* gdbserver/{remote-gutils.c remote-server.c Makefile.in
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26
27 #include "xcoffsolib.h"
28
29 #include <sys/param.h>
30 #include <sys/dir.h>
31 #include <sys/user.h>
32 #include <signal.h>
33 #include <sys/ioctl.h>
34 #include <fcntl.h>
35
36 #include <a.out.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/core.h>
40 #include <sys/ldr.h>
41
42
43 extern struct obstack frame_cache_obstack;
44
45 extern int errno;
46
47 /* Nonzero if we just simulated a single step break. */
48 int one_stepped;
49
50 /* Breakpoint shadows for the single step instructions will be kept here. */
51
52 static struct sstep_breaks {
53 /* Address, or 0 if this is not in use. */
54 CORE_ADDR address;
55 /* Shadow contents. */
56 char data[4];
57 } stepBreaks[2];
58
59 /* Static function prototypes */
60
61 static CORE_ADDR
62 find_toc_address PARAMS ((CORE_ADDR pc));
63
64 static CORE_ADDR
65 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
66
67 static void
68 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
69 struct aix_framedata *fdatap));
70
71 /*
72 * Calculate the destination of a branch/jump. Return -1 if not a branch.
73 */
74 static CORE_ADDR
75 branch_dest (opcode, instr, pc, safety)
76 int opcode;
77 int instr;
78 CORE_ADDR pc;
79 CORE_ADDR safety;
80 {
81 register long offset;
82 CORE_ADDR dest;
83 int immediate;
84 int absolute;
85 int ext_op;
86
87 absolute = (int) ((instr >> 1) & 1);
88
89 switch (opcode) {
90 case 18 :
91 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
92
93 case 16 :
94 if (opcode != 18) /* br conditional */
95 immediate = ((instr & ~3) << 16) >> 16;
96 if (absolute)
97 dest = immediate;
98 else
99 dest = pc + immediate;
100 break;
101
102 case 19 :
103 ext_op = (instr>>1) & 0x3ff;
104
105 if (ext_op == 16) /* br conditional register */
106 dest = read_register (LR_REGNUM) & ~3;
107
108 else if (ext_op == 528) /* br cond to count reg */
109 {
110 dest = read_register (CTR_REGNUM) & ~3;
111
112 /* If we are about to execute a system call, dest is something
113 like 0x22fc or 0x3b00. Upon completion the system call
114 will return to the address in the link register. */
115 if (dest < TEXT_SEGMENT_BASE)
116 dest = read_register (LR_REGNUM) & ~3;
117 }
118 else return -1;
119 break;
120
121 default: return -1;
122 }
123 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
124 }
125
126
127
128 /* AIX does not support PT_STEP. Simulate it. */
129
130 void
131 single_step (signal)
132 int signal;
133 {
134 #define INSNLEN(OPCODE) 4
135
136 static char breakp[] = BREAKPOINT;
137 int ii, insn;
138 CORE_ADDR loc;
139 CORE_ADDR breaks[2];
140 int opcode;
141
142 if (!one_stepped) {
143 loc = read_pc ();
144
145 read_memory (loc, (char *) &insn, 4);
146
147 breaks[0] = loc + INSNLEN(insn);
148 opcode = insn >> 26;
149 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
150
151 /* Don't put two breakpoints on the same address. */
152 if (breaks[1] == breaks[0])
153 breaks[1] = -1;
154
155 stepBreaks[1].address = 0;
156
157 for (ii=0; ii < 2; ++ii) {
158
159 /* ignore invalid breakpoint. */
160 if ( breaks[ii] == -1)
161 continue;
162
163 read_memory (breaks[ii], stepBreaks[ii].data, 4);
164
165 write_memory (breaks[ii], breakp, 4);
166 stepBreaks[ii].address = breaks[ii];
167 }
168
169 one_stepped = 1;
170 } else {
171
172 /* remove step breakpoints. */
173 for (ii=0; ii < 2; ++ii)
174 if (stepBreaks[ii].address != 0)
175 write_memory
176 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
177
178 one_stepped = 0;
179 }
180 errno = 0; /* FIXME, don't ignore errors! */
181 /* What errors? {read,write}_memory call error(). */
182 }
183
184
185 /* return pc value after skipping a function prologue. */
186
187 skip_prologue (pc)
188 CORE_ADDR pc;
189 {
190 unsigned int tmp;
191 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
192
193 if (target_read_memory (pc, (char *)&op, sizeof (op)))
194 return pc; /* Can't access it -- assume no prologue. */
195 SWAP_TARGET_AND_HOST (&op, sizeof (op));
196
197 /* Assume that subsequent fetches can fail with low probability. */
198
199 if (op == 0x7c0802a6) { /* mflr r0 */
200 pc += 4;
201 op = read_memory_integer (pc, 4);
202 }
203
204 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
205 pc += 4;
206 op = read_memory_integer (pc, 4);
207 }
208
209 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
210 pc += 4;
211 op = read_memory_integer (pc, 4);
212
213 /* At this point, make sure this is not a trampoline function
214 (a function that simply calls another functions, and nothing else).
