Update copyright year range in all GDB files
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "target-float.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2/frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "coff/internal.h" /* for libcoff.h */
47 #include "libcoff.h" /* for xcoff_data */
48 #include "coff/xcoff.h"
49 #include "libxcoff.h"
50
51 #include "elf-bfd.h"
52 #include "elf/ppc.h"
53 #include "elf/ppc64.h"
54
55 #include "solib-svr4.h"
56 #include "ppc-tdep.h"
57 #include "ppc-ravenscar-thread.h"
58
59 #include "dis-asm.h"
60
61 #include "trad-frame.h"
62 #include "frame-unwind.h"
63 #include "frame-base.h"
64
65 #include "ax.h"
66 #include "ax-gdb.h"
67 #include <algorithm>
68
69 #include "features/rs6000/powerpc-32.c"
70 #include "features/rs6000/powerpc-altivec32.c"
71 #include "features/rs6000/powerpc-vsx32.c"
72 #include "features/rs6000/powerpc-403.c"
73 #include "features/rs6000/powerpc-403gc.c"
74 #include "features/rs6000/powerpc-405.c"
75 #include "features/rs6000/powerpc-505.c"
76 #include "features/rs6000/powerpc-601.c"
77 #include "features/rs6000/powerpc-602.c"
78 #include "features/rs6000/powerpc-603.c"
79 #include "features/rs6000/powerpc-604.c"
80 #include "features/rs6000/powerpc-64.c"
81 #include "features/rs6000/powerpc-altivec64.c"
82 #include "features/rs6000/powerpc-vsx64.c"
83 #include "features/rs6000/powerpc-7400.c"
84 #include "features/rs6000/powerpc-750.c"
85 #include "features/rs6000/powerpc-860.c"
86 #include "features/rs6000/powerpc-e500.c"
87 #include "features/rs6000/rs6000.c"
88
89 /* Determine if regnum is an SPE pseudo-register. */
90 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
94 /* Determine if regnum is a decimal float pseudo-register. */
95 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
99 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
106 /* Determine if regnum is a POWER7 VSX register. */
107 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111 /* Determine if regnum is a POWER7 Extended FP register. */
112 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115
116 /* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
123 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
132 /* Holds the current set of options to be passed to the disassembler. */
133 static char *powerpc_disassembler_options;
134
135 /* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137 static struct cmd_list_element *setpowerpccmdlist = NULL;
138 static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
143 static const char *const powerpc_vector_strings[] =
144 {
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150 };
151
152 /* A variable that can be configured by the user. */
153 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154 static const char *powerpc_vector_abi_string = "auto";
155
156 /* PowerPC-related per-inferior data. */
157
158 struct ppc_inferior_data
159 {
160 /* This is an optional in case we add more fields to ppc_inferior_data, we
161 don't want it instantiated as soon as we get the ppc_inferior_data for an
162 inferior. */
163 gdb::optional<displaced_step_buffers> disp_step_buf;
164 };
165
166 static inferior_key<ppc_inferior_data> ppc_inferior_data_key;
167
168 /* Get the per-inferior PowerPC data for INF. */
169
170 static ppc_inferior_data *
171 get_ppc_per_inferior (inferior *inf)
172 {
173 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
174
175 if (per_inf == nullptr)
176 per_inf = ppc_inferior_data_key.emplace (inf);
177
178 return per_inf;
179 }
180
181 /* To be used by skip_prologue. */
182
183 struct rs6000_framedata
184 {
185 int offset; /* total size of frame --- the distance
186 by which we decrement sp to allocate
187 the frame */
188 int saved_gpr; /* smallest # of saved gpr */
189 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
190 int saved_fpr; /* smallest # of saved fpr */
191 int saved_vr; /* smallest # of saved vr */
192 int saved_ev; /* smallest # of saved ev */
193 int alloca_reg; /* alloca register number (frame ptr) */
194 char frameless; /* true if frameless functions. */
195 char nosavedpc; /* true if pc not saved. */
196 char used_bl; /* true if link register clobbered */
197 int gpr_offset; /* offset of saved gprs from prev sp */
198 int fpr_offset; /* offset of saved fprs from prev sp */
199 int vr_offset; /* offset of saved vrs from prev sp */
200 int ev_offset; /* offset of saved evs from prev sp */
201 int lr_offset; /* offset of saved lr */
202 int lr_register; /* register of saved lr, if trustworthy */
203 int cr_offset; /* offset of saved cr */
204 int vrsave_offset; /* offset of saved vrsave register */
205 };
206
207
208 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
209 int
210 vsx_register_p (struct gdbarch *gdbarch, int regno)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 if (tdep->ppc_vsr0_regnum < 0)
214 return 0;
215 else
216 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
217 <= tdep->ppc_vsr0_upper_regnum + 31);
218 }
219
220 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
221 int
222 altivec_register_p (struct gdbarch *gdbarch, int regno)
223 {
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
226 return 0;
227 else
228 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
229 }
230
231
232 /* Return true if REGNO is an SPE register, false otherwise. */
233 int
234 spe_register_p (struct gdbarch *gdbarch, int regno)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* Is it a reference to EV0 -- EV31, and do we have those? */
239 if (IS_SPE_PSEUDOREG (tdep, regno))
240 return 1;
241
242 /* Is it a reference to one of the raw upper GPR halves? */
243 if (tdep->ppc_ev0_upper_regnum >= 0
244 && tdep->ppc_ev0_upper_regnum <= regno
245 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
246 return 1;
247
248 /* Is it a reference to the 64-bit accumulator, and do we have that? */
249 if (tdep->ppc_acc_regnum >= 0
250 && tdep->ppc_acc_regnum == regno)
251 return 1;
252
253 /* Is it a reference to the SPE floating-point status and control register,
254 and do we have that? */
255 if (tdep->ppc_spefscr_regnum >= 0
256 && tdep->ppc_spefscr_regnum == regno)
257 return 1;
258
259 return 0;
260 }
261
262
263 /* Return non-zero if the architecture described by GDBARCH has
264 floating-point registers (f0 --- f31 and fpscr). */
265 int
266 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 return (tdep->ppc_fp0_regnum >= 0
271 && tdep->ppc_fpscr_regnum >= 0);
272 }
273
274 /* Return non-zero if the architecture described by GDBARCH has
275 Altivec registers (vr0 --- vr31, vrsave and vscr). */
276 int
277 ppc_altivec_support_p (struct gdbarch *gdbarch)
278 {
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 return (tdep->ppc_vr0_regnum >= 0
282 && tdep->ppc_vrsave_regnum >= 0);
283 }
284
285 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
286 set it to SIM_REGNO.
287
288 This is a helper function for init_sim_regno_table, constructing
289 the table mapping GDB register numbers to sim register numbers; we
290 initialize every element in that table to -1 before we start
291 filling it in. */
292 static void
293 set_sim_regno (int *table, int gdb_regno, int sim_regno)
294 {
295 /* Make sure we don't try to assign any given GDB register a sim
296 register number more than once. */
297 gdb_assert (table[gdb_regno] == -1);
298 table[gdb_regno] = sim_regno;
299 }
300
301
302 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
303 numbers to simulator register numbers, based on the values placed
304 in the ARCH->tdep->ppc_foo_regnum members. */
305 static void
306 init_sim_regno_table (struct gdbarch *arch)
307 {
308 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
309 int total_regs = gdbarch_num_regs (arch);
310 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
311 int i;
312 static const char *const segment_regs[] = {
313 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
314 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
315 };
316
317 /* Presume that all registers not explicitly mentioned below are
318 unavailable from the sim. */
319 for (i = 0; i < total_regs; i++)
320 sim_regno[i] = -1;
321
322 /* General-purpose registers. */
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
325
326 /* Floating-point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 set_sim_regno (sim_regno,
330 tdep->ppc_fp0_regnum + i,
331 sim_ppc_f0_regnum + i);
332 if (tdep->ppc_fpscr_regnum >= 0)
333 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
334
335 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
336 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
337 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
338
339 /* Segment registers. */
340 for (i = 0; i < ppc_num_srs; i++)
341 {
342 int gdb_regno;
343
344 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
345 if (gdb_regno >= 0)
346 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
347 }
348
349 /* Altivec registers. */
350 if (tdep->ppc_vr0_regnum >= 0)
351 {
352 for (i = 0; i < ppc_num_vrs; i++)
353 set_sim_regno (sim_regno,
354 tdep->ppc_vr0_regnum + i,
355 sim_ppc_vr0_regnum + i);
356
357 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
358 we can treat this more like the other cases. */
359 set_sim_regno (sim_regno,
360 tdep->ppc_vr0_regnum + ppc_num_vrs,
361 sim_ppc_vscr_regnum);
362 }
363 /* vsave is a special-purpose register, so the code below handles it. */
364
365 /* SPE APU (E500) registers. */
366 if (tdep->ppc_ev0_upper_regnum >= 0)
367 for (i = 0; i < ppc_num_gprs; i++)
368 set_sim_regno (sim_regno,
369 tdep->ppc_ev0_upper_regnum + i,
370 sim_ppc_rh0_regnum + i);
371 if (tdep->ppc_acc_regnum >= 0)
372 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
373 /* spefscr is a special-purpose register, so the code below handles it. */
374
375 #ifdef WITH_PPC_SIM
376 /* Now handle all special-purpose registers. Verify that they
377 haven't mistakenly been assigned numbers by any of the above
378 code. */
379 for (i = 0; i < sim_ppc_num_sprs; i++)
380 {
381 const char *spr_name = sim_spr_register_name (i);
382 int gdb_regno = -1;
383
384 if (spr_name != NULL)
385 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
386
387 if (gdb_regno != -1)
388 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
389 }
390 #endif
391
392 /* Drop the initialized array into place. */
393 tdep->sim_regno = sim_regno;
394 }
395
396
397 /* Given a GDB register number REG, return the corresponding SIM
398 register number. */
399 static int
400 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
401 {
402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
403 int sim_regno;
404
405 if (tdep->sim_regno == NULL)
406 init_sim_regno_table (gdbarch);
407
408 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
409 sim_regno = tdep->sim_regno[reg];
410
411 if (sim_regno >= 0)
412 return sim_regno;
413 else
414 return LEGACY_SIM_REGNO_IGNORE;
415 }
416
417 \f
418
419 /* Register set support functions. */
420
421 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
422 Write the register to REGCACHE. */
423
424 void
425 ppc_supply_reg (struct regcache *regcache, int regnum,
426 const gdb_byte *regs, size_t offset, int regsize)
427 {
428 if (regnum != -1 && offset != -1)
429 {
430 if (regsize > 4)
431 {
432 struct gdbarch *gdbarch = regcache->arch ();
433 int gdb_regsize = register_size (gdbarch, regnum);
434 if (gdb_regsize < regsize
435 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 offset += regsize - gdb_regsize;
437 }
438 regcache->raw_supply (regnum, regs + offset);
439 }
440 }
441
442 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
443 in a field REGSIZE wide. Zero pad as necessary. */
444
445 void
446 ppc_collect_reg (const struct regcache *regcache, int regnum,
447 gdb_byte *regs, size_t offset, int regsize)
448 {
449 if (regnum != -1 && offset != -1)
450 {
451 if (regsize > 4)
452 {
453 struct gdbarch *gdbarch = regcache->arch ();
454 int gdb_regsize = register_size (gdbarch, regnum);
455 if (gdb_regsize < regsize)
456 {
457 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
458 {
459 memset (regs + offset, 0, regsize - gdb_regsize);
460 offset += regsize - gdb_regsize;
461 }
462 else
463 memset (regs + offset + regsize - gdb_regsize, 0,
464 regsize - gdb_regsize);
465 }
466 }
467 regcache->raw_collect (regnum, regs + offset);
468 }
469 }
470
471 static int
472 ppc_greg_offset (struct gdbarch *gdbarch,
473 struct gdbarch_tdep *tdep,
474 const struct ppc_reg_offsets *offsets,
475 int regnum,
476 int *regsize)
477 {
478 *regsize = offsets->gpr_size;
479 if (regnum >= tdep->ppc_gp0_regnum
480 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
481 return (offsets->r0_offset
482 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
483
484 if (regnum == gdbarch_pc_regnum (gdbarch))
485 return offsets->pc_offset;
486
487 if (regnum == tdep->ppc_ps_regnum)
488 return offsets->ps_offset;
489
490 if (regnum == tdep->ppc_lr_regnum)
491 return offsets->lr_offset;
492
493 if (regnum == tdep->ppc_ctr_regnum)
494 return offsets->ctr_offset;
495
496 *regsize = offsets->xr_size;
497 if (regnum == tdep->ppc_cr_regnum)
498 return offsets->cr_offset;
499
500 if (regnum == tdep->ppc_xer_regnum)
501 return offsets->xer_offset;
502
503 if (regnum == tdep->ppc_mq_regnum)
504 return offsets->mq_offset;
505
506 return -1;
507 }
508
509 static int
510 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
511 const struct ppc_reg_offsets *offsets,
512 int regnum)
513 {
514 if (regnum >= tdep->ppc_fp0_regnum
515 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
516 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
517
518 if (regnum == tdep->ppc_fpscr_regnum)
519 return offsets->fpscr_offset;
520
521 return -1;
522 }
523
524 /* Supply register REGNUM in the general-purpose register set REGSET
525 from the buffer specified by GREGS and LEN to register cache
526 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
527
528 void
529 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
530 int regnum, const void *gregs, size_t len)
531 {
532 struct gdbarch *gdbarch = regcache->arch ();
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534 const struct ppc_reg_offsets *offsets
535 = (const struct ppc_reg_offsets *) regset->regmap;
536 size_t offset;
537 int regsize;
538
539 if (regnum == -1)
540 {
541 int i;
542 int gpr_size = offsets->gpr_size;
543
544 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
545 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
546 i++, offset += gpr_size)
547 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
548 gpr_size);
549
550 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
551 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
552 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
553 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
554 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
555 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
556 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
557 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
558 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
559 (const gdb_byte *) gregs, offsets->cr_offset,
560 offsets->xr_size);
561 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
562 (const gdb_byte *) gregs, offsets->xer_offset,
563 offsets->xr_size);
564 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
565 (const gdb_byte *) gregs, offsets->mq_offset,
566 offsets->xr_size);
567 return;
568 }
569
570 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
571 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
572 }
573
574 /* Supply register REGNUM in the floating-point register set REGSET
575 from the buffer specified by FPREGS and LEN to register cache
576 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
577
578 void
579 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
580 int regnum, const void *fpregs, size_t len)
581 {
582 struct gdbarch *gdbarch = regcache->arch ();
583 struct gdbarch_tdep *tdep;
584 const struct ppc_reg_offsets *offsets;
585 size_t offset;
586
587 if (!ppc_floating_point_unit_p (gdbarch))
588 return;
589
590 tdep = gdbarch_tdep (gdbarch);
591 offsets = (const struct ppc_reg_offsets *) regset->regmap;
592 if (regnum == -1)
593 {
594 int i;
595
596 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
597 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
598 i++, offset += 8)
599 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
600
601 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
602 (const gdb_byte *) fpregs, offsets->fpscr_offset,
603 offsets->fpscr_size);
604 return;
605 }
606
607 offset = ppc_fpreg_offset (tdep, offsets, regnum);
608 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
609 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
610 }
611
612 /* Collect register REGNUM in the general-purpose register set
613 REGSET from register cache REGCACHE into the buffer specified by
614 GREGS and LEN. If REGNUM is -1, do this for all registers in
615 REGSET. */
616
617 void
618 ppc_collect_gregset (const struct regset *regset,
619 const struct regcache *regcache,
620 int regnum, void *gregs, size_t len)
621 {
622 struct gdbarch *gdbarch = regcache->arch ();
623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
624 const struct ppc_reg_offsets *offsets
625 = (const struct ppc_reg_offsets *) regset->regmap;
626 size_t offset;
627 int regsize;
628
629 if (regnum == -1)
630 {
631 int i;
632 int gpr_size = offsets->gpr_size;
633
634 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
635 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
636 i++, offset += gpr_size)
637 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
638
639 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
640 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
641 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
642 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
643 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
644 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
645 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
646 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
647 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
648 (gdb_byte *) gregs, offsets->cr_offset,
649 offsets->xr_size);
650 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
651 (gdb_byte *) gregs, offsets->xer_offset,
652 offsets->xr_size);
653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
654 (gdb_byte *) gregs, offsets->mq_offset,
655 offsets->xr_size);
656 return;
657 }
658
659 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
660 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
661 }
662
663 /* Collect register REGNUM in the floating-point register set
664 REGSET from register cache REGCACHE into the buffer specified by
665 FPREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668 void
669 ppc_collect_fpregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *fpregs, size_t len)
672 {
673 struct gdbarch *gdbarch = regcache->arch ();
674 struct gdbarch_tdep *tdep;
675 const struct ppc_reg_offsets *offsets;
676 size_t offset;
677
678 if (!ppc_floating_point_unit_p (gdbarch))
679 return;
680
681 tdep = gdbarch_tdep (gdbarch);
682 offsets = (const struct ppc_reg_offsets *) regset->regmap;
683 if (regnum == -1)
684 {
685 int i;
686
687 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
688 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
689 i++, offset += 8)
690 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
691
692 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
693 (gdb_byte *) fpregs, offsets->fpscr_offset,
694 offsets->fpscr_size);
695 return;
696 }
697
698 offset = ppc_fpreg_offset (tdep, offsets, regnum);
699 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
700 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
701 }
702
703 static int
704 insn_changes_sp_or_jumps (unsigned long insn)
705 {
706 int opcode = (insn >> 26) & 0x03f;
707 int sd = (insn >> 21) & 0x01f;
708 int a = (insn >> 16) & 0x01f;
709 int subcode = (insn >> 1) & 0x3ff;
710
711 /* Changes the stack pointer. */
712
713 /* NOTE: There are many ways to change the value of a given register.
