Add comments regarding breakpoint_re_set
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26
27 #include "xcoffsolib.h"
28
29 #include <sys/param.h>
30 #include <sys/dir.h>
31 #include <sys/user.h>
32 #include <signal.h>
33 #include <sys/ioctl.h>
34 #include <fcntl.h>
35
36 #include <a.out.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/core.h>
40 #include <sys/ldr.h>
41
42
43 extern struct obstack frame_cache_obstack;
44
45 extern int errno;
46
47 /* Nonzero if we just simulated a single step break. */
48 int one_stepped;
49
50 /* Breakpoint shadows for the single step instructions will be kept here. */
51
52 static struct sstep_breaks {
53 /* Address, or 0 if this is not in use. */
54 CORE_ADDR address;
55 /* Shadow contents. */
56 char data[4];
57 } stepBreaks[2];
58
59 /* Static function prototypes */
60
61 static CORE_ADDR
62 find_toc_address PARAMS ((CORE_ADDR pc));
63
64 static CORE_ADDR
65 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
66
67 static void
68 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
69 struct aix_framedata *fdatap));
70
71 /*
72 * Calculate the destination of a branch/jump. Return -1 if not a branch.
73 */
74 static CORE_ADDR
75 branch_dest (opcode, instr, pc, safety)
76 int opcode;
77 int instr;
78 CORE_ADDR pc;
79 CORE_ADDR safety;
80 {
81 register long offset;
82 CORE_ADDR dest;
83 int immediate;
84 int absolute;
85 int ext_op;
86
87 absolute = (int) ((instr >> 1) & 1);
88
89 switch (opcode) {
90 case 18 :
91 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
92
93 case 16 :
94 if (opcode != 18) /* br conditional */
95 immediate = ((instr & ~3) << 16) >> 16;
96 if (absolute)
97 dest = immediate;
98 else
99 dest = pc + immediate;
100 break;
101
102 case 19 :
103 ext_op = (instr>>1) & 0x3ff;
104
105 if (ext_op == 16) /* br conditional register */
106 dest = read_register (LR_REGNUM) & ~3;
107
108 else if (ext_op == 528) /* br cond to count reg */
109 dest = read_register (CTR_REGNUM) & ~3;
110
111 else return -1;
112 break;
113
114 default: return -1;
115 }
116 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
117 }
118
119
120
121 /* AIX does not support PT_STEP. Simulate it. */
122
123 void
124 single_step (signal)
125 int signal;
126 {
127 #define INSNLEN(OPCODE) 4
128
129 static char breakp[] = BREAKPOINT;
130 int ii, insn;
131 CORE_ADDR loc;
132 CORE_ADDR breaks[2];
133 int opcode;
134
135 if (!one_stepped) {
136 loc = read_pc ();
137
138 read_memory (loc, &insn, 4);
139
140 breaks[0] = loc + INSNLEN(insn);
141 opcode = insn >> 26;
142 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
143
144 /* Don't put two breakpoints on the same address. */
145 if (breaks[1] == breaks[0])
146 breaks[1] = -1;
147
148 stepBreaks[1].address = 0;
149
150 for (ii=0; ii < 2; ++ii) {
151
152 /* ignore invalid breakpoint. */
153 if ( breaks[ii] == -1)
154 continue;
155
156 read_memory (breaks[ii], stepBreaks[ii].data, 4);
157
158 write_memory (breaks[ii], breakp, 4);
159 stepBreaks[ii].address = breaks[ii];
160 }
161
162 one_stepped = 1;
163 } else {
164
165 /* remove step breakpoints. */
166 for (ii=0; ii < 2; ++ii)
167 if (stepBreaks[ii].address != 0)
168 write_memory
169 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
170
171 one_stepped = 0;
172 }
173 errno = 0; /* FIXME, don't ignore errors! */
174 /* What errors? {read,write}_memory call error(). */
175 }
176
177
178 /* return pc value after skipping a function prologue. */
179
180 skip_prologue (pc)
181 CORE_ADDR pc;
182 {
183 unsigned int tmp;
184 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
185
186 if (target_read_memory (pc, (char *)&op, sizeof (op)))
187 return pc; /* Can't access it -- assume no prologue. */
188 SWAP_TARGET_AND_HOST (&op, sizeof (op));
189
190 /* Assume that subsequent fetches can fail with low probability. */
191
192 if (op == 0x7c0802a6) { /* mflr r0 */
193 pc += 4;
194 op = read_memory_integer (pc, 4);
195 }
196
197 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
198 pc += 4;
199 op = read_memory_integer (pc, 4);
200 }
201
202 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
203 pc += 4;
204 op = read_memory_integer (pc, 4);
205
206 /* At this point, make sure this is not a trampoline function
207 (a function that simply calls another functions, and nothing else).