215 If the next is not a nop, this branch was part of the function
216 prologue. */
217
218 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
219 op == 0x0)
220 return pc - 4; /* don't skip over this branch */
221 }
222
223 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
224 pc += 4; /* store floating register double */
225 op = read_memory_integer (pc, 4);
226 }
227
228 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
229 pc += 4;
230 op = read_memory_integer (pc, 4);
231 }
232
233 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
234 (tmp == 0x9421) || /* stu r1, NUM(r1) */
235 (tmp == 0x93e1)) /* st r31,NUM(r1) */
236 {
237 pc += 4;
238 op = read_memory_integer (pc, 4);
239 }
240
241 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
242 pc += 4; /* l r30, ... */
243 op = read_memory_integer (pc, 4);
244 }
245
246 /* store parameters into stack */
247 while(
248 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
249 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
250 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
251 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
252 {
253 pc += 4; /* store fpr double */
254 op = read_memory_integer (pc, 4);
255 }
256
257 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
258 pc += 4; /* this happens if r31 is used as */
259 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
260
261 tmp = 0;
262 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
263 pc += 4; /* st r4, NUM(r31), ... */
264 op = read_memory_integer (pc, 4);
265 tmp += 0x20;
266 }
267 }
268 #if 0
269 /* I have problems with skipping over __main() that I need to address
270 * sometime. Previously, I used to use misc_function_vector which
271 * didn't work as well as I wanted to be. -MGO */
272
273 /* If the first thing after skipping a prolog is a branch to a function,
274 this might be a call to an initializer in main(), introduced by gcc2.
275 We'd like to skip over it as well. Fortunately, xlc does some extra
276 work before calling a function right after a prologue, thus we can
277 single out such gcc2 behaviour. */
278
279
280 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
281 op = read_memory_integer (pc+4, 4);
282
283 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
284
285 /* check and see if we are in main. If so, skip over this initializer
286 function as well. */
287
288 tmp = find_pc_misc_function (pc);
289 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
290 return pc + 8;
291 }
292 }
293 #endif /* 0 */
294
295 return pc;
296 }
297
298
299 /*************************************************************************
300 Support for creating pushind a dummy frame into the stack, and popping
301 frames, etc.
302 *************************************************************************/
303
304 /* The total size of dummy frame is 436, which is;
305
306 32 gpr's - 128 bytes
307 32 fpr's - 256 "
308 7 the rest - 28 "
309 and 24 extra bytes for the callee's link area. The last 24 bytes
310 for the link area might not be necessary, since it will be taken
311 care of by push_arguments(). */
312
313 #define DUMMY_FRAME_SIZE 436
314
315 #define DUMMY_FRAME_ADDR_SIZE 10
316
317 /* Make sure you initialize these in somewhere, in case gdb gives up what it
318 was debugging and starts debugging something else. FIXMEibm */
319
320 static int dummy_frame_count = 0;
321 static int dummy_frame_size = 0;
322 static CORE_ADDR *dummy_frame_addr = 0;
323
324 extern int stop_stack_dummy;
325
326 /* push a dummy frame into stack, save all register. Currently we are saving
327 only gpr's and fpr's, which is not good enough! FIXMEmgo */
328
329 void
330 push_dummy_frame ()
331 {
332 /* stack pointer. */
333 CORE_ADDR sp;
334
335 /* link register. */
336 CORE_ADDR pc;
337 /* Same thing, target byte order. */
338 char pc_targ[4];
339
340 int ii;
341
342 target_fetch_registers (-1);
343
344 if (dummy_frame_count >= dummy_frame_size) {
345 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
346 if (dummy_frame_addr)
347 dummy_frame_addr = (CORE_ADDR*) xrealloc
348 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
349 else
350 dummy_frame_addr = (CORE_ADDR*)
351 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
352 }
353
354 sp = read_register(SP_REGNUM);
355 pc = read_register(PC_REGNUM);
356 memcpy (pc_targ, (char *) &pc, 4);
357
358 dummy_frame_addr [dummy_frame_count++] = sp;
359
360 /* Be careful! If the stack pointer is not decremented first, then kernel
361 thinks he is free to use the space underneath it. And kernel actually
362 uses that area for IPC purposes when executing ptrace(2) calls. So
363 before writing register values into the new frame, decrement and update
364 %sp first in order to secure your frame. */
365
366 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
367
368 /* gdb relies on the state of current_frame. We'd better update it,
369 otherwise things like do_registers_info() wouldn't work properly! */
370
371 flush_cached_frames ();
372 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
373
374 /* save program counter in link register's space. */
375 write_memory (sp+8, pc_targ, 4);
376
377 /* save all floating point and general purpose registers here. */
378
379 /* fpr's, f0..f31 */
380 for (ii = 0; ii < 32; ++ii)
381 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
382
383 /* gpr's r0..r31 */
384 for (ii=1; ii <=32; ++ii)
385 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
386
387 /* so far, 32*2 + 32 words = 384 bytes have been written.
