6000_register_to_value (struct frame_info *frame,
2071 int regnum,
2072 struct type *type,
2073 gdb_byte *to)
2074 {
2075 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2076 gdb_byte from[MAX_REGISTER_SIZE];
2077
2078 gdb_assert (reg->fpr);
2079 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2080
2081 get_frame_register (frame, regnum, from);
2082 convert_typed_floating (from, builtin_type_double, to, type);
2083 }
2084
2085 static void
2086 rs6000_value_to_register (struct frame_info *frame,
2087 int regnum,
2088 struct type *type,
2089 const gdb_byte *from)
2090 {
2091 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2092 gdb_byte to[MAX_REGISTER_SIZE];
2093
2094 gdb_assert (reg->fpr);
2095 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2096
2097 convert_typed_floating (from, type, to, builtin_type_double);
2098 put_frame_register (frame, regnum, to);
2099 }
2100
2101 /* Move SPE vector register values between a 64-bit buffer and the two
2102 32-bit raw register halves in a regcache. This function handles
2103 both splitting a 64-bit value into two 32-bit halves, and joining
2104 two halves into a whole 64-bit value, depending on the function
2105 passed as the MOVE argument.
2106
2107 EV_REG must be the number of an SPE evN vector register --- a
2108 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2109 64-bit buffer.
2110
2111 Call MOVE once for each 32-bit half of that register, passing
2112 REGCACHE, the number of the raw register corresponding to that
2113 half, and the address of the appropriate half of BUFFER.
2114
2115 For example, passing 'regcache_raw_read' as the MOVE function will
2116 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2117 'regcache_raw_supply' will supply the contents of BUFFER to the
2118 appropriate pair of raw registers in REGCACHE.
2119
2120 You may need to cast away some 'const' qualifiers when passing
2121 MOVE, since this function can't tell at compile-time which of
2122 REGCACHE or BUFFER is acting as the source of the data. If C had
2123 co-variant type qualifiers, ... */
2124 static void
2125 e500_move_ev_register (void (*move) (struct regcache *regcache,
2126 int regnum, gdb_byte *buf),
2127 struct regcache *regcache, int ev_reg,
2128 gdb_byte *buffer)
2129 {
2130 struct gdbarch *arch = get_regcache_arch (regcache);
2131 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2132 int reg_index;
2133 gdb_byte *byte_buffer = buffer;
2134
2135 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2136 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2137
2138 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2139
2140 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2141 {
2142 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2143 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2144 }
2145 else
2146 {
2147 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2148 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2149 }
2150 }
2151
2152 static void
2153 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2154 int reg_nr, gdb_byte *buffer)
2155 {
2156 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2157 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2158
2159 gdb_assert (regcache_arch == gdbarch);
2160
2161 if (tdep->ppc_ev0_regnum <= reg_nr
2162 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2163 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2164 else
2165 internal_error (__FILE__, __LINE__,
2166 _("e500_pseudo_register_read: "
2167 "called on unexpected register '%s' (%d)"),
2168 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2169 }
2170
2171 static void
2172 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2173 int reg_nr, const gdb_byte *buffer)
2174 {
2175 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2177
2178 gdb_assert (regcache_arch == gdbarch);
2179
2180 if (tdep->ppc_ev0_regnum <= reg_nr
2181 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2182 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2183 regcache_raw_write,
2184 regcache, reg_nr, (gdb_byte *) buffer);
2185 else
2186 internal_error (__FILE__, __LINE__,
2187 _("e500_pseudo_register_read: "
2188 "called on unexpected register '%s' (%d)"),
2189 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2190 }
2191
2192 /* The E500 needs a custom reggroup function: it has anonymous raw
2193 registers, and default_register_reggroup_p assumes that anonymous
2194 registers are not members of any reggroup. */
2195 static int
2196 e500_register_reggroup_p (struct gdbarch *gdbarch,
2197 int regnum,
2198 struct reggroup *group)
2199 {
2200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2201
2202 /* The save and restore register groups need to include the
2203 upper-half registers, even though they're anonymous. */
2204 if ((group == save_reggroup
2205 || group == restore_reggroup)
2206 && (tdep->ppc_ev0_upper_regnum <= regnum
2207 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2208 return 1;
