2002-04-01 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41
42 #include "elf-bfd.h"
43
44 #include "solib-svr4.h"
45 #include "ppc-tdep.h"
46
47 /* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54 #define SIG_FRAME_PC_OFFSET 96
55 #define SIG_FRAME_LR_OFFSET 108
56 #define SIG_FRAME_FP_OFFSET 284
57
58 /* To be used by skip_prologue. */
59
60 struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int saved_vr; /* smallest # of saved vr */
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
73 int vr_offset; /* offset of saved vrs from prev sp */
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
76 int vrsave_offset; /* offset of saved vrsave register */
77 };
78
79 /* Description of a single register. */
80
81 struct reg
82 {
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
87 };
88
89 /* Return the current architecture's gdbarch_tdep structure. */
90
91 #define TDEP gdbarch_tdep (current_gdbarch)
92
93 /* Breakpoint shadows for the single step instructions will be kept here. */
94
95 static struct sstep_breaks
96 {
97 /* Address, or 0 if this is not in use. */
98 CORE_ADDR address;
99 /* Shadow contents. */
100 char data[4];
101 }
102 stepBreaks[2];
103
104 /* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
107
108 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
109
110 /* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
112
113 void (*rs6000_set_host_arch_hook) (int) = NULL;
114
115 /* Static function prototypes */
116
117 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
118 CORE_ADDR safety);
119 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
121 static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
124
125 /* Read a LEN-byte address from debugged memory address MEMADDR. */
126
127 static CORE_ADDR
128 read_memory_addr (CORE_ADDR memaddr, int len)
129 {
130 return read_memory_unsigned_integer (memaddr, len);
131 }
132
133 static CORE_ADDR
134 rs6000_skip_prologue (CORE_ADDR pc)
135 {
136 struct rs6000_framedata frame;
137 pc = skip_prologue (pc, 0, &frame);
138 return pc;
139 }
140
141
142 /* Fill in fi->saved_regs */
143
144 struct frame_extra_info
145 {
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
150 table. FIXME. */
151 CORE_ADDR initial_sp; /* initial stack pointer. */
152 };
153
154 void
155 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
156 {
157 fi->extra_info = (struct frame_extra_info *)
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
162 /* We're in get_prev_frame */
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
167 }
168
169 /* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
174
175 /* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
177 and fpr's only. */
178
179 void
180 rs6000_frame_init_saved_regs (struct frame_info *fi)
181 {
182 frame_get_saved_regs (fi, NULL);
183 }
184
185 static CORE_ADDR
186 rs6000_frame_args_address (struct frame_info *fi)
187 {
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
190 else
191 return frame_initial_stack_address (fi);
192 }
193
194 /* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
198
199 static CORE_ADDR
200 rs6000_saved_pc_after_call (struct frame_info *fi)
201 {
202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
203 }
204
205 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
206
207 static CORE_ADDR
208 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
209 {
210 CORE_ADDR dest;
211 int immediate;
212 int absolute;
213 int ext_op;
214
215 absolute = (int) ((instr >> 1) & 1);
216
217 switch (opcode)
218 {
219 case 18:
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
221 if (absolute)
222 dest = immediate;
223 else
224 dest = pc + immediate;
225 break;
226
227 case 16:
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
229 if (absolute)
230 dest = immediate;
231 else
232 dest = pc + immediate;
233 break;
234
235 case 19:
236 ext_op = (instr >> 1) & 0x3ff;
237
238 if (ext_op == 16) /* br conditional register */
239 {
240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
241
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
247 {
248 struct frame_info *fi;
249
250 fi = get_current_frame ();
251 if (fi != NULL)
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
253 TDEP->wordsize);
254 }
255 }
256
257 else if (ext_op == 528) /* br cond to count reg */
258 {
259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
260
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
266 }
267 else
268 return -1;
269 break;
270
271 default:
272 return -1;
273 }
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
275 }
276
277
278 /* Sequence of bytes for breakpoint instruction. */
279
280 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
282
283 static unsigned char *
284 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
285 {
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
288 *bp_size = 4;
289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
290 return big_breakpoint;
291 else
292 return little_breakpoint;
293 }
294
295
296 /* AIX does not support PT_STEP. Simulate it. */
297
298 void
299 rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
301 {
302 #define INSNLEN(OPCODE) 4
303
304 static char le_breakp[] = LITTLE_BREAKPOINT;
305 static char be_breakp[] = BIG_BREAKPOINT;
306 char *breakp = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? be_breakp : le_breakp;
307 int ii, insn;
308 CORE_ADDR loc;
309 CORE_ADDR breaks[2];
310 int opcode;
311
312 if (insert_breakpoints_p)
313 {
314
315 loc = read_pc ();
316
317 insn = read_memory_integer (loc, 4);
318
319 breaks[0] = loc + INSNLEN (insn);
320 opcode = insn >> 26;
321 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
322
323 /* Don't put two breakpoints on the same address. */
324 if (breaks[1] == breaks[0])
325 breaks[1] = -1;
326
327 stepBreaks[1].address = 0;
328
329 for (ii = 0; ii < 2; ++ii)
330 {
331
332 /* ignore invalid breakpoint. */
333 if (breaks[ii] == -1)
334 continue;
335
336 read_memory (breaks[ii], stepBreaks[ii].data, 4);
337
338 write_memory (breaks[ii], breakp, 4);
339 stepBreaks[ii].address = breaks[ii];
340 }
341
342 }
343 else
344 {
345
346 /* remove step breakpoints. */
347 for (ii = 0; ii < 2; ++ii)
348 if (stepBreaks[ii].address != 0)
349 write_memory
350 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
351
352 }
353 errno = 0; /* FIXME, don't ignore errors! */
354 /* What errors? {read,write}_memory call error(). */
355 }
356
357
358 /* return pc value after skipping a function prologue and also return
359 information about a function frame.
360
361 in struct rs6000_framedata fdata:
362 - frameless is TRUE, if function does not have a frame.
363 - nosavedpc is TRUE, if function does not save %pc value in its frame.
364 - offset is the initial size of this stack frame --- the amount by
365 which we decrement the sp to allocate the frame.
366 - saved_gpr is the number of the first saved gpr.
367 - saved_fpr is the number of the first saved fpr.
368 - saved_vr is the number of the first saved vr.
369 - alloca_reg is the number of the register used for alloca() handling.
370 Otherwise -1.
371 - gpr_offset is the offset of the first saved gpr from the previous frame.
372 - fpr_offset is the offset of the first saved fpr from the previous frame.
373 - vr_offset is the offset of the first saved vr from the previous frame.
374 - lr_offset is the offset of the saved lr
375 - cr_offset is the offset of the saved cr
376 - vrsave_offset is the offset of the saved vrsave register
377 */
378
379 #define SIGNED_SHORT(x) \
380 ((sizeof (short) == 2) \
381 ? ((int)(short)(x)) \
382 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
383
384 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
385
386 /* Limit the number of skipped non-prologue instructions, as the examining
387 of the prologue is expensive. */
388 static int max_skip_non_prologue_insns = 10;
389
390 /* Given PC representing the starting address of a function, and
391 LIM_PC which is the (sloppy) limit to which to scan when looking
392 for a prologue, attempt to further refine this limit by using
393 the line data in the symbol table. If successful, a better guess
394 on where the prologue ends is returned, otherwise the previous
395 value of lim_pc is returned. */
396 static CORE_ADDR
397 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
398 {
399 struct symtab_and_line prologue_sal;
400
401 prologue_sal = find_pc_line (pc, 0);
402 if (prologue_sal.line != 0)
403 {
404 int i;
405 CORE_ADDR addr = prologue_sal.end;
406
407 /* Handle the case in which compiler's optimizer/scheduler
408 has moved instructions into the prologue. We scan ahead
409 in the function looking for address ranges whose corresponding
410 line number is less than or equal to the first one that we
411 found for the function. (It can be less than when the
412 scheduler puts a body instruction before the first prologue
413 instruction.) */
414 for (i = 2 * max_skip_non_prologue_insns;
415 i > 0 && (lim_pc == 0 || addr < lim_pc);
416 i--)
417 {
418 struct symtab_and_line sal;
419
420 sal = find_pc_line (addr, 0);
421 if (sal.line == 0)
422 break;
423 if (sal.line <= prologue_sal.line
424 && sal.symtab == prologue_sal.symtab)
425 {
426 prologue_sal = sal;
427 }
428 addr = sal.end;
429 }
430
431 if (lim_pc == 0 || prologue_sal.end < lim_pc)
432 lim_pc = prologue_sal.end;
433 }
434 return lim_pc;
435 }
436
437
438 static CORE_ADDR
439 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
440 {
441 CORE_ADDR orig_pc = pc;
442 CORE_ADDR last_prologue_pc = pc;
443 CORE_ADDR li_found_pc = 0;
444 char buf[4];
445 unsigned long op;
446 long offset = 0;
447 long vr_saved_offset = 0;
448 int lr_reg = -1;
449 int cr_reg = -1;
450 int vr_reg = -1;
451 int vrsave_reg = -1;
452 int reg;
453 int framep = 0;
454 int minimal_toc_loaded = 0;
455 int prev_insn_was_prologue_insn = 1;
456 int num_skip_non_prologue_insns = 0;
457
458 /* Attempt to find the end of the prologue when no limit is specified.