208 If the next is not a nop, this branch was part of the function
209 prologue. */
210
211 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
212 op == 0x0)
213 return pc - 4; /* don't skip over this branch */
214 }
215
216 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
217 pc += 4; /* store floating register double */
218 op = read_memory_integer (pc, 4);
219 }
220
221 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
222 pc += 4;
223 op = read_memory_integer (pc, 4);
224 }
225
226 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
227 (tmp == 0x9421) || /* stu r1, NUM(r1) */
228 (tmp == 0x93e1)) /* st r31,NUM(r1) */
229 {
230 pc += 4;
231 op = read_memory_integer (pc, 4);
232 }
233
234 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
235 pc += 4; /* l r30, ... */
236 op = read_memory_integer (pc, 4);
237 }
238
239 /* store parameters into stack */
240 while(
241 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
242 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
243 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
244 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
245 {
246 pc += 4; /* store fpr double */
247 op = read_memory_integer (pc, 4);
248 }
249
250 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
251 pc += 4; /* this happens if r31 is used as */
252 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
253
254 tmp = 0;
255 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
256 pc += 4; /* st r4, NUM(r31), ... */
257 op = read_memory_integer (pc, 4);
258 tmp += 0x20;
259 }
260 }
261 #if 0
262 /* I have problems with skipping over __main() that I need to address
263 * sometime. Previously, I used to use misc_function_vector which
264 * didn't work as well as I wanted to be. -MGO */
265
266 /* If the first thing after skipping a prolog is a branch to a function,
267 this might be a call to an initializer in main(), introduced by gcc2.
268 We'd like to skip over it as well. Fortunately, xlc does some extra
269 work before calling a function right after a prologue, thus we can
270 single out such gcc2 behaviour. */
271
272
273 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
274 op = read_memory_integer (pc+4, 4);
275
276 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
277
278 /* check and see if we are in main. If so, skip over this initializer
279 function as well. */
280
281 tmp = find_pc_misc_function (pc);
282 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
283 return pc + 8;
284 }
285 }
286 #endif /* 0 */
287
288 return pc;
289 }
290
291
292 /*************************************************************************
293 Support for creating pushind a dummy frame into the stack, and popping
294 frames, etc.
295 *************************************************************************/
296
297 /* The total size of dummy frame is 436, which is;
298
299 32 gpr's - 128 bytes
300 32 fpr's - 256 "
301 7 the rest - 28 "
302 and 24 extra bytes for the callee's link area. The last 24 bytes
303 for the link area might not be necessary, since it will be taken
304 care of by push_arguments(). */
305
306 #define DUMMY_FRAME_SIZE 436
307
308 #define DUMMY_FRAME_ADDR_SIZE 10
309
310 /* Make sure you initialize these in somewhere, in case gdb gives up what it
311 was debugging and starts debugging something else. FIXMEibm */
312
313 static int dummy_frame_count = 0;
314 static int dummy_frame_size = 0;
315 static CORE_ADDR *dummy_frame_addr = 0;
316
317 extern int stop_stack_dummy;
318
319 /* push a dummy frame into stack, save all register. Currently we are saving
320 only gpr's and fpr's, which is not good enough! FIXMEmgo */
321
322 void
323 push_dummy_frame ()
324 {
325 int sp, pc; /* stack pointer and link register */
326 int ii;
327
328 target_fetch_registers (-1);
329
330 if (dummy_frame_count >= dummy_frame_size) {
331 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
332 if (dummy_frame_addr)
333 dummy_frame_addr = (CORE_ADDR*) xrealloc
334 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
335 else
336 dummy_frame_addr = (CORE_ADDR*)
337 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
338 }
339
340 sp = read_register(SP_REGNUM);
341 pc = read_register(PC_REGNUM);
342
343 dummy_frame_addr [dummy_frame_count++] = sp;
344
345 /* Be careful! If the stack pointer is not decremented first, then kernel
346 thinks he is free to use the space underneath it. And kernel actually
347 uses that area for IPC purposes when executing ptrace(2) calls. So
348 before writing register values into the new frame, decrement and update
349 %sp first in order to secure your frame. */
350
351 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
352
353 /* gdb relies on the state of current_frame. We'd better update it,
354 otherwise things like do_registers_info() wouldn't work properly! */
355
356 flush_cached_frames ();
357 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
358
359 /* save program counter in link register's space. */
360 write_memory (sp+8, &pc, 4);
361
362 /* save all floating point and general purpose registers here. */
363
364 /* fpr's, f0..f31 */
365 for (ii = 0; ii < 32; ++ii)
366 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
367
368 /* gpr's r0..r31 */
369 for (ii=1; ii <=32; ++ii)
370 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
371
372 /* so far, 32*2 + 32 words = 384 bytes have been written.