714 The ways below are those used when the register is R1, the SP,
715 in a funtion's epilogue. */
716
717 if (opcode == 31 && subcode == 444 && a == 1)
718 return 1; /* mr R1,Rn */
719 if (opcode == 14 && sd == 1)
720 return 1; /* addi R1,Rn,simm */
721 if (opcode == 58 && sd == 1)
722 return 1; /* ld R1,ds(Rn) */
723
724 /* Transfers control. */
725
726 if (opcode == 18)
727 return 1; /* b */
728 if (opcode == 16)
729 return 1; /* bc */
730 if (opcode == 19 && subcode == 16)
731 return 1; /* bclr */
732 if (opcode == 19 && subcode == 528)
733 return 1; /* bcctr */
734
735 return 0;
736 }
737
738 /* Return true if we are in the function's epilogue, i.e. after the
739 instruction that destroyed the function's stack frame.
740
741 1) scan forward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer
743 or transfers control (except a return), execution is not in
744 an epilogue, return.
745 b) Stop scanning if you find a return instruction or reach the
746 end of the function or reach the hard limit for the size of
747 an epilogue.
748 2) scan backward from the point of execution:
749 a) If you find an instruction that modifies the stack pointer,
750 execution *is* in an epilogue, return.
751 b) Stop scanning if you reach an instruction that transfers
752 control or the beginning of the function or reach the hard
753 limit for the size of an epilogue. */
754
755 static int
756 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
757 struct gdbarch *gdbarch, CORE_ADDR pc)
758 {
759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
761 bfd_byte insn_buf[PPC_INSN_SIZE];
762 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
763 unsigned long insn;
764
765 /* Find the search limits based on function boundaries and hard limit. */
766
767 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
768 return 0;
769
770 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
771 if (epilogue_start < func_start) epilogue_start = func_start;
772
773 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
774 if (epilogue_end > func_end) epilogue_end = func_end;
775
776 /* Scan forward until next 'blr'. */
777
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
779 {
780 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
781 return 0;
782 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
783 if (insn == 0x4e800020)
784 break;
785 /* Assume a bctr is a tail call unless it points strictly within
786 this function. */
787 if (insn == 0x4e800420)
788 {
789 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
790 tdep->ppc_ctr_regnum);
791 if (ctr > func_start && ctr < func_end)
792 return 0;
793 else
794 break;
795 }
796 if (insn_changes_sp_or_jumps (insn))
797 return 0;
798 }
799
800 /* Scan backward until adjustment to stack pointer (R1). */
801
802 for (scan_pc = pc - PPC_INSN_SIZE;
803 scan_pc >= epilogue_start;
804 scan_pc -= PPC_INSN_SIZE)
805 {
806 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
807 return 0;
808 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
809 if (insn_changes_sp_or_jumps (insn))
810 return 1;
811 }
812
813 return 0;
814 }
815
816 /* Implement the stack_frame_destroyed_p gdbarch method. */
817
818 static int
819 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
820 {
821 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
822 gdbarch, pc);
823 }
824
825 /* Get the ith function argument for the current function. */
826 static CORE_ADDR
827 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
828 struct type *type)
829 {
830 return get_frame_register_unsigned (frame, 3 + argi);
831 }
832
833 /* Sequence of bytes for breakpoint instruction. */
834
835 constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
836 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
837
838 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
839 rs6000_breakpoint;
840
841 /* Instruction masks for displaced stepping. */
842 #define BRANCH_MASK 0xfc000000
843 #define BP_MASK 0xFC0007FE
844 #define B_INSN 0x48000000
845 #define BC_INSN 0x40000000
846 #define BXL_INSN 0x4c000000
847 #define BP_INSN 0x7C000008
848
849 /* Instruction masks used during single-stepping of atomic
850 sequences. */
851 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
852 #define LWARX_INSTRUCTION 0x7c000028
853 #define LDARX_INSTRUCTION 0x7c0000A8
854 #define LBARX_INSTRUCTION 0x7c000068
855 #define LHARX_INSTRUCTION 0x7c0000e8
856 #define LQARX_INSTRUCTION 0x7c000228
857 #define STORE_CONDITIONAL_MASK 0xfc0007ff
858 #define STWCX_INSTRUCTION 0x7c00012d
859 #define STDCX_INSTRUCTION 0x7c0001ad
860 #define STBCX_INSTRUCTION 0x7c00056d
861 #define STHCX_INSTRUCTION 0x7c0005ad
862 #define STQCX_INSTRUCTION 0x7c00016d
863
864 /* Check if insn is one of the Load And Reserve instructions used for atomic
865 sequences. */
866 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
867 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
868 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
869 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
870 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
871 /* Check if insn is one of the Store Conditional instructions used for atomic
872 sequences. */
873 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
874 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
875 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
876 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
877 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
878
879 typedef buf_displaced_step_copy_insn_closure
880 ppc_displaced_step_copy_insn_closure;
881
882 /* We can't displaced step atomic sequences. */
883
884 static displaced_step_copy_insn_closure_up
885 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
886 CORE_ADDR from, CORE_ADDR to,
887 struct regcache *regs)
888 {
889 size_t len = gdbarch_max_insn_length (gdbarch);
890 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
891 (new ppc_displaced_step_copy_insn_closure (len));
892 gdb_byte *buf = closure->buf.data ();
893 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
894 int insn;
895
896 read_memory (from, buf, len);
897
898 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
899
900 /* Assume all atomic sequences start with a Load and Reserve instruction. */
901 if (IS_LOAD_AND_RESERVE_INSN (insn))
902 {
903 displaced_debug_printf ("can't displaced step atomic sequence at %s",
904 paddress (gdbarch, from));
905
906 return NULL;
907 }
908
909 write_memory (to, buf, len);
910
911 displaced_debug_printf ("copy %s->%s: %s",
912 paddress (gdbarch, from), paddress (gdbarch, to),
913 displaced_step_dump_bytes (buf, len).c_str ());;
914
915 /* This is a work around for a problem with g++ 4.8. */
916 return displaced_step_copy_insn_closure_up (closure.release ());
917 }
918
919 /* Fix up the state of registers and memory after having single-stepped
920 a displaced instruction. */
921 static void
922 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
923 struct displaced_step_copy_insn_closure *closure_,
924 CORE_ADDR from, CORE_ADDR to,
925 struct regcache *regs)
926 {
927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
928 /* Our closure is a copy of the instruction. */
929 ppc_displaced_step_copy_insn_closure *closure
930 = (ppc_displaced_step_copy_insn_closure *) closure_;
931 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
932 PPC_INSN_SIZE, byte_order);
933 ULONGEST opcode = 0;
934 /* Offset for non PC-relative instructions. */
935 LONGEST offset = PPC_INSN_SIZE;
936
937 opcode = insn & BRANCH_MASK;
938
939 displaced_debug_printf ("(ppc) fixup (%s, %s)",
940 paddress (gdbarch, from), paddress (gdbarch, to));
941
942 /* Handle PC-relative branch instructions. */
943 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
944 {
945 ULONGEST current_pc;
946
947 /* Read the current PC value after the instruction has been executed
948 in a displaced location. Calculate the offset to be applied to the
949 original PC value before the displaced stepping. */
950 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
951 &current_pc);
952 offset = current_pc - to;
953
954 if (opcode != BXL_INSN)
955 {
956 /* Check for AA bit indicating whether this is an absolute
957 addressing or PC-relative (1: absolute, 0: relative). */
958 if (!(insn & 0x2))
959 {
960 /* PC-relative addressing is being used in the branch. */
961 displaced_debug_printf ("(ppc) branch instruction: %s",
962 paddress (gdbarch, insn));
963 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
964 paddress (gdbarch, current_pc),
965 paddress (gdbarch, from + offset));
966
967 regcache_cooked_write_unsigned (regs,
968 gdbarch_pc_regnum (gdbarch),
969 from + offset);
970 }
971 }
972 else
973 {
974 /* If we're here, it means we have a branch to LR or CTR. If the
975 branch was taken, the offset is probably greater than 4 (the next
976 instruction), so it's safe to assume that an offset of 4 means we
977 did not take the branch. */
978 if (offset == PPC_INSN_SIZE)
979 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
980 from + PPC_INSN_SIZE);
981 }
982
983 /* Check for LK bit indicating whether we should set the link
984 register to point to the next instruction
985 (1: Set, 0: Don't set). */
986 if (insn & 0x1)
987 {
988 /* Link register needs to be set to the next instruction's PC. */
989 regcache_cooked_write_unsigned (regs,
990 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
991 from + PPC_INSN_SIZE);
992 displaced_debug_printf ("(ppc) adjusted LR to %s",
993 paddress (gdbarch, from + PPC_INSN_SIZE));
994
995 }
996 }
997 /* Check for breakpoints in the inferior. If we've found one, place the PC
998 right at the breakpoint instruction. */
999 else if ((insn & BP_MASK) == BP_INSN)
1000 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1001 else
1002 /* Handle any other instructions that do not fit in the categories above. */
1003 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1004 from + offset);
1005 }
1006
1007 /* Implementation of gdbarch_displaced_step_prepare. */
1008
1009 static displaced_step_prepare_status
1010 ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1011 CORE_ADDR &displaced_pc)
1012 {
1013 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1014
1015 if (!per_inferior->disp_step_buf.has_value ())
1016 {
1017 /* Figure out where the displaced step buffer is. */
1018 CORE_ADDR disp_step_buf_addr
1019 = displaced_step_at_entry_point (thread->inf->gdbarch);
1020
1021 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1022 }
1023
1024 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1025 }
1026
1027 /* Implementation of gdbarch_displaced_step_finish. */
1028
1029 static displaced_step_finish_status
1030 ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1031 gdb_signal sig)
1032 {
1033 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1034
1035 gdb_assert (per_inferior->disp_step_buf.has_value ());
1036
1037 return per_inferior->disp_step_buf->finish (arch, thread, sig);
1038 }
1039
1040 /* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1041
1042 static void
1043 ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1044 {
1045 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1046
1047 if (per_inferior == nullptr
1048 || !per_inferior->disp_step_buf.has_value ())
1049 return;
1050
1051 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1052 }
1053
1054 /* Always use hardware single-stepping to execute the
1055 displaced instruction. */
1056 static bool
1057 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
1058 {
1059 return true;
1060 }
1061
1062 /* Checks for an atomic sequence of instructions beginning with a
1063 Load And Reserve instruction and ending with a Store Conditional
1064 instruction. If such a sequence is found, attempt to step through it.
1065 A breakpoint is placed at the end of the sequence. */
1066 std::vector<CORE_ADDR>
1067 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1068 {
1069 struct gdbarch *gdbarch = regcache->arch ();
1070 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1071 CORE_ADDR pc = regcache_read_pc (regcache);
1072 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1073 CORE_ADDR loc = pc;
1074 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1075 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1076 int insn_count;
1077 int index;
1078 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1079 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1080 int bc_insn_count = 0; /* Conditional branch instruction count. */
1081
1082 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1083 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1084 return {};
1085
1086 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1087 instructions. */
1088 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1089 {
1090 loc += PPC_INSN_SIZE;
1091 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1092
1093 /* Assume that there is at most one conditional branch in the atomic
1094 sequence. If a conditional branch is found, put a breakpoint in
1095 its destination address. */
1096 if ((insn & BRANCH_MASK) == BC_INSN)
1097 {
1098 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1099 int absolute = insn & 2;
1100
1101 if (bc_insn_count >= 1)
1102 return {}; /* More than one conditional branch found, fallback
1103 to the standard single-step code. */
1104
1105 if (absolute)
1106 breaks[1] = immediate;
1107 else
1108 breaks[1] = loc + immediate;
1109
1110 bc_insn_count++;
1111 last_breakpoint++;
1112 }
1113
1114 if (IS_STORE_CONDITIONAL_INSN (insn))
1115 break;
1116 }
1117
1118 /* Assume that the atomic sequence ends with a Store Conditional
1119 instruction. */
1120 if (!IS_STORE_CONDITIONAL_INSN (insn))
1121 return {};
1122
1123 closing_insn = loc;
1124 loc += PPC_INSN_SIZE;
1125
1126 /* Insert a breakpoint right after the end of the atomic sequence. */
1127 breaks[0] = loc;
1128
1129 /* Check for duplicated breakpoints. Check also for a breakpoint
1130 placed (branch instruction's destination) anywhere in sequence. */
1131 if (last_breakpoint
1132 && (breaks[1] == breaks[0]
1133 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1134 last_breakpoint = 0;
1135
1136 std::vector<CORE_ADDR> next_pcs;
1137
1138 for (index = 0; index <= last_breakpoint; index++)
1139 next_pcs.push_back (breaks[index]);
1140
1141 return next_pcs;
1142 }
1143
1144
1145 #define SIGNED_SHORT(x) \
1146 ((sizeof (short) == 2) \
1147 ? ((int)(short)(x)) \
1148 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1149
1150 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1151
1152 /* Limit the number of skipped non-prologue instructions, as the examining
1153 of the prologue is expensive. */
1154 static int max_skip_non_prologue_insns = 10;
1155
1156 /* Return nonzero if the given instruction OP can be part of the prologue
1157 of a function and saves a parameter on the stack. FRAMEP should be
1158 set if one of the previous instructions in the function has set the
1159 Frame Pointer. */
1160
1161 static int
1162 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1163 {
1164 /* Move parameters from argument registers to temporary register. */
1165 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1166 {
1167 /* Rx must be scratch register r0. */
1168 const int rx_regno = (op >> 16) & 31;
1169 /* Ry: Only r3 - r10 are used for parameter passing. */
1170 const int ry_regno = GET_SRC_REG (op);
1171
1172 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1173 {
1174 *r0_contains_arg = 1;
1175 return 1;
1176 }
1177 else
1178 return 0;
1179 }
1180
1181 /* Save a General Purpose Register on stack. */
1182
1183 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1184 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1185 {
1186 /* Rx: Only r3 - r10 are used for parameter passing. */
1187 const int rx_regno = GET_SRC_REG (op);
1188
1189 return (rx_regno >= 3 && rx_regno <= 10);
1190 }
1191
1192 /* Save a General Purpose Register on stack via the Frame Pointer. */
1193
1194 if (framep &&
1195 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1196 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1197 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1198 {
1199 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1200 However, the compiler sometimes uses r0 to hold an argument. */
1201 const int rx_regno = GET_SRC_REG (op);
1202
1203 return ((rx_regno >= 3 && rx_regno <= 10)
1204 || (rx_regno == 0 && *r0_contains_arg));
1205 }
1206
1207 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1208 {
1209 /* Only f2 - f8 are used for parameter passing. */
1210 const int src_regno = GET_SRC_REG (op);
1211
1212 return (src_regno >= 2 && src_regno <= 8);
1213 }
1214
1215 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1216 {
1217 /* Only f2 - f8 are used for parameter passing. */
1218 const int src_regno = GET_SRC_REG (op);
1219
1220 return (src_regno >= 2 && src_regno <= 8);
1221 }
1222
1223 /* Not an insn that saves a parameter on stack. */
1224 return 0;
1225 }
1226
1227 /* Assuming that INSN is a "bl" instruction located at PC, return
1228 nonzero if the destination of the branch is a "blrl" instruction.
1229
1230 This sequence is sometimes found in certain function prologues.
1231 It allows the function to load the LR register with a value that
1232 they can use to access PIC data using PC-relative offsets. */
1233
1234 static int
1235 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1236 {
1237 CORE_ADDR dest;
1238 int immediate;
1239 int absolute;
1240 int dest_insn;
1241
1242 absolute = (int) ((insn >> 1) & 1);
1243 immediate = ((insn & ~3) << 6) >> 6;
1244 if (absolute)
1245 dest = immediate;
1246 else
1247 dest = pc + immediate;
1248
1249 dest_insn = read_memory_integer (dest, 4, byte_order);
1250 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1251 return 1;
1252
1253 return 0;
1254 }
1255
1256 /* Return true if OP is a stw or std instruction with
1257 register operands RS and RA and any immediate offset.
1258
1259 If WITH_UPDATE is true, also return true if OP is
1260 a stwu or stdu instruction with the same operands.
1261
1262 Return false otherwise.
1263 */
1264 static bool
1265 store_insn_p (unsigned long op, unsigned long rs,
1266 unsigned long ra, bool with_update)
1267 {
1268 rs = rs << 21;
1269 ra = ra << 16;
1270
1271 if (/* std RS, SIMM(RA) */
1272 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1273 /* stw RS, SIMM(RA) */
1274 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1275 return true;
1276
1277 if (with_update)
1278 {
1279 if (/* stdu RS, SIMM(RA) */
1280 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1281 /* stwu RS, SIMM(RA) */
1282 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1283 return true;
1284 }
1285
1286 return false;
1287 }
1288
1289 /* Masks for decoding a branch-and-link (bl) instruction.
1290
1291 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1292 The former is anded with the opcode in question; if the result of
1293 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1294 question is a ``bl'' instruction.