459 Note that refine_prologue_limit() has been written so that it may
460 be used to "refine" the limits of non-zero PC values too, but this
461 is only safe if we 1) trust the line information provided by the
462 compiler and 2) iterate enough to actually find the end of the
463 prologue.
464
465 It may become a good idea at some point (for both performance and
466 accuracy) to unconditionally call refine_prologue_limit(). But,
467 until we can make a clear determination that this is beneficial,
468 we'll play it safe and only use it to obtain a limit when none
469 has been specified. */
470 if (lim_pc == 0)
471 lim_pc = refine_prologue_limit (pc, lim_pc);
472
473 memset (fdata, 0, sizeof (struct rs6000_framedata));
474 fdata->saved_gpr = -1;
475 fdata->saved_fpr = -1;
476 fdata->saved_vr = -1;
477 fdata->alloca_reg = -1;
478 fdata->frameless = 1;
479 fdata->nosavedpc = 1;
480
481 for (;; pc += 4)
482 {
483 /* Sometimes it isn't clear if an instruction is a prologue
484 instruction or not. When we encounter one of these ambiguous
485 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
486 Otherwise, we'll assume that it really is a prologue instruction. */
487 if (prev_insn_was_prologue_insn)
488 last_prologue_pc = pc;
489
490 /* Stop scanning if we've hit the limit. */
491 if (lim_pc != 0 && pc >= lim_pc)
492 break;
493
494 prev_insn_was_prologue_insn = 1;
495
496 /* Fetch the instruction and convert it to an integer. */
497 if (target_read_memory (pc, buf, 4))
498 break;
499 op = extract_signed_integer (buf, 4);
500
501 if ((op & 0xfc1fffff) == 0x7c0802a6)
502 { /* mflr Rx */
503 lr_reg = (op & 0x03e00000) | 0x90010000;
504 continue;
505
506 }
507 else if ((op & 0xfc1fffff) == 0x7c000026)
508 { /* mfcr Rx */
509 cr_reg = (op & 0x03e00000) | 0x90010000;
510 continue;
511
512 }
513 else if ((op & 0xfc1f0000) == 0xd8010000)
514 { /* stfd Rx,NUM(r1) */
515 reg = GET_SRC_REG (op);
516 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
517 {
518 fdata->saved_fpr = reg;
519 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
520 }
521 continue;
522
523 }
524 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
525 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
526 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
527 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
528 {
529
530 reg = GET_SRC_REG (op);
531 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
532 {
533 fdata->saved_gpr = reg;
534 if ((op & 0xfc1f0003) == 0xf8010000)
535 op = (op >> 1) << 1;
536 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
537 }
538 continue;
539
540 }
541 else if ((op & 0xffff0000) == 0x60000000)
542 {
543 /* nop */
544 /* Allow nops in the prologue, but do not consider them to
545 be part of the prologue unless followed by other prologue
546 instructions. */
547 prev_insn_was_prologue_insn = 0;
548 continue;
549
550 }
551 else if ((op & 0xffff0000) == 0x3c000000)
552 { /* addis 0,0,NUM, used
553 for >= 32k frames */
554 fdata->offset = (op & 0x0000ffff) << 16;
555 fdata->frameless = 0;
556 continue;
557
558 }
559 else if ((op & 0xffff0000) == 0x60000000)
560 { /* ori 0,0,NUM, 2nd ha
561 lf of >= 32k frames */
562 fdata->offset |= (op & 0x0000ffff);
563 fdata->frameless = 0;
564 continue;
565
566 }
567 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
568 { /* st Rx,NUM(r1)
569 where Rx == lr */
570 fdata->lr_offset = SIGNED_SHORT (op) + offset;
571 fdata->nosavedpc = 0;
572 lr_reg = 0;
573 continue;
574
575 }
576 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
577 { /* st Rx,NUM(r1)
578 where Rx == cr */
579 fdata->cr_offset = SIGNED_SHORT (op) + offset;
580 cr_reg = 0;
581 continue;
582
583 }
584 else if (op == 0x48000005)
585 { /* bl .+4 used in
586 -mrelocatable */
587 continue;
588
589 }
590 else if (op == 0x48000004)
591 { /* b .+4 (xlc) */
592 break;
593
594 }
595 else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
596 in V.4 -mrelocatable */
597 op == 0x7fc0f214) && /* add r30,r0,r30, used
598 in V.4 -mrelocatable */
599 lr_reg == 0x901e0000)
600 {
601 continue;
602
603 }
604 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
605 in V.4 -mminimal-toc */
606 (op & 0xffff0000) == 0x3bde0000)
607 { /* addi 30,30,foo@l */
608 continue;
609
610 }
611 else if ((op & 0xfc000001) == 0x48000001)
612 { /* bl foo,
613 to save fprs??? */
614
615 fdata->frameless = 0;
616 /* Don't skip over the subroutine call if it is not within
617 the first three instructions of the prologue. */
618 if ((pc - orig_pc) > 8)
619 break;
620
621 op = read_memory_integer (pc + 4, 4);
622
623 /* At this point, make sure this is not a trampoline
624 function (a function that simply calls another functions,
625 and nothing else). If the next is not a nop, this branch
626 was part of the function prologue. */
627
628 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
629 break; /* don't skip over
630 this branch */
631 continue;
632
633 /* update stack pointer */
634 }
635 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
636 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
637 {
638 fdata->frameless = 0;
639 if ((op & 0xffff0003) == 0xf8210001)
640 op = (op >> 1) << 1;
641 fdata->offset = SIGNED_SHORT (op);
642 offset = fdata->offset;
643 continue;
644
645 }
646 else if (op == 0x7c21016e)
647 { /* stwux 1,1,0 */
648 fdata->frameless = 0;
649 offset = fdata->offset;
650 continue;
651
652 /* Load up minimal toc pointer */
653 }
654 else if ((op >> 22) == 0x20f
655 && !minimal_toc_loaded)
656 { /* l r31,... or l r30,... */
657 minimal_toc_loaded = 1;
658 continue;
659
660 /* move parameters from argument registers to local variable
661 registers */
662 }
663 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
664 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
665 (((op >> 21) & 31) <= 10) &&
666 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
667 {
668 continue;
669
670 /* store parameters in stack */
671 }
672 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
673 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
674 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
675 {
676 continue;
677
678 /* store parameters in stack via frame pointer */
679 }
680 else if (framep &&
681 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
682 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
683 (op & 0xfc1f0000) == 0xfc1f0000))
684 { /* frsp, fp?,NUM(r1) */
685 continue;
686
687 /* Set up frame pointer */
688 }
689 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
690 || op == 0x7c3f0b78)
691 { /* mr r31, r1 */
692 fdata->frameless = 0;
693 framep = 1;
694 fdata->alloca_reg = 31;
695 continue;
696
697 /* Another way to set up the frame pointer. */
698 }
699 else if ((op & 0xfc1fffff) == 0x38010000)
700 { /* addi rX, r1, 0x0 */
701 fdata->frameless = 0;
702 framep = 1;
703 fdata->alloca_reg = (op & ~0x38010000) >> 21;
704 continue;
705 }
706 /* AltiVec related instructions. */
707 /* Store the vrsave register (spr 256) in another register for
708 later manipulation, or load a register into the vrsave
709 register. 2 instructions are used: mfvrsave and
710 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
711 and mtspr SPR256, Rn. */
712 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
713 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
714 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
715 {
716 vrsave_reg = GET_SRC_REG (op);
717 continue;
718 }
719 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
720 {
721 continue;
722 }
723 /* Store the register where vrsave was saved to onto the stack:
724 rS is the register where vrsave was stored in a previous
725 instruction. */
726 /* 100100 sssss 00001 dddddddd dddddddd */
727 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
728 {
729 if (vrsave_reg == GET_SRC_REG (op))
730 {
731 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
732 vrsave_reg = -1;
733 }
734 continue;
735 }
736 /* Compute the new value of vrsave, by modifying the register
737 where vrsave was saved to. */
738 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
739 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
740 {
741 continue;
742 }
743 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
744 in a pair of insns to save the vector registers on the
745 stack. */
746 /* 001110 00000 00000 iiii iiii iiii iiii */
747 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
748 {
749 li_found_pc = pc;
750 vr_saved_offset = SIGNED_SHORT (op);
751 }
752 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
753 /* 011111 sssss 11111 00000 00111001110 */
754 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
755 {
756 if (pc == (li_found_pc + 4))
757 {
758 vr_reg = GET_SRC_REG (op);
759 /* If this is the first vector reg to be saved, or if
760 it has a lower number than others previously seen,
761 reupdate the frame info. */
762 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
763 {
764 fdata->saved_vr = vr_reg;
765 fdata->vr_offset = vr_saved_offset + offset;
766 }
767 vr_saved_offset = -1;
768 vr_reg = -1;
769 li_found_pc = 0;
770 }
771 }
772 /* End AltiVec related instructions. */
773 else
774 {
775 /* Not a recognized prologue instruction.