2209
2210 /* In all other regards, the default reggroup definition is fine. */
2211 return default_register_reggroup_p (gdbarch, regnum, group);
2212 }
2213
2214 /* Convert a DBX STABS register number to a GDB register number. */
2215 static int
2216 rs6000_stab_reg_to_regnum (int num)
2217 {
2218 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2219
2220 if (0 <= num && num <= 31)
2221 return tdep->ppc_gp0_regnum + num;
2222 else if (32 <= num && num <= 63)
2223 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2224 specifies registers the architecture doesn't have? Our
2225 callers don't check the value we return. */
2226 return tdep->ppc_fp0_regnum + (num - 32);
2227 else if (77 <= num && num <= 108)
2228 return tdep->ppc_vr0_regnum + (num - 77);
2229 else if (1200 <= num && num < 1200 + 32)
2230 return tdep->ppc_ev0_regnum + (num - 1200);
2231 else
2232 switch (num)
2233 {
2234 case 64:
2235 return tdep->ppc_mq_regnum;
2236 case 65:
2237 return tdep->ppc_lr_regnum;
2238 case 66:
2239 return tdep->ppc_ctr_regnum;
2240 case 76:
2241 return tdep->ppc_xer_regnum;
2242 case 109:
2243 return tdep->ppc_vrsave_regnum;
2244 case 110:
2245 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2246 case 111:
2247 return tdep->ppc_acc_regnum;
2248 case 112:
2249 return tdep->ppc_spefscr_regnum;
2250 default:
2251 return num;
2252 }
2253 }
2254
2255
2256 /* Convert a Dwarf 2 register number to a GDB register number. */
2257 static int
2258 rs6000_dwarf2_reg_to_regnum (int num)
2259 {
2260 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2261
2262 if (0 <= num && num <= 31)
2263 return tdep->ppc_gp0_regnum + num;
2264 else if (32 <= num && num <= 63)
2265 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2266 specifies registers the architecture doesn't have? Our
2267 callers don't check the value we return. */
2268 return tdep->ppc_fp0_regnum + (num - 32);
2269 else if (1124 <= num && num < 1124 + 32)
2270 return tdep->ppc_vr0_regnum + (num - 1124);
2271 else if (1200 <= num && num < 1200 + 32)
2272 return tdep->ppc_ev0_regnum + (num - 1200);
2273 else
2274 switch (num)
2275 {
2276 case 67:
2277 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2278 case 99:
2279 return tdep->ppc_acc_regnum;
2280 case 100:
2281 return tdep->ppc_mq_regnum;
2282 case 101:
2283 return tdep->ppc_xer_regnum;
2284 case 108:
2285 return tdep->ppc_lr_regnum;
2286 case 109:
2287 return tdep->ppc_ctr_regnum;
2288 case 356:
2289 return tdep->ppc_vrsave_regnum;
2290 case 612:
2291 return tdep->ppc_spefscr_regnum;
2292 default:
2293 return num;
2294 }
2295 }
2296
2297 \f
2298 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2299
2300 Usually a function pointer's representation is simply the address
2301 of the function. On the RS/6000 however, a function pointer is
2302 represented by a pointer to an OPD entry. This OPD entry contains
2303 three words, the first word is the address of the function, the
2304 second word is the TOC pointer (r2), and the third word is the
2305 static chain value. Throughout GDB it is currently assumed that a
2306 function pointer contains the address of the function, which is not
2307 easy to fix. In addition, the conversion of a function address to
2308 a function pointer would require allocation of an OPD entry in the
2309 inferior's memory space, with all its drawbacks. To be able to
2310 call C++ virtual methods in the inferior (which are called via
2311 function pointers), find_function_addr uses this function to get the
2312 function address from a function pointer. */
2313
2314 /* Return real function address if ADDR (a function pointer) is in the data
2315 space and is therefore a special function pointer. */
2316
2317 static CORE_ADDR
2318 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2319 CORE_ADDR addr,
2320 struct target_ops *targ)
2321 {
2322 struct obj_section *s;
2323
2324 s = find_pc_section (addr);
2325 if (s && s->the_bfd_section->flags & SEC_CODE)
2326 return addr;
2327
2328 /* ADDR is in the data space, so it's a special function pointer. */
2329 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2330 }
2331 \f
2332
2333 /* Handling the various POWER/PowerPC variants. */
2334
2335
2336 /* The arrays here called registers_MUMBLE hold information about available
2337 registers.
2338
2339 For each family of PPC variants, I've tried to isolate out the
2340 common registers and put them up front, so that as long as you get
2341 the general family right, GDB will correctly identify the registers
2342 common to that family. The common register sets are:
2343
2344 For the 60x family: hid0 hid1 iabr dabr pir
2345
2346 For the 505 and 860 family: eie eid nri
2347
2348 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2349 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2350 pbu1 pbl2 pbu2
2351
2352 Most of these register groups aren't anything formal. I arrived at
2353 them by looking at the registers that occurred in more than one
2354 processor.