1295
1296 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1297 the branch displacement. */
1298
1299 #define BL_MASK 0xfc000001
1300 #define BL_INSTRUCTION 0x48000001
1301 #define BL_DISPLACEMENT_MASK 0x03fffffc
1302
1303 static unsigned long
1304 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1305 {
1306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1307 gdb_byte buf[4];
1308 unsigned long op;
1309
1310 /* Fetch the instruction and convert it to an integer. */
1311 if (target_read_memory (pc, buf, 4))
1312 return 0;
1313 op = extract_unsigned_integer (buf, 4, byte_order);
1314
1315 return op;
1316 }
1317
1318 /* GCC generates several well-known sequences of instructions at the begining
1319 of each function prologue when compiling with -fstack-check. If one of
1320 such sequences starts at START_PC, then return the address of the
1321 instruction immediately past this sequence. Otherwise, return START_PC. */
1322
1323 static CORE_ADDR
1324 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1325 {
1326 CORE_ADDR pc = start_pc;
1327 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1328
1329 /* First possible sequence: A small number of probes.
1330 stw 0, -<some immediate>(1)
1331 [repeat this instruction any (small) number of times]. */
1332
1333 if ((op & 0xffff0000) == 0x90010000)
1334 {
1335 while ((op & 0xffff0000) == 0x90010000)
1336 {
1337 pc = pc + 4;
1338 op = rs6000_fetch_instruction (gdbarch, pc);
1339 }
1340 return pc;
1341 }
1342
1343 /* Second sequence: A probing loop.
1344 addi 12,1,-<some immediate>
1345 lis 0,-<some immediate>
1346 [possibly ori 0,0,<some immediate>]
1347 add 0,12,0
1348 cmpw 0,12,0
1349 beq 0,<disp>
1350 addi 12,12,-<some immediate>
1351 stw 0,0(12)
1352 b <disp>
1353 [possibly one last probe: stw 0,<some immediate>(12)]. */
1354
1355 while (1)
1356 {
1357 /* addi 12,1,-<some immediate> */
1358 if ((op & 0xffff0000) != 0x39810000)
1359 break;
1360
1361 /* lis 0,-<some immediate> */
1362 pc = pc + 4;
1363 op = rs6000_fetch_instruction (gdbarch, pc);
1364 if ((op & 0xffff0000) != 0x3c000000)
1365 break;
1366
1367 pc = pc + 4;
1368 op = rs6000_fetch_instruction (gdbarch, pc);
1369 /* [possibly ori 0,0,<some immediate>] */
1370 if ((op & 0xffff0000) == 0x60000000)
1371 {
1372 pc = pc + 4;
1373 op = rs6000_fetch_instruction (gdbarch, pc);
1374 }
1375 /* add 0,12,0 */
1376 if (op != 0x7c0c0214)
1377 break;
1378
1379 /* cmpw 0,12,0 */
1380 pc = pc + 4;
1381 op = rs6000_fetch_instruction (gdbarch, pc);
1382 if (op != 0x7c0c0000)
1383 break;
1384
1385 /* beq 0,<disp> */
1386 pc = pc + 4;
1387 op = rs6000_fetch_instruction (gdbarch, pc);
1388 if ((op & 0xff9f0001) != 0x41820000)
1389 break;
1390
1391 /* addi 12,12,-<some immediate> */
1392 pc = pc + 4;
1393 op = rs6000_fetch_instruction (gdbarch, pc);
1394 if ((op & 0xffff0000) != 0x398c0000)
1395 break;
1396
1397 /* stw 0,0(12) */
1398 pc = pc + 4;
1399 op = rs6000_fetch_instruction (gdbarch, pc);
1400 if (op != 0x900c0000)
1401 break;
1402
1403 /* b <disp> */
1404 pc = pc + 4;
1405 op = rs6000_fetch_instruction (gdbarch, pc);
1406 if ((op & 0xfc000001) != 0x48000000)
1407 break;
1408
1409 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1410 pc = pc + 4;
1411 op = rs6000_fetch_instruction (gdbarch, pc);
1412 if ((op & 0xffff0000) == 0x900c0000)
1413 {
1414 pc = pc + 4;
1415 op = rs6000_fetch_instruction (gdbarch, pc);
1416 }
1417
1418 /* We found a valid stack-check sequence, return the new PC. */
1419 return pc;
1420 }
1421
1422 /* Third sequence: No probe; instead, a comparison between the stack size
1423 limit (saved in a run-time global variable) and the current stack
1424 pointer:
1425
1426 addi 0,1,-<some immediate>
1427 lis 12,__gnat_stack_limit@ha
1428 lwz 12,__gnat_stack_limit@l(12)
1429 twllt 0,12
1430
1431 or, with a small variant in the case of a bigger stack frame:
1432 addis 0,1,<some immediate>
1433 addic 0,0,-<some immediate>
1434 lis 12,__gnat_stack_limit@ha
1435 lwz 12,__gnat_stack_limit@l(12)
1436 twllt 0,12
1437 */
1438 while (1)
1439 {
1440 /* addi 0,1,-<some immediate> */
1441 if ((op & 0xffff0000) != 0x38010000)
1442 {
1443 /* small stack frame variant not recognized; try the
1444 big stack frame variant: */
1445
1446 /* addis 0,1,<some immediate> */
1447 if ((op & 0xffff0000) != 0x3c010000)
1448 break;
1449
1450 /* addic 0,0,-<some immediate> */
1451 pc = pc + 4;
1452 op = rs6000_fetch_instruction (gdbarch, pc);
1453 if ((op & 0xffff0000) != 0x30000000)
1454 break;
1455 }
1456
1457 /* lis 12,<some immediate> */
1458 pc = pc + 4;
1459 op = rs6000_fetch_instruction (gdbarch, pc);
1460 if ((op & 0xffff0000) != 0x3d800000)
1461 break;
1462
1463 /* lwz 12,<some immediate>(12) */
1464 pc = pc + 4;
1465 op = rs6000_fetch_instruction (gdbarch, pc);
1466 if ((op & 0xffff0000) != 0x818c0000)
1467 break;
1468
1469 /* twllt 0,12 */
1470 pc = pc + 4;
1471 op = rs6000_fetch_instruction (gdbarch, pc);
1472 if ((op & 0xfffffffe) != 0x7c406008)
1473 break;
1474
1475 /* We found a valid stack-check sequence, return the new PC. */
1476 return pc;
1477 }
1478
1479 /* No stack check code in our prologue, return the start_pc. */
1480 return start_pc;
1481 }
1482
1483 /* return pc value after skipping a function prologue and also return
1484 information about a function frame.
1485
1486 in struct rs6000_framedata fdata:
1487 - frameless is TRUE, if function does not have a frame.
1488 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1489 - offset is the initial size of this stack frame --- the amount by
1490 which we decrement the sp to allocate the frame.
1491 - saved_gpr is the number of the first saved gpr.
1492 - saved_fpr is the number of the first saved fpr.
1493 - saved_vr is the number of the first saved vr.
1494 - saved_ev is the number of the first saved ev.
1495 - alloca_reg is the number of the register used for alloca() handling.
1496 Otherwise -1.
1497 - gpr_offset is the offset of the first saved gpr from the previous frame.
1498 - fpr_offset is the offset of the first saved fpr from the previous frame.
1499 - vr_offset is the offset of the first saved vr from the previous frame.
1500 - ev_offset is the offset of the first saved ev from the previous frame.
1501 - lr_offset is the offset of the saved lr
1502 - cr_offset is the offset of the saved cr
1503 - vrsave_offset is the offset of the saved vrsave register. */
1504
1505 static CORE_ADDR
1506 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1507 struct rs6000_framedata *fdata)
1508 {
1509 CORE_ADDR orig_pc = pc;
1510 CORE_ADDR last_prologue_pc = pc;
1511 CORE_ADDR li_found_pc = 0;
1512 gdb_byte buf[4];
1513 unsigned long op;
1514 long offset = 0;
1515 long alloca_reg_offset = 0;
1516 long vr_saved_offset = 0;
1517 int lr_reg = -1;
1518 int cr_reg = -1;
1519 int vr_reg = -1;
1520 int ev_reg = -1;
1521 long ev_offset = 0;
1522 int vrsave_reg = -1;
1523 int reg;
1524 int framep = 0;
1525 int minimal_toc_loaded = 0;
1526 int prev_insn_was_prologue_insn = 1;
1527 int num_skip_non_prologue_insns = 0;
1528 int r0_contains_arg = 0;
1529 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1532
1533 memset (fdata, 0, sizeof (struct rs6000_framedata));
1534 fdata->saved_gpr = -1;
1535 fdata->saved_fpr = -1;
1536 fdata->saved_vr = -1;
1537 fdata->saved_ev = -1;
1538 fdata->alloca_reg = -1;
1539 fdata->frameless = 1;
1540 fdata->nosavedpc = 1;
1541 fdata->lr_register = -1;
1542
1543 pc = rs6000_skip_stack_check (gdbarch, pc);
1544 if (pc >= lim_pc)
1545 pc = lim_pc;
1546
1547 for (;; pc += 4)
1548 {
1549 /* Sometimes it isn't clear if an instruction is a prologue
1550 instruction or not. When we encounter one of these ambiguous
1551 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1552 Otherwise, we'll assume that it really is a prologue instruction. */
1553 if (prev_insn_was_prologue_insn)
1554 last_prologue_pc = pc;
1555
1556 /* Stop scanning if we've hit the limit. */
1557 if (pc >= lim_pc)
1558 break;
1559
1560 prev_insn_was_prologue_insn = 1;
1561
1562 /* Fetch the instruction and convert it to an integer. */
1563 if (target_read_memory (pc, buf, 4))
1564 break;
1565 op = extract_unsigned_integer (buf, 4, byte_order);
1566
1567 if ((op & 0xfc1fffff) == 0x7c0802a6)
1568 { /* mflr Rx */
1569 /* Since shared library / PIC code, which needs to get its
1570 address at runtime, can appear to save more than one link
1571 register vis:
1572
1573 *INDENT-OFF*
1574 stwu r1,-304(r1)
1575 mflr r3
1576 bl 0xff570d0 (blrl)
1577 stw r30,296(r1)
1578 mflr r30
1579 stw r31,300(r1)
1580 stw r3,308(r1);
1581 ...
1582 *INDENT-ON*
1583
1584 remember just the first one, but skip over additional
1585 ones. */
1586 if (lr_reg == -1)
1587 lr_reg = (op & 0x03e00000) >> 21;
1588 if (lr_reg == 0)
1589 r0_contains_arg = 0;
1590 continue;
1591 }
1592 else if ((op & 0xfc1fffff) == 0x7c000026)
1593 { /* mfcr Rx */
1594 cr_reg = (op & 0x03e00000) >> 21;
1595 if (cr_reg == 0)
1596 r0_contains_arg = 0;
1597 continue;
1598
1599 }
1600 else if ((op & 0xfc1f0000) == 0xd8010000)
1601 { /* stfd Rx,NUM(r1) */
1602 reg = GET_SRC_REG (op);
1603 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1604 {
1605 fdata->saved_fpr = reg;
1606 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1607 }
1608 continue;
1609
1610 }
1611 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1612 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1613 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1614 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1615 {
1616
1617 reg = GET_SRC_REG (op);
1618 if ((op & 0xfc1f0000) == 0xbc010000)
1619 fdata->gpr_mask |= ~((1U << reg) - 1);
1620 else
1621 fdata->gpr_mask |= 1U << reg;
1622 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1623 {
1624 fdata->saved_gpr = reg;
1625 if ((op & 0xfc1f0003) == 0xf8010000)
1626 op &= ~3UL;
1627 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1628 }
1629 continue;
1630
1631 }
1632 else if ((op & 0xffff0000) == 0x3c4c0000
1633 || (op & 0xffff0000) == 0x3c400000
1634 || (op & 0xffff0000) == 0x38420000)
1635 {
1636 /* . 0: addis 2,12,.TOC.-0b@ha
1637 . addi 2,2,.TOC.-0b@l
1638 or
1639 . lis 2,.TOC.@ha
1640 . addi 2,2,.TOC.@l
1641 used by ELFv2 global entry points to set up r2. */
1642 continue;
1643 }
1644 else if (op == 0x60000000)
1645 {
1646 /* nop */
1647 /* Allow nops in the prologue, but do not consider them to
1648 be part of the prologue unless followed by other prologue
1649 instructions. */
1650 prev_insn_was_prologue_insn = 0;
1651 continue;
1652
1653 }
1654 else if ((op & 0xffff0000) == 0x3c000000)
1655 { /* addis 0,0,NUM, used for >= 32k frames */
1656 fdata->offset = (op & 0x0000ffff) << 16;
1657 fdata->frameless = 0;
1658 r0_contains_arg = 0;
1659 continue;
1660
1661 }
1662 else if ((op & 0xffff0000) == 0x60000000)
1663 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1664 fdata->offset |= (op & 0x0000ffff);
1665 fdata->frameless = 0;
1666 r0_contains_arg = 0;
1667 continue;
1668
1669 }
1670 else if (lr_reg >= 0 &&
1671 ((store_insn_p (op, lr_reg, 1, true)) ||
1672 (framep &&
1673 (store_insn_p (op, lr_reg,
1674 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1675 false)))))
1676 {
1677 if (store_insn_p (op, lr_reg, 1, true))
1678 fdata->lr_offset = offset;
1679 else /* LR save through frame pointer. */
1680 fdata->lr_offset = alloca_reg_offset;
1681
1682 fdata->nosavedpc = 0;
1683 /* Invalidate lr_reg, but don't set it to -1.
1684 That would mean that it had never been set. */
1685 lr_reg = -2;
1686 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1687 (op & 0xfc000000) == 0x90000000) /* stw */
1688 {
1689 /* Does not update r1, so add displacement to lr_offset. */
1690 fdata->lr_offset += SIGNED_SHORT (op);
1691 }
1692 continue;
1693
1694 }
1695 else if (cr_reg >= 0 &&
1696 (store_insn_p (op, cr_reg, 1, true)))
1697 {
1698 fdata->cr_offset = offset;
1699 /* Invalidate cr_reg, but don't set it to -1.
1700 That would mean that it had never been set. */
1701 cr_reg = -2;
1702 if ((op & 0xfc000003) == 0xf8000000 ||
1703 (op & 0xfc000000) == 0x90000000)
1704 {
1705 /* Does not update r1, so add displacement to cr_offset. */
1706 fdata->cr_offset += SIGNED_SHORT (op);
1707 }
1708 continue;
1709
1710 }
1711 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1712 {
1713 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1714 prediction bits. If the LR has already been saved, we can
1715 skip it. */
1716 continue;
1717 }
1718 else if (op == 0x48000005)
1719 { /* bl .+4 used in
1720 -mrelocatable */
1721 fdata->used_bl = 1;
1722 continue;
1723
1724 }
1725 else if (op == 0x48000004)
1726 { /* b .+4 (xlc) */
1727 break;
1728
1729 }
1730 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1731 in V.4 -mminimal-toc */
1732 (op & 0xffff0000) == 0x3bde0000)
1733 { /* addi 30,30,foo@l */
1734 continue;
1735
1736 }
1737 else if ((op & 0xfc000001) == 0x48000001)
1738 { /* bl foo,
1739 to save fprs??? */
1740
1741 fdata->frameless = 0;
1742
1743 /* If the return address has already been saved, we can skip
1744 calls to blrl (for PIC). */
1745 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1746 {
1747 fdata->used_bl = 1;
1748 continue;
1749 }
1750
1751 /* Don't skip over the subroutine call if it is not within
1752 the first three instructions of the prologue and either
1753 we have no line table information or the line info tells
1754 us that the subroutine call is not part of the line
1755 associated with the prologue. */
1756 if ((pc - orig_pc) > 8)
1757 {
1758 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1759 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1760
1761 if ((prologue_sal.line == 0)
1762 || (prologue_sal.line != this_sal.line))
1763 break;
1764 }
1765
1766 op = read_memory_integer (pc + 4, 4, byte_order);
1767
1768 /* At this point, make sure this is not a trampoline
1769 function (a function that simply calls another functions,
1770 and nothing else). If the next is not a nop, this branch
1771 was part of the function prologue. */
1772
1773 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1774 break; /* Don't skip over
1775 this branch. */
1776
1777 fdata->used_bl = 1;
1778 continue;
1779 }
1780 /* update stack pointer */
1781 else if ((op & 0xfc1f0000) == 0x94010000)
1782 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1783 fdata->frameless = 0;
1784 fdata->offset = SIGNED_SHORT (op);
1785 offset = fdata->offset;
1786 continue;
1787 }
1788 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1789 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1790 /* No way to figure out what r1 is going to be. */
1791 fdata->frameless = 0;
1792 offset = fdata->offset;
1793 continue;
1794 }
1795 else if ((op & 0xfc1f0003) == 0xf8010001)
1796 { /* stdu rX,NUM(r1) */
1797 fdata->frameless = 0;
1798 fdata->offset = SIGNED_SHORT (op & ~3UL);
1799 offset = fdata->offset;
1800 continue;
1801 }
1802 else if ((op & 0xffff0000) == 0x38210000)
1803 { /* addi r1,r1,SIMM */
1804 fdata->frameless = 0;
1805 fdata->offset += SIGNED_SHORT (op);
1806 offset = fdata->offset;
1807 continue;
1808 }
1809 /* Load up minimal toc pointer. Do not treat an epilogue restore
1810 of r31 as a minimal TOC load. */
1811 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1812 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1813 && !framep
1814 && !minimal_toc_loaded)
1815 {
1816 minimal_toc_loaded = 1;
1817 continue;
1818
1819 /* move parameters from argument registers to local variable
1820 registers */
1821 }
1822 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1823 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1824 (((op >> 21) & 31) <= 10) &&
1825 ((long) ((op >> 16) & 31)
1826 >= fdata->saved_gpr)) /* Rx: local var reg */
1827 {
1828 continue;
1829
1830 /* store parameters in stack */
1831 }
1832 /* Move parameters from argument registers to temporary register. */
1833 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1834 {
1835 continue;
1836
1837 /* Set up frame pointer */
1838 }
1839 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1840 {
1841 fdata->frameless = 0;
1842 framep = 1;
1843 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1844 alloca_reg_offset = offset;
1845 continue;
1846
1847 /* Another way to set up the frame pointer. */
1848 }
1849 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1850 || op == 0x7c3f0b78)
1851 { /* mr r31, r1 */
1852 fdata->frameless = 0;
1853 framep = 1;
1854 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1855 alloca_reg_offset = offset;
1856 continue;
1857
1858 /* Another way to set up the frame pointer. */
1859 }
1860 else if ((op & 0xfc1fffff) == 0x38010000)
1861 { /* addi rX, r1, 0x0 */
1862 fdata->frameless = 0;
1863 framep = 1;
1864 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1865 + ((op & ~0x38010000) >> 21));
1866 alloca_reg_offset = offset;
1867 continue;
1868 }
1869 /* AltiVec related instructions. */
1870 /* Store the vrsave register (spr 256) in another register for
1871 later manipulation, or load a register into the vrsave
1872 register. 2 instructions are used: mfvrsave and
1873 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1874 and mtspr SPR256, Rn. */
1875 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1876 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1877 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1878 {
1879 vrsave_reg = GET_SRC_REG (op);
1880 continue;
1881 }
1882 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1883 {
1884 continue;
1885 }
1886 /* Store the register where vrsave was saved to onto the stack:
1887 rS is the register where vrsave was stored in a previous
1888 instruction. */
1889 /* 100100 sssss 00001 dddddddd dddddddd */
1890 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1891 {
1892 if (vrsave_reg == GET_SRC_REG (op))
1893 {
1894 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1895 vrsave_reg = -1;
1896 }
1897 continue;
1898 }
1899 /* Compute the new value of vrsave, by modifying the register
1900 where vrsave was saved to. */
1901 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1902 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1903 {
1904 continue;
1905 }
1906 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1907 in a pair of insns to save the vector registers on the
1908 stack. */
1909 /* 001110 00000 00000 iiii iiii iiii iiii */
1910 /* 001110 01110 00000 iiii iiii iiii iiii */
1911 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1912 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1913 {
1914 if ((op & 0xffff0000) == 0x38000000)
1915 r0_contains_arg = 0;
1916 li_found_pc = pc;
1917 vr_saved_offset = SIGNED_SHORT (op);
1918
1919 /* This insn by itself is not part of the prologue, unless
1920 if part of the pair of insns mentioned above. So do not
1921 record this insn as part of the prologue yet. */
1922 prev_insn_was_prologue_insn = 0;
1923 }
1924 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1925 /* 011111 sssss 11111 00000 00111001110 */
1926 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1927 {
1928 if (pc == (li_found_pc + 4))
1929 {
1930 vr_reg = GET_SRC_REG (op);
1931 /* If this is the first vector reg to be saved, or if
1932 it has a lower number than others previously seen,
1933 reupdate the frame info. */
1934 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1935 {
1936 fdata->saved_vr = vr_reg;
1937 fdata->vr_offset = vr_saved_offset + offset;
1938 }
1939 vr_saved_offset = -1;
1940 vr_reg = -1;
1941 li_found_pc = 0;
1942 }
1943 }
1944 /* End AltiVec related instructions. */
1945
1946 /* Start BookE related instructions. */
1947 /* Store gen register S at (r31+uimm).