776 Handle optimizer code motions into the prologue by continuing
777 the search if we have no valid frame yet or if the return
778 address is not yet saved in the frame. */
779 if (fdata->frameless == 0
780 && (lr_reg == -1 || fdata->nosavedpc == 0))
781 break;
782
783 if (op == 0x4e800020 /* blr */
784 || op == 0x4e800420) /* bctr */
785 /* Do not scan past epilogue in frameless functions or
786 trampolines. */
787 break;
788 if ((op & 0xf4000000) == 0x40000000) /* bxx */
789 /* Never skip branches. */
790 break;
791
792 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
793 /* Do not scan too many insns, scanning insns is expensive with
794 remote targets. */
795 break;
796
797 /* Continue scanning. */
798 prev_insn_was_prologue_insn = 0;
799 continue;
800 }
801 }
802
803 #if 0
804 /* I have problems with skipping over __main() that I need to address
805 * sometime. Previously, I used to use misc_function_vector which
806 * didn't work as well as I wanted to be. -MGO */
807
808 /* If the first thing after skipping a prolog is a branch to a function,
809 this might be a call to an initializer in main(), introduced by gcc2.
810 We'd like to skip over it as well. Fortunately, xlc does some extra
811 work before calling a function right after a prologue, thus we can
812 single out such gcc2 behaviour. */
813
814
815 if ((op & 0xfc000001) == 0x48000001)
816 { /* bl foo, an initializer function? */
817 op = read_memory_integer (pc + 4, 4);
818
819 if (op == 0x4def7b82)
820 { /* cror 0xf, 0xf, 0xf (nop) */
821
822 /* check and see if we are in main. If so, skip over this initializer
823 function as well. */
824
825 tmp = find_pc_misc_function (pc);
826 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
827 return pc + 8;
828 }
829 }
830 #endif /* 0 */
831
832 fdata->offset = -fdata->offset;
833 return last_prologue_pc;
834 }
835
836
837 /*************************************************************************
838 Support for creating pushing a dummy frame into the stack, and popping
839 frames, etc.
840 *************************************************************************/
841
842
843 /* Pop the innermost frame, go back to the caller. */
844
845 static void
846 rs6000_pop_frame (void)
847 {
848 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
849 struct rs6000_framedata fdata;
850 struct frame_info *frame = get_current_frame ();
851 int ii, wordsize;
852
853 pc = read_pc ();
854 sp = FRAME_FP (frame);
855
856 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
857 {
858 generic_pop_dummy_frame ();
859 flush_cached_frames ();
860 return;
861 }
862
863 /* Make sure that all registers are valid. */
864 read_register_bytes (0, NULL, REGISTER_BYTES);
865
866 /* figure out previous %pc value. If the function is frameless, it is
867 still in the link register, otherwise walk the frames and retrieve the
868 saved %pc value in the previous frame. */
869
870 addr = get_pc_function_start (frame->pc);
871 (void) skip_prologue (addr, frame->pc, &fdata);
872
873 wordsize = TDEP->wordsize;
874 if (fdata.frameless)
875 prev_sp = sp;
876 else
877 prev_sp = read_memory_addr (sp, wordsize);
878 if (fdata.lr_offset == 0)
879 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
880 else
881 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
882
883 /* reset %pc value. */
884 write_register (PC_REGNUM, lr);
885
886 /* reset register values if any was saved earlier. */
887
888 if (fdata.saved_gpr != -1)
889 {
890 addr = prev_sp + fdata.gpr_offset;
891 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
892 {
893 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
894 addr += wordsize;
895 }
896 }
897
898 if (fdata.saved_fpr != -1)
899 {
900 addr = prev_sp + fdata.fpr_offset;
901 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
902 {
903 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
904 addr += 8;
905 }
906 }
907
908 write_register (SP_REGNUM, prev_sp);
909 target_store_registers (-1);
910 flush_cached_frames ();
911 }
912
913 /* Fixup the call sequence of a dummy function, with the real function
914 address. Its arguments will be passed by gdb. */
915
916 static void
917 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
918 int nargs, struct value **args, struct type *type,
919 int gcc_p)
920 {
921 #define TOC_ADDR_OFFSET 20
922 #define TARGET_ADDR_OFFSET 28
923
924 int ii;
925 CORE_ADDR target_addr;
926
927 if (rs6000_find_toc_address_hook != NULL)
928 {
929 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
930 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
931 tocvalue);
932 }
933 }
934
935 /* Pass the arguments in either registers, or in the stack. In RS/6000,
936 the first eight words of the argument list (that might be less than
937 eight parameters if some parameters occupy more than one word) are
938 passed in r3..r10 registers. float and double parameters are
939 passed in fpr's, in addition to that. Rest of the parameters if any
940 are passed in user stack. There might be cases in which half of the
941 parameter is copied into registers, the other half is pushed into
942 stack.
943
944 Stack must be aligned on 64-bit boundaries when synthesizing
945 function calls.
946
947 If the function is returning a structure, then the return address is passed
948 in r3, then the first 7 words of the parameters can be passed in registers,
949 starting from r4. */
950
951 static CORE_ADDR
952 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
953 int struct_return, CORE_ADDR struct_addr)
954 {
955 int ii;
956 int len = 0;
957 int argno; /* current argument number */
958 int argbytes; /* current argument byte */
959 char tmp_buffer[50];
960 int f_argno = 0; /* current floating point argno */
961 int wordsize = TDEP->wordsize;
962
963 struct value *arg = 0;
964 struct type *type;
965
966 CORE_ADDR saved_sp;
967
968 /* The first eight words of ther arguments are passed in registers. Copy
969 them appropriately.
970
971 If the function is returning a `struct', then the first word (which
972 will be passed in r3) is used for struct return address. In that
973 case we should advance one word and start from r4 register to copy
974 parameters. */
975
976 ii = struct_return ? 1 : 0;
977
978 /*
979 effectively indirect call... gcc does...
980
981 return_val example( float, int);
982
983 eabi:
984 float in fp0, int in r3
985 offset of stack on overflow 8/16
986 for varargs, must go by type.
987 power open:
988 float in r3&r4, int in r5
989 offset of stack on overflow different
990 both:
991 return in r3 or f0. If no float, must study how gcc emulates floats;
992 pay attention to arg promotion.
993 User may have to cast\args to handle promotion correctly
994 since gdb won't know if prototype supplied or not.
995 */
996
997 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
998 {
999 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1000
1001 arg = args[argno];
1002 type = check_typedef (VALUE_TYPE (arg));
1003 len = TYPE_LENGTH (type);
1004
1005 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1006 {
1007
1008 /* floating point arguments are passed in fpr's, as well as gpr's.
1009 There are 13 fpr's reserved for passing parameters. At this point
1010 there is no way we would run out of them. */
1011
1012 if (len > 8)
1013 printf_unfiltered (
1014 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1015
1016 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1017 VALUE_CONTENTS (arg),
1018 len);
1019 ++f_argno;
1020 }
1021
1022 if (len > reg_size)
1023 {
1024
1025 /* Argument takes more than one register. */
1026 while (argbytes < len)
1027 {
1028 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1029 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1030 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1031 (len - argbytes) > reg_size
1032 ? reg_size : len - argbytes);
1033 ++ii, argbytes += reg_size;
1034
1035 if (ii >= 8)
1036 goto ran_out_of_registers_for_arguments;
1037 }
1038 argbytes = 0;
1039 --ii;
1040 }
1041 else
1042 { /* Argument can fit in one register. No problem. */
1043 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1044 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1045 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1046 VALUE_CONTENTS (arg), len);
1047 }
1048 ++argno;
1049 }
1050
1051 ran_out_of_registers_for_arguments:
1052
1053 saved_sp = read_sp ();
1054 #ifndef ELF_OBJECT_FORMAT
1055 /* location for 8 parameters are always reserved. */
1056 sp -= wordsize * 8;
1057
1058 /* another six words for back chain, TOC register, link register, etc. */
1059 sp -= wordsize * 6;
1060
1061 /* stack pointer must be quadword aligned */
1062 sp &= -16;
1063 #endif
1064
1065 /* if there are more arguments, allocate space for them in
1066 the stack, then push them starting from the ninth one. */
1067
1068 if ((argno < nargs) || argbytes)
1069 {
1070 int space = 0, jj;
1071
1072 if (argbytes)
1073 {
1074 space += ((len - argbytes + 3) & -4);
1075 jj = argno + 1;
1076 }
1077 else
1078 jj = argno;
1079
1080 for (; jj < nargs; ++jj)
1081 {
1082 struct value *val = args[jj];
1083 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1084 }
1085
1086 /* add location required for the rest of the parameters */
1087 space = (space + 15) & -16;
1088 sp -= space;
1089
1090 /* This is another instance we need to be concerned about securing our
1091 stack space. If we write anything underneath %sp (r1), we might conflict
1092 with the kernel who thinks he is free to use this area. So, update %sp
1093 first before doing anything else. */
1094
1095 write_register (SP_REGNUM, sp);
1096
1097 /* if the last argument copied into the registers didn't fit there
1098 completely, push the rest of it into stack. */
1099
1100 if (argbytes)
1101 {
1102 write_memory (sp + 24 + (ii * 4),
1103 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1104 len - argbytes);
1105 ++argno;
1106 ii += ((len - argbytes + 3) & -4) / 4;
1107 }
1108
1109 /* push the rest of the arguments into stack. */
1110 for (; argno < nargs; ++argno)
1111 {
1112
1113 arg = args[argno];
1114 type = check_typedef (VALUE_TYPE (arg));
1115 len = TYPE_LENGTH (type);
1116
1117
1118 /* float types should be passed in fpr's, as well as in the stack. */
1119 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1120 {
1121
1122 if (len > 8)
1123 printf_unfiltered (
1124 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1125
1126 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1127 VALUE_CONTENTS (arg),
1128 len);
1129 ++f_argno;
1130 }
1131
1132 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1133 ii += ((len + 3) & -4) / 4;
1134 }
1135 }
1136 else
1137 /* Secure stack areas first, before doing anything else. */
1138 write_register (SP_REGNUM, sp);
1139
1140 /* set back chain properly */
1141 store_address (tmp_buffer, 4, saved_sp);
1142 write_memory (sp, tmp_buffer, 4);
1143
1144 target_store_registers (-1);
1145 return sp;
1146 }
1147
1148 /* Function: ppc_push_return_address (pc, sp)
1149 Set up the return address for the inferior function call. */
1150
1151 static CORE_ADDR
1152 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1153 {
1154 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1155 CALL_DUMMY_ADDRESS ());
1156 return sp;
1157 }
1158
1159 /* Extract a function return value of type TYPE from raw register array
1160 REGBUF, and copy that return value into VALBUF in virtual format. */
1161
1162 static void
1163 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1164 {
1165 int offset = 0;
1166
1167 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1168 {
1169
1170 double dd;
1171 float ff;
1172 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1173 We need to truncate the return value into float size (4 byte) if
1174 necessary. */
1175
1176 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1177 memcpy (valbuf,
1178 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1179 TYPE_LENGTH (valtype));
1180 else
1181 { /* float */
1182 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1183 ff = (float) dd;
1184 memcpy (valbuf, &ff, sizeof (float));
1185 }
1186 }
1187 else
1188 {
1189 /* return value is copied starting from r3. */
1190 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1191 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1192 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1193
1194 memcpy (valbuf,
1195 regbuf + REGISTER_BYTE (3) + offset,
1196 TYPE_LENGTH (valtype));
1197 }
1198 }
1199
1200 /* Keep structure return address in this variable.