2355
2356 Note: kevinb/2002-04-30: Support for the fpscr register was added
2357 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2358 for Power. For PowerPC, slot 70 was unused and was already in the
2359 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2360 slot 70 was being used for "mq", so the next available slot (71)
2361 was chosen. It would have been nice to be able to make the
2362 register numbers the same across processor cores, but this wasn't
2363 possible without either 1) renumbering some registers for some
2364 processors or 2) assigning fpscr to a really high slot that's
2365 larger than any current register number. Doing (1) is bad because
2366 existing stubs would break. Doing (2) is undesirable because it
2367 would introduce a really large gap between fpscr and the rest of
2368 the registers for most processors. */
2369
2370 /* Convenience macros for populating register arrays. */
2371
2372 /* Within another macro, convert S to a string. */
2373
2374 #define STR(s) #s
2375
2376 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2377 and 64 bits on 64-bit systems. */
2378 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2379
2380 /* Return a struct reg defining register NAME that's 32 bits on all
2381 systems. */
2382 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2383
2384 /* Return a struct reg defining register NAME that's 64 bits on all
2385 systems. */
2386 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2387
2388 /* Return a struct reg defining register NAME that's 128 bits on all
2389 systems. */
2390 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2391
2392 /* Return a struct reg defining floating-point register NAME. */
2393 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2394
2395 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2396 long on all systems. */
2397 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2398
2399 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2400 systems and that doesn't exist on 64-bit systems. */
2401 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2402
2403 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2404 systems and that doesn't exist on 32-bit systems. */
2405 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2406
2407 /* Return a struct reg placeholder for a register that doesn't exist. */
2408 #define R0 { 0, 0, 0, 0, 0, -1 }
2409
2410 /* Return a struct reg defining an anonymous raw register that's 32
2411 bits on all systems. */
2412 #define A4 { 0, 4, 4, 0, 0, -1 }
2413
2414 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2415 32-bit systems and 64 bits on 64-bit systems. */
2416 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2417
2418 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2419 all systems. */
2420 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2421
2422 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2423 all systems, and whose SPR number is NUMBER. */
2424 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2425
2426 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2427 64-bit systems and that doesn't exist on 32-bit systems. */
2428 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2429
2430 /* UISA registers common across all architectures, including POWER. */
2431
2432 #define COMMON_UISA_REGS \
2433 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2434 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2435 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2436 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2437 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2438 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2439 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2440 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2441 /* 64 */ R(pc), R(ps)
2442
2443 /* UISA-level SPRs for PowerPC. */
2444 #define PPC_UISA_SPRS \
2445 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2446
2447 /* UISA-level SPRs for PowerPC without floating point support. */
2448 #define PPC_UISA_NOFP_SPRS \
2449 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2450
2451 /* Segment registers, for PowerPC. */
2452 #define PPC_SEGMENT_REGS \
2453 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2454 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2455 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2456 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2457
2458 /* OEA SPRs for PowerPC. */
2459 #define PPC_OEA_SPRS \
2460 /* 87 */ S4(pvr), \
2461 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2462 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2463 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2464 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2465 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2466 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2467 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2468 /* 116 */ S4(dec), S(dabr), S4(ear)
2469
2470 /* AltiVec registers. */
2471 #define PPC_ALTIVEC_REGS \
2472 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2473 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2474 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2475 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2476 /*151*/R4(vscr), R4(vrsave)
2477
2478
2479 /* On machines supporting the SPE APU, the general-purpose registers
2480 are 64 bits long. There are SIMD vector instructions to treat them
2481 as pairs of floats, but the rest of the instruction set treats them
2482 as 32-bit registers, and only operates on their lower halves.
2483
2484 In the GDB regcache, we treat their high and low halves as separate
2485 registers. The low halves we present as the general-purpose
2486 registers, and then we have pseudo-registers that stitch together
2487 the upper and lower halves and present them as pseudo-registers. */
2488
2489 /* SPE GPR lower halves --- raw registers. */
2490 #define PPC_SPE_GP_REGS \
2491 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2492 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2493 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2494 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2495
2496 /* SPE GPR upper halves --- anonymous raw registers. */
2497 #define PPC_SPE_UPPER_GP_REGS \
2498 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2499 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2500 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2501 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2502
2503 /* SPE GPR vector registers --- pseudo registers based on underlying
2504 gprs and the anonymous upper half raw registers. */
2505 #define PPC_EV_PSEUDO_REGS \
2506 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2507 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2508 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2509 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2510
2511 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2512 user-level SPR's. */
2513 static const struct reg registers_power[] =
2514 {
2515 COMMON_UISA_REGS,
2516 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2517 /* 71 */ R4(fpscr)
2518 };
2519
2520 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2521 view of the PowerPC. */
2522 static const struct reg registers_powerpc[] =
2523 {
2524 COMMON_UISA_REGS,
2525 PPC_UISA_SPRS,
2526 PPC_ALTIVEC_REGS
2527 };
2528
2529 /* IBM PowerPC 403.
2530
2531 Some notes about the "tcr" special-purpose register:
2532 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2533 403's programmable interval timer, fixed interval timer, and
2534 watchdog timer.
2535 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2536 watchdog timer, and nothing else.
2537
2538 Some of the fields are similar between the two, but they're not
2539 compatible with each other. Since the two variants have different
2540 registers, with different numbers, but the same name, we can't
2541 splice the register name to get the SPR number. */
2542 static const struct reg registers_403[] =
2543 {
2544 COMMON_UISA_REGS,
2545 PPC_UISA_SPRS,
2546 PPC_SEGMENT_REGS,
2547 PPC_OEA_SPRS,
2548 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2549 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2550 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2551 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2552 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2553 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2554 };
2555
2556 /* IBM PowerPC 403GC.