373 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
374
375 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
376 write_memory (sp-384-(ii*4),
377 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
378 }
379
380 /* Save sp or so called back chain right here. */
381 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
382 sp -= DUMMY_FRAME_SIZE;
383
384 /* And finally, this is the back chain. */
385 write_memory (sp+8, &pc, 4);
386 }
387
388
389 /* Pop a dummy frame.
390
391 In rs6000 when we push a dummy frame, we save all of the registers. This
392 is usually done before user calls a function explicitly.
393
394 After a dummy frame is pushed, some instructions are copied into stack,
395 and stack pointer is decremented even more. Since we don't have a frame
396 pointer to get back to the parent frame of the dummy, we start having
397 trouble poping it. Therefore, we keep a dummy frame stack, keeping
398 addresses of dummy frames as such. When poping happens and when we
399 detect that was a dummy frame, we pop it back to its parent by using
400 dummy frame stack (`dummy_frame_addr' array).
401
402 FIXME: This whole concept is broken. You should be able to detect
403 a dummy stack frame *on the user's stack itself*. When you do,
404 then you know the format of that stack frame -- including its
405 saved SP register! There should *not* be a separate stack in the
406 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
407 */
408
409 pop_dummy_frame ()
410 {
411 CORE_ADDR sp, pc;
412 int ii;
413 sp = dummy_frame_addr [--dummy_frame_count];
414
415 /* restore all fpr's. */
416 for (ii = 1; ii <= 32; ++ii)
417 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
418
419 /* restore all gpr's */
420 for (ii=1; ii <= 32; ++ii) {
421 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
422 }
423
424 /* restore the rest of the registers. */
425 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
426 read_memory (sp-384-(ii*4),
427 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
428
429 read_memory (sp-(DUMMY_FRAME_SIZE-8),
430 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
431
432 /* when a dummy frame was being pushed, we had to decrement %sp first, in
433 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
434 one we should restore. Change it with the one we need. */
435
436 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
437
438 /* Now we can restore all registers. */
439
440 target_store_registers (-1);
441 pc = read_pc ();
442 flush_cached_frames ();
443 set_current_frame (create_new_frame (sp, pc));
444 }
445
446
447 /* pop the innermost frame, go back to the caller. */
448
449 void
450 pop_frame ()
451 {
452 int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
453 struct aix_framedata fdata;
454 FRAME fr = get_current_frame ();
455 int addr, ii;
456
457 pc = read_pc ();
458 sp = FRAME_FP (fr);
459
460 if (stop_stack_dummy && dummy_frame_count) {
461 pop_dummy_frame ();
462 return;
463 }
464
465 /* figure out previous %pc value. If the function is frameless, it is
466 still in the link register, otherwise walk the frames and retrieve the
467 saved %pc value in the previous frame. */
468
469 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
470 function_frame_info (addr, &fdata);
471
472 read_memory (sp, &prev_sp, 4);
473 if (fdata.frameless)
474 lr = read_register (LR_REGNUM);
475 else
476 read_memory (prev_sp+8, &lr, 4);
477
478 /* reset %pc value. */
479 write_register (PC_REGNUM, lr);
480
481 /* reset register values if any was saved earlier. */
482 addr = prev_sp - fdata.offset;
483
484 if (fdata.saved_gpr != -1)
485 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
486 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
487 addr += 4;
488 }
489
490 if (fdata.saved_fpr != -1)
491 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
492 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
493 addr += 8;
494 }
495
496 write_register (SP_REGNUM, prev_sp);
497 target_store_registers (-1);
498 flush_cached_frames ();
499 set_current_frame (create_new_frame (prev_sp, lr));
500 }
501
502
503 /* fixup the call sequence of a dummy function, with the real function address.