1201 FIXME: This is a horrid kludge which should not be allowed to continue
1202 living. This only allows a single nested call to a structure-returning
1203 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1204
1205 static CORE_ADDR rs6000_struct_return_address;
1206
1207 /* Return whether handle_inferior_event() should proceed through code
1208 starting at PC in function NAME when stepping.
1209
1210 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1211 handle memory references that are too distant to fit in instructions
1212 generated by the compiler. For example, if 'foo' in the following
1213 instruction:
1214
1215 lwz r9,foo(r2)
1216
1217 is greater than 32767, the linker might replace the lwz with a branch to
1218 somewhere in @FIX1 that does the load in 2 instructions and then branches
1219 back to where execution should continue.
1220
1221 GDB should silently step over @FIX code, just like AIX dbx does.
1222 Unfortunately, the linker uses the "b" instruction for the branches,
1223 meaning that the link register doesn't get set. Therefore, GDB's usual
1224 step_over_function() mechanism won't work.
1225
1226 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1227 in handle_inferior_event() to skip past @FIX code. */
1228
1229 int
1230 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1231 {
1232 return name && !strncmp (name, "@FIX", 4);
1233 }
1234
1235 /* Skip code that the user doesn't want to see when stepping:
1236
1237 1. Indirect function calls use a piece of trampoline code to do context
1238 switching, i.e. to set the new TOC table. Skip such code if we are on
1239 its first instruction (as when we have single-stepped to here).
1240
1241 2. Skip shared library trampoline code (which is different from
1242 indirect function call trampolines).
1243
1244 3. Skip bigtoc fixup code.
1245
1246 Result is desired PC to step until, or NULL if we are not in
1247 code that should be skipped. */
1248
1249 CORE_ADDR
1250 rs6000_skip_trampoline_code (CORE_ADDR pc)
1251 {
1252 register unsigned int ii, op;
1253 int rel;
1254 CORE_ADDR solib_target_pc;
1255 struct minimal_symbol *msymbol;
1256
1257 static unsigned trampoline_code[] =
1258 {
1259 0x800b0000, /* l r0,0x0(r11) */
1260 0x90410014, /* st r2,0x14(r1) */
1261 0x7c0903a6, /* mtctr r0 */
1262 0x804b0004, /* l r2,0x4(r11) */
1263 0x816b0008, /* l r11,0x8(r11) */
1264 0x4e800420, /* bctr */
1265 0x4e800020, /* br */
1266 0
1267 };
1268
1269 /* Check for bigtoc fixup code. */
1270 msymbol = lookup_minimal_symbol_by_pc (pc);
1271 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1272 {
1273 /* Double-check that the third instruction from PC is relative "b". */
1274 op = read_memory_integer (pc + 8, 4);
1275 if ((op & 0xfc000003) == 0x48000000)
1276 {
1277 /* Extract bits 6-29 as a signed 24-bit relative word address and
1278 add it to the containing PC. */
1279 rel = ((int)(op << 6) >> 6);
1280 return pc + 8 + rel;
1281 }
1282 }
1283
1284 /* If pc is in a shared library trampoline, return its target. */
1285 solib_target_pc = find_solib_trampoline_target (pc);
1286 if (solib_target_pc)
1287 return solib_target_pc;
1288
1289 for (ii = 0; trampoline_code[ii]; ++ii)
1290 {
1291 op = read_memory_integer (pc + (ii * 4), 4);
1292 if (op != trampoline_code[ii])
1293 return 0;
1294 }
1295 ii = read_register (11); /* r11 holds destination addr */
1296 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1297 return pc;
1298 }
1299
1300 /* Determines whether the function FI has a frame on the stack or not. */
1301
1302 int
1303 rs6000_frameless_function_invocation (struct frame_info *fi)
1304 {
1305 CORE_ADDR func_start;
1306 struct rs6000_framedata fdata;
1307
1308 /* Don't even think about framelessness except on the innermost frame
1309 or if the function was interrupted by a signal. */
1310 if (fi->next != NULL && !fi->next->signal_handler_caller)
1311 return 0;
1312
1313 func_start = get_pc_function_start (fi->pc);
1314
1315 /* If we failed to find the start of the function, it is a mistake
1316 to inspect the instructions. */
1317
1318 if (!func_start)
1319 {
1320 /* A frame with a zero PC is usually created by dereferencing a NULL
1321 function pointer, normally causing an immediate core dump of the
1322 inferior. Mark function as frameless, as the inferior has no chance
1323 of setting up a stack frame. */
1324 if (fi->pc == 0)
1325 return 1;
1326 else
1327 return 0;
1328 }
1329
1330 (void) skip_prologue (func_start, fi->pc, &fdata);
1331 return fdata.frameless;
1332 }
1333
1334 /* Return the PC saved in a frame */
1335
1336 CORE_ADDR
1337 rs6000_frame_saved_pc (struct frame_info *fi)
1338 {
1339 CORE_ADDR func_start;
1340 struct rs6000_framedata fdata;
1341 int wordsize = TDEP->wordsize;
1342
1343 if (fi->signal_handler_caller)
1344 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1345
1346 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1347 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1348
1349 func_start = get_pc_function_start (fi->pc);
1350
1351 /* If we failed to find the start of the function, it is a mistake
1352 to inspect the instructions. */
1353 if (!func_start)
1354 return 0;
1355
1356 (void) skip_prologue (func_start, fi->pc, &fdata);
1357
1358 if (fdata.lr_offset == 0 && fi->next != NULL)
1359 {
1360 if (fi->next->signal_handler_caller)
1361 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1362 wordsize);
1363 else
1364 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1365 wordsize);
1366 }
1367
1368 if (fdata.lr_offset == 0)
1369 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1370
1371 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1372 }
1373
1374 /* If saved registers of frame FI are not known yet, read and cache them.