2557 See the comments about 'tcr' for the 403, above. */
2558 static const struct reg registers_403GC[] =
2559 {
2560 COMMON_UISA_REGS,
2561 PPC_UISA_SPRS,
2562 PPC_SEGMENT_REGS,
2563 PPC_OEA_SPRS,
2564 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2565 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2566 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2567 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2568 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2569 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2570 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2571 /* 147 */ S(tbhu), S(tblu)
2572 };
2573
2574 /* Motorola PowerPC 505. */
2575 static const struct reg registers_505[] =
2576 {
2577 COMMON_UISA_REGS,
2578 PPC_UISA_SPRS,
2579 PPC_SEGMENT_REGS,
2580 PPC_OEA_SPRS,
2581 /* 119 */ S(eie), S(eid), S(nri)
2582 };
2583
2584 /* Motorola PowerPC 860 or 850. */
2585 static const struct reg registers_860[] =
2586 {
2587 COMMON_UISA_REGS,
2588 PPC_UISA_SPRS,
2589 PPC_SEGMENT_REGS,
2590 PPC_OEA_SPRS,
2591 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2592 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2593 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2594 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2595 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2596 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2597 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2598 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2599 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2600 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2601 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2602 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2603 };
2604
2605 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2606 for reading and writing RTCU and RTCL. However, how one reads and writes a
2607 register is the stub's problem. */
2608 static const struct reg registers_601[] =
2609 {
2610 COMMON_UISA_REGS,
2611 PPC_UISA_SPRS,
2612 PPC_SEGMENT_REGS,
2613 PPC_OEA_SPRS,
2614 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2615 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2616 };
2617
2618 /* Motorola PowerPC 602.
2619 See the notes under the 403 about 'tcr'. */
2620 static const struct reg registers_602[] =
2621 {
2622 COMMON_UISA_REGS,
2623 PPC_UISA_SPRS,
2624 PPC_SEGMENT_REGS,
2625 PPC_OEA_SPRS,
2626 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2627 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2628 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2629 };
2630
2631 /* Motorola/IBM PowerPC 603 or 603e. */
2632 static const struct reg registers_603[] =
2633 {
2634 COMMON_UISA_REGS,
2635 PPC_UISA_SPRS,
2636 PPC_SEGMENT_REGS,
2637 PPC_OEA_SPRS,
2638 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2639 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2640 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2641 };
2642
2643 /* Motorola PowerPC 604 or 604e. */
2644 static const struct reg registers_604[] =
2645 {
2646 COMMON_UISA_REGS,
2647 PPC_UISA_SPRS,
2648 PPC_SEGMENT_REGS,
2649 PPC_OEA_SPRS,
2650 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2651 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2652 /* 127 */ S(sia), S(sda)
2653 };
2654
2655 /* Motorola/IBM PowerPC 750 or 740. */
2656 static const struct reg registers_750[] =
2657 {
2658 COMMON_UISA_REGS,
2659 PPC_UISA_SPRS,
2660 PPC_SEGMENT_REGS,
2661 PPC_OEA_SPRS,
2662 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2663 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2664 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2665 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2666 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2667 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2668 };
2669
2670
2671 /* Motorola PowerPC 7400. */
2672 static const struct reg registers_7400[] =
2673 {
2674 /* gpr0-gpr31, fpr0-fpr31 */
2675 COMMON_UISA_REGS,
2676 /* cr, lr, ctr, xer, fpscr */
2677 PPC_UISA_SPRS,
2678 /* sr0-sr15 */
2679 PPC_SEGMENT_REGS,
2680 PPC_OEA_SPRS,
2681 /* vr0-vr31, vrsave, vscr */
2682 PPC_ALTIVEC_REGS
2683 /* FIXME? Add more registers? */
2684 };
2685
2686 /* Motorola e500. */
2687 static const struct reg registers_e500[] =
2688 {
2689 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2690 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2691 /* 64 .. 65 */ R(pc), R(ps),
2692 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2693 /* 71 .. 72 */ R8(acc), S4(spefscr),
2694 /* NOTE: Add new registers here the end of the raw register
2695 list and just before the first pseudo register. */
2696 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2697 };
2698
2699 /* Information about a particular processor variant. */
2700
2701 struct variant
2702 {
2703 /* Name of this variant. */
2704 char *name;
2705
2706 /* English description of the variant. */
2707 char *description;
2708
2709 /* bfd_arch_info.arch corresponding to variant. */
2710 enum bfd_architecture arch;
2711
2712 /* bfd_arch_info.mach corresponding to variant. */
2713 unsigned long mach;
2714
2715 /* Number of real registers. */
2716 int nregs;
2717
2718 /* Number of pseudo registers. */
2719 int npregs;
2720
2721 /* Number of total registers (the sum of nregs and npregs). */
2722 int num_tot_regs;
2723
2724 /* Table of register names; registers[R] is the name of the register
2725 number R. */
2726 const struct reg *regs;
2727 };
2728
2729 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2730
2731 static int
2732 num_registers (const struct reg *reg_list, int num_tot_regs)
2733 {
2734 int i;
2735 int nregs = 0;
2736
2737 for (i = 0; i < num_tot_regs; i++)
2738 if (!reg_list[i].pseudo)
2739 nregs++;
2740
2741 return nregs;
2742 }
2743
2744 static int
2745 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2746 {
2747 int i;
2748 int npregs = 0;
2749
2750 for (i = 0; i < num_tot_regs; i++)
2751 if (reg_list[i].pseudo)
2752 npregs ++;
2753
2754 return npregs;
2755 }
2756
2757 /* Information in this table comes from the following web sites:
2758 IBM: http://www.chips.ibm.com:80/products/embedded/
2759 Motorola: http://www.mot.com/SPS/PowerPC/
2760
2761 I'm sure I've got some of the variant descriptions not quite right.
2762 Please report any inaccuracies you find to GDB's maintainer.
2763
2764 If you add entries to this table, please be sure to allow the new
2765 value as an argument to the --with-cpu flag, in configure.in. */
2766
2767 static struct variant variants[] =
2768 {
2769
2770 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2771 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2772 registers_powerpc},
2773 {"power", "POWER user-level", bfd_arch_rs6000,
2774 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2775 registers_power},
2776 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2777 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2778 registers_403},
2779 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2780 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2781 registers_601},
2782 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2783 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2784 registers_602},
2785 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2786 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2787 registers_603},
2788 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2789 604, -1, -1, tot_num_registers (registers_604),
2790 registers_604},
2791 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2792 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2793 registers_403GC},
2794 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2795 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2796 registers_505},
2797 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2798 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2799 registers_860},
2800 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2801 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2802 registers_750},
2803 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2804 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2805 registers_7400},
2806 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2807 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2808 registers_e500},
2809
2810 /* 64-bit */
2811 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2812 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2813 registers_powerpc},
2814 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2815 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2816 registers_powerpc},
2817 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2818 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2819 registers_powerpc},
2820 {"a35", "PowerPC A35", bfd_arch_powerpc,
2821 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2822 registers_powerpc},
2823 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2824 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2825 registers_powerpc},
2826 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2827 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2828 registers_powerpc},
2829
2830 /* FIXME: I haven't checked the register sets of the following. */
2831 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2832 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2833 registers_power},
2834 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2835 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2836 registers_power},
2837 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2838 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2839 registers_power},
2840
2841 {0, 0, 0, 0, 0, 0, 0, 0}
2842 };
2843
2844 /* Initialize the number of registers and pseudo registers in each variant. */
2845
2846 static void
2847 init_variants (void)
2848 {
2849 struct variant *v;
2850
2851 for (v = variants; v->name; v++)
2852 {
2853 if (v->nregs == -1)
2854 v->nregs = num_registers (v->regs, v->num_tot_regs);
2855 if (v->npregs == -1)
2856 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2857 }
2858 }
2859
2860 /* Return the variant corresponding to architecture ARCH and machine number
2861 MACH. If no such variant exists, return null. */
2862
2863 static const struct variant *
2864 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2865 {
2866 const struct variant *v;
2867
2868 for (v = variants; v->name; v++)
2869 if (arch == v->arch && mach == v->mach)
2870 return v;
2871
2872 return NULL;
2873 }
2874
2875 static int
2876 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2877 {
2878 if (!info->disassembler_options)
2879 info->disassembler_options = "any";
2880
2881 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2882 return print_insn_big_powerpc (memaddr, info);
2883 else
2884 return print_insn_little_powerpc (memaddr, info);
2885 }
2886 \f
2887 static CORE_ADDR
2888 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2889 {
2890 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2891 }
2892
2893 static struct frame_id
2894 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2895 {
2896 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2897 SP_REGNUM),
2898 frame_pc_unwind (next_frame));
2899 }
2900
2901 struct rs6000_frame_cache
2902 {
2903 CORE_ADDR base;
2904 CORE_ADDR initial_sp;
2905 struct trad_frame_saved_reg *saved_regs;
2906 };
2907
2908 static struct rs6000_frame_cache *
2909 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2910 {
2911 struct rs6000_frame_cache *cache;
2912 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2914 struct rs6000_framedata fdata;
2915 int wordsize = tdep->wordsize;
2916 CORE_ADDR func, pc;
2917
2918 if ((*this_cache) != NULL)
2919 return (*this_cache);
2920 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2921 (*this_cache) = cache;
2922 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2923
2924 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2925 pc = frame_pc_unwind (next_frame);
2926 skip_prologue (func, pc, &fdata);
2927
2928 /* Figure out the parent's stack pointer. */
2929
2930 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2931 address of the current frame. Things might be easier if the
2932 ->frame pointed to the outer-most address of the frame. In
2933 the mean time, the address of the prev frame is used as the
2934 base address of this frame. */
2935 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2936
2937 /* If the function appears to be frameless, check a couple of likely
2938 indicators that we have simply failed to find the frame setup.
2939 Two common cases of this are missing symbols (i.e.
2940 frame_func_unwind returns the wrong address or 0), and assembly
2941 stubs which have a fast exit path but set up a frame on the slow
2942 path.