504 its argumets will be passed by gdb. */
505
506 void
507 fix_call_dummy(dummyname, pc, fun, nargs, type)
508 char *dummyname;
509 CORE_ADDR pc;
510 CORE_ADDR fun;
511 int nargs; /* not used */
512 int type; /* not used */
513 {
514 #define TOC_ADDR_OFFSET 20
515 #define TARGET_ADDR_OFFSET 28
516
517 int ii;
518 CORE_ADDR target_addr;
519 CORE_ADDR tocvalue;
520
521 target_addr = fun;
522 tocvalue = find_toc_address (target_addr);
523
524 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
525 ii = (ii & 0xffff0000) | (tocvalue >> 16);
526 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
527
528 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
529 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
530 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
531
532 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
533 ii = (ii & 0xffff0000) | (target_addr >> 16);
534 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
535
536 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
537 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
538 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
539 }
540
541
542 /* return information about a function frame.
543 in struct aix_frameinfo fdata:
544 - frameless is TRUE, if function does not have a frame.
545 - nosavedpc is TRUE, if function does not save %pc value in its frame.
546 - offset is the number of bytes used in the frame to save registers.
547 - saved_gpr is the number of the first saved gpr.
548 - saved_fpr is the number of the first saved fpr.
549 - alloca_reg is the number of the register used for alloca() handling.
550 Otherwise -1.
551 */
552 void
553 function_frame_info (pc, fdata)
554 CORE_ADDR pc;
555 struct aix_framedata *fdata;
556 {
557 unsigned int tmp;
558 register unsigned int op;
559
560 fdata->offset = 0;
561 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
562 fdata->frameless = 1;
563
564 op = read_memory_integer (pc, 4);
565 if (op == 0x7c0802a6) { /* mflr r0 */
566 pc += 4;
567 op = read_memory_integer (pc, 4);
568 fdata->nosavedpc = 0;
569 fdata->frameless = 0;
570 }
571 else /* else, pc is not saved */
572 fdata->nosavedpc = 1;
573
574 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
575 pc += 4;
576 op = read_memory_integer (pc, 4);
577 fdata->frameless = 0;
578 }
579
580 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
581 pc += 4;
582 op = read_memory_integer (pc, 4);
583 /* At this point, make sure this is not a trampoline function
584 (a function that simply calls another functions, and nothing else).
585 If the next is not a nop, this branch was part of the function
586 prologue. */
587
588 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
589 op == 0x0)
590 return; /* prologue is over */
591 fdata->frameless = 0;
592 }
593
594 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
595 pc += 4; /* store floating register double */
596 op = read_memory_integer (pc, 4);
597 fdata->frameless = 0;
598 }
599
600 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
601 int tmp2;
602 fdata->saved_gpr = (op >> 21) & 0x1f;
603 tmp2 = op & 0xffff;
604 if (tmp2 > 0x7fff)
605 tmp2 = (~0 &~ 0xffff) | tmp2;
606
607 if (tmp2 < 0) {
608 tmp2 = tmp2 * -1;
609 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
610 if ( fdata->saved_fpr > 0)
611 fdata->saved_fpr = 32 - fdata->saved_fpr;
612 else
613 fdata->saved_fpr = -1;
614 }
615 fdata->offset = tmp2;
616 pc += 4;
617 op = read_memory_integer (pc, 4);
618 fdata->frameless = 0;
619 }
620
621 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
622 (tmp == 0x9421) || /* stu r1, NUM(r1) */
623 (tmp == 0x93e1)) /* st r31, NUM(r1) */
624 {
625 int tmp2;
626
627 /* gcc takes a short cut and uses this instruction to save r31 only. */
628
629 if (tmp == 0x93e1) {
630 if (fdata->offset)
631 /* fatal ("Unrecognized prolog."); */
632 printf ("Unrecognized prolog!\n");
633
634 fdata->saved_gpr = 31;
635 tmp2 = op & 0xffff;
636 if (tmp2 > 0x7fff) {
637 tmp2 = - ((~0 &~ 0xffff) | tmp2);
638 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
639 if ( fdata->saved_fpr > 0)
640 fdata->saved_fpr = 32 - fdata->saved_fpr;
641 else
642 fdata->saved_fpr = -1;
643 }
644 fdata->offset = tmp2;
645 }
646 pc += 4;
647 op = read_memory_integer (pc, 4);
648 fdata->frameless = 0;