1948 Any register less than r13 is volatile, so we don't care. */
1949 /* 000100 sssss 11111 iiiii 01100100001 */
1950 else if (arch_info->mach == bfd_mach_ppc_e500
1951 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1952 {
1953 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1954 {
1955 unsigned int imm;
1956 ev_reg = GET_SRC_REG (op);
1957 imm = (op >> 11) & 0x1f;
1958 ev_offset = imm * 8;
1959 /* If this is the first vector reg to be saved, or if
1960 it has a lower number than others previously seen,
1961 reupdate the frame info. */
1962 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1963 {
1964 fdata->saved_ev = ev_reg;
1965 fdata->ev_offset = ev_offset + offset;
1966 }
1967 }
1968 continue;
1969 }
1970 /* Store gen register rS at (r1+rB). */
1971 /* 000100 sssss 00001 bbbbb 01100100000 */
1972 else if (arch_info->mach == bfd_mach_ppc_e500
1973 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1974 {
1975 if (pc == (li_found_pc + 4))
1976 {
1977 ev_reg = GET_SRC_REG (op);
1978 /* If this is the first vector reg to be saved, or if
1979 it has a lower number than others previously seen,
1980 reupdate the frame info. */
1981 /* We know the contents of rB from the previous instruction. */
1982 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1983 {
1984 fdata->saved_ev = ev_reg;
1985 fdata->ev_offset = vr_saved_offset + offset;
1986 }
1987 vr_saved_offset = -1;
1988 ev_reg = -1;
1989 li_found_pc = 0;
1990 }
1991 continue;
1992 }
1993 /* Store gen register r31 at (rA+uimm). */
1994 /* 000100 11111 aaaaa iiiii 01100100001 */
1995 else if (arch_info->mach == bfd_mach_ppc_e500
1996 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1997 {
1998 /* Wwe know that the source register is 31 already, but
1999 it can't hurt to compute it. */
2000 ev_reg = GET_SRC_REG (op);
2001 ev_offset = ((op >> 11) & 0x1f) * 8;
2002 /* If this is the first vector reg to be saved, or if
2003 it has a lower number than others previously seen,
2004 reupdate the frame info. */
2005 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2006 {
2007 fdata->saved_ev = ev_reg;
2008 fdata->ev_offset = ev_offset + offset;
2009 }
2010
2011 continue;
2012 }
2013 /* Store gen register S at (r31+r0).
2014 Store param on stack when offset from SP bigger than 4 bytes. */
2015 /* 000100 sssss 11111 00000 01100100000 */
2016 else if (arch_info->mach == bfd_mach_ppc_e500
2017 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2018 {
2019 if (pc == (li_found_pc + 4))
2020 {
2021 if ((op & 0x03e00000) >= 0x01a00000)
2022 {
2023 ev_reg = GET_SRC_REG (op);
2024 /* If this is the first vector reg to be saved, or if
2025 it has a lower number than others previously seen,
2026 reupdate the frame info. */
2027 /* We know the contents of r0 from the previous
2028 instruction. */
2029 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2030 {
2031 fdata->saved_ev = ev_reg;
2032 fdata->ev_offset = vr_saved_offset + offset;
2033 }
2034 ev_reg = -1;
2035 }
2036 vr_saved_offset = -1;
2037 li_found_pc = 0;
2038 continue;
2039 }
2040 }
2041 /* End BookE related instructions. */
2042
2043 else
2044 {
2045 /* Not a recognized prologue instruction.
2046 Handle optimizer code motions into the prologue by continuing
2047 the search if we have no valid frame yet or if the return
2048 address is not yet saved in the frame. Also skip instructions
2049 if some of the GPRs expected to be saved are not yet saved. */
2050 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2051 && fdata->saved_gpr != -1)
2052 {
2053 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2054
2055 if ((fdata->gpr_mask & all_mask) == all_mask)
2056 break;
2057 }
2058
2059 if (op == 0x4e800020 /* blr */
2060 || op == 0x4e800420) /* bctr */
2061 /* Do not scan past epilogue in frameless functions or
2062 trampolines. */
2063 break;
2064 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2065 /* Never skip branches. */
2066 break;
2067
2068 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2069 /* Do not scan too many insns, scanning insns is expensive with
2070 remote targets. */
2071 break;
2072
2073 /* Continue scanning. */
2074 prev_insn_was_prologue_insn = 0;
2075 continue;
2076 }
2077 }
2078
2079 #if 0
2080 /* I have problems with skipping over __main() that I need to address
2081 * sometime. Previously, I used to use misc_function_vector which
2082 * didn't work as well as I wanted to be. -MGO */
2083
2084 /* If the first thing after skipping a prolog is a branch to a function,
2085 this might be a call to an initializer in main(), introduced by gcc2.
2086 We'd like to skip over it as well. Fortunately, xlc does some extra
2087 work before calling a function right after a prologue, thus we can
2088 single out such gcc2 behaviour. */
2089
2090
2091 if ((op & 0xfc000001) == 0x48000001)
2092 { /* bl foo, an initializer function? */
2093 op = read_memory_integer (pc + 4, 4, byte_order);
2094
2095 if (op == 0x4def7b82)
2096 { /* cror 0xf, 0xf, 0xf (nop) */
2097
2098 /* Check and see if we are in main. If so, skip over this
2099 initializer function as well. */
2100
2101 tmp = find_pc_misc_function (pc);
2102 if (tmp >= 0
2103 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2104 return pc + 8;
2105 }
2106 }
2107 #endif /* 0 */
2108
2109 if (pc == lim_pc && lr_reg >= 0)
2110 fdata->lr_register = lr_reg;
2111
2112 fdata->offset = -fdata->offset;
2113 return last_prologue_pc;
2114 }
2115
2116 static CORE_ADDR
2117 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2118 {
2119 struct rs6000_framedata frame;
2120 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2121
2122 /* See if we can determine the end of the prologue via the symbol table.
2123 If so, then return either PC, or the PC after the prologue, whichever
2124 is greater. */
2125 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2126 {
2127 CORE_ADDR post_prologue_pc
2128 = skip_prologue_using_sal (gdbarch, func_addr);
2129 if (post_prologue_pc != 0)
2130 return std::max (pc, post_prologue_pc);
2131 }
2132
2133 /* Can't determine prologue from the symbol table, need to examine
2134 instructions. */
2135
2136 /* Find an upper limit on the function prologue using the debug
2137 information. If the debug information could not be used to provide
2138 that bound, then use an arbitrary large number as the upper bound. */
2139 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2140 if (limit_pc == 0)
2141 limit_pc = pc + 100; /* Magic. */
2142
2143 /* Do not allow limit_pc to be past the function end, if we know
2144 where that end is... */
2145 if (func_end_addr && limit_pc > func_end_addr)
2146 limit_pc = func_end_addr;
2147
2148 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2149 return pc;
2150 }
2151
2152 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2153 in the prologue of main().
2154
2155 The function below examines the code pointed at by PC and checks to
2156 see if it corresponds to a call to __eabi. If so, it returns the
2157 address of the instruction following that call. Otherwise, it simply
2158 returns PC. */
2159
2160 static CORE_ADDR
2161 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2162 {
2163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2164 gdb_byte buf[4];
2165 unsigned long op;
2166
2167 if (target_read_memory (pc, buf, 4))
2168 return pc;
2169 op = extract_unsigned_integer (buf, 4, byte_order);
2170
2171 if ((op & BL_MASK) == BL_INSTRUCTION)
2172 {
2173 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2174 CORE_ADDR call_dest = pc + 4 + displ;
2175 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2176
2177 /* We check for ___eabi (three leading underscores) in addition
2178 to __eabi in case the GCC option "-fleading-underscore" was
2179 used to compile the program. */
2180 if (s.minsym != NULL
2181 && s.minsym->linkage_name () != NULL
2182 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2183 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2184 pc += 4;
2185 }
2186 return pc;
2187 }
2188
2189 /* All the ABI's require 16 byte alignment. */
2190 static CORE_ADDR
2191 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2192 {
2193 return (addr & -16);
2194 }
2195
2196 /* Return whether handle_inferior_event() should proceed through code
2197 starting at PC in function NAME when stepping.
2198
2199 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2200 handle memory references that are too distant to fit in instructions
2201 generated by the compiler. For example, if 'foo' in the following
2202 instruction:
2203
2204 lwz r9,foo(r2)
2205
2206 is greater than 32767, the linker might replace the lwz with a branch to
2207 somewhere in @FIX1 that does the load in 2 instructions and then branches
2208 back to where execution should continue.
2209
2210 GDB should silently step over @FIX code, just like AIX dbx does.
2211 Unfortunately, the linker uses the "b" instruction for the
2212 branches, meaning that the link register doesn't get set.
2213 Therefore, GDB's usual step_over_function () mechanism won't work.
2214
2215 Instead, use the gdbarch_skip_trampoline_code and
2216 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2217 @FIX code. */
2218
2219 static int
2220 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2221 CORE_ADDR pc, const char *name)
2222 {
2223 return name && startswith (name, "@FIX");
2224 }
2225
2226 /* Skip code that the user doesn't want to see when stepping:
2227
2228 1. Indirect function calls use a piece of trampoline code to do context
2229 switching, i.e. to set the new TOC table. Skip such code if we are on
2230 its first instruction (as when we have single-stepped to here).
2231
2232 2. Skip shared library trampoline code (which is different from
2233 indirect function call trampolines).
2234
2235 3. Skip bigtoc fixup code.