1375 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1376 in which case the framedata are read. */
1377
1378 static void
1379 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1380 {
1381 CORE_ADDR frame_addr;
1382 struct rs6000_framedata work_fdata;
1383 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1384 int wordsize = tdep->wordsize;
1385
1386 if (fi->saved_regs)
1387 return;
1388
1389 if (fdatap == NULL)
1390 {
1391 fdatap = &work_fdata;
1392 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1393 }
1394
1395 frame_saved_regs_zalloc (fi);
1396
1397 /* If there were any saved registers, figure out parent's stack
1398 pointer. */
1399 /* The following is true only if the frame doesn't have a call to
1400 alloca(), FIXME. */
1401
1402 if (fdatap->saved_fpr == 0
1403 && fdatap->saved_gpr == 0
1404 && fdatap->saved_vr == 0
1405 && fdatap->lr_offset == 0
1406 && fdatap->cr_offset == 0
1407 && fdatap->vr_offset == 0)
1408 frame_addr = 0;
1409 else if (fi->prev && fi->prev->frame)
1410 frame_addr = fi->prev->frame;
1411 else
1412 frame_addr = read_memory_addr (fi->frame, wordsize);
1413
1414 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1415 All fpr's from saved_fpr to fp31 are saved. */
1416
1417 if (fdatap->saved_fpr >= 0)
1418 {
1419 int i;
1420 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1421 for (i = fdatap->saved_fpr; i < 32; i++)
1422 {
1423 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1424 fpr_addr += 8;
1425 }
1426 }
1427
1428 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1429 All gpr's from saved_gpr to gpr31 are saved. */
1430
1431 if (fdatap->saved_gpr >= 0)
1432 {
1433 int i;
1434 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1435 for (i = fdatap->saved_gpr; i < 32; i++)
1436 {
1437 fi->saved_regs[i] = gpr_addr;
1438 gpr_addr += wordsize;
1439 }
1440 }
1441
1442 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1443 All vr's from saved_vr to vr31 are saved. */
1444 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1445 {
1446 if (fdatap->saved_vr >= 0)
1447 {
1448 int i;
1449 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1450 for (i = fdatap->saved_vr; i < 32; i++)
1451 {
1452 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1453 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1454 }
1455 }
1456 }
1457
1458 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1459 the CR. */
1460 if (fdatap->cr_offset != 0)
1461 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1462
1463 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1464 the LR. */
1465 if (fdatap->lr_offset != 0)
1466 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1467
1468 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1469 the VRSAVE. */
1470 if (fdatap->vrsave_offset != 0)
1471 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1472 }
1473
1474 /* Return the address of a frame. This is the inital %sp value when the frame
1475 was first allocated. For functions calling alloca(), it might be saved in
1476 an alloca register. */
1477
1478 static CORE_ADDR
1479 frame_initial_stack_address (struct frame_info *fi)
1480 {
1481 CORE_ADDR tmpaddr;
1482 struct rs6000_framedata fdata;
1483 struct frame_info *callee_fi;
1484
1485 /* if the initial stack pointer (frame address) of this frame is known,
1486 just return it. */
1487
1488 if (fi->extra_info->initial_sp)
1489 return fi->extra_info->initial_sp;
1490
1491 /* find out if this function is using an alloca register.. */
1492
1493 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1494
1495 /* if saved registers of this frame are not known yet, read and cache them. */
1496
1497 if (!fi->saved_regs)
1498 frame_get_saved_regs (fi, &fdata);
1499
1500 /* If no alloca register used, then fi->frame is the value of the %sp for
1501 this frame, and it is good enough. */
1502
1503 if (fdata.alloca_reg < 0)
1504 {
1505 fi->extra_info->initial_sp = fi->frame;
1506 return fi->extra_info->initial_sp;
1507 }
1508
1509 /* This function has an alloca register. If this is the top-most frame
1510 (with the lowest address), the value in alloca register is good. */
1511
1512 if (!fi->next)
1513 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1514
1515 /* Otherwise, this is a caller frame. Callee has usually already saved
1516 registers, but there are exceptions (such as when the callee
1517 has no parameters). Find the address in which caller's alloca
1518 register is saved. */
1519
1520 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1521 {
1522
1523 if (!callee_fi->saved_regs)
1524 frame_get_saved_regs (callee_fi, NULL);
1525
1526 /* this is the address in which alloca register is saved. */
1527
1528 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1529 if (tmpaddr)
1530 {
1531 fi->extra_info->initial_sp =
1532 read_memory_addr (tmpaddr, TDEP->wordsize);
1533 return fi->extra_info->initial_sp;
1534 }
1535
1536 /* Go look into deeper levels of the frame chain to see if any one of
1537 the callees has saved alloca register. */
1538 }
1539
1540 /* If alloca register was not saved, by the callee (or any of its callees)
1541 then the value in the register is still good. */
1542
1543 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1544 return fi->extra_info->initial_sp;
1545 }
1546
1547 /* Describe the pointer in each stack frame to the previous stack frame
1548 (its caller). */
1549
1550 /* FRAME_CHAIN takes a frame's nominal address
1551 and produces the frame's chain-pointer. */
1552
1553 /* In the case of the RS/6000, the frame's nominal address
1554 is the address of a 4-byte word containing the calling frame's address. */
1555
1556 CORE_ADDR
1557 rs6000_frame_chain (struct frame_info *thisframe)
1558 {
1559 CORE_ADDR fp, fpp, lr;
1560 int wordsize = TDEP->wordsize;
1561
1562 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1563 return thisframe->frame; /* dummy frame same as caller's frame */
1564
1565 if (inside_entry_file (thisframe->pc) ||
1566 thisframe->pc == entry_point_address ())
1567 return 0;
1568
1569 if (thisframe->signal_handler_caller)
1570 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1571 wordsize);
1572 else if (thisframe->next != NULL
1573 && thisframe->next->signal_handler_caller
1574 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1575 /* A frameless function interrupted by a signal did not change the
1576 frame pointer. */
1577 fp = FRAME_FP (thisframe);
1578 else
1579 fp = read_memory_addr ((thisframe)->frame, wordsize);
1580
1581 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1582 if (lr == entry_point_address ())
1583 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1584 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1585 return fpp;
1586
1587 return fp;
1588 }
1589
1590 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1591 isn't available with that word size, return 0. */
1592
1593 static int
1594 regsize (const struct reg *reg, int wordsize)
1595 {
1596 return wordsize == 8 ? reg->sz64 : reg->sz32;
1597 }
1598
1599 /* Return the name of register number N, or null if no such register exists
1600 in the current architecture. */
1601
1602 static char *
1603 rs6000_register_name (int n)
1604 {
1605 struct gdbarch_tdep *tdep = TDEP;
1606 const struct reg *reg = tdep->regs + n;
1607
1608 if (!regsize (reg, tdep->wordsize))
1609 return NULL;
1610 return reg->name;
1611 }
1612
1613 /* Index within `registers' of the first byte of the space for
1614 register N. */
1615
1616 static int
1617 rs6000_register_byte (int n)
1618 {
1619 return TDEP->regoff[n];
1620 }
1621
1622 /* Return the number of bytes of storage in the actual machine representation
1623 for register N if that register is available, else return 0. */
1624
1625 static int
1626 rs6000_register_raw_size (int n)
1627 {
1628 struct gdbarch_tdep *tdep = TDEP;
1629 const struct reg *reg = tdep->regs + n;
1630 return regsize (reg, tdep->wordsize);
1631 }
1632
1633 /* Return the GDB type object for the "standard" data type
1634 of data in register N. */
1635
1636 static struct type *
1637 rs6000_register_virtual_type (int n)
1638 {
1639 struct gdbarch_tdep *tdep = TDEP;
1640 const struct reg *reg = tdep->regs + n;
1641
1642 if (reg->fpr)
1643 return builtin_type_double;
1644 else
1645 {
1646 int size = regsize (reg, tdep->wordsize);
1647 switch (size)
1648 {
1649 case 8:
1650 return builtin_type_int64;
1651 break;
1652 case 16:
1653 return builtin_type_vec128;
1654 break;
1655 default:
1656 return builtin_type_int32;
1657 break;
1658 }
1659 }
1660 }
1661
1662 /* For the PowerPC, it appears that the debug info marks float parameters as
1663 floats regardless of whether the function is prototyped, but the actual
1664 values are always passed in as doubles. Tell gdb to always assume that
1665 floats are passed as doubles and then converted in the callee. */
1666
1667 static int
1668 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1669 {
1670 return 1;
1671 }
1672
1673 /* Return whether register N requires conversion when moving from raw format
1674 to virtual format.