649 }
650
651 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
652 pc += 4; /* l r30, ... */
653 op = read_memory_integer (pc, 4);
654 fdata->frameless = 0;
655 }
656
657 /* store parameters into stack */
658 while(
659 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
660 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
661 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
662 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
663 {
664 pc += 4; /* store fpr double */
665 op = read_memory_integer (pc, 4);
666 fdata->frameless = 0;
667 }
668
669 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
670 fdata->alloca_reg = 31;
671 fdata->frameless = 0;
672 }
673 }
674
675
676 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
677 eight words of the argument list (that might be less than eight parameters if
678 some parameters occupy more than one word) are passed in r3..r11 registers.
679 float and double parameters are passed in fpr's, in addition to that. Rest of
680 the parameters if any are passed in user stack. There might be cases in which
681 half of the parameter is copied into registers, the other half is pushed into
682 stack.
683
684 If the function is returning a structure, then the return address is passed
685 in r3, then the first 7 words of the parametes can be passed in registers,
686 starting from r4. */
687
688 CORE_ADDR
689 push_arguments (nargs, args, sp, struct_return, struct_addr)
690 int nargs;
691 value *args;
692 CORE_ADDR sp;
693 int struct_return;
694 CORE_ADDR struct_addr;
695 {
696 int ii, len;
697 int argno; /* current argument number */
698 int argbytes; /* current argument byte */
699 char tmp_buffer [50];
700 value arg;
701 int f_argno = 0; /* current floating point argno */
702
703 CORE_ADDR saved_sp, pc;
704
705 if ( dummy_frame_count <= 0)
706 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
707
708 /* The first eight words of ther arguments are passed in registers. Copy
709 them appropriately.
710
711 If the function is returning a `struct', then the first word (which
712 will be passed in r3) is used for struct return address. In that
713 case we should advance one word and start from r4 register to copy
714 parameters. */
715
716 ii = struct_return ? 1 : 0;
717
718 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
719
720 arg = value_arg_coerce (args[argno]);
721 len = TYPE_LENGTH (VALUE_TYPE (arg));
722
723 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
724
725 /* floating point arguments are passed in fpr's, as well as gpr's.
726 There are 13 fpr's reserved for passing parameters. At this point
727 there is no way we would run out of them. */
728
729 if (len > 8)
730 printf (
731 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
732
733 bcopy (VALUE_CONTENTS (arg),
734 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
735 ++f_argno;
736 }
737
738 if (len > 4) {
739
740 /* Argument takes more than one register. */
741 while (argbytes < len) {
742
743 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
744 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
745 &registers[REGISTER_BYTE(ii+3)],
746 (len - argbytes) > 4 ? 4 : len - argbytes);
747 ++ii, argbytes += 4;
748
749 if (ii >= 8)
750 goto ran_out_of_registers_for_arguments;
751 }
752 argbytes = 0;
753 --ii;
754 }
755 else { /* Argument can fit in one register. No problem. */
756 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
757 bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
758 }
759 ++argno;
760 }
761
762 ran_out_of_registers_for_arguments:
763
764 /* location for 8 parameters are always reserved. */
765 sp -= 4 * 8;
766
767 /* another six words for back chain, TOC register, link register, etc. */
768 sp -= 24;
769
770 /* if there are more arguments, allocate space for them in
771 the stack, then push them starting from the ninth one. */
772
773 if ((argno < nargs) || argbytes) {
774 int space = 0, jj;
775 value val;
776
777 if (argbytes) {
778 space += ((len - argbytes + 3) & -4);
779 jj = argno + 1;
780 }
781 else
782 jj = argno;
783
784 for (; jj < nargs; ++jj) {
785 val = value_arg_coerce (args[jj]);
786 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
787 }
788
789 /* add location required for the rest of the parameters */
790 space = (space + 7) & -8;