2236
2237 Result is desired PC to step until, or NULL if we are not in
2238 code that should be skipped. */
2239
2240 static CORE_ADDR
2241 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2242 {
2243 struct gdbarch *gdbarch = get_frame_arch (frame);
2244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2246 unsigned int ii, op;
2247 int rel;
2248 CORE_ADDR solib_target_pc;
2249 struct bound_minimal_symbol msymbol;
2250
2251 static unsigned trampoline_code[] =
2252 {
2253 0x800b0000, /* l r0,0x0(r11) */
2254 0x90410014, /* st r2,0x14(r1) */
2255 0x7c0903a6, /* mtctr r0 */
2256 0x804b0004, /* l r2,0x4(r11) */
2257 0x816b0008, /* l r11,0x8(r11) */
2258 0x4e800420, /* bctr */
2259 0x4e800020, /* br */
2260 0
2261 };
2262
2263 /* Check for bigtoc fixup code. */
2264 msymbol = lookup_minimal_symbol_by_pc (pc);
2265 if (msymbol.minsym
2266 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2267 msymbol.minsym->linkage_name ()))
2268 {
2269 /* Double-check that the third instruction from PC is relative "b". */
2270 op = read_memory_integer (pc + 8, 4, byte_order);
2271 if ((op & 0xfc000003) == 0x48000000)
2272 {
2273 /* Extract bits 6-29 as a signed 24-bit relative word address and
2274 add it to the containing PC. */
2275 rel = ((int)(op << 6) >> 6);
2276 return pc + 8 + rel;
2277 }
2278 }
2279
2280 /* If pc is in a shared library trampoline, return its target. */
2281 solib_target_pc = find_solib_trampoline_target (frame, pc);
2282 if (solib_target_pc)
2283 return solib_target_pc;
2284
2285 for (ii = 0; trampoline_code[ii]; ++ii)
2286 {
2287 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2288 if (op != trampoline_code[ii])
2289 return 0;
2290 }
2291 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2292 addr. */
2293 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2294 return pc;
2295 }
2296
2297 /* ISA-specific vector types. */
2298
2299 static struct type *
2300 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2301 {
2302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2303
2304 if (!tdep->ppc_builtin_type_vec64)
2305 {
2306 const struct builtin_type *bt = builtin_type (gdbarch);
2307
2308 /* The type we're building is this: */
2309 #if 0
2310 union __gdb_builtin_type_vec64
2311 {
2312 int64_t uint64;
2313 float v2_float[2];
2314 int32_t v2_int32[2];
2315 int16_t v4_int16[4];
2316 int8_t v8_int8[8];
2317 };
2318 #endif
2319
2320 struct type *t;
2321
2322 t = arch_composite_type (gdbarch,
2323 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2324 append_composite_type_field (t, "uint64", bt->builtin_int64);
2325 append_composite_type_field (t, "v2_float",
2326 init_vector_type (bt->builtin_float, 2));
2327 append_composite_type_field (t, "v2_int32",
2328 init_vector_type (bt->builtin_int32, 2));
2329 append_composite_type_field (t, "v4_int16",
2330 init_vector_type (bt->builtin_int16, 4));
2331 append_composite_type_field (t, "v8_int8",
2332 init_vector_type (bt->builtin_int8, 8));
2333
2334 t->set_is_vector (true);
2335 t->set_name ("ppc_builtin_type_vec64");
2336 tdep->ppc_builtin_type_vec64 = t;
2337 }
2338
2339 return tdep->ppc_builtin_type_vec64;
2340 }
2341
2342 /* Vector 128 type. */
2343
2344 static struct type *
2345 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2346 {
2347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2348
2349 if (!tdep->ppc_builtin_type_vec128)
2350 {
2351 const struct builtin_type *bt = builtin_type (gdbarch);
2352
2353 /* The type we're building is this
2354
2355 type = union __ppc_builtin_type_vec128 {
2356 uint128_t uint128;
2357 double v2_double[2];
2358 float v4_float[4];
2359 int32_t v4_int32[4];
2360 int16_t v8_int16[8];
2361 int8_t v16_int8[16];
2362 }
2363 */
2364
2365 struct type *t;
2366
2367 t = arch_composite_type (gdbarch,
2368 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2369 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2370 append_composite_type_field (t, "v2_double",
2371 init_vector_type (bt->builtin_double, 2));
2372 append_composite_type_field (t, "v4_float",
2373 init_vector_type (bt->builtin_float, 4));
2374 append_composite_type_field (t, "v4_int32",
2375 init_vector_type (bt->builtin_int32, 4));
2376 append_composite_type_field (t, "v8_int16",
2377 init_vector_type (bt->builtin_int16, 8));
2378 append_composite_type_field (t, "v16_int8",
2379 init_vector_type (bt->builtin_int8, 16));
2380
2381 t->set_is_vector (true);
2382 t->set_name ("ppc_builtin_type_vec128");
2383 tdep->ppc_builtin_type_vec128 = t;
2384 }
2385
2386 return tdep->ppc_builtin_type_vec128;
2387 }
2388
2389 /* Return the name of register number REGNO, or the empty string if it
2390 is an anonymous register. */
2391
2392 static const char *
2393 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2394 {
2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2396
2397 /* The upper half "registers" have names in the XML description,
2398 but we present only the low GPRs and the full 64-bit registers
2399 to the user. */
2400 if (tdep->ppc_ev0_upper_regnum >= 0
2401 && tdep->ppc_ev0_upper_regnum <= regno
2402 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2403 return "";
2404
2405 /* Hide the upper halves of the vs0~vs31 registers. */
2406 if (tdep->ppc_vsr0_regnum >= 0
2407 && tdep->ppc_vsr0_upper_regnum <= regno
2408 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2409 return "";
2410
2411 /* Hide the upper halves of the cvs0~cvs31 registers. */
2412 if (PPC_CVSR0_UPPER_REGNUM <= regno
2413 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2414 return "";
2415
2416 /* Check if the SPE pseudo registers are available. */
2417 if (IS_SPE_PSEUDOREG (tdep, regno))
2418 {
2419 static const char *const spe_regnames[] = {
2420 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2421 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2422 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2423 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2424 };
2425 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2426 }
2427
2428 /* Check if the decimal128 pseudo-registers are available. */
2429 if (IS_DFP_PSEUDOREG (tdep, regno))
2430 {
2431 static const char *const dfp128_regnames[] = {
2432 "dl0", "dl1", "dl2", "dl3",
2433 "dl4", "dl5", "dl6", "dl7",
2434 "dl8", "dl9", "dl10", "dl11",
2435 "dl12", "dl13", "dl14", "dl15"
2436 };
2437 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2438 }
2439
2440 /* Check if this is a vX alias for a raw vrX vector register. */
2441 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2442 {
2443 static const char *const vector_alias_regnames[] = {
2444 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2445 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2446 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2447 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2448 };
2449 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2450 }
2451
2452 /* Check if this is a VSX pseudo-register. */
2453 if (IS_VSX_PSEUDOREG (tdep, regno))
2454 {
2455 static const char *const vsx_regnames[] = {
2456 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2457 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2458 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2459 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2460 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2461 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2462 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2463 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2464 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2465 };
2466 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2467 }
2468
2469 /* Check if the this is a Extended FP pseudo-register. */
2470 if (IS_EFP_PSEUDOREG (tdep, regno))
2471 {
2472 static const char *const efpr_regnames[] = {
2473 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2474 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2475 "f46", "f47", "f48", "f49", "f50", "f51",
2476 "f52", "f53", "f54", "f55", "f56", "f57",
2477 "f58", "f59", "f60", "f61", "f62", "f63"
2478 };
2479 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2480 }
2481
2482 /* Check if this is a Checkpointed DFP pseudo-register. */
2483 if (IS_CDFP_PSEUDOREG (tdep, regno))
2484 {
2485 static const char *const cdfp128_regnames[] = {
2486 "cdl0", "cdl1", "cdl2", "cdl3",
2487 "cdl4", "cdl5", "cdl6", "cdl7",
2488 "cdl8", "cdl9", "cdl10", "cdl11",
2489 "cdl12", "cdl13", "cdl14", "cdl15"
2490 };
2491 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2492 }
2493
2494 /* Check if this is a Checkpointed VSX pseudo-register. */
2495 if (IS_CVSX_PSEUDOREG (tdep, regno))
2496 {
2497 static const char *const cvsx_regnames[] = {
2498 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2499 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2500 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2501 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2502 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2503 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2504 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2505 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2506 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2507 };
2508 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2509 }
2510
2511 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2512 if (IS_CEFP_PSEUDOREG (tdep, regno))
2513 {
2514 static const char *const cefpr_regnames[] = {
2515 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2516 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2517 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2518 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2519 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2520 };
2521 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2522 }
2523
2524 return tdesc_register_name (gdbarch, regno);
2525 }
2526
2527 /* Return the GDB type object for the "standard" data type of data in
2528 register N. */
2529
2530 static struct type *
2531 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2532 {
2533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2534
2535 /* These are the e500 pseudo-registers. */
2536 if (IS_SPE_PSEUDOREG (tdep, regnum))
2537 return rs6000_builtin_type_vec64 (gdbarch);
2538 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2539 || IS_CDFP_PSEUDOREG (tdep, regnum))
2540 /* PPC decimal128 pseudo-registers. */
2541 return builtin_type (gdbarch)->builtin_declong;
2542 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2543 return gdbarch_register_type (gdbarch,
2544 tdep->ppc_vr0_regnum
2545 + (regnum
2546 - tdep->ppc_v0_alias_regnum));
2547 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2548 || IS_CVSX_PSEUDOREG (tdep, regnum))
2549 /* POWER7 VSX pseudo-registers. */
2550 return rs6000_builtin_type_vec128 (gdbarch);
2551 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2552 || IS_CEFP_PSEUDOREG (tdep, regnum))
2553 /* POWER7 Extended FP pseudo-registers. */
2554 return builtin_type (gdbarch)->builtin_double;
2555 else
2556 internal_error (__FILE__, __LINE__,
2557 _("rs6000_pseudo_register_type: "
2558 "called on unexpected register '%s' (%d)"),
2559 gdbarch_register_name (gdbarch, regnum), regnum);
2560 }
2561
2562 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2563 the vX aliases for the vector registers by always returning false
2564 to avoid duplicated information in "info register vector/all",
2565 since the raw vrX registers will already show in these cases. For
2566 other pseudo-registers we use the default membership function. */
2567
2568 static int
2569 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2570 struct reggroup *group)
2571 {
2572 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2573
2574 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2575 return 0;
2576 else
2577 return default_register_reggroup_p (gdbarch, regnum, group);
2578 }
2579
2580 /* The register format for RS/6000 floating point registers is always
2581 double, we need a conversion if the memory format is float. */
2582
2583 static int
2584 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2585 struct type *type)
2586 {
2587 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2588
2589 return (tdep->ppc_fp0_regnum >= 0
2590 && regnum >= tdep->ppc_fp0_regnum
2591 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2592 && type->code () == TYPE_CODE_FLT
2593 && TYPE_LENGTH (type)
2594 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2595 }
2596
2597 static int
2598 rs6000_register_to_value (struct frame_info *frame,
2599 int regnum,
2600 struct type *type,
2601 gdb_byte *to,
2602 int *optimizedp, int *unavailablep)
2603 {
2604 struct gdbarch *gdbarch = get_frame_arch (frame);
2605 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2606
2607 gdb_assert (type->code () == TYPE_CODE_FLT);
2608
2609 if (!get_frame_register_bytes (frame, regnum, 0,
2610 register_size (gdbarch, regnum),
2611 from, optimizedp, unavailablep))
2612 return 0;
2613
2614 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2615 to, type);
2616 *optimizedp = *unavailablep = 0;
2617 return 1;
2618 }
2619
2620 static void
2621 rs6000_value_to_register (struct frame_info *frame,
2622 int regnum,
2623 struct type *type,
2624 const gdb_byte *from)
2625 {
2626 struct gdbarch *gdbarch = get_frame_arch (frame);
2627 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2628
2629 gdb_assert (type->code () == TYPE_CODE_FLT);
2630
2631 target_float_convert (from, type,
2632 to, builtin_type (gdbarch)->builtin_double);
2633 put_frame_register (frame, regnum, to);
2634 }
2635
2636 /* The type of a function that moves the value of REG between CACHE
2637 or BUF --- in either direction. */
2638 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2639 int, void *);
2640
2641 /* Move SPE vector register values between a 64-bit buffer and the two
2642 32-bit raw register halves in a regcache. This function handles
2643 both splitting a 64-bit value into two 32-bit halves, and joining
2644 two halves into a whole 64-bit value, depending on the function
2645 passed as the MOVE argument.
2646
2647 EV_REG must be the number of an SPE evN vector register --- a
2648 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2649 64-bit buffer.
2650
2651 Call MOVE once for each 32-bit half of that register, passing
2652 REGCACHE, the number of the raw register corresponding to that
2653 half, and the address of the appropriate half of BUFFER.
2654
2655 For example, passing 'regcache_raw_read' as the MOVE function will
2656 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2657 'regcache_raw_supply' will supply the contents of BUFFER to the
2658 appropriate pair of raw registers in REGCACHE.
2659
2660 You may need to cast away some 'const' qualifiers when passing
2661 MOVE, since this function can't tell at compile-time which of
2662 REGCACHE or BUFFER is acting as the source of the data. If C had
2663 co-variant type qualifiers, ... */
2664
2665 static enum register_status
2666 e500_move_ev_register (move_ev_register_func move,
2667 struct regcache *regcache, int ev_reg, void *buffer)
2668 {
2669 struct gdbarch *arch = regcache->arch ();
2670 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2671 int reg_index;
2672 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2673 enum register_status status;
2674
2675 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2676
2677 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2678
2679 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2680 {
2681 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2682 byte_buffer);
2683 if (status == REG_VALID)
2684 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2685 byte_buffer + 4);
2686 }
2687 else
2688 {
2689 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2690 if (status == REG_VALID)
2691 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2692 byte_buffer + 4);
2693 }
2694
2695 return status;
2696 }
2697
2698 static enum register_status
2699 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2700 {
2701 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2702
2703 return REG_VALID;
2704 }
2705
2706 static enum register_status
2707 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2708 int ev_reg, gdb_byte *buffer)
2709 {
2710 struct gdbarch *arch = regcache->arch ();
2711 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2712 int reg_index;
2713 enum register_status status;
2714
2715 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2716
2717 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2718
2719 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2720 {
2721 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2722 buffer);
2723 if (status == REG_VALID)
2724 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2725 buffer + 4);
2726 }
2727 else
2728 {
2729 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2730 if (status == REG_VALID)
2731 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2732 buffer + 4);
2733 }
2734
2735 return status;
2736
2737 }
2738
2739 static void
2740 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2741 int reg_nr, const gdb_byte *buffer)
2742 {
2743 e500_move_ev_register (do_regcache_raw_write, regcache,
2744 reg_nr, (void *) buffer);
2745 }
2746
2747 /* Read method for DFP pseudo-registers. */
2748 static enum register_status
2749 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2750 int reg_nr, gdb_byte *buffer)
2751 {
2752 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2753 int reg_index, fp0;
2754 enum register_status status;
2755
2756 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2757 {
2758 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2759 fp0 = PPC_F0_REGNUM;
2760 }
2761 else
2762 {
2763 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2764
2765 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2766 fp0 = PPC_CF0_REGNUM;
2767 }
2768
2769 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2770 {
2771 /* Read two FP registers to form a whole dl register. */
2772 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2773 if (status == REG_VALID)
2774 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2775 buffer + 8);
2776 }
2777 else
2778 {
2779 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2780 if (status == REG_VALID)
2781 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2782 }
2783
2784 return status;
2785 }
2786
2787 /* Write method for DFP pseudo-registers. */
2788 static void
2789 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2790 int reg_nr, const gdb_byte *buffer)
2791 {
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 int reg_index, fp0;
2794
2795 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2796 {
2797 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2798 fp0 = PPC_F0_REGNUM;
2799 }
2800 else
2801 {
2802 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2803
2804 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2805 fp0 = PPC_CF0_REGNUM;
2806 }
2807
2808 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2809 {
2810 /* Write each half of the dl register into a separate
2811 FP register. */
2812 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2813 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2814 }
2815 else
2816 {
2817 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2818 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2819 }
2820 }
2821
2822 /* Read method for the vX aliases for the raw vrX registers. */
2823
2824 static enum register_status
2825 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2826 readable_regcache *regcache, int reg_nr,
2827 gdb_byte *buffer)
2828 {
2829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2830 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2831
2832 return regcache->raw_read (tdep->ppc_vr0_regnum
2833 + (reg_nr - tdep->ppc_v0_alias_regnum),
2834 buffer);
2835 }
2836
2837 /* Write method for the vX aliases for the raw vrX registers. */
2838
2839 static void
2840 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2841 struct regcache *regcache,
2842 int reg_nr, const gdb_byte *buffer)
2843 {
2844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2845 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2846
2847 regcache->raw_write (tdep->ppc_vr0_regnum
2848 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2849 }
2850
2851 /* Read method for POWER7 VSX pseudo-registers. */
2852 static enum register_status
2853 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2854 int reg_nr, gdb_byte *buffer)
2855 {
2856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2857 int reg_index, vr0, fp0, vsr0_upper;
2858 enum register_status status;
2859
2860 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2861 {
2862 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2863 vr0 = PPC_VR0_REGNUM;
2864 fp0 = PPC_F0_REGNUM;
2865 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2866 }
2867 else
2868 {
2869 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2870
2871 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2872 vr0 = PPC_CVR0_REGNUM;
2873 fp0 = PPC_CF0_REGNUM;
2874 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2875 }
2876
2877 /* Read the portion that overlaps the VMX registers. */
2878 if (reg_index > 31)
2879 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
2880 else
2881 /* Read the portion that overlaps the FPR registers. */
2882 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2883 {
2884 status = regcache->raw_read (fp0 + reg_index, buffer);
2885 if (status == REG_VALID)
2886 status = regcache->raw_read (vsr0_upper + reg_index,
2887 buffer + 8);
2888 }
2889 else
2890 {
2891 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
2892 if (status == REG_VALID)
2893 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
2894 }
2895
2896 return status;
2897 }
2898
2899 /* Write method for POWER7 VSX pseudo-registers. */
2900 static void
2901 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2902 int reg_nr, const gdb_byte *buffer)
2903 {
2904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2905 int reg_index, vr0, fp0, vsr0_upper;
2906
2907 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2908 {
2909 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2910 vr0 = PPC_VR0_REGNUM;
2911 fp0 = PPC_F0_REGNUM;
2912 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2913 }
2914 else
2915 {
2916 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2917
2918 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2919 vr0 = PPC_CVR0_REGNUM;
2920 fp0 = PPC_CF0_REGNUM;
2921 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2922 }
2923
2924 /* Write the portion that overlaps the VMX registers. */
2925 if (reg_index > 31)
2926 regcache->raw_write (vr0 + reg_index - 32, buffer);
2927 else
2928 /* Write the portion that overlaps the FPR registers. */
2929 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2930 {
2931 regcache->raw_write (fp0 + reg_index, buffer);
2932 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
2933 }
2934 else
2935 {
2936 regcache->raw_write (fp0 + reg_index, buffer + 8);
2937 regcache->raw_write (vsr0_upper + reg_index, buffer);
2938 }
2939 }
2940
2941 /* Read method for POWER7 Extended FP pseudo-registers. */
2942 static enum register_status
2943 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2944 int reg_nr, gdb_byte *buffer)
2945 {
2946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2947 int reg_index, vr0;
2948
2949 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2950 {
2951 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2952 vr0 = PPC_VR0_REGNUM;
2953 }
2954 else
2955 {
2956 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2957
2958 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2959 vr0 = PPC_CVR0_REGNUM;
2960 }
2961
2962 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2963
2964 /* Read the portion that overlaps the VMX register. */
2965 return regcache->raw_read_part (vr0 + reg_index, offset,
2966 register_size (gdbarch, reg_nr),
2967 buffer);
2968 }
2969
2970 /* Write method for POWER7 Extended FP pseudo-registers. */
2971 static void
2972 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2973 int reg_nr, const gdb_byte *buffer)
2974 {