388 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
389
390 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
391 write_memory (sp-384-(ii*4),
392 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
393 }
394
395 /* Save sp or so called back chain right here. */
396 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
397 sp -= DUMMY_FRAME_SIZE;
398
399 /* And finally, this is the back chain. */
400 write_memory (sp+8, pc_targ, 4);
401 }
402
403
404 /* Pop a dummy frame.
405
406 In rs6000 when we push a dummy frame, we save all of the registers. This
407 is usually done before user calls a function explicitly.
408
409 After a dummy frame is pushed, some instructions are copied into stack,
410 and stack pointer is decremented even more. Since we don't have a frame
411 pointer to get back to the parent frame of the dummy, we start having
412 trouble poping it. Therefore, we keep a dummy frame stack, keeping
413 addresses of dummy frames as such. When poping happens and when we
414 detect that was a dummy frame, we pop it back to its parent by using
415 dummy frame stack (`dummy_frame_addr' array).
416
417 FIXME: This whole concept is broken. You should be able to detect
418 a dummy stack frame *on the user's stack itself*. When you do,
419 then you know the format of that stack frame -- including its
420 saved SP register! There should *not* be a separate stack in the
421 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
422 */
423
424 pop_dummy_frame ()
425 {
426 CORE_ADDR sp, pc;
427 int ii;
428 sp = dummy_frame_addr [--dummy_frame_count];
429
430 /* restore all fpr's. */
431 for (ii = 1; ii <= 32; ++ii)
432 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
433
434 /* restore all gpr's */
435 for (ii=1; ii <= 32; ++ii) {
436 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
437 }
438
439 /* restore the rest of the registers. */
440 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
441 read_memory (sp-384-(ii*4),
442 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
443
444 read_memory (sp-(DUMMY_FRAME_SIZE-8),
445 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
446
447 /* when a dummy frame was being pushed, we had to decrement %sp first, in
448 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
449 one we should restore. Change it with the one we need. */
450
451 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
452
453 /* Now we can restore all registers. */
454
455 target_store_registers (-1);
456 pc = read_pc ();
457 flush_cached_frames ();
458 set_current_frame (create_new_frame (sp, pc));
459 }
460
461
462 /* pop the innermost frame, go back to the caller. */
463
464 void
465 pop_frame ()
466 {
467 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
468 struct aix_framedata fdata;
469 FRAME fr = get_current_frame ();
470 int addr, ii;
471
472 pc = read_pc ();
473 sp = FRAME_FP (fr);
474
475 if (stop_stack_dummy && dummy_frame_count) {
476 pop_dummy_frame ();
477 return;
478 }
479
480 /* figure out previous %pc value. If the function is frameless, it is
481 still in the link register, otherwise walk the frames and retrieve the
482 saved %pc value in the previous frame. */
483
484 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
485 function_frame_info (addr, &fdata);
486
487 prev_sp = read_memory_integer (sp, 4);
488 if (fdata.frameless)
489 lr = read_register (LR_REGNUM);
490 else
491 lr = read_memory_integer (prev_sp+8, 4);
492
493 /* reset %pc value. */
494 write_register (PC_REGNUM, lr);
495
496 /* reset register values if any was saved earlier. */
497 addr = prev_sp - fdata.offset;
498
499 if (fdata.saved_gpr != -1)
500 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
501 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
502 addr += 4;
503 }
504
505 if (fdata.saved_fpr != -1)
506 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
507 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
508 addr += 8;
509 }
510
511 write_register (SP_REGNUM, prev_sp);
512 target_store_registers (-1);
513 flush_cached_frames ();
514 set_current_frame (create_new_frame (prev_sp, lr));
515 }
516
517
518 /* fixup the call sequence of a dummy function, with the real function address.