791 sp -= space;
792
793 /* This is another instance we need to be concerned about securing our
794 stack space. If we write anything underneath %sp (r1), we might conflict
795 with the kernel who thinks he is free to use this area. So, update %sp
796 first before doing anything else. */
797
798 write_register (SP_REGNUM, sp);
799
800 /* if the last argument copied into the registers didn't fit there
801 completely, push the rest of it into stack. */
802
803 if (argbytes) {
804 write_memory (
805 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
806 ++argno;
807 ii += ((len - argbytes + 3) & -4) / 4;
808 }
809
810 /* push the rest of the arguments into stack. */
811 for (; argno < nargs; ++argno) {
812
813 arg = value_arg_coerce (args[argno]);
814 len = TYPE_LENGTH (VALUE_TYPE (arg));
815
816
817 /* float types should be passed in fpr's, as well as in the stack. */
818 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
819
820 if (len > 8)
821 printf (
822 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
823
824 bcopy (VALUE_CONTENTS (arg),
825 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
826 ++f_argno;
827 }
828
829 write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
830 ii += ((len + 3) & -4) / 4;
831 }
832 }
833 else
834 /* Secure stack areas first, before doing anything else. */
835 write_register (SP_REGNUM, sp);
836
837 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
838 read_memory (saved_sp, tmp_buffer, 24);
839 write_memory (sp, tmp_buffer, 24);
840
841 write_memory (sp, &saved_sp, 4); /* set back chain properly */
842
843 target_store_registers (-1);
844 return sp;
845 }
846
847 /* a given return value in `regbuf' with a type `valtype', extract and copy its
848 value into `valbuf' */
849
850 void
851 extract_return_value (valtype, regbuf, valbuf)
852 struct type *valtype;
853 char regbuf[REGISTER_BYTES];
854 char *valbuf;
855 {
856
857 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
858
859 double dd; float ff;
860 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
861 We need to truncate the return value into float size (4 byte) if
862 necessary. */
863
864 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
865 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
866 TYPE_LENGTH (valtype));
867 else { /* float */
868 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
869 ff = (float)dd;
870 bcopy (&ff, valbuf, sizeof(float));
871 }
872 }
873 else
874 /* return value is copied starting from r3. */
875 bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
876 }
877
878
879 /* keep structure return address in this variable.
880 FIXME: This is a horrid kludge which should not be allowed to continue
881 living. This only allows a single nested call to a structure-returning
882 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
883
884 CORE_ADDR rs6000_struct_return_address;
885
886
887 /* Throw away this debugging code. FIXMEmgo. */
888 void
889 print_frame(fram)
890 int fram;
891 {
892 int ii, val;
893 for (ii=0; ii<40; ++ii) {
894 if ((ii % 4) == 0)
895 printf ("\n");
896 val = read_memory_integer (fram + ii * 4, 4);
897 printf ("0x%08x\t", val);
898 }
899 printf ("\n");
900 }
901
902
903
904 /* Indirect function calls use a piece of trampoline code to do context
905 switching, i.e. to set the new TOC table. Skip such code if we are on
906 its first instruction (as when we have single-stepped to here).
907 Result is desired PC to step until, or NULL if we are not in
908 trampoline code. */
909
910 CORE_ADDR
911 skip_trampoline_code (pc)
912 CORE_ADDR pc;
913 {
914 register unsigned int ii, op;
915
916 static unsigned trampoline_code[] = {
917 0x800b0000, /* l r0,0x0(r11) */
918 0x90410014, /* st r2,0x14(r1) */
919 0x7c0903a6, /* mtctr r0 */
920 0x804b0004, /* l r2,0x4(r11) */
921 0x816b0008, /* l r11,0x8(r11) */
922 0x4e800420, /* bctr */
923 0x4e800020, /* br */
924 0
925 };
926
927 for (ii=0; trampoline_code[ii]; ++ii) {
928 op = read_memory_integer (pc + (ii*4), 4);
929 if (op != trampoline_code [ii])
930 return NULL;
931 }
932 ii = read_register (11); /* r11 holds destination addr */
933 pc = read_memory_integer (ii, 4); /* (r11) value */
934 return pc;
935 }
936
937
938 /* Determines whether the function FI has a frame on the stack or not.