2975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2976 int reg_index, vr0;
2977 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2978
2979 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2980 {
2981 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2982 vr0 = PPC_VR0_REGNUM;
2983 }
2984 else
2985 {
2986 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2987
2988 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2989 vr0 = PPC_CVR0_REGNUM;
2990
2991 /* The call to raw_write_part fails silently if the initial read
2992 of the read-update-write sequence returns an invalid status,
2993 so we check this manually and throw an error if needed. */
2994 regcache->raw_update (vr0 + reg_index);
2995 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
2996 error (_("Cannot write to the checkpointed EFP register, "
2997 "the corresponding vector register is unavailable."));
2998 }
2999
3000 /* Write the portion that overlaps the VMX register. */
3001 regcache->raw_write_part (vr0 + reg_index, offset,
3002 register_size (gdbarch, reg_nr), buffer);
3003 }
3004
3005 static enum register_status
3006 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
3007 readable_regcache *regcache,
3008 int reg_nr, gdb_byte *buffer)
3009 {
3010 struct gdbarch *regcache_arch = regcache->arch ();
3011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3012
3013 gdb_assert (regcache_arch == gdbarch);
3014
3015 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3016 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3017 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3018 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3019 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3020 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3021 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3022 buffer);
3023 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3024 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3025 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3026 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3027 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3028 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3029 else
3030 internal_error (__FILE__, __LINE__,
3031 _("rs6000_pseudo_register_read: "
3032 "called on unexpected register '%s' (%d)"),
3033 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3034 }
3035
3036 static void
3037 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3038 struct regcache *regcache,
3039 int reg_nr, const gdb_byte *buffer)
3040 {
3041 struct gdbarch *regcache_arch = regcache->arch ();
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044 gdb_assert (regcache_arch == gdbarch);
3045
3046 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3047 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3048 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3049 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3050 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3051 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3052 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3053 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3054 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3055 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3056 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3057 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3058 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3059 else
3060 internal_error (__FILE__, __LINE__,
3061 _("rs6000_pseudo_register_write: "
3062 "called on unexpected register '%s' (%d)"),
3063 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3064 }
3065
3066 /* Set the register mask in AX with the registers that form the DFP or
3067 checkpointed DFP pseudo-register REG_NR. */
3068
3069 static void
3070 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3071 struct agent_expr *ax, int reg_nr)
3072 {
3073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3074 int reg_index, fp0;
3075
3076 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3077 {
3078 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3079 fp0 = PPC_F0_REGNUM;
3080 }
3081 else
3082 {
3083 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3084
3085 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3086 fp0 = PPC_CF0_REGNUM;
3087 }
3088
3089 ax_reg_mask (ax, fp0 + 2 * reg_index);
3090 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3091 }
3092
3093 /* Set the register mask in AX with the raw vector register that
3094 corresponds to its REG_NR alias. */
3095
3096 static void
3097 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3098 struct agent_expr *ax, int reg_nr)
3099 {
3100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3101 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3102
3103 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3104 + (reg_nr - tdep->ppc_v0_alias_regnum));
3105 }
3106
3107 /* Set the register mask in AX with the registers that form the VSX or
3108 checkpointed VSX pseudo-register REG_NR. */
3109
3110 static void
3111 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3112 struct agent_expr *ax, int reg_nr)
3113 {
3114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3115 int reg_index, vr0, fp0, vsr0_upper;
3116
3117 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3118 {
3119 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3120 vr0 = PPC_VR0_REGNUM;
3121 fp0 = PPC_F0_REGNUM;
3122 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3123 }
3124 else
3125 {
3126 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3127
3128 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3129 vr0 = PPC_CVR0_REGNUM;
3130 fp0 = PPC_CF0_REGNUM;
3131 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3132 }
3133
3134 if (reg_index > 31)
3135 {
3136 ax_reg_mask (ax, vr0 + reg_index - 32);
3137 }
3138 else
3139 {
3140 ax_reg_mask (ax, fp0 + reg_index);
3141 ax_reg_mask (ax, vsr0_upper + reg_index);
3142 }
3143 }
3144
3145 /* Set the register mask in AX with the register that corresponds to
3146 the EFP or checkpointed EFP pseudo-register REG_NR. */
3147
3148 static void
3149 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3150 struct agent_expr *ax, int reg_nr)
3151 {
3152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3153 int reg_index, vr0;
3154
3155 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3156 {
3157 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3158 vr0 = PPC_VR0_REGNUM;
3159 }
3160 else
3161 {
3162 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3163
3164 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3165 vr0 = PPC_CVR0_REGNUM;
3166 }
3167
3168 ax_reg_mask (ax, vr0 + reg_index);
3169 }
3170
3171 static int
3172 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3173 struct agent_expr *ax, int reg_nr)
3174 {
3175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3176 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3177 {
3178 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3179 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3180 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3181 }
3182 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3183 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3184 {
3185 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3186 }
3187 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3188 {
3189 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3190 }
3191 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3192 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3193 {
3194 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3195 }
3196 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3197 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3198 {
3199 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3200 }
3201 else
3202 internal_error (__FILE__, __LINE__,
3203 _("rs6000_pseudo_register_collect: "
3204 "called on unexpected register '%s' (%d)"),
3205 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3206 return 0;
3207 }
3208
3209
3210 static void
3211 rs6000_gen_return_address (struct gdbarch *gdbarch,
3212 struct agent_expr *ax, struct axs_value *value,
3213 CORE_ADDR scope)
3214 {
3215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3216 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3217 value->kind = axs_lvalue_register;
3218 value->u.reg = tdep->ppc_lr_regnum;
3219 }
3220
3221
3222 /* Convert a DBX STABS register number to a GDB register number. */
3223 static int
3224 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3225 {
3226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3227
3228 if (0 <= num && num <= 31)
3229 return tdep->ppc_gp0_regnum + num;
3230 else if (32 <= num && num <= 63)
3231 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3232 specifies registers the architecture doesn't have? Our
3233 callers don't check the value we return. */
3234 return tdep->ppc_fp0_regnum + (num - 32);
3235 else if (77 <= num && num <= 108)
3236 return tdep->ppc_vr0_regnum + (num - 77);
3237 else if (1200 <= num && num < 1200 + 32)
3238 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3239 else
3240 switch (num)
3241 {
3242 case 64:
3243 return tdep->ppc_mq_regnum;
3244 case 65:
3245 return tdep->ppc_lr_regnum;
3246 case 66:
3247 return tdep->ppc_ctr_regnum;
3248 case 76:
3249 return tdep->ppc_xer_regnum;
3250 case 109:
3251 return tdep->ppc_vrsave_regnum;
3252 case 110:
3253 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3254 case 111:
3255 return tdep->ppc_acc_regnum;
3256 case 112:
3257 return tdep->ppc_spefscr_regnum;
3258 default:
3259 return num;
3260 }
3261 }
3262
3263
3264 /* Convert a Dwarf 2 register number to a GDB register number. */
3265 static int
3266 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3267 {
3268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3269
3270 if (0 <= num && num <= 31)
3271 return tdep->ppc_gp0_regnum + num;
3272 else if (32 <= num && num <= 63)
3273 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3274 specifies registers the architecture doesn't have? Our
3275 callers don't check the value we return. */
3276 return tdep->ppc_fp0_regnum + (num - 32);
3277 else if (1124 <= num && num < 1124 + 32)
3278 return tdep->ppc_vr0_regnum + (num - 1124);
3279 else if (1200 <= num && num < 1200 + 32)
3280 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3281 else
3282 switch (num)
3283 {
3284 case 64:
3285 return tdep->ppc_cr_regnum;
3286 case 67:
3287 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3288 case 99:
3289 return tdep->ppc_acc_regnum;
3290 case 100:
3291 return tdep->ppc_mq_regnum;
3292 case 101:
3293 return tdep->ppc_xer_regnum;
3294 case 108:
3295 return tdep->ppc_lr_regnum;
3296 case 109:
3297 return tdep->ppc_ctr_regnum;
3298 case 356:
3299 return tdep->ppc_vrsave_regnum;
3300 case 612:
3301 return tdep->ppc_spefscr_regnum;
3302 }
3303
3304 /* Unknown DWARF register number. */
3305 return -1;
3306 }
3307
3308 /* Translate a .eh_frame register to DWARF register, or adjust a
3309 .debug_frame register. */
3310
3311 static int
3312 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3313 {
3314 /* GCC releases before 3.4 use GCC internal register numbering in
3315 .debug_frame (and .debug_info, et cetera). The numbering is
3316 different from the standard SysV numbering for everything except
3317 for GPRs and FPRs. We can not detect this problem in most cases
3318 - to get accurate debug info for variables living in lr, ctr, v0,
3319 et cetera, use a newer version of GCC. But we must detect
3320 one important case - lr is in column 65 in .debug_frame output,
3321 instead of 108.
3322
3323 GCC 3.4, and the "hammer" branch, have a related problem. They
3324 record lr register saves in .debug_frame as 108, but still record
3325 the return column as 65. We fix that up too.
3326
3327 We can do this because 65 is assigned to fpsr, and GCC never
3328 generates debug info referring to it. To add support for
3329 handwritten debug info that restores fpsr, we would need to add a
3330 producer version check to this. */
3331 if (!eh_frame_p)
3332 {
3333 if (num == 65)
3334 return 108;
3335 else
3336 return num;
3337 }
3338
3339 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3340 internal register numbering; translate that to the standard DWARF2
3341 register numbering. */
3342 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3343 return num;
3344 else if (68 <= num && num <= 75) /* cr0-cr8 */
3345 return num - 68 + 86;
3346 else if (77 <= num && num <= 108) /* vr0-vr31 */
3347 return num - 77 + 1124;
3348 else
3349 switch (num)
3350 {
3351 case 64: /* mq */
3352 return 100;
3353 case 65: /* lr */
3354 return 108;
3355 case 66: /* ctr */
3356 return 109;
3357 case 76: /* xer */
3358 return 101;
3359 case 109: /* vrsave */
3360 return 356;
3361 case 110: /* vscr */
3362 return 67;
3363 case 111: /* spe_acc */
3364 return 99;
3365 case 112: /* spefscr */
3366 return 612;
3367 default:
3368 return num;
3369 }
3370 }
3371 \f
3372
3373 /* Handling the various POWER/PowerPC variants. */
3374
3375 /* Information about a particular processor variant. */
3376
3377 struct ppc_variant
3378 {
3379 /* Name of this variant. */
3380 const char *name;
3381
3382 /* English description of the variant. */
3383 const char *description;
3384
3385 /* bfd_arch_info.arch corresponding to variant. */
3386 enum bfd_architecture arch;
3387
3388 /* bfd_arch_info.mach corresponding to variant. */
3389 unsigned long mach;
3390
3391 /* Target description for this variant. */
3392 struct target_desc **tdesc;
3393 };
3394
3395 static struct ppc_variant variants[] =
3396 {
3397 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3398 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3399 {"power", "POWER user-level", bfd_arch_rs6000,
3400 bfd_mach_rs6k, &tdesc_rs6000},
3401 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3402 bfd_mach_ppc_403, &tdesc_powerpc_403},
3403 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3404 bfd_mach_ppc_405, &tdesc_powerpc_405},
3405 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3406 bfd_mach_ppc_601, &tdesc_powerpc_601},
3407 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3408 bfd_mach_ppc_602, &tdesc_powerpc_602},
3409 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3410 bfd_mach_ppc_603, &tdesc_powerpc_603},
3411 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3412 604, &tdesc_powerpc_604},
3413 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3414 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3415 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3416 bfd_mach_ppc_505, &tdesc_powerpc_505},
3417 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3418 bfd_mach_ppc_860, &tdesc_powerpc_860},
3419 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3420 bfd_mach_ppc_750, &tdesc_powerpc_750},
3421 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3422 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3423 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3424 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3425
3426 /* 64-bit */
3427 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3428 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3429 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3430 bfd_mach_ppc_620, &tdesc_powerpc_64},
3431 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3432 bfd_mach_ppc_630, &tdesc_powerpc_64},
3433 {"a35", "PowerPC A35", bfd_arch_powerpc,
3434 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3435 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3436 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3437 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3438 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3439
3440 /* FIXME: I haven't checked the register sets of the following. */
3441 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3442 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3443 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3444 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3445 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3446 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3447
3448 {0, 0, (enum bfd_architecture) 0, 0, 0}
3449 };
3450
3451 /* Return the variant corresponding to architecture ARCH and machine number
3452 MACH. If no such variant exists, return null. */
3453
3454 static const struct ppc_variant *
3455 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3456 {
3457 const struct ppc_variant *v;
3458
3459 for (v = variants; v->name; v++)
3460 if (arch == v->arch && mach == v->mach)
3461 return v;
3462
3463 return NULL;
3464 }
3465
3466 \f
3467
3468 struct rs6000_frame_cache
3469 {
3470 CORE_ADDR base;
3471 CORE_ADDR initial_sp;
3472 struct trad_frame_saved_reg *saved_regs;
3473
3474 /* Set BASE_P to true if this frame cache is properly initialized.
3475 Otherwise set to false because some registers or memory cannot
3476 collected. */
3477 int base_p;
3478 /* Cache PC for building unavailable frame. */
3479 CORE_ADDR pc;
3480 };
3481
3482 static struct rs6000_frame_cache *
3483 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3484 {
3485 struct rs6000_frame_cache *cache;
3486 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3489 struct rs6000_framedata fdata;
3490 int wordsize = tdep->wordsize;
3491 CORE_ADDR func = 0, pc = 0;
3492
3493 if ((*this_cache) != NULL)
3494 return (struct rs6000_frame_cache *) (*this_cache);
3495 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3496 (*this_cache) = cache;
3497 cache->pc = 0;
3498 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3499
3500 try
3501 {
3502 func = get_frame_func (this_frame);
3503 cache->pc = func;
3504 pc = get_frame_pc (this_frame);
3505 skip_prologue (gdbarch, func, pc, &fdata);
3506
3507 /* Figure out the parent's stack pointer. */
3508
3509 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3510 address of the current frame. Things might be easier if the
3511 ->frame pointed to the outer-most address of the frame. In
3512 the mean time, the address of the prev frame is used as the
3513 base address of this frame. */
3514 cache->base = get_frame_register_unsigned
3515 (this_frame, gdbarch_sp_regnum (gdbarch));
3516 }
3517 catch (const gdb_exception_error &ex)
3518 {
3519 if (ex.error != NOT_AVAILABLE_ERROR)
3520 throw;
3521 return (struct rs6000_frame_cache *) (*this_cache);
3522 }
3523
3524 /* If the function appears to be frameless, check a couple of likely
3525 indicators that we have simply failed to find the frame setup.
3526 Two common cases of this are missing symbols (i.e.
3527 get_frame_func returns the wrong address or 0), and assembly
3528 stubs which have a fast exit path but set up a frame on the slow
3529 path.
3530
3531 If the LR appears to return to this function, then presume that
3532 we have an ABI compliant frame that we failed to find. */
3533 if (fdata.frameless && fdata.lr_offset == 0)
3534 {
3535 CORE_ADDR saved_lr;
3536 int make_frame = 0;
3537
3538 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3539 if (func == 0 && saved_lr == pc)
3540 make_frame = 1;
3541 else if (func != 0)
3542 {
3543 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3544 if (func == saved_func)
3545 make_frame = 1;
3546 }
3547
3548 if (make_frame)
3549 {
3550 fdata.frameless = 0;
3551 fdata.lr_offset = tdep->lr_frame_offset;
3552 }
3553 }
3554
3555 if (!fdata.frameless)
3556 {
3557 /* Frameless really means stackless. */
3558 ULONGEST backchain;
3559
3560 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3561 byte_order, &backchain))
3562 cache->base = (CORE_ADDR) backchain;
3563 }
3564
3565 trad_frame_set_value (cache->saved_regs,
3566 gdbarch_sp_regnum (gdbarch), cache->base);
3567
3568 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3569 All fpr's from saved_fpr to fp31 are saved. */
3570
3571 if (fdata.saved_fpr >= 0)
3572 {
3573 int i;
3574 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3575
3576 /* If skip_prologue says floating-point registers were saved,
3577 but the current architecture has no floating-point registers,
3578 then that's strange. But we have no indices to even record
3579 the addresses under, so we just ignore it. */
3580 if (ppc_floating_point_unit_p (gdbarch))
3581 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3582 {
3583 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3584 fpr_addr += 8;
3585 }
3586 }
3587
3588 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3589 All gpr's from saved_gpr to gpr31 are saved (except during the
3590 prologue). */
3591
3592 if (fdata.saved_gpr >= 0)
3593 {
3594 int i;
3595 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3596 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3597 {
3598 if (fdata.gpr_mask & (1U << i))
3599 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3600 gpr_addr += wordsize;
3601 }
3602 }
3603
3604 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3605 All vr's from saved_vr to vr31 are saved. */
3606 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3607 {
3608 if (fdata.saved_vr >= 0)
3609 {
3610 int i;
3611 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3612 for (i = fdata.saved_vr; i < 32; i++)
3613 {
3614 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3615 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3616 }
3617 }
3618 }
3619
3620 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3621 All vr's from saved_ev to ev31 are saved. ????? */
3622 if (tdep->ppc_ev0_regnum != -1)
3623 {
3624 if (fdata.saved_ev >= 0)
3625 {
3626 int i;
3627 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3628 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3629
3630 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3631 {
3632 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3633 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3634 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3635 }
3636 }
3637 }
3638
3639 /* If != 0, fdata.cr_offset is the offset from the frame that
3640 holds the CR. */
3641 if (fdata.cr_offset != 0)
3642 cache->saved_regs[tdep->ppc_cr_regnum].addr
3643 = cache->base + fdata.cr_offset;
3644
3645 /* If != 0, fdata.lr_offset is the offset from the frame that
3646 holds the LR. */
3647 if (fdata.lr_offset != 0)
3648 cache->saved_regs[tdep->ppc_lr_regnum].addr
3649 = cache->base + fdata.lr_offset;
3650 else if (fdata.lr_register != -1)
3651 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3652 /* The PC is found in the link register. */
3653 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3654 cache->saved_regs[tdep->ppc_lr_regnum];
3655
3656 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3657 holds the VRSAVE. */
3658 if (fdata.vrsave_offset != 0)
3659 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3660 = cache->base + fdata.vrsave_offset;
3661
3662 if (fdata.alloca_reg < 0)
3663 /* If no alloca register used, then fi->frame is the value of the
3664 %sp for this frame, and it is good enough. */
3665 cache->initial_sp
3666 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3667 else
3668 cache->initial_sp
3669 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3670
3671 cache->base_p = 1;
3672 return cache;
3673 }
3674
3675 static void
3676 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3677 struct frame_id *this_id)
3678 {
3679 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3680 this_cache);
3681
3682 if (!info->base_p)
3683 {
3684 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3685 return;
3686 }
3687
3688 /* This marks the outermost frame. */
3689 if (info->base == 0)
3690 return;
3691
3692 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3693 }
3694
3695 static struct value *
3696 rs6000_frame_prev_register (struct frame_info *this_frame,
3697 void **this_cache, int regnum)
3698 {
3699 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3700 this_cache);
3701 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3702 }
3703
3704 static const struct frame_unwind rs6000_frame_unwind =
3705 {
3706 NORMAL_FRAME,
3707 default_frame_unwind_stop_reason,
3708 rs6000_frame_this_id,
3709 rs6000_frame_prev_register,
3710 NULL,
3711 default_frame_sniffer
3712 };
3713
3714 /* Allocate and initialize a frame cache for an epilogue frame.