2943
2944 If the LR appears to return to this function, then presume that
2945 we have an ABI compliant frame that we failed to find. */
2946 if (fdata.frameless && fdata.lr_offset == 0)
2947 {
2948 CORE_ADDR saved_lr;
2949 int make_frame = 0;
2950
2951 saved_lr = frame_unwind_register_unsigned (next_frame,
2952 tdep->ppc_lr_regnum);
2953 if (func == 0 && saved_lr == pc)
2954 make_frame = 1;
2955 else if (func != 0)
2956 {
2957 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2958 if (func == saved_func)
2959 make_frame = 1;
2960 }
2961
2962 if (make_frame)
2963 {
2964 fdata.frameless = 0;
2965 fdata.lr_offset = wordsize;
2966 }
2967 }
2968
2969 if (!fdata.frameless)
2970 /* Frameless really means stackless. */
2971 cache->base = read_memory_addr (cache->base, wordsize);
2972
2973 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2974
2975 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2976 All fpr's from saved_fpr to fp31 are saved. */
2977
2978 if (fdata.saved_fpr >= 0)
2979 {
2980 int i;
2981 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2982
2983 /* If skip_prologue says floating-point registers were saved,
2984 but the current architecture has no floating-point registers,
2985 then that's strange. But we have no indices to even record
2986 the addresses under, so we just ignore it. */
2987 if (ppc_floating_point_unit_p (gdbarch))
2988 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2989 {
2990 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2991 fpr_addr += 8;
2992 }
2993 }
2994
2995 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2996 All gpr's from saved_gpr to gpr31 are saved. */
2997
2998 if (fdata.saved_gpr >= 0)
2999 {
3000 int i;
3001 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3002 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3003 {
3004 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3005 gpr_addr += wordsize;
3006 }
3007 }
3008
3009 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3010 All vr's from saved_vr to vr31 are saved. */
3011 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3012 {
3013 if (fdata.saved_vr >= 0)
3014 {
3015 int i;
3016 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3017 for (i = fdata.saved_vr; i < 32; i++)
3018 {
3019 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3020 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3021 }
3022 }
3023 }
3024
3025 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3026 All vr's from saved_ev to ev31 are saved. ????? */
3027 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3028 {
3029 if (fdata.saved_ev >= 0)
3030 {
3031 int i;
3032 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3033 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3034 {
3035 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3036 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3037 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3038 }
3039 }
3040 }
3041
3042 /* If != 0, fdata.cr_offset is the offset from the frame that
3043 holds the CR. */
3044 if (fdata.cr_offset != 0)
3045 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3046
3047 /* If != 0, fdata.lr_offset is the offset from the frame that
3048 holds the LR. */
3049 if (fdata.lr_offset != 0)
3050 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3051 /* The PC is found in the link register. */
3052 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3053
3054 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3055 holds the VRSAVE. */
3056 if (fdata.vrsave_offset != 0)
3057 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3058
3059 if (fdata.alloca_reg < 0)
3060 /* If no alloca register used, then fi->frame is the value of the
3061 %sp for this frame, and it is good enough. */
3062 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3063 else
3064 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3065 fdata.alloca_reg);
3066
3067 return cache;
3068 }
3069
3070 static void
3071 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3072 struct frame_id *this_id)
3073 {
3074 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3075 this_cache);
3076 (*this_id) = frame_id_build (info->base,
3077 frame_func_unwind (next_frame, NORMAL_FRAME));
3078 }
3079
3080 static void
3081 rs6000_frame_prev_register (struct frame_info *next_frame,
3082 void **this_cache,
3083 int regnum, int *optimizedp,
3084 enum lval_type *lvalp, CORE_ADDR *addrp,
3085 int *realnump, gdb_byte *valuep)
3086 {
3087 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3088 this_cache);
3089 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3090 optimizedp, lvalp, addrp, realnump, valuep);
3091 }
3092
3093 static const struct frame_unwind rs6000_frame_unwind =
3094 {
3095 NORMAL_FRAME,
3096 rs6000_frame_this_id,
3097 rs6000_frame_prev_register
3098 };
3099
3100 static const struct frame_unwind *
3101 rs6000_frame_sniffer (struct frame_info *next_frame)
3102 {
3103 return &rs6000_frame_unwind;
3104 }
3105
3106 \f
3107
3108 static CORE_ADDR
3109 rs6000_frame_base_address (struct frame_info *next_frame,
3110 void **this_cache)
3111 {
3112 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3113 this_cache);
3114 return info->initial_sp;
3115 }
3116
3117 static const struct frame_base rs6000_frame_base = {
3118 &rs6000_frame_unwind,
3119 rs6000_frame_base_address,
3120 rs6000_frame_base_address,
3121 rs6000_frame_base_address
3122 };
3123
3124 static const struct frame_base *
3125 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3126 {
3127 return &rs6000_frame_base;
3128 }
3129
3130 /* Initialize the current architecture based on INFO. If possible, re-use an
3131 architecture from ARCHES, which is a list of architectures already created
3132 during this debugging session.