519 its argumets will be passed by gdb. */
520
521 void
522 fix_call_dummy(dummyname, pc, fun, nargs, type)
523 char *dummyname;
524 CORE_ADDR pc;
525 CORE_ADDR fun;
526 int nargs; /* not used */
527 int type; /* not used */
528 {
529 #define TOC_ADDR_OFFSET 20
530 #define TARGET_ADDR_OFFSET 28
531
532 int ii;
533 CORE_ADDR target_addr;
534 CORE_ADDR tocvalue;
535
536 target_addr = fun;
537 tocvalue = find_toc_address (target_addr);
538
539 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
540 ii = (ii & 0xffff0000) | (tocvalue >> 16);
541 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
542
543 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
544 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
545 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
546
547 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
548 ii = (ii & 0xffff0000) | (target_addr >> 16);
549 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
550
551 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
552 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
553 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
554 }
555
556
557 /* return information about a function frame.
558 in struct aix_frameinfo fdata:
559 - frameless is TRUE, if function does not have a frame.
560 - nosavedpc is TRUE, if function does not save %pc value in its frame.
561 - offset is the number of bytes used in the frame to save registers.
562 - saved_gpr is the number of the first saved gpr.
563 - saved_fpr is the number of the first saved fpr.
564 - alloca_reg is the number of the register used for alloca() handling.
565 Otherwise -1.
566 */
567 void
568 function_frame_info (pc, fdata)
569 CORE_ADDR pc;
570 struct aix_framedata *fdata;
571 {
572 unsigned int tmp;
573 register unsigned int op;
574
575 fdata->offset = 0;
576 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
577 fdata->frameless = 1;
578
579 op = read_memory_integer (pc, 4);
580 if (op == 0x7c0802a6) { /* mflr r0 */
581 pc += 4;
582 op = read_memory_integer (pc, 4);
583 fdata->nosavedpc = 0;
584 fdata->frameless = 0;
585 }
586 else /* else, pc is not saved */
587 fdata->nosavedpc = 1;
588
589 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
590 pc += 4;
591 op = read_memory_integer (pc, 4);
592 fdata->frameless = 0;
593 }
594
595 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
596 pc += 4;
597 op = read_memory_integer (pc, 4);
598 /* At this point, make sure this is not a trampoline function
599 (a function that simply calls another functions, and nothing else).
600 If the next is not a nop, this branch was part of the function
601 prologue. */
602
603 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
604 op == 0x0)
605 return; /* prologue is over */
606 fdata->frameless = 0;
607 }
608
609 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
610 pc += 4; /* store floating register double */
611 op = read_memory_integer (pc, 4);
612 fdata->frameless = 0;
613 }
614
615 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
616 int tmp2;
617 fdata->saved_gpr = (op >> 21) & 0x1f;
618 tmp2 = op & 0xffff;
619 if (tmp2 > 0x7fff)
620 tmp2 = (~0 &~ 0xffff) | tmp2;
621
622 if (tmp2 < 0) {
623 tmp2 = tmp2 * -1;
624 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
625 if ( fdata->saved_fpr > 0)
626 fdata->saved_fpr = 32 - fdata->saved_fpr;
627 else
628 fdata->saved_fpr = -1;
629 }
630 fdata->offset = tmp2;
631 pc += 4;
632 op = read_memory_integer (pc, 4);
633 fdata->frameless = 0;
634 }
635
636 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
637 (tmp == 0x9421) || /* stu r1, NUM(r1) */
638 (tmp == 0x93e1)) /* st r31, NUM(r1) */
639 {
640 int tmp2;
641
642 /* gcc takes a short cut and uses this instruction to save r31 only. */
643
644 if (tmp == 0x93e1) {
645 if (fdata->offset)
646 /* fatal ("Unrecognized prolog."); */
647 printf ("Unrecognized prolog!\n");
648
649 fdata->saved_gpr = 31;
650 tmp2 = op & 0xffff;
651 if (tmp2 > 0x7fff) {
652 tmp2 = - ((~0 &~ 0xffff) | tmp2);
653 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
654 if ( fdata->saved_fpr > 0)
655 fdata->saved_fpr = 32 - fdata->saved_fpr;
656 else
657 fdata->saved_fpr = -1;
658 }
659 fdata->offset = tmp2;
660 }
661 pc += 4;
662 op = read_memory_integer (pc, 4);
663 fdata->frameless = 0;
664 }
665
666 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
667 pc += 4; /* l r30, ... */
668 op = read_memory_integer (pc, 4);
669 fdata->frameless = 0;
670 }
671
672 /* store parameters into stack */
673 while(
674 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
675 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
676 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
677 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
678 {
679 pc += 4; /* store fpr double */
680 op = read_memory_integer (pc, 4);
681 fdata->frameless = 0;
682 }
683
684 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
685 fdata->alloca_reg = 31;
686 fdata->frameless = 0;
687 }
688 }
689
690
691 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
692 eight words of the argument list (that might be less than eight parameters if
693 some parameters occupy more than one word) are passed in r3..r11 registers.