939 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
940 second argument of 0, and from the FRAME_SAVED_PC macro with a
941 second argument of 1. */
942
943 int
944 frameless_function_invocation (fi, pcsaved)
945 struct frame_info *fi;
946 int pcsaved;
947 {
948 CORE_ADDR func_start;
949 struct aix_framedata fdata;
950
951 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
952
953 /* If we failed to find the start of the function, it is a mistake
954 to inspect the instructions. */
955
956 if (!func_start)
957 return 0;
958
959 function_frame_info (func_start, &fdata);
960 return pcsaved ? fdata.nosavedpc : fdata.frameless;
961 }
962
963
964 /* If saved registers of frame FI are not known yet, read and cache them.
965 &FDATAP contains aix_framedata; TDATAP can be NULL,
966 in which case the framedata are read. */
967
968 static void
969 frame_get_cache_fsr (fi, fdatap)
970 struct frame_info *fi;
971 struct aix_framedata *fdatap;
972 {
973 int ii;
974 CORE_ADDR frame_addr;
975 struct aix_framedata work_fdata;
976
977 if (fi->cache_fsr)
978 return;
979
980 if (fdatap == NULL) {
981 fdatap = &work_fdata;
982 function_frame_info (get_pc_function_start (fi->pc), fdatap);
983 }
984
985 fi->cache_fsr = (struct frame_saved_regs *)
986 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
987 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
988
989 if (fi->prev && fi->prev->frame)
990 frame_addr = fi->prev->frame;
991 else
992 frame_addr = read_memory_integer (fi->frame, 4);
993
994 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
995 All fpr's from saved_fpr to fp31 are saved right underneath caller
996 stack pointer, starting from fp31 first. */
997
998 if (fdatap->saved_fpr >= 0) {
999 for (ii=31; ii >= fdatap->saved_fpr; --ii)
1000 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
1001 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1002 }
1003
1004 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1005 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1006 starting from r31 first. */
1007
1008 if (fdatap->saved_gpr >= 0)
1009 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1010 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1011 }
1012
1013 /* Return the address of a frame. This is the inital %sp value when the frame
1014 was first allocated. For functions calling alloca(), it might be saved in
1015 an alloca register. */
1016
1017 CORE_ADDR
1018 frame_initial_stack_address (fi)
1019 struct frame_info *fi;
1020 {
1021 CORE_ADDR tmpaddr;
1022 struct aix_framedata fdata;
1023 struct frame_info *callee_fi;
1024
1025 /* if the initial stack pointer (frame address) of this frame is known,
1026 just return it. */
1027
1028 if (fi->initial_sp)
1029 return fi->initial_sp;
1030
1031 /* find out if this function is using an alloca register.. */
1032
1033 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1034
1035 /* if saved registers of this frame are not known yet, read and cache them. */
1036
1037 if (!fi->cache_fsr)
1038 frame_get_cache_fsr (fi, &fdata);
1039
1040 /* If no alloca register used, then fi->frame is the value of the %sp for
1041 this frame, and it is good enough. */
1042
1043 if (fdata.alloca_reg < 0) {
1044 fi->initial_sp = fi->frame;
1045 return fi->initial_sp;
1046 }
1047
1048 /* This function has an alloca register. If this is the top-most frame
1049 (with the lowest address), the value in alloca register is good. */
1050
1051 if (!fi->next)
1052 return fi->initial_sp = read_register (fdata.alloca_reg);
1053
1054 /* Otherwise, this is a caller frame. Callee has usually already saved
1055 registers, but there are exceptions (such as when the callee
1056 has no parameters). Find the address in which caller's alloca
1057 register is saved. */
1058
1059 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1060
1061 if (!callee_fi->cache_fsr)
1062 frame_get_cache_fsr (callee_fi, NULL);
1063
1064 /* this is the address in which alloca register is saved. */
1065
1066 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1067 if (tmpaddr) {
1068 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1069 return fi->initial_sp;
1070 }
1071
1072 /* Go look into deeper levels of the frame chain to see if any one of
1073 the callees has saved alloca register. */
1074 }
1075
1076 /* If alloca register was not saved, by the callee (or any of its callees)
1077 then the value in the register is still good. */
1078
1079 return fi->initial_sp = read_register (fdata.alloca_reg);
1080 }
1081
1082 /* xcoff_relocate_symtab - hook for symbol table relocation.