1675
1676 The register format for RS/6000 floating point registers is always
1677 double, we need a conversion if the memory format is float. */
1678
1679 static int
1680 rs6000_register_convertible (int n)
1681 {
1682 const struct reg *reg = TDEP->regs + n;
1683 return reg->fpr;
1684 }
1685
1686 /* Convert data from raw format for register N in buffer FROM
1687 to virtual format with type TYPE in buffer TO. */
1688
1689 static void
1690 rs6000_register_convert_to_virtual (int n, struct type *type,
1691 char *from, char *to)
1692 {
1693 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1694 {
1695 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1696 store_floating (to, TYPE_LENGTH (type), val);
1697 }
1698 else
1699 memcpy (to, from, REGISTER_RAW_SIZE (n));
1700 }
1701
1702 /* Convert data from virtual format with type TYPE in buffer FROM
1703 to raw format for register N in buffer TO. */
1704
1705 static void
1706 rs6000_register_convert_to_raw (struct type *type, int n,
1707 char *from, char *to)
1708 {
1709 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1710 {
1711 double val = extract_floating (from, TYPE_LENGTH (type));
1712 store_floating (to, REGISTER_RAW_SIZE (n), val);
1713 }
1714 else
1715 memcpy (to, from, REGISTER_RAW_SIZE (n));
1716 }
1717
1718 int
1719 altivec_register_p (int regno)
1720 {
1721 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1722 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1723 return 0;
1724 else
1725 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1726 }
1727
1728 static void
1729 rs6000_do_altivec_registers (int regnum)
1730 {
1731 int i;
1732 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1733 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1734 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1735
1736 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1737 {
1738 /* If we want just one reg, check that this is the one we want. */
1739 if (regnum != -1 && i != regnum)
1740 continue;
1741
1742 /* If the register name is empty, it is undefined for this
1743 processor, so don't display anything. */
1744 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1745 continue;
1746
1747 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1748 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1749
1750 /* Get the data in raw format. */
1751 if (read_relative_register_raw_bytes (i, raw_buffer))
1752 {
1753 printf_filtered ("*value not available*\n");
1754 continue;
1755 }
1756
1757 /* Convert raw data to virtual format if necessary. */
1758 if (REGISTER_CONVERTIBLE (i))
1759 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1760 raw_buffer, virtual_buffer);
1761 else
1762 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1763
1764 /* Print as integer in hex only. */
1765 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1766 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1767 printf_filtered ("\n");
1768 }
1769 }
1770
1771 static void
1772 rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1773 {
1774 int regnum, numregs;
1775 register char *end;
1776
1777 if (!target_has_registers)
1778 error ("The program has no registers now.");
1779 if (selected_frame == NULL)
1780 error ("No selected frame.");
1781
1782 if (!addr_exp)
1783 {
1784 rs6000_do_altivec_registers (-1);
1785 return;
1786 }
1787
1788 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1789 do
1790 {
1791 if (addr_exp[0] == '$')
1792 addr_exp++;
1793 end = addr_exp;
1794 while (*end != '\0' && *end != ' ' && *end != '\t')
1795 ++end;
1796
1797 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1798 if (regnum < 0)
1799 {
1800 regnum = numregs;
1801 if (*addr_exp >= '0' && *addr_exp <= '9')
1802 regnum = atoi (addr_exp); /* Take a number */
1803 if (regnum >= numregs) /* Bad name, or bad number */
1804 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1805 }
1806
1807 rs6000_do_altivec_registers (regnum);
1808
1809 addr_exp = end;
1810 while (*addr_exp == ' ' || *addr_exp == '\t')
1811 ++addr_exp;
1812 }
1813 while (*addr_exp != '\0');
1814 }
1815
1816 static void
1817 rs6000_do_registers_info (int regnum, int fpregs)
1818 {
1819 register int i;
1820 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1821 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1822 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1823
1824 for (i = 0; i < numregs; i++)
1825 {
1826 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1827 if (regnum == -1)
1828 {
1829 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1830 || (altivec_register_p (i) && !fpregs))
1831 continue;
1832 }
1833 else
1834 {
1835 if (i != regnum)
1836 continue;
1837 }
1838
1839 /* If the register name is empty, it is undefined for this
1840 processor, so don't display anything. */
1841 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1842 continue;
1843
1844 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1845 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1846
1847 /* Get the data in raw format. */
1848 if (read_relative_register_raw_bytes (i, raw_buffer))
1849 {
1850 printf_filtered ("*value not available*\n");
1851 continue;
1852 }
1853
1854 /* Convert raw data to virtual format if necessary. */
1855 if (REGISTER_CONVERTIBLE (i))
1856 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1857 raw_buffer, virtual_buffer);
1858 else
1859 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1860
1861 /* If virtual format is floating, print it that way, and in raw hex. */
1862 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1863 {
1864 register int j;
1865
1866 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1867 gdb_stdout, 0, 1, 0, Val_pretty_default);
1868
1869 printf_filtered ("\t(raw 0x");
1870 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1871 {
1872 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1873 : REGISTER_RAW_SIZE (i) - 1 - j;
1874 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1875 }
1876 printf_filtered (")");
1877 }
1878 else
1879 {
1880 /* Print as integer in hex and in decimal. */
1881 if (!altivec_register_p (i))
1882 {
1883 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1884 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1885 printf_filtered ("\t");
1886 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1887 gdb_stdout, 0, 1, 0, Val_pretty_default);
1888 }
1889 else
1890 /* Print as integer in hex only. */
1891 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1892 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1893 }
1894 printf_filtered ("\n");
1895 }
1896 }
1897
1898 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1899 REGNUM. */
1900 static int
1901 rs6000_stab_reg_to_regnum (int num)
1902 {
1903 int regnum;
1904 switch (num)
1905 {
1906 case 64:
1907 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1908 break;
1909 case 65:
1910 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1911 break;
1912 case 66:
1913 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1914 break;
1915 case 76:
1916 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1917 break;
1918 default:
1919 regnum = num;
1920 break;
1921 }
1922 return regnum;
1923 }
1924
1925 /* Store the address of the place in which to copy the structure the
1926 subroutine will return. This is called from call_function.
1927
1928 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1929 In function return, callee is not responsible of returning this address
1930 back. Since gdb needs to find it, we will store in a designated variable
1931 `rs6000_struct_return_address'. */
1932
1933 static void
1934 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1935 {
1936 write_register (3, addr);
1937 rs6000_struct_return_address = addr;
1938 }
1939
1940 /* Write into appropriate registers a function return value
1941 of type TYPE, given in virtual format. */
1942
1943 static void
1944 rs6000_store_return_value (struct type *type, char *valbuf)
1945 {
1946 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1947
1948 /* Floating point values are returned starting from FPR1 and up.
1949 Say a double_double_double type could be returned in
1950 FPR1/FPR2/FPR3 triple. */
1951
1952 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1953 TYPE_LENGTH (type));
1954 else
1955 /* Everything else is returned in GPR3 and up. */
1956 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1957 valbuf, TYPE_LENGTH (type));
1958 }
1959
1960 /* Extract from an array REGBUF containing the (raw) register state
1961 the address in which a function should return its structure value,
1962 as a CORE_ADDR (or an expression that can be used as one). */
1963
1964 static CORE_ADDR
1965 rs6000_extract_struct_value_address (char *regbuf)
1966 {
1967 return rs6000_struct_return_address;
1968 }
1969
1970 /* Return whether PC is in a dummy function call.
1971
1972 FIXME: This just checks for the end of the stack, which is broken
1973 for things like stepping through gcc nested function stubs. */
1974
1975 static int
1976 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1977 {
1978 return sp < pc && pc < fp;
1979 }
1980
1981 /* Hook called when a new child process is started. */
1982
1983 void
1984 rs6000_create_inferior (int pid)
1985 {
1986 if (rs6000_set_host_arch_hook)
1987 rs6000_set_host_arch_hook (pid);
1988 }
1989 \f
1990 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1991
1992 Usually a function pointer's representation is simply the address
1993 of the function. On the RS/6000 however, a function pointer is
1994 represented by a pointer to a TOC entry. This TOC entry contains
1995 three words, the first word is the address of the function, the
1996 second word is the TOC pointer (r2), and the third word is the
1997 static chain value. Throughout GDB it is currently assumed that a
1998 function pointer contains the address of the function, which is not
1999 easy to fix. In addition, the conversion of a function address to
2000 a function pointer would require allocation of a TOC entry in the
2001 inferior's memory space, with all its drawbacks. To be able to
2002 call C++ virtual methods in the inferior (which are called via
2003 function pointers), find_function_addr uses this function to get the
2004 function address from a function pointer. */
2005
2006 /* Return real function address if ADDR (a function pointer) is in the data
2007 space and is therefore a special function pointer. */
2008
2009 CORE_ADDR
2010 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2011 {
2012 struct obj_section *s;
2013
2014 s = find_pc_section (addr);
2015 if (s && s->the_bfd_section->flags & SEC_CODE)
2016 return addr;
2017
2018 /* ADDR is in the data space, so it's a special function pointer. */
2019 return read_memory_addr (addr, TDEP->wordsize);
2020 }
2021 \f
2022
2023 /* Handling the various POWER/PowerPC variants. */
2024
2025
2026 /* The arrays here called registers_MUMBLE hold information about available
2027 registers.