694 float and double parameters are passed in fpr's, in addition to that. Rest of
695 the parameters if any are passed in user stack. There might be cases in which
696 half of the parameter is copied into registers, the other half is pushed into
697 stack.
698
699 If the function is returning a structure, then the return address is passed
700 in r3, then the first 7 words of the parametes can be passed in registers,
701 starting from r4. */
702
703 CORE_ADDR
704 push_arguments (nargs, args, sp, struct_return, struct_addr)
705 int nargs;
706 value *args;
707 CORE_ADDR sp;
708 int struct_return;
709 CORE_ADDR struct_addr;
710 {
711 int ii, len;
712 int argno; /* current argument number */
713 int argbytes; /* current argument byte */
714 char tmp_buffer [50];
715 value arg;
716 int f_argno = 0; /* current floating point argno */
717
718 CORE_ADDR saved_sp, pc;
719
720 if ( dummy_frame_count <= 0)
721 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
722
723 /* The first eight words of ther arguments are passed in registers. Copy
724 them appropriately.
725
726 If the function is returning a `struct', then the first word (which
727 will be passed in r3) is used for struct return address. In that
728 case we should advance one word and start from r4 register to copy
729 parameters. */
730
731 ii = struct_return ? 1 : 0;
732
733 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
734
735 arg = value_arg_coerce (args[argno]);
736 len = TYPE_LENGTH (VALUE_TYPE (arg));
737
738 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
739
740 /* floating point arguments are passed in fpr's, as well as gpr's.
741 There are 13 fpr's reserved for passing parameters. At this point
742 there is no way we would run out of them. */
743
744 if (len > 8)
745 printf (
746 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
747
748 bcopy (VALUE_CONTENTS (arg),
749 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
750 ++f_argno;
751 }
752
753 if (len > 4) {
754
755 /* Argument takes more than one register. */
756 while (argbytes < len) {
757
758 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
759 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
760 &registers[REGISTER_BYTE(ii+3)],
761 (len - argbytes) > 4 ? 4 : len - argbytes);
762 ++ii, argbytes += 4;
763
764 if (ii >= 8)
765 goto ran_out_of_registers_for_arguments;
766 }
767 argbytes = 0;
768 --ii;
769 }
770 else { /* Argument can fit in one register. No problem. */
771 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
772 bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
773 }
774 ++argno;
775 }
776
777 ran_out_of_registers_for_arguments:
778
779 /* location for 8 parameters are always reserved. */
780 sp -= 4 * 8;
781
782 /* another six words for back chain, TOC register, link register, etc. */
783 sp -= 24;
784
785 /* if there are more arguments, allocate space for them in
786 the stack, then push them starting from the ninth one. */
787
788 if ((argno < nargs) || argbytes) {
789 int space = 0, jj;
790 value val;
791
792 if (argbytes) {
793 space += ((len - argbytes + 3) & -4);
794 jj = argno + 1;
795 }
796 else
797 jj = argno;
798
799 for (; jj < nargs; ++jj) {
800 val = value_arg_coerce (args[jj]);
801 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
802 }
803
804 /* add location required for the rest of the parameters */
805 space = (space + 7) & -8;
806 sp -= space;
807
808 /* This is another instance we need to be concerned about securing our
809 stack space. If we write anything underneath %sp (r1), we might conflict
810 with the kernel who thinks he is free to use this area. So, update %sp
811 first before doing anything else. */
812
813 write_register (SP_REGNUM, sp);
814
815 /* if the last argument copied into the registers didn't fit there
816 completely, push the rest of it into stack. */
817
818 if (argbytes) {
819 write_memory (
820 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
821 ++argno;
822 ii += ((len - argbytes + 3) & -4) / 4;
823 }
824
825 /* push the rest of the arguments into stack. */
826 for (; argno < nargs; ++argno) {
827