1083 also reads shared libraries.. */
1084
1085 xcoff_relocate_symtab (pid)
1086 unsigned int pid;
1087 {
1088 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1089
1090 struct ld_info *ldi;
1091 int temp;
1092
1093 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1094
1095 /* According to my humble theory, AIX has some timing problems and
1096 when the user stack grows, kernel doesn't update stack info in time
1097 and ptrace calls step on user stack. That is why we sleep here a little,
1098 and give kernel to update its internals. */
1099
1100 usleep (36000);
1101
1102 errno = 0;
1103 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1104 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1105 if (errno) {
1106 perror_with_name ("ptrace ldinfo");
1107 return 0;
1108 }
1109
1110 vmap_ldinfo(ldi);
1111
1112 do {
1113 add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
1114 } while (ldi->ldinfo_next
1115 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1116
1117 #if 0
1118 /* Now that we've jumbled things around, re-sort them. */
1119 sort_minimal_symbols ();
1120 #endif
1121
1122 /* relocate the exec and core sections as well. */
1123 vmap_exec ();
1124 }
1125 \f
1126 /* Keep an array of load segment information and their TOC table addresses.
1127 This info will be useful when calling a shared library function by hand. */
1128
1129 struct loadinfo {
1130 CORE_ADDR textorg, dataorg;
1131 unsigned long toc_offset;
1132 };
1133
1134 #define LOADINFOLEN 10
1135
1136 static struct loadinfo *loadinfo = NULL;
1137 static int loadinfolen = 0;
1138 static int loadinfotocindex = 0;
1139 static int loadinfotextindex = 0;
1140
1141
1142 void
1143 xcoff_init_loadinfo ()
1144 {
1145 loadinfotocindex = 0;
1146 loadinfotextindex = 0;
1147
1148 if (loadinfolen == 0) {
1149 loadinfo = (struct loadinfo *)
1150 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1151 loadinfolen = LOADINFOLEN;
1152 }
1153 }
1154
1155
1156 /* FIXME -- this is never called! */
1157 void
1158 free_loadinfo ()
1159 {
1160 if (loadinfo)
1161 free (loadinfo);
1162 loadinfo = NULL;
1163 loadinfolen = 0;
1164 loadinfotocindex = 0;
1165 loadinfotextindex = 0;
1166 }
1167
1168 /* this is called from xcoffread.c */
1169
1170 void
1171 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1172 {
1173 while (loadinfotocindex >= loadinfolen) {
1174 loadinfolen += LOADINFOLEN;
1175 loadinfo = (struct loadinfo *)
1176 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1177 }
1178 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1179 }
1180
1181
1182 void
1183 add_text_to_loadinfo (textaddr, dataaddr)
1184 CORE_ADDR textaddr;
1185 CORE_ADDR dataaddr;
1186 {
1187 while (loadinfotextindex >= loadinfolen) {
1188 loadinfolen += LOADINFOLEN;
1189 loadinfo = (struct loadinfo *)
1190 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1191 }
1192 loadinfo [loadinfotextindex].textorg = textaddr;
1193 loadinfo [loadinfotextindex].dataorg = dataaddr;
1194 ++loadinfotextindex;
1195 }
1196
1197
1198 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1199 of a member of this array are correlated with the "toc_offset"
1200 element of the same member. But they are sequentially assigned in wildly
1201 different places, and probably there is no correlation. FIXME! */
1202
1203 static CORE_ADDR
1204 find_toc_address (pc)
1205 CORE_ADDR pc;
1206 {
1207 int ii, toc_entry, tocbase = 0;
1208
1209 for (ii=0; ii < loadinfotextindex; ++ii)
1210 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1211 toc_entry = ii;
1212 tocbase = loadinfo[ii].textorg;
1213 }
1214
1215 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1216 }
This page took 0.054921 seconds and 4 git commands to generate.