2028
2029 For each family of PPC variants, I've tried to isolate out the
2030 common registers and put them up front, so that as long as you get
2031 the general family right, GDB will correctly identify the registers
2032 common to that family. The common register sets are:
2033
2034 For the 60x family: hid0 hid1 iabr dabr pir
2035
2036 For the 505 and 860 family: eie eid nri
2037
2038 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2039 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2040 pbu1 pbl2 pbu2
2041
2042 Most of these register groups aren't anything formal. I arrived at
2043 them by looking at the registers that occurred in more than one
2044 processor. */
2045
2046 /* Convenience macros for populating register arrays. */
2047
2048 /* Within another macro, convert S to a string. */
2049
2050 #define STR(s) #s
2051
2052 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2053 and 64 bits on 64-bit systems. */
2054 #define R(name) { STR(name), 4, 8, 0 }
2055
2056 /* Return a struct reg defining register NAME that's 32 bits on all
2057 systems. */
2058 #define R4(name) { STR(name), 4, 4, 0 }
2059
2060 /* Return a struct reg defining register NAME that's 64 bits on all
2061 systems. */
2062 #define R8(name) { STR(name), 8, 8, 0 }
2063
2064 /* Return a struct reg defining register NAME that's 128 bits on all
2065 systems. */
2066 #define R16(name) { STR(name), 16, 16, 0 }
2067
2068 /* Return a struct reg defining floating-point register NAME. */
2069 #define F(name) { STR(name), 8, 8, 1 }
2070
2071 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2072 systems and that doesn't exist on 64-bit systems. */
2073 #define R32(name) { STR(name), 4, 0, 0 }
2074
2075 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2076 systems and that doesn't exist on 32-bit systems. */
2077 #define R64(name) { STR(name), 0, 8, 0 }
2078
2079 /* Return a struct reg placeholder for a register that doesn't exist. */
2080 #define R0 { 0, 0, 0, 0 }
2081
2082 /* UISA registers common across all architectures, including POWER. */
2083
2084 #define COMMON_UISA_REGS \
2085 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2086 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2087 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2088 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2089 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2090 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2091 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2092 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2093 /* 64 */ R(pc), R(ps)
2094
2095 /* UISA-level SPRs for PowerPC. */
2096 #define PPC_UISA_SPRS \
2097 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2098
2099 /* Segment registers, for PowerPC. */
2100 #define PPC_SEGMENT_REGS \
2101 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2102 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2103 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2104 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2105
2106 /* OEA SPRs for PowerPC. */
2107 #define PPC_OEA_SPRS \
2108 /* 87 */ R4(pvr), \
2109 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2110 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2111 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2112 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2113 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2114 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2115 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2116 /* 116 */ R4(dec), R(dabr), R4(ear)
2117
2118 /* AltiVec registers */
2119 #define PPC_ALTIVEC_REGS \
2120 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2121 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2122 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2123 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2124 /*151*/R4(vscr), R4(vrsave)
2125
2126 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2127 user-level SPR's. */
2128 static const struct reg registers_power[] =
2129 {
2130 COMMON_UISA_REGS,
2131 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
2132 };
2133
2134 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2135 view of the PowerPC. */
2136 static const struct reg registers_powerpc[] =
2137 {
2138 COMMON_UISA_REGS,
2139 PPC_UISA_SPRS,
2140 PPC_ALTIVEC_REGS
2141 };
2142
2143 /* IBM PowerPC 403. */
2144 static const struct reg registers_403[] =
2145 {
2146 COMMON_UISA_REGS,
2147 PPC_UISA_SPRS,
2148 PPC_SEGMENT_REGS,
2149 PPC_OEA_SPRS,
2150 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2151 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2152 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2153 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2154 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2155 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2156 };
2157
2158 /* IBM PowerPC 403GC. */
2159 static const struct reg registers_403GC[] =
2160 {
2161 COMMON_UISA_REGS,
2162 PPC_UISA_SPRS,
2163 PPC_SEGMENT_REGS,
2164 PPC_OEA_SPRS,
2165 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2166 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2167 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2168 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2169 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2170 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2171 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2172 /* 147 */ R(tbhu), R(tblu)
2173 };
2174
2175 /* Motorola PowerPC 505. */
2176 static const struct reg registers_505[] =
2177 {
2178 COMMON_UISA_REGS,
2179 PPC_UISA_SPRS,
2180 PPC_SEGMENT_REGS,
2181 PPC_OEA_SPRS,
2182 /* 119 */ R(eie), R(eid), R(nri)
2183 };
2184
2185 /* Motorola PowerPC 860 or 850. */
2186 static const struct reg registers_860[] =
2187 {
2188 COMMON_UISA_REGS,
2189 PPC_UISA_SPRS,
2190 PPC_SEGMENT_REGS,
2191 PPC_OEA_SPRS,
2192 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2193 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2194 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2195 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2196 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2197 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2198 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2199 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2200 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2201 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2202 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2203 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2204 };
2205
2206 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2207 for reading and writing RTCU and RTCL. However, how one reads and writes a
2208 register is the stub's problem. */
2209 static const struct reg registers_601[] =
2210 {
2211 COMMON_UISA_REGS,
2212 PPC_UISA_SPRS,
2213 PPC_SEGMENT_REGS,
2214 PPC_OEA_SPRS,
2215 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2216 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2217 };
2218
2219 /* Motorola PowerPC 602. */
2220 static const struct reg registers_602[] =
2221 {
2222 COMMON_UISA_REGS,
2223 PPC_UISA_SPRS,
2224 PPC_SEGMENT_REGS,
2225 PPC_OEA_SPRS,
2226 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2227 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2228 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2229 };
2230
2231 /* Motorola/IBM PowerPC 603 or 603e. */
2232 static const struct reg registers_603[] =
2233 {
2234 COMMON_UISA_REGS,
2235 PPC_UISA_SPRS,
2236 PPC_SEGMENT_REGS,
2237 PPC_OEA_SPRS,
2238 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2239 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2240 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2241 };
2242
2243 /* Motorola PowerPC 604 or 604e. */
2244 static const struct reg registers_604[] =
2245 {
2246 COMMON_UISA_REGS,
2247 PPC_UISA_SPRS,
2248 PPC_SEGMENT_REGS,
2249 PPC_OEA_SPRS,
2250 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2251 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2252 /* 127 */ R(sia), R(sda)
2253 };
2254
2255 /* Motorola/IBM PowerPC 750 or 740. */
2256 static const struct reg registers_750[] =
2257 {
2258 COMMON_UISA_REGS,
2259 PPC_UISA_SPRS,
2260 PPC_SEGMENT_REGS,
2261 PPC_OEA_SPRS,
2262 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2263 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2264 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2265 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2266 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2267 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2268 };
2269
2270
2271 /* Motorola PowerPC 7400. */
2272 static const struct reg registers_7400[] =
2273 {
2274 /* gpr0-gpr31, fpr0-fpr31 */
2275 COMMON_UISA_REGS,
2276 /* ctr, xre, lr, cr */
2277 PPC_UISA_SPRS,
2278 /* sr0-sr15 */
2279 PPC_SEGMENT_REGS,
2280 PPC_OEA_SPRS,
2281 /* vr0-vr31, vrsave, vscr */
2282 PPC_ALTIVEC_REGS
2283 /* FIXME? Add more registers? */
2284 };
2285
2286 /* Information about a particular processor variant. */
2287
2288 struct variant
2289 {
2290 /* Name of this variant. */
2291 char *name;
2292
2293 /* English description of the variant. */
2294 char *description;
2295
2296 /* bfd_arch_info.arch corresponding to variant. */
2297 enum bfd_architecture arch;
2298
2299 /* bfd_arch_info.mach corresponding to variant. */
2300 unsigned long mach;
2301
2302 /* Table of register names; registers[R] is the name of the register
2303 number R. */
2304 int nregs;
2305 const struct reg *regs;
2306 };
2307
2308 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2309
2310
2311 /* Information in this table comes from the following web sites:
2312 IBM: http://www.chips.ibm.com:80/products/embedded/
2313 Motorola: http://www.mot.com/SPS/PowerPC/
2314
2315 I'm sure I've got some of the variant descriptions not quite right.
2316 Please report any inaccuracies you find to GDB's maintainer.
2317
2318 If you add entries to this table, please be sure to allow the new
2319 value as an argument to the --with-cpu flag, in configure.in. */
2320
2321 static const struct variant variants[] =
2322 {
2323 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2324 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2325 {"power", "POWER user-level", bfd_arch_rs6000,
2326 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2327 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2328 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2329 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2330 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2331 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2332 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2333 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2334 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2335 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2336 604, num_registers (registers_604), registers_604},
2337 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2338 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2339 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2340 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2341 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2342 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2343 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2344 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
2345 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2346 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
2347
2348 /* FIXME: I haven't checked the register sets of the following. */
2349 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2350 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2351 {"a35", "PowerPC A35", bfd_arch_powerpc,
2352 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2353 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2354 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2355 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2356 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2357 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2358 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2359
2360 {0, 0, 0, 0}
2361 };
2362
2363 #undef num_registers
2364
2365 /* Return the variant corresponding to architecture ARCH and machine number
2366 MACH. If no such variant exists, return null. */
2367
2368 static const struct variant *
2369 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2370 {
2371 const struct variant *v;
2372
2373 for (v = variants; v->name; v++)
2374 if (arch == v->arch && mach == v->mach)
2375 return v;
2376
2377 return NULL;
2378 }
2379
2380
2381
2382 \f
2383 static void
2384 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2385 {
2386 int *os_ident_ptr = obj;
2387 const char *name;
2388 unsigned int sectsize;
2389
2390 name = bfd_get_section_name (abfd, sect);
2391 sectsize = bfd_section_size (abfd, sect);
2392 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2393 {
2394 unsigned int name_length, data_length, note_type;
2395 char *note = alloca (sectsize);
2396
2397 bfd_get_section_contents (abfd, sect, note,
2398 (file_ptr) 0, (bfd_size_type) sectsize);
2399
2400 name_length = bfd_h_get_32 (abfd, note);
2401 data_length = bfd_h_get_32 (abfd, note + 4);
2402 note_type = bfd_h_get_32 (abfd, note + 8);
2403
2404 if (name_length == 4 && data_length == 16 && note_type == 1
2405 && strcmp (note + 12, "GNU") == 0)
2406 {
2407 int os_number = bfd_h_get_32 (abfd, note + 16);
2408
2409 /* The case numbers are from abi-tags in glibc */
2410 switch (os_number)
2411 {
2412 case 0 :
2413 *os_ident_ptr = ELFOSABI_LINUX;
2414 break;
2415 case 1 :
2416 *os_ident_ptr = ELFOSABI_HURD;
2417 break;
2418 case 2 :
2419 *os_ident_ptr = ELFOSABI_SOLARIS;
2420 break;
2421 default :
2422 internal_error (__FILE__, __LINE__,
2423 "process_note_abi_sections: unknown OS number %d",
2424 os_number);
2425 break;
2426 }
2427 }
2428 }
2429 }
2430
2431 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2432 executables. If it's not an ELF executable or if the OS/ABI couldn't
2433 be determined, simply return -1. */
2434
2435 static int
2436 get_elfosabi (bfd *abfd)
2437 {
2438 int elfosabi = -1;
2439
2440 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2441 {
2442 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2443
2444 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2445 that we're on a SYSV system. However, GNU/Linux uses a note section
2446 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2447 have to check the note sections too. */
2448 if (elfosabi == 0)
2449 {
2450 bfd_map_over_sections (abfd,
2451 process_note_abi_tag_sections,
2452 &elfosabi);
2453 }
2454 }
2455
2456 return elfosabi;
2457 }
2458
2459 \f
2460
2461 /* Initialize the current architecture based on INFO. If possible, re-use an
2462 architecture from ARCHES, which is a list of architectures already created
2463 during this debugging session.