3715 SP is restored and prev-PC is stored in LR. */
3716
3717 static struct rs6000_frame_cache *
3718 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3719 {
3720 struct rs6000_frame_cache *cache;
3721 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3722 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3723
3724 if (*this_cache)
3725 return (struct rs6000_frame_cache *) *this_cache;
3726
3727 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3728 (*this_cache) = cache;
3729 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3730
3731 try
3732 {
3733 /* At this point the stack looks as if we just entered the
3734 function, and the return address is stored in LR. */
3735 CORE_ADDR sp, lr;
3736
3737 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3738 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3739
3740 cache->base = sp;
3741 cache->initial_sp = sp;
3742
3743 trad_frame_set_value (cache->saved_regs,
3744 gdbarch_pc_regnum (gdbarch), lr);
3745 }
3746 catch (const gdb_exception_error &ex)
3747 {
3748 if (ex.error != NOT_AVAILABLE_ERROR)
3749 throw;
3750 }
3751
3752 return cache;
3753 }
3754
3755 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3756 Return the frame ID of an epilogue frame. */
3757
3758 static void
3759 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3760 void **this_cache, struct frame_id *this_id)
3761 {
3762 CORE_ADDR pc;
3763 struct rs6000_frame_cache *info =
3764 rs6000_epilogue_frame_cache (this_frame, this_cache);
3765
3766 pc = get_frame_func (this_frame);
3767 if (info->base == 0)
3768 (*this_id) = frame_id_build_unavailable_stack (pc);
3769 else
3770 (*this_id) = frame_id_build (info->base, pc);
3771 }
3772
3773 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3774 Return the register value of REGNUM in previous frame. */
3775
3776 static struct value *
3777 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3778 void **this_cache, int regnum)
3779 {
3780 struct rs6000_frame_cache *info =
3781 rs6000_epilogue_frame_cache (this_frame, this_cache);
3782 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3783 }
3784
3785 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3786 Check whether this an epilogue frame. */
3787
3788 static int
3789 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3790 struct frame_info *this_frame,
3791 void **this_prologue_cache)
3792 {
3793 if (frame_relative_level (this_frame) == 0)
3794 return rs6000_in_function_epilogue_frame_p (this_frame,
3795 get_frame_arch (this_frame),
3796 get_frame_pc (this_frame));
3797 else
3798 return 0;
3799 }
3800
3801 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3802 a function without debug information. */
3803
3804 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3805 {
3806 NORMAL_FRAME,
3807 default_frame_unwind_stop_reason,
3808 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3809 NULL,
3810 rs6000_epilogue_frame_sniffer
3811 };
3812 \f
3813
3814 static CORE_ADDR
3815 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3816 {
3817 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3818 this_cache);
3819 return info->initial_sp;
3820 }
3821
3822 static const struct frame_base rs6000_frame_base = {
3823 &rs6000_frame_unwind,
3824 rs6000_frame_base_address,
3825 rs6000_frame_base_address,
3826 rs6000_frame_base_address
3827 };
3828
3829 static const struct frame_base *
3830 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3831 {
3832 return &rs6000_frame_base;
3833 }
3834
3835 /* DWARF-2 frame support. Used to handle the detection of
3836 clobbered registers during function calls. */
3837
3838 static void
3839 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3840 struct dwarf2_frame_state_reg *reg,
3841 struct frame_info *this_frame)
3842 {
3843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3844
3845 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3846 non-volatile registers. We will use the same code for both. */
3847
3848 /* Call-saved GP registers. */
3849 if ((regnum >= tdep->ppc_gp0_regnum + 14
3850 && regnum <= tdep->ppc_gp0_regnum + 31)
3851 || (regnum == tdep->ppc_gp0_regnum + 1))
3852 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3853
3854 /* Call-clobbered GP registers. */
3855 if ((regnum >= tdep->ppc_gp0_regnum + 3
3856 && regnum <= tdep->ppc_gp0_regnum + 12)
3857 || (regnum == tdep->ppc_gp0_regnum))
3858 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3859
3860 /* Deal with FP registers, if supported. */
3861 if (tdep->ppc_fp0_regnum >= 0)
3862 {
3863 /* Call-saved FP registers. */
3864 if ((regnum >= tdep->ppc_fp0_regnum + 14
3865 && regnum <= tdep->ppc_fp0_regnum + 31))
3866 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3867
3868 /* Call-clobbered FP registers. */
3869 if ((regnum >= tdep->ppc_fp0_regnum
3870 && regnum <= tdep->ppc_fp0_regnum + 13))
3871 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3872 }
3873
3874 /* Deal with ALTIVEC registers, if supported. */
3875 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3876 {
3877 /* Call-saved Altivec registers. */
3878 if ((regnum >= tdep->ppc_vr0_regnum + 20
3879 && regnum <= tdep->ppc_vr0_regnum + 31)
3880 || regnum == tdep->ppc_vrsave_regnum)
3881 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3882
3883 /* Call-clobbered Altivec registers. */
3884 if ((regnum >= tdep->ppc_vr0_regnum
3885 && regnum <= tdep->ppc_vr0_regnum + 19))
3886 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3887 }
3888
3889 /* Handle PC register and Stack Pointer correctly. */
3890 if (regnum == gdbarch_pc_regnum (gdbarch))
3891 reg->how = DWARF2_FRAME_REG_RA;
3892 else if (regnum == gdbarch_sp_regnum (gdbarch))
3893 reg->how = DWARF2_FRAME_REG_CFA;
3894 }
3895
3896
3897 /* Return true if a .gnu_attributes section exists in BFD and it
3898 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3899 section exists in BFD and it indicates that SPE extensions are in
3900 use. Check the .gnu.attributes section first, as the binary might be
3901 compiled for SPE, but not actually using SPE instructions. */
3902
3903 static int
3904 bfd_uses_spe_extensions (bfd *abfd)
3905 {
3906 asection *sect;
3907 gdb_byte *contents = NULL;
3908 bfd_size_type size;
3909 gdb_byte *ptr;
3910 int success = 0;
3911
3912 if (!abfd)
3913 return 0;
3914
3915 #ifdef HAVE_ELF
3916 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3917 could be using the SPE vector abi without actually using any spe
3918 bits whatsoever. But it's close enough for now. */
3919 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3920 Tag_GNU_Power_ABI_Vector);
3921 if (vector_abi == 3)
3922 return 1;
3923 #endif
3924
3925 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3926 if (!sect)
3927 return 0;
3928
3929 size = bfd_section_size (sect);
3930 contents = (gdb_byte *) xmalloc (size);
3931 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3932 {
3933 xfree (contents);
3934 return 0;
3935 }
3936
3937 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3938
3939 struct {
3940 uint32 name_len;
3941 uint32 data_len;
3942 uint32 type;
3943 char name[name_len rounded up to 4-byte alignment];
3944 char data[data_len];
3945 };
3946
3947 Technically, there's only supposed to be one such structure in a
3948 given apuinfo section, but the linker is not always vigilant about
3949 merging apuinfo sections from input files. Just go ahead and parse
3950 them all, exiting early when we discover the binary uses SPE
3951 insns.
3952
3953 It's not specified in what endianness the information in this
3954 section is stored. Assume that it's the endianness of the BFD. */
3955 ptr = contents;
3956 while (1)
3957 {
3958 unsigned int name_len;
3959 unsigned int data_len;
3960 unsigned int type;
3961
3962 /* If we can't read the first three fields, we're done. */
3963 if (size < 12)
3964 break;
3965
3966 name_len = bfd_get_32 (abfd, ptr);
3967 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3968 data_len = bfd_get_32 (abfd, ptr + 4);
3969 type = bfd_get_32 (abfd, ptr + 8);
3970 ptr += 12;
3971
3972 /* The name must be "APUinfo\0". */
3973 if (name_len != 8
3974 && strcmp ((const char *) ptr, "APUinfo") != 0)
3975 break;
3976 ptr += name_len;
3977
3978 /* The type must be 2. */
3979 if (type != 2)
3980 break;
3981
3982 /* The data is stored as a series of uint32. The upper half of
3983 each uint32 indicates the particular APU used and the lower
3984 half indicates the revision of that APU. We just care about
3985 the upper half. */
3986
3987 /* Not 4-byte quantities. */
3988 if (data_len & 3U)
3989 break;
3990
3991 while (data_len)
3992 {
3993 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3994 unsigned int apu = apuinfo >> 16;
3995 ptr += 4;
3996 data_len -= 4;
3997
3998 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3999 either. */
4000 if (apu == 0x100 || apu == 0x101)
4001 {
4002 success = 1;
4003 data_len = 0;
4004 }
4005 }
4006
4007 if (success)
4008 break;
4009 }
4010
4011 xfree (contents);
4012 return success;
4013 }
4014
4015 /* These are macros for parsing instruction fields (I.1.6.28) */
4016
4017 #define PPC_FIELD(value, from, len) \
4018 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4019 #define PPC_SEXT(v, bs) \
4020 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4021 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4022 - ((CORE_ADDR) 1 << ((bs) - 1)))
4023 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4024 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4025 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4026 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4027 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4028 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4029 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4030 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4031 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4032 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4033 | (PPC_FIELD (insn, 16, 5) << 5))
4034 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4035 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4036 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4037 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
4038 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
4039 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4040 #define PPC_OE(insn) PPC_BIT (insn, 21)
4041 #define PPC_RC(insn) PPC_BIT (insn, 31)
4042 #define PPC_Rc(insn) PPC_BIT (insn, 21)
4043 #define PPC_LK(insn) PPC_BIT (insn, 31)
4044 #define PPC_TX(insn) PPC_BIT (insn, 31)
4045 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4046
4047 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4048 #define PPC_XER_NB(xer) (xer & 0x7f)
4049
4050 /* Record Vector-Scalar Registers.
4051 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4052 Otherwise, it's just a VR register. Record them accordingly. */
4053
4054 static int
4055 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4056 {
4057 if (vsr < 0 || vsr >= 64)
4058 return -1;
4059
4060 if (vsr >= 32)
4061 {
4062 if (tdep->ppc_vr0_regnum >= 0)
4063 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4064 }
4065 else
4066 {
4067 if (tdep->ppc_fp0_regnum >= 0)
4068 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4069 if (tdep->ppc_vsr0_upper_regnum >= 0)
4070 record_full_arch_list_add_reg (regcache,
4071 tdep->ppc_vsr0_upper_regnum + vsr);
4072 }
4073
4074 return 0;
4075 }
4076
4077 /* Parse and record instructions primary opcode-4 at ADDR.
4078 Return 0 if successful. */
4079
4080 static int
4081 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4082 CORE_ADDR addr, uint32_t insn)
4083 {
4084 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4085 int ext = PPC_FIELD (insn, 21, 11);
4086 int vra = PPC_FIELD (insn, 11, 5);
4087
4088 switch (ext & 0x3f)
4089 {
4090 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4091 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4092 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4093 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4094 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4095 /* FALL-THROUGH */
4096 case 42: /* Vector Select */
4097 case 43: /* Vector Permute */
4098 case 59: /* Vector Permute Right-indexed */
4099 case 44: /* Vector Shift Left Double by Octet Immediate */
4100 case 45: /* Vector Permute and Exclusive-OR */
4101 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4102 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4103 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4104 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4105 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4106 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4107 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4108 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4109 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4110 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4111 case 46: /* Vector Multiply-Add Single-Precision */
4112 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4113 record_full_arch_list_add_reg (regcache,
4114 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4115 return 0;
4116
4117 case 48: /* Multiply-Add High Doubleword */
4118 case 49: /* Multiply-Add High Doubleword Unsigned */
4119 case 51: /* Multiply-Add Low Doubleword */
4120 record_full_arch_list_add_reg (regcache,
4121 tdep->ppc_gp0_regnum + PPC_RT (insn));
4122 return 0;
4123 }
4124
4125 switch ((ext & 0x1ff))
4126 {
4127 case 385:
4128 if (vra != 0 /* Decimal Convert To Signed Quadword */
4129 && vra != 2 /* Decimal Convert From Signed Quadword */
4130 && vra != 4 /* Decimal Convert To Zoned */
4131 && vra != 5 /* Decimal Convert To National */
4132 && vra != 6 /* Decimal Convert From Zoned */
4133 && vra != 7 /* Decimal Convert From National */
4134 && vra != 31) /* Decimal Set Sign */
4135 break;
4136 /* Fall through. */
4137 /* 5.16 Decimal Integer Arithmetic Instructions */
4138 case 1: /* Decimal Add Modulo */
4139 case 65: /* Decimal Subtract Modulo */
4140
4141 case 193: /* Decimal Shift */
4142 case 129: /* Decimal Unsigned Shift */
4143 case 449: /* Decimal Shift and Round */
4144
4145 case 257: /* Decimal Truncate */
4146 case 321: /* Decimal Unsigned Truncate */
4147
4148 /* Bit-21 should be set. */
4149 if (!PPC_BIT (insn, 21))
4150 break;
4151
4152 record_full_arch_list_add_reg (regcache,
4153 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4154 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4155 return 0;
4156 }
4157
4158 /* Bit-21 is used for RC */
4159 switch (ext & 0x3ff)
4160 {
4161 case 6: /* Vector Compare Equal To Unsigned Byte */
4162 case 70: /* Vector Compare Equal To Unsigned Halfword */
4163 case 134: /* Vector Compare Equal To Unsigned Word */
4164 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4165 case 774: /* Vector Compare Greater Than Signed Byte */
4166 case 838: /* Vector Compare Greater Than Signed Halfword */
4167 case 902: /* Vector Compare Greater Than Signed Word */
4168 case 967: /* Vector Compare Greater Than Signed Doubleword */
4169 case 518: /* Vector Compare Greater Than Unsigned Byte */
4170 case 646: /* Vector Compare Greater Than Unsigned Word */
4171 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4172 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4173 case 966: /* Vector Compare Bounds Single-Precision */
4174 case 198: /* Vector Compare Equal To Single-Precision */
4175 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4176 case 710: /* Vector Compare Greater Than Single-Precision */
4177 case 7: /* Vector Compare Not Equal Byte */
4178 case 71: /* Vector Compare Not Equal Halfword */
4179 case 135: /* Vector Compare Not Equal Word */
4180 case 263: /* Vector Compare Not Equal or Zero Byte */
4181 case 327: /* Vector Compare Not Equal or Zero Halfword */
4182 case 391: /* Vector Compare Not Equal or Zero Word */
4183 if (PPC_Rc (insn))
4184 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4185 record_full_arch_list_add_reg (regcache,
4186 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4187 return 0;
4188 }
4189
4190 if (ext == 1538)
4191 {
4192 switch (vra)
4193 {
4194 case 0: /* Vector Count Leading Zero Least-Significant Bits
4195 Byte */
4196 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4197 Byte */
4198 record_full_arch_list_add_reg (regcache,
4199 tdep->ppc_gp0_regnum + PPC_RT (insn));
4200 return 0;
4201
4202 case 6: /* Vector Negate Word */
4203 case 7: /* Vector Negate Doubleword */
4204 case 8: /* Vector Parity Byte Word */
4205 case 9: /* Vector Parity Byte Doubleword */
4206 case 10: /* Vector Parity Byte Quadword */
4207 case 16: /* Vector Extend Sign Byte To Word */
4208 case 17: /* Vector Extend Sign Halfword To Word */
4209 case 24: /* Vector Extend Sign Byte To Doubleword */
4210 case 25: /* Vector Extend Sign Halfword To Doubleword */
4211 case 26: /* Vector Extend Sign Word To Doubleword */
4212 case 28: /* Vector Count Trailing Zeros Byte */
4213 case 29: /* Vector Count Trailing Zeros Halfword */
4214 case 30: /* Vector Count Trailing Zeros Word */
4215 case 31: /* Vector Count Trailing Zeros Doubleword */
4216 record_full_arch_list_add_reg (regcache,
4217 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4218 return 0;
4219 }
4220 }
4221
4222 switch (ext)
4223 {
4224 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4225 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4226 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4227 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4228 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4229 case 462: /* Vector Pack Signed Word Signed Saturate */
4230 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4231 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4232 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4233 case 512: /* Vector Add Unsigned Byte Saturate */
4234 case 576: /* Vector Add Unsigned Halfword Saturate */
4235 case 640: /* Vector Add Unsigned Word Saturate */
4236 case 768: /* Vector Add Signed Byte Saturate */
4237 case 832: /* Vector Add Signed Halfword Saturate */
4238 case 896: /* Vector Add Signed Word Saturate */
4239 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4240 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4241 case 1664: /* Vector Subtract Unsigned Word Saturate */
4242 case 1792: /* Vector Subtract Signed Byte Saturate */
4243 case 1856: /* Vector Subtract Signed Halfword Saturate */
4244 case 1920: /* Vector Subtract Signed Word Saturate */
4245
4246 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4247 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4248 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4249 case 1672: /* Vector Sum across Half Signed Word Saturate */