828 arg = value_arg_coerce (args[argno]);
829 len = TYPE_LENGTH (VALUE_TYPE (arg));
830
831
832 /* float types should be passed in fpr's, as well as in the stack. */
833 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
834
835 if (len > 8)
836 printf (
837 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
838
839 bcopy (VALUE_CONTENTS (arg),
840 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
841 ++f_argno;
842 }
843
844 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
845 ii += ((len + 3) & -4) / 4;
846 }
847 }
848 else
849 /* Secure stack areas first, before doing anything else. */
850 write_register (SP_REGNUM, sp);
851
852 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
853 read_memory (saved_sp, tmp_buffer, 24);
854 write_memory (sp, tmp_buffer, 24);
855
856 write_memory (sp, &saved_sp, 4); /* set back chain properly */
857
858 target_store_registers (-1);
859 return sp;
860 }
861
862 /* a given return value in `regbuf' with a type `valtype', extract and copy its
863 value into `valbuf' */
864
865 void
866 extract_return_value (valtype, regbuf, valbuf)
867 struct type *valtype;
868 char regbuf[REGISTER_BYTES];
869 char *valbuf;
870 {
871
872 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
873
874 double dd; float ff;
875 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
876 We need to truncate the return value into float size (4 byte) if
877 necessary. */
878
879 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
880 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
881 TYPE_LENGTH (valtype));
882 else { /* float */
883 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
884 ff = (float)dd;
885 bcopy (&ff, valbuf, sizeof(float));
886 }
887 }
888 else
889 /* return value is copied starting from r3. */
890 bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
891 }
892
893
894 /* keep structure return address in this variable.
895 FIXME: This is a horrid kludge which should not be allowed to continue
896 living. This only allows a single nested call to a structure-returning
897 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
898
899 CORE_ADDR rs6000_struct_return_address;
900
901
902 /* Indirect function calls use a piece of trampoline code to do context
903 switching, i.e. to set the new TOC table. Skip such code if we are on
904 its first instruction (as when we have single-stepped to here).
905 Result is desired PC to step until, or NULL if we are not in
906 trampoline code. */
907
908 CORE_ADDR
909 skip_trampoline_code (pc)
910 CORE_ADDR pc;
911 {
912 register unsigned int ii, op;
913
914 static unsigned trampoline_code[] = {
915 0x800b0000, /* l r0,0x0(r11) */
916 0x90410014, /* st r2,0x14(r1) */
917 0x7c0903a6, /* mtctr r0 */
918 0x804b0004, /* l r2,0x4(r11) */
919 0x816b0008, /* l r11,0x8(r11) */
920 0x4e800420, /* bctr */
921 0x4e800020, /* br */
922 0
923 };
924
925 for (ii=0; trampoline_code[ii]; ++ii) {
926 op = read_memory_integer (pc + (ii*4), 4);
927 if (op != trampoline_code [ii])
928 return 0;
929 }
930 ii = read_register (11); /* r11 holds destination addr */
931 pc = read_memory_integer (ii, 4); /* (r11) value */
932 return pc;
933 }
934
935
936 /* Determines whether the function FI has a frame on the stack or not.
937 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
938 second argument of 0, and from the FRAME_SAVED_PC macro with a
939 second argument of 1. */
940
941 int
942 frameless_function_invocation (fi, pcsaved)
943 struct frame_info *fi;
944 int pcsaved;
945 {
946 CORE_ADDR func_start;
947 struct aix_framedata fdata;
948
949 if (fi->next != NULL)
950 /* Don't even think about framelessness except on the innermost frame. */
951 return 0;
952
953 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
954
955 /* If we failed to find the start of the function, it is a mistake
956 to inspect the instructions. */
957
958 if (!func_start)
959 return 0;
960
961 function_frame_info (func_start, &fdata);
962 return pcsaved ? fdata.nosavedpc : fdata.frameless;
963 }
964
965
966 /* If saved registers of frame FI are not known yet, read and cache them.