2464
2465 Called e.g. at program startup, when reading a core file, and when reading
2466 a binary file. */
2467
2468 static struct gdbarch *
2469 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2470 {
2471 struct gdbarch *gdbarch;
2472 struct gdbarch_tdep *tdep;
2473 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2474 struct reg *regs;
2475 const struct variant *v;
2476 enum bfd_architecture arch;
2477 unsigned long mach;
2478 bfd abfd;
2479 int osabi, sysv_abi;
2480
2481 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2482 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2483
2484 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2485 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2486
2487 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2488
2489 osabi = get_elfosabi (info.abfd);
2490
2491 /* Check word size. If INFO is from a binary file, infer it from
2492 that, else choose a likely default. */
2493 if (from_xcoff_exec)
2494 {
2495 if (xcoff_data (info.abfd)->xcoff64)
2496 wordsize = 8;
2497 else
2498 wordsize = 4;
2499 }
2500 else if (from_elf_exec)
2501 {
2502 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2503 wordsize = 8;
2504 else
2505 wordsize = 4;
2506 }
2507 else
2508 {
2509 wordsize = 4;
2510 }
2511
2512 /* Find a candidate among extant architectures. */
2513 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2514 arches != NULL;
2515 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2516 {
2517 /* Word size in the various PowerPC bfd_arch_info structs isn't
2518 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2519 separate word size check. */
2520 tdep = gdbarch_tdep (arches->gdbarch);
2521 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2522 return arches->gdbarch;
2523 }
2524
2525 /* None found, create a new architecture from INFO, whose bfd_arch_info
2526 validity depends on the source:
2527 - executable useless
2528 - rs6000_host_arch() good
2529 - core file good
2530 - "set arch" trust blindly
2531 - GDB startup useless but harmless */
2532
2533 if (!from_xcoff_exec)
2534 {
2535 arch = info.bfd_arch_info->arch;
2536 mach = info.bfd_arch_info->mach;
2537 }
2538 else
2539 {
2540 arch = bfd_arch_powerpc;
2541 mach = 0;
2542 bfd_default_set_arch_mach (&abfd, arch, mach);
2543 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2544 }
2545 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2546 tdep->wordsize = wordsize;
2547 tdep->osabi = osabi;
2548 gdbarch = gdbarch_alloc (&info, tdep);
2549 power = arch == bfd_arch_rs6000;
2550
2551 /* Select instruction printer. */
2552 tm_print_insn = arch == power ? print_insn_rs6000 :
2553 info.byte_order == BFD_ENDIAN_BIG ? print_insn_big_powerpc :
2554 print_insn_little_powerpc;
2555
2556 /* Choose variant. */
2557 v = find_variant_by_arch (arch, mach);
2558 if (!v)
2559 return NULL;
2560
2561 tdep->regs = v->regs;
2562
2563 tdep->ppc_gp0_regnum = 0;
2564 tdep->ppc_gplast_regnum = 31;
2565 tdep->ppc_toc_regnum = 2;
2566 tdep->ppc_ps_regnum = 65;
2567 tdep->ppc_cr_regnum = 66;
2568 tdep->ppc_lr_regnum = 67;
2569 tdep->ppc_ctr_regnum = 68;
2570 tdep->ppc_xer_regnum = 69;
2571 if (v->mach == bfd_mach_ppc_601)
2572 tdep->ppc_mq_regnum = 124;
2573 else
2574 tdep->ppc_mq_regnum = 70;
2575
2576 if (v->arch == bfd_arch_powerpc)
2577 switch (v->mach)
2578 {
2579 case bfd_mach_ppc:
2580 tdep->ppc_vr0_regnum = 71;
2581 tdep->ppc_vrsave_regnum = 104;
2582 break;
2583 case bfd_mach_ppc_7400:
2584 tdep->ppc_vr0_regnum = 119;
2585 tdep->ppc_vrsave_regnum = 153;
2586 break;
2587 default:
2588 tdep->ppc_vr0_regnum = -1;
2589 tdep->ppc_vrsave_regnum = -1;
2590 break;
2591 }
2592
2593 /* Calculate byte offsets in raw register array. */
2594 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2595 for (i = off = 0; i < v->nregs; i++)
2596 {
2597 tdep->regoff[i] = off;
2598 off += regsize (v->regs + i, wordsize);
2599 }
2600
2601 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2602 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2603 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2604 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
2605 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2606 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2607
2608 set_gdbarch_num_regs (gdbarch, v->nregs);
2609 set_gdbarch_sp_regnum (gdbarch, 1);
2610 set_gdbarch_fp_regnum (gdbarch, 1);
2611 set_gdbarch_pc_regnum (gdbarch, 64);
2612 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2613 set_gdbarch_register_size (gdbarch, wordsize);
2614 set_gdbarch_register_bytes (gdbarch, off);
2615 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2616 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2617 set_gdbarch_max_register_raw_size (gdbarch, 16);
2618 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2619 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2620 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2621 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
2622
2623 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2624 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2625 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2626 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2627 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2628 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2629 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2630 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2631 set_gdbarch_char_signed (gdbarch, 0);
2632
2633 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2634 set_gdbarch_call_dummy_length (gdbarch, 0);
2635 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2636 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2637 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2638 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2639 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2640 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2641 set_gdbarch_call_dummy_p (gdbarch, 1);
2642 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2643 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2644 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2645 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2646 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2647 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2648 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2649 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2650
2651 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2652 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2653 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2654 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2655
2656 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2657
2658 if (sysv_abi)
2659 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2660 else
2661 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2662
2663 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2664 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2665 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2666 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2667
2668 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2669 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2670 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2671 set_gdbarch_function_start_offset (gdbarch, 0);
2672 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2673
2674 /* Not sure on this. FIXMEmgo */
2675 set_gdbarch_frame_args_skip (gdbarch, 8);
2676
2677 /* Until November 2001, gcc was not complying to the SYSV ABI for
2678 returning structures less than or equal to 8 bytes in size. It was
2679 returning everything in memory. When this was corrected, it wasn't
2680 fixed for native platforms. */
2681 if (sysv_abi)
2682 {
2683 if (osabi == ELFOSABI_LINUX
2684 || osabi == ELFOSABI_NETBSD
2685 || osabi == ELFOSABI_FREEBSD)
2686 set_gdbarch_use_struct_convention (gdbarch,
2687 generic_use_struct_convention);
2688 else
2689 set_gdbarch_use_struct_convention (gdbarch,
2690 ppc_sysv_abi_use_struct_convention);
2691 }
2692 else
2693 {
2694 set_gdbarch_use_struct_convention (gdbarch,
2695 generic_use_struct_convention);
2696 }
2697
2698 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2699 if (osabi == ELFOSABI_LINUX)
2700 {
2701 set_gdbarch_frameless_function_invocation (gdbarch,
2702 ppc_linux_frameless_function_invocation);
2703 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2704 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2705
2706 set_gdbarch_frame_init_saved_regs (gdbarch,
2707 ppc_linux_frame_init_saved_regs);
2708 set_gdbarch_init_extra_frame_info (gdbarch,
2709 ppc_linux_init_extra_frame_info);
2710
2711 set_gdbarch_memory_remove_breakpoint (gdbarch,
2712 ppc_linux_memory_remove_breakpoint);
2713 set_solib_svr4_fetch_link_map_offsets
2714 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
2715 }
2716 else
2717 {
2718 set_gdbarch_frameless_function_invocation (gdbarch,
2719 rs6000_frameless_function_invocation);
2720 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2721 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2722
2723 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2724 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2725
2726 /* Handle RS/6000 function pointers. */
2727 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2728 rs6000_convert_from_func_ptr_addr);
2729 }
2730 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2731 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2732 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2733
2734 /* We can't tell how many args there are
2735 now that the C compiler delays popping them. */
2736 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2737
2738 return gdbarch;
2739 }
2740
2741 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2742
2743 static void
2744 rs6000_info_powerpc_command (char *args, int from_tty)
2745 {
2746 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2747 }
2748
2749 /* Initialization code. */
2750
2751 void
2752 _initialize_rs6000_tdep (void)
2753 {
2754 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2755 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2756
2757 /* Add root prefix command for "info powerpc" commands */
2758 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2759 "Various POWERPC info specific commands.",
2760 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2761
2762 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2763 "Display the contents of the AltiVec registers.",
2764 &info_powerpc_cmdlist);
2765
2766 }
This page took 0.085415 seconds and 5 git commands to generate.