4250 case 1928: /* Vector Sum across Signed Word Saturate */
4251 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4252 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4253 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4254 /* FALL-THROUGH */
4255 case 12: /* Vector Merge High Byte */
4256 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4257 case 76: /* Vector Merge High Halfword */
4258 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4259 case 140: /* Vector Merge High Word */
4260 case 268: /* Vector Merge Low Byte */
4261 case 332: /* Vector Merge Low Halfword */
4262 case 396: /* Vector Merge Low Word */
4263 case 526: /* Vector Unpack High Signed Byte */
4264 case 590: /* Vector Unpack High Signed Halfword */
4265 case 654: /* Vector Unpack Low Signed Byte */
4266 case 718: /* Vector Unpack Low Signed Halfword */
4267 case 782: /* Vector Pack Pixel */
4268 case 846: /* Vector Unpack High Pixel */
4269 case 974: /* Vector Unpack Low Pixel */
4270 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4271 case 1614: /* Vector Unpack High Signed Word */
4272 case 1676: /* Vector Merge Odd Word */
4273 case 1742: /* Vector Unpack Low Signed Word */
4274 case 1932: /* Vector Merge Even Word */
4275 case 524: /* Vector Splat Byte */
4276 case 588: /* Vector Splat Halfword */
4277 case 652: /* Vector Splat Word */
4278 case 780: /* Vector Splat Immediate Signed Byte */
4279 case 844: /* Vector Splat Immediate Signed Halfword */
4280 case 908: /* Vector Splat Immediate Signed Word */
4281 case 452: /* Vector Shift Left */
4282 case 708: /* Vector Shift Right */
4283 case 1036: /* Vector Shift Left by Octet */
4284 case 1100: /* Vector Shift Right by Octet */
4285 case 0: /* Vector Add Unsigned Byte Modulo */
4286 case 64: /* Vector Add Unsigned Halfword Modulo */
4287 case 128: /* Vector Add Unsigned Word Modulo */
4288 case 192: /* Vector Add Unsigned Doubleword Modulo */
4289 case 256: /* Vector Add Unsigned Quadword Modulo */
4290 case 320: /* Vector Add & write Carry Unsigned Quadword */
4291 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4292 case 8: /* Vector Multiply Odd Unsigned Byte */
4293 case 72: /* Vector Multiply Odd Unsigned Halfword */
4294 case 136: /* Vector Multiply Odd Unsigned Word */
4295 case 264: /* Vector Multiply Odd Signed Byte */
4296 case 328: /* Vector Multiply Odd Signed Halfword */
4297 case 392: /* Vector Multiply Odd Signed Word */
4298 case 520: /* Vector Multiply Even Unsigned Byte */
4299 case 584: /* Vector Multiply Even Unsigned Halfword */
4300 case 648: /* Vector Multiply Even Unsigned Word */
4301 case 776: /* Vector Multiply Even Signed Byte */
4302 case 840: /* Vector Multiply Even Signed Halfword */
4303 case 904: /* Vector Multiply Even Signed Word */
4304 case 137: /* Vector Multiply Unsigned Word Modulo */
4305 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4306 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4307 case 1152: /* Vector Subtract Unsigned Word Modulo */
4308 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4309 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4310 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4311 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4312 case 1282: /* Vector Average Signed Byte */
4313 case 1346: /* Vector Average Signed Halfword */
4314 case 1410: /* Vector Average Signed Word */
4315 case 1026: /* Vector Average Unsigned Byte */
4316 case 1090: /* Vector Average Unsigned Halfword */
4317 case 1154: /* Vector Average Unsigned Word */
4318 case 258: /* Vector Maximum Signed Byte */
4319 case 322: /* Vector Maximum Signed Halfword */
4320 case 386: /* Vector Maximum Signed Word */
4321 case 450: /* Vector Maximum Signed Doubleword */
4322 case 2: /* Vector Maximum Unsigned Byte */
4323 case 66: /* Vector Maximum Unsigned Halfword */
4324 case 130: /* Vector Maximum Unsigned Word */
4325 case 194: /* Vector Maximum Unsigned Doubleword */
4326 case 770: /* Vector Minimum Signed Byte */
4327 case 834: /* Vector Minimum Signed Halfword */
4328 case 898: /* Vector Minimum Signed Word */
4329 case 962: /* Vector Minimum Signed Doubleword */
4330 case 514: /* Vector Minimum Unsigned Byte */
4331 case 578: /* Vector Minimum Unsigned Halfword */
4332 case 642: /* Vector Minimum Unsigned Word */
4333 case 706: /* Vector Minimum Unsigned Doubleword */
4334 case 1028: /* Vector Logical AND */
4335 case 1668: /* Vector Logical Equivalent */
4336 case 1092: /* Vector Logical AND with Complement */
4337 case 1412: /* Vector Logical NAND */
4338 case 1348: /* Vector Logical OR with Complement */
4339 case 1156: /* Vector Logical OR */
4340 case 1284: /* Vector Logical NOR */
4341 case 1220: /* Vector Logical XOR */
4342 case 4: /* Vector Rotate Left Byte */
4343 case 132: /* Vector Rotate Left Word VX-form */
4344 case 68: /* Vector Rotate Left Halfword */
4345 case 196: /* Vector Rotate Left Doubleword */
4346 case 260: /* Vector Shift Left Byte */
4347 case 388: /* Vector Shift Left Word */
4348 case 324: /* Vector Shift Left Halfword */
4349 case 1476: /* Vector Shift Left Doubleword */
4350 case 516: /* Vector Shift Right Byte */
4351 case 644: /* Vector Shift Right Word */
4352 case 580: /* Vector Shift Right Halfword */
4353 case 1732: /* Vector Shift Right Doubleword */
4354 case 772: /* Vector Shift Right Algebraic Byte */
4355 case 900: /* Vector Shift Right Algebraic Word */
4356 case 836: /* Vector Shift Right Algebraic Halfword */
4357 case 964: /* Vector Shift Right Algebraic Doubleword */
4358 case 10: /* Vector Add Single-Precision */
4359 case 74: /* Vector Subtract Single-Precision */
4360 case 1034: /* Vector Maximum Single-Precision */
4361 case 1098: /* Vector Minimum Single-Precision */
4362 case 842: /* Vector Convert From Signed Fixed-Point Word */
4363 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4364 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4365 case 522: /* Vector Round to Single-Precision Integer Nearest */
4366 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4367 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4368 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4369 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4370 case 266: /* Vector Reciprocal Estimate Single-Precision */
4371 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4372 case 1288: /* Vector AES Cipher */
4373 case 1289: /* Vector AES Cipher Last */
4374 case 1352: /* Vector AES Inverse Cipher */
4375 case 1353: /* Vector AES Inverse Cipher Last */
4376 case 1480: /* Vector AES SubBytes */
4377 case 1730: /* Vector SHA-512 Sigma Doubleword */
4378 case 1666: /* Vector SHA-256 Sigma Word */
4379 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4380 case 1160: /* Vector Polynomial Multiply-Sum Word */
4381 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4382 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4383 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4384 case 1794: /* Vector Count Leading Zeros Byte */
4385 case 1858: /* Vector Count Leading Zeros Halfword */
4386 case 1922: /* Vector Count Leading Zeros Word */
4387 case 1986: /* Vector Count Leading Zeros Doubleword */
4388 case 1795: /* Vector Population Count Byte */
4389 case 1859: /* Vector Population Count Halfword */
4390 case 1923: /* Vector Population Count Word */
4391 case 1987: /* Vector Population Count Doubleword */
4392 case 1356: /* Vector Bit Permute Quadword */
4393 case 1484: /* Vector Bit Permute Doubleword */
4394 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4395 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4396 Quadword */
4397 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4398 case 65: /* Vector Multiply-by-10 Extended & write Carry
4399 Unsigned Quadword */
4400 case 1027: /* Vector Absolute Difference Unsigned Byte */
4401 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4402 case 1155: /* Vector Absolute Difference Unsigned Word */
4403 case 1796: /* Vector Shift Right Variable */
4404 case 1860: /* Vector Shift Left Variable */
4405 case 133: /* Vector Rotate Left Word then Mask Insert */
4406 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4407 case 389: /* Vector Rotate Left Word then AND with Mask */
4408 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4409 case 525: /* Vector Extract Unsigned Byte */
4410 case 589: /* Vector Extract Unsigned Halfword */
4411 case 653: /* Vector Extract Unsigned Word */
4412 case 717: /* Vector Extract Doubleword */
4413 case 781: /* Vector Insert Byte */
4414 case 845: /* Vector Insert Halfword */
4415 case 909: /* Vector Insert Word */
4416 case 973: /* Vector Insert Doubleword */
4417 record_full_arch_list_add_reg (regcache,
4418 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4419 return 0;
4420
4421 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4422 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4423 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4424 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4425 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4426 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4427 record_full_arch_list_add_reg (regcache,
4428 tdep->ppc_gp0_regnum + PPC_RT (insn));
4429 return 0;
4430
4431 case 1604: /* Move To Vector Status and Control Register */
4432 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4433 return 0;
4434 case 1540: /* Move From Vector Status and Control Register */
4435 record_full_arch_list_add_reg (regcache,
4436 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4437 return 0;
4438 case 833: /* Decimal Copy Sign */
4439 record_full_arch_list_add_reg (regcache,
4440 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4441 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4442 return 0;
4443 }
4444
4445 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4446 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4447 return -1;
4448 }
4449
4450 /* Parse and record instructions of primary opcode-19 at ADDR.
4451 Return 0 if successful. */
4452
4453 static int
4454 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4455 CORE_ADDR addr, uint32_t insn)
4456 {
4457 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4458 int ext = PPC_EXTOP (insn);
4459
4460 switch (ext & 0x01f)
4461 {
4462 case 2: /* Add PC Immediate Shifted */
4463 record_full_arch_list_add_reg (regcache,
4464 tdep->ppc_gp0_regnum + PPC_RT (insn));
4465 return 0;
4466 }
4467
4468 switch (ext)
4469 {
4470 case 0: /* Move Condition Register Field */
4471 case 33: /* Condition Register NOR */
4472 case 129: /* Condition Register AND with Complement */
4473 case 193: /* Condition Register XOR */
4474 case 225: /* Condition Register NAND */
4475 case 257: /* Condition Register AND */
4476 case 289: /* Condition Register Equivalent */
4477 case 417: /* Condition Register OR with Complement */
4478 case 449: /* Condition Register OR */
4479 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4480 return 0;
4481
4482 case 16: /* Branch Conditional */
4483 case 560: /* Branch Conditional to Branch Target Address Register */
4484 if ((PPC_BO (insn) & 0x4) == 0)
4485 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4486 /* FALL-THROUGH */
4487 case 528: /* Branch Conditional to Count Register */
4488 if (PPC_LK (insn))
4489 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4490 return 0;
4491
4492 case 150: /* Instruction Synchronize */
4493 /* Do nothing. */
4494 return 0;
4495 }
4496
4497 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4498 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4499 return -1;
4500 }
4501
4502 /* Parse and record instructions of primary opcode-31 at ADDR.
4503 Return 0 if successful. */
4504
4505 static int
4506 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4507 CORE_ADDR addr, uint32_t insn)
4508 {
4509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4510 int ext = PPC_EXTOP (insn);
4511 int tmp, nr, nb, i;
4512 CORE_ADDR at_dcsz, ea = 0;
4513 ULONGEST rb, ra, xer;
4514 int size = 0;
4515
4516 /* These instructions have OE bit. */
4517 switch (ext & 0x1ff)
4518 {
4519 /* These write RT and XER. Update CR if RC is set. */
4520 case 8: /* Subtract from carrying */
4521 case 10: /* Add carrying */
4522 case 136: /* Subtract from extended */
4523 case 138: /* Add extended */
4524 case 200: /* Subtract from zero extended */
4525 case 202: /* Add to zero extended */
4526 case 232: /* Subtract from minus one extended */
4527 case 234: /* Add to minus one extended */
4528 /* CA is always altered, but SO/OV are only altered when OE=1.
4529 In any case, XER is always altered. */
4530 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4531 if (PPC_RC (insn))
4532 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4533 record_full_arch_list_add_reg (regcache,
4534 tdep->ppc_gp0_regnum + PPC_RT (insn));
4535 return 0;
4536
4537 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4538 case 40: /* Subtract from */
4539 case 104: /* Negate */
4540 case 233: /* Multiply low doubleword */
4541 case 235: /* Multiply low word */
4542 case 266: /* Add */
4543 case 393: /* Divide Doubleword Extended Unsigned */
4544 case 395: /* Divide Word Extended Unsigned */
4545 case 425: /* Divide Doubleword Extended */
4546 case 427: /* Divide Word Extended */
4547 case 457: /* Divide Doubleword Unsigned */
4548 case 459: /* Divide Word Unsigned */
4549 case 489: /* Divide Doubleword */
4550 case 491: /* Divide Word */
4551 if (PPC_OE (insn))
4552 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4553 /* FALL-THROUGH */
4554 case 9: /* Multiply High Doubleword Unsigned */
4555 case 11: /* Multiply High Word Unsigned */
4556 case 73: /* Multiply High Doubleword */
4557 case 75: /* Multiply High Word */
4558 if (PPC_RC (insn))
4559 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4560 record_full_arch_list_add_reg (regcache,
4561 tdep->ppc_gp0_regnum + PPC_RT (insn));
4562 return 0;
4563 }
4564
4565 if ((ext & 0x1f) == 15)
4566 {
4567 /* Integer Select. bit[16:20] is used for BC. */
4568 record_full_arch_list_add_reg (regcache,
4569 tdep->ppc_gp0_regnum + PPC_RT (insn));
4570 return 0;
4571 }
4572
4573 if ((ext & 0xff) == 170)
4574 {
4575 /* Add Extended using alternate carry bits */
4576 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4577 record_full_arch_list_add_reg (regcache,
4578 tdep->ppc_gp0_regnum + PPC_RT (insn));
4579 return 0;
4580 }
4581
4582 switch (ext)
4583 {
4584 case 78: /* Determine Leftmost Zero Byte */
4585 if (PPC_RC (insn))
4586 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4587 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4588 record_full_arch_list_add_reg (regcache,
4589 tdep->ppc_gp0_regnum + PPC_RT (insn));
4590 return 0;
4591
4592 /* These only write RT. */
4593 case 19: /* Move from condition register */
4594 /* Move From One Condition Register Field */
4595 case 74: /* Add and Generate Sixes */
4596 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4597 case 302: /* Move From Branch History Rolling Buffer */
4598 case 339: /* Move From Special Purpose Register */
4599 case 371: /* Move From Time Base [Phased-Out] */
4600 case 309: /* Load Doubleword Monitored Indexed */
4601 case 128: /* Set Boolean */
4602 case 755: /* Deliver A Random Number */
4603 record_full_arch_list_add_reg (regcache,
4604 tdep->ppc_gp0_regnum + PPC_RT (insn));
4605 return 0;
4606
4607 /* These only write to RA. */
4608 case 51: /* Move From VSR Doubleword */
4609 case 115: /* Move From VSR Word and Zero */
4610 case 122: /* Population count bytes */
4611 case 378: /* Population count words */
4612 case 506: /* Population count doublewords */
4613 case 154: /* Parity Word */
4614 case 186: /* Parity Doubleword */
4615 case 252: /* Bit Permute Doubleword */
4616 case 282: /* Convert Declets To Binary Coded Decimal */
4617 case 314: /* Convert Binary Coded Decimal To Declets */
4618 case 508: /* Compare bytes */
4619 case 307: /* Move From VSR Lower Doubleword */
4620 record_full_arch_list_add_reg (regcache,
4621 tdep->ppc_gp0_regnum + PPC_RA (insn));
4622 return 0;
4623
4624 /* These write CR and optional RA. */
4625 case 792: /* Shift Right Algebraic Word */
4626 case 794: /* Shift Right Algebraic Doubleword */
4627 case 824: /* Shift Right Algebraic Word Immediate */
4628 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4629 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4630 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4631 record_full_arch_list_add_reg (regcache,
4632 tdep->ppc_gp0_regnum + PPC_RA (insn));
4633 /* FALL-THROUGH */
4634 case 0: /* Compare */
4635 case 32: /* Compare logical */
4636 case 144: /* Move To Condition Register Fields */
4637 /* Move To One Condition Register Field */
4638 case 192: /* Compare Ranged Byte */
4639 case 224: /* Compare Equal Byte */
4640 case 576: /* Move XER to CR Extended */
4641 case 902: /* Paste (should always fail due to single-stepping and
4642 the memory location might not be accessible, so
4643 record only CR) */
4644 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4645 return 0;
4646
4647 /* These write to RT. Update RA if 'update indexed.' */
4648 case 53: /* Load Doubleword with Update Indexed */
4649 case 119: /* Load Byte and Zero with Update Indexed */
4650 case 311: /* Load Halfword and Zero with Update Indexed */
4651 case 55: /* Load Word and Zero with Update Indexed */
4652 case 375: /* Load Halfword Algebraic with Update Indexed */
4653 case 373: /* Load Word Algebraic with Update Indexed */
4654 record_full_arch_list_add_reg (regcache,
4655 tdep->ppc_gp0_regnum + PPC_RA (insn));
4656 /* FALL-THROUGH */
4657 case 21: /* Load Doubleword Indexed */
4658 case 52: /* Load Byte And Reserve Indexed */
4659 case 116: /* Load Halfword And Reserve Indexed */
4660 case 20: /* Load Word And Reserve Indexed */
4661 case 84: /* Load Doubleword And Reserve Indexed */
4662 case 87: /* Load Byte and Zero Indexed */
4663 case 279: /* Load Halfword and Zero Indexed */
4664 case 23: /* Load Word and Zero Indexed */
4665 case 343: /* Load Halfword Algebraic Indexed */
4666 case 341: /* Load Word Algebraic Indexed */
4667 case 790: /* Load Halfword Byte-Reverse Indexed */
4668 case 534: /* Load Word Byte-Reverse Indexed */
4669 case 532: /* Load Doubleword Byte-Reverse Indexed */
4670 case 582: /* Load Word Atomic */
4671 case 614: /* Load Doubleword Atomic */
4672 case 265: /* Modulo Unsigned Doubleword */
4673 case 777: /* Modulo Signed Doubleword */
4674 case 267: /* Modulo Unsigned Word */
4675 case 779: /* Modulo Signed Word