967 &FDATAP contains aix_framedata; TDATAP can be NULL,
968 in which case the framedata are read. */
969
970 static void
971 frame_get_cache_fsr (fi, fdatap)
972 struct frame_info *fi;
973 struct aix_framedata *fdatap;
974 {
975 int ii;
976 CORE_ADDR frame_addr;
977 struct aix_framedata work_fdata;
978
979 if (fi->cache_fsr)
980 return;
981
982 if (fdatap == NULL) {
983 fdatap = &work_fdata;
984 function_frame_info (get_pc_function_start (fi->pc), fdatap);
985 }
986
987 fi->cache_fsr = (struct frame_saved_regs *)
988 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
989 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
990
991 if (fi->prev && fi->prev->frame)
992 frame_addr = fi->prev->frame;
993 else
994 frame_addr = read_memory_integer (fi->frame, 4);
995
996 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
997 All fpr's from saved_fpr to fp31 are saved right underneath caller
998 stack pointer, starting from fp31 first. */
999
1000 if (fdatap->saved_fpr >= 0) {
1001 for (ii=31; ii >= fdatap->saved_fpr; --ii)
1002 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
1003 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1004 }
1005
1006 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1007 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1008 starting from r31 first. */
1009
1010 if (fdatap->saved_gpr >= 0)
1011 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1012 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1013 }
1014
1015 /* Return the address of a frame. This is the inital %sp value when the frame
1016 was first allocated. For functions calling alloca(), it might be saved in
1017 an alloca register. */
1018
1019 CORE_ADDR
1020 frame_initial_stack_address (fi)
1021 struct frame_info *fi;
1022 {
1023 CORE_ADDR tmpaddr;
1024 struct aix_framedata fdata;
1025 struct frame_info *callee_fi;
1026
1027 /* if the initial stack pointer (frame address) of this frame is known,
1028 just return it. */
1029
1030 if (fi->initial_sp)
1031 return fi->initial_sp;
1032
1033 /* find out if this function is using an alloca register.. */
1034
1035 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1036
1037 /* if saved registers of this frame are not known yet, read and cache them. */
1038
1039 if (!fi->cache_fsr)
1040 frame_get_cache_fsr (fi, &fdata);
1041
1042 /* If no alloca register used, then fi->frame is the value of the %sp for
1043 this frame, and it is good enough. */
1044
1045 if (fdata.alloca_reg < 0) {
1046 fi->initial_sp = fi->frame;
1047 return fi->initial_sp;
1048 }
1049
1050 /* This function has an alloca register. If this is the top-most frame
1051 (with the lowest address), the value in alloca register is good. */
1052
1053 if (!fi->next)
1054 return fi->initial_sp = read_register (fdata.alloca_reg);
1055
1056 /* Otherwise, this is a caller frame. Callee has usually already saved
1057 registers, but there are exceptions (such as when the callee
1058 has no parameters). Find the address in which caller's alloca
1059 register is saved. */
1060
1061 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1062
1063 if (!callee_fi->cache_fsr)
1064 frame_get_cache_fsr (callee_fi, NULL);
1065
1066 /* this is the address in which alloca register is saved. */
1067
1068 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1069 if (tmpaddr) {
1070 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1071 return fi->initial_sp;
1072 }
1073
1074 /* Go look into deeper levels of the frame chain to see if any one of
1075 the callees has saved alloca register. */
1076 }
1077
1078 /* If alloca register was not saved, by the callee (or any of its callees)
1079 then the value in the register is still good. */
1080
1081 return fi->initial_sp = read_register (fdata.alloca_reg);
1082 }
1083
1084 FRAME_ADDR
1085 rs6000_frame_chain (thisframe)
1086 struct frame_info *thisframe;
1087 {
1088 FRAME_ADDR fp;
1089 if (inside_entry_file ((thisframe)->pc))
1090 return 0;
1091 if (thisframe->signal_handler_caller)
1092 {
1093 /* This was determined by experimentation on AIX 3.2. Perhaps
1094 it corresponds to some offset in /usr/include/sys/user.h or
1095 something like that. Using some system include file would
1096 have the advantage of probably being more robust in the face
1097 of OS upgrades, but the disadvantage of being wrong for
1098 cross-debugging. */
1099
1100 #define SIG_FRAME_FP_OFFSET 284
1101 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1102 }
1103 else
1104 fp = read_memory_integer ((thisframe)->frame, 4);
1105
1106 return fp;
1107 }
1108
1109 \f
1110 /* xcoff_relocate_symtab - hook for symbol table relocation.