3133
3134 Called e.g. at program startup, when reading a core file, and when reading
3135 a binary file. */
3136
3137 static struct gdbarch *
3138 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3139 {
3140 struct gdbarch *gdbarch;
3141 struct gdbarch_tdep *tdep;
3142 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3143 struct reg *regs;
3144 const struct variant *v;
3145 enum bfd_architecture arch;
3146 unsigned long mach;
3147 bfd abfd;
3148 int sysv_abi;
3149 asection *sect;
3150
3151 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3152 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3153
3154 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3155 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3156
3157 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3158
3159 /* Check word size. If INFO is from a binary file, infer it from
3160 that, else choose a likely default. */
3161 if (from_xcoff_exec)
3162 {
3163 if (bfd_xcoff_is_xcoff64 (info.abfd))
3164 wordsize = 8;
3165 else
3166 wordsize = 4;
3167 }
3168 else if (from_elf_exec)
3169 {
3170 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3171 wordsize = 8;
3172 else
3173 wordsize = 4;
3174 }
3175 else
3176 {
3177 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3178 wordsize = info.bfd_arch_info->bits_per_word /
3179 info.bfd_arch_info->bits_per_byte;
3180 else
3181 wordsize = 4;
3182 }
3183
3184 /* Find a candidate among extant architectures. */
3185 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3186 arches != NULL;
3187 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3188 {
3189 /* Word size in the various PowerPC bfd_arch_info structs isn't
3190 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3191 separate word size check. */
3192 tdep = gdbarch_tdep (arches->gdbarch);
3193 if (tdep && tdep->wordsize == wordsize)
3194 return arches->gdbarch;
3195 }
3196
3197 /* None found, create a new architecture from INFO, whose bfd_arch_info
3198 validity depends on the source:
3199 - executable useless
3200 - rs6000_host_arch() good
3201 - core file good
3202 - "set arch" trust blindly
3203 - GDB startup useless but harmless */
3204
3205 if (!from_xcoff_exec)
3206 {
3207 arch = info.bfd_arch_info->arch;
3208 mach = info.bfd_arch_info->mach;
3209 }
3210 else
3211 {
3212 arch = bfd_arch_powerpc;
3213 bfd_default_set_arch_mach (&abfd, arch, 0);
3214 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3215 mach = info.bfd_arch_info->mach;
3216 }
3217 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3218 tdep->wordsize = wordsize;
3219
3220 /* For e500 executables, the apuinfo section is of help here. Such
3221 section contains the identifier and revision number of each
3222 Application-specific Processing Unit that is present on the
3223 chip. The content of the section is determined by the assembler
3224 which looks at each instruction and determines which unit (and
3225 which version of it) can execute it. In our case we just look for
3226 the existance of the section. */
3227
3228 if (info.abfd)
3229 {
3230 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3231 if (sect)
3232 {
3233 arch = info.bfd_arch_info->arch;
3234 mach = bfd_mach_ppc_e500;
3235 bfd_default_set_arch_mach (&abfd, arch, mach);
3236 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3237 }
3238 }
3239
3240 gdbarch = gdbarch_alloc (&info, tdep);
3241
3242 /* Initialize the number of real and pseudo registers in each variant. */
3243 init_variants ();
3244
3245 /* Choose variant. */
3246 v = find_variant_by_arch (arch, mach);
3247 if (!v)
3248 return NULL;
3249
3250 tdep->regs = v->regs;
3251
3252 tdep->ppc_gp0_regnum = 0;
3253 tdep->ppc_toc_regnum = 2;
3254 tdep->ppc_ps_regnum = 65;
3255 tdep->ppc_cr_regnum = 66;
3256 tdep->ppc_lr_regnum = 67;
3257 tdep->ppc_ctr_regnum = 68;
3258 tdep->ppc_xer_regnum = 69;
3259 if (v->mach == bfd_mach_ppc_601)
3260 tdep->ppc_mq_regnum = 124;
3261 else if (arch == bfd_arch_rs6000)
3262 tdep->ppc_mq_regnum = 70;
3263 else
3264 tdep->ppc_mq_regnum = -1;
3265 tdep->ppc_fp0_regnum = 32;
3266 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3267 tdep->ppc_sr0_regnum = 71;
3268 tdep->ppc_vr0_regnum = -1;
3269 tdep->ppc_vrsave_regnum = -1;
3270 tdep->ppc_ev0_upper_regnum = -1;
3271 tdep->ppc_ev0_regnum = -1;
3272 tdep->ppc_ev31_regnum = -1;
3273 tdep->ppc_acc_regnum = -1;
3274 tdep->ppc_spefscr_regnum = -1;
3275
3276 set_gdbarch_pc_regnum (gdbarch, 64);
3277 set_gdbarch_sp_regnum (gdbarch, 1);
3278 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3279 set_gdbarch_fp0_regnum (gdbarch, 32);
3280 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3281 if (sysv_abi && wordsize == 8)
3282 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3283 else if (sysv_abi && wordsize == 4)
3284 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3285 else
3286 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3287
3288 /* Set lr_frame_offset. */
3289 if (wordsize == 8)
3290 tdep->lr_frame_offset = 16;
3291 else if (sysv_abi)
3292 tdep->lr_frame_offset = 4;
3293 else
3294 tdep->lr_frame_offset = 8;
3295
3296 if (v->arch == bfd_arch_rs6000)
3297 tdep->ppc_sr0_regnum = -1;
3298 else if (v->arch == bfd_arch_powerpc)
3299 switch (v->mach)
3300 {
3301 case bfd_mach_ppc:
3302 tdep->ppc_sr0_regnum = -1;
3303 tdep->ppc_vr0_regnum = 71;
3304 tdep->ppc_vrsave_regnum = 104;
3305 break;
3306 case bfd_mach_ppc_7400:
3307 tdep->ppc_vr0_regnum = 119;
3308 tdep->ppc_vrsave_regnum = 152;
3309 break;
3310 case bfd_mach_ppc_e500:
3311 tdep->ppc_toc_regnum = -1;
3312 tdep->ppc_ev0_upper_regnum = 32;
3313 tdep->ppc_ev0_regnum = 73;
3314 tdep->ppc_ev31_regnum = 104;
3315 tdep->ppc_acc_regnum = 71;
3316 tdep->ppc_spefscr_regnum = 72;
3317 tdep->ppc_fp0_regnum = -1;
3318 tdep->ppc_fpscr_regnum = -1;
3319 tdep->ppc_sr0_regnum = -1;
3320 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3321 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3322 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3323 break;
3324
3325 case bfd_mach_ppc64:
3326 case bfd_mach_ppc_620:
3327 case bfd_mach_ppc_630:
3328 case bfd_mach_ppc_a35:
3329 case bfd_mach_ppc_rs64ii:
3330 case bfd_mach_ppc_rs64iii:
3331 /* These processor's register sets don't have segment registers. */
3332 tdep->ppc_sr0_regnum = -1;
3333 break;
3334 }
3335 else
3336 internal_error (__FILE__, __LINE__,
3337 _("rs6000_gdbarch_init: "
3338 "received unexpected BFD 'arch' value"));
3339
3340 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3341
3342 /* Sanity check on registers. */
3343 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3344
3345 /* Select instruction printer. */
3346 if (arch == bfd_arch_rs6000)
3347 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3348 else
3349 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3350
3351 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3352
3353 set_gdbarch_num_regs (gdbarch, v->nregs);
3354 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3355 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3356 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3357 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3358
3359 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3360 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3361 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3362 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3363 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3364 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3365 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3366 if (sysv_abi)
3367 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3368 else
3369 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3370 set_gdbarch_char_signed (gdbarch, 0);
3371
3372 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3373 if (sysv_abi && wordsize == 8)
3374 /* PPC64 SYSV. */
3375 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3376 else if (!sysv_abi && wordsize == 4)
3377 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3378 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3379 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3380 224. */
3381 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3382
3383 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3384 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3385 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3386
3387 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3388 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3389
3390 if (sysv_abi && wordsize == 4)
3391 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3392 else if (sysv_abi && wordsize == 8)
3393 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3394 else
3395 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3396
3397 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3398 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3399
3400 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3401 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3402
3403 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3404 for the descriptor and ".FN" for the entry-point -- a user
3405 specifying "break FN" will unexpectedly end up with a breakpoint
3406 on the descriptor and not the function. This architecture method
3407 transforms any breakpoints on descriptors into breakpoints on the
3408 corresponding entry point. */
3409 if (sysv_abi && wordsize == 8)
3410 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3411
3412 /* Not sure on this. FIXMEmgo */
3413 set_gdbarch_frame_args_skip (gdbarch, 8);
3414
3415 if (!sysv_abi)
3416 {
3417 /* Handle RS/6000 function pointers (which are really function
3418 descriptors). */
3419 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3420 rs6000_convert_from_func_ptr_addr);
3421 }
3422
3423 /* Helpers for function argument information. */
3424 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3425
3426 /* Trampoline. */
3427 set_gdbarch_in_solib_return_trampoline
3428 (gdbarch, rs6000_in_solib_return_trampoline);
3429 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3430
3431 /* Hook in ABI-specific overrides, if they have been registered. */
3432 gdbarch_init_osabi (info, gdbarch);
3433
3434 switch (info.osabi)
3435 {
3436 case GDB_OSABI_LINUX:
3437 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3438 have altivec registers. If not, ptrace will fail the first time it's
3439 called to access one and will not be called again. This wart will
3440 be removed when Daniel Jacobowitz's proposal for autodetecting target
3441 registers is implemented. */
3442 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3443 {
3444 tdep->ppc_vr0_regnum = 71;
3445 tdep->ppc_vrsave_regnum = 104;
3446 }
3447 /* Fall Thru */
3448 case GDB_OSABI_NETBSD_AOUT:
3449 case GDB_OSABI_NETBSD_ELF:
3450 case GDB_OSABI_UNKNOWN:
3451 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3452 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3453 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3454 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3455 break;
3456 default:
3457 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3458
3459 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3460 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3461 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3462 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3463 }
3464
3465 init_sim_regno_table (gdbarch);
3466
3467 return gdbarch;
3468 }
3469
3470 static void
3471 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3472 {
3473 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3474
3475 if (tdep == NULL)
3476 return;
3477
3478 /* FIXME: Dump gdbarch_tdep. */
3479 }
3480
3481 /* Initialization code. */
3482
3483 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3484
3485 void
3486 _initialize_rs6000_tdep (void)
3487 {
3488 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3489 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3490 }
This page took 0.144834 seconds and 4 git commands to generate.