1111 also reads shared libraries.. */
1112
1113 xcoff_relocate_symtab (pid)
1114 unsigned int pid;
1115 {
1116 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1117
1118 struct ld_info *ldi;
1119 int temp;
1120
1121 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1122
1123 /* According to my humble theory, AIX has some timing problems and
1124 when the user stack grows, kernel doesn't update stack info in time
1125 and ptrace calls step on user stack. That is why we sleep here a little,
1126 and give kernel to update its internals. */
1127
1128 usleep (36000);
1129
1130 errno = 0;
1131 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1132 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1133 if (errno) {
1134 perror_with_name ("ptrace ldinfo");
1135 return 0;
1136 }
1137
1138 vmap_ldinfo(ldi);
1139
1140 do {
1141 /* We are allowed to assume CORE_ADDR == pointer. This code is
1142 native only. */
1143 add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg,
1144 (CORE_ADDR) ldi->ldinfo_dataorg);
1145 } while (ldi->ldinfo_next
1146 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1147
1148 #if 0
1149 /* Now that we've jumbled things around, re-sort them. */
1150 sort_minimal_symbols ();
1151 #endif
1152
1153 /* relocate the exec and core sections as well. */
1154 vmap_exec ();
1155 }
1156 \f
1157 /* Keep an array of load segment information and their TOC table addresses.
1158 This info will be useful when calling a shared library function by hand. */
1159
1160 struct loadinfo {
1161 CORE_ADDR textorg, dataorg;
1162 unsigned long toc_offset;
1163 };
1164
1165 #define LOADINFOLEN 10
1166
1167 static struct loadinfo *loadinfo = NULL;
1168 static int loadinfolen = 0;
1169 static int loadinfotocindex = 0;
1170 static int loadinfotextindex = 0;
1171
1172
1173 void
1174 xcoff_init_loadinfo ()
1175 {
1176 loadinfotocindex = 0;
1177 loadinfotextindex = 0;
1178
1179 if (loadinfolen == 0) {
1180 loadinfo = (struct loadinfo *)
1181 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1182 loadinfolen = LOADINFOLEN;
1183 }
1184 }
1185
1186
1187 /* FIXME -- this is never called! */
1188 void
1189 free_loadinfo ()
1190 {
1191 if (loadinfo)
1192 free (loadinfo);
1193 loadinfo = NULL;
1194 loadinfolen = 0;
1195 loadinfotocindex = 0;
1196 loadinfotextindex = 0;
1197 }
1198
1199 /* this is called from xcoffread.c */
1200
1201 void
1202 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1203 {
1204 while (loadinfotocindex >= loadinfolen) {
1205 loadinfolen += LOADINFOLEN;
1206 loadinfo = (struct loadinfo *)
1207 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1208 }
1209 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1210 }
1211
1212
1213 void
1214 add_text_to_loadinfo (textaddr, dataaddr)
1215 CORE_ADDR textaddr;
1216 CORE_ADDR dataaddr;
1217 {
1218 while (loadinfotextindex >= loadinfolen) {
1219 loadinfolen += LOADINFOLEN;
1220 loadinfo = (struct loadinfo *)
1221 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1222 }
1223 loadinfo [loadinfotextindex].textorg = textaddr;
1224 loadinfo [loadinfotextindex].dataorg = dataaddr;
1225 ++loadinfotextindex;
1226 }
1227
1228
1229 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1230 of a member of this array are correlated with the "toc_offset"
1231 element of the same member. But they are sequentially assigned in wildly
1232 different places, and probably there is no correlation. FIXME! */
1233
1234 static CORE_ADDR
1235 find_toc_address (pc)
1236 CORE_ADDR pc;
1237 {
1238 int ii, toc_entry, tocbase = 0;
1239
1240 for (ii=0; ii < loadinfotextindex; ++ii)
1241 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1242 toc_entry = ii;
1243 tocbase = loadinfo[ii].textorg;
1244 }
1245
1246 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1247 }
This page took 0.056552 seconds and 4 git commands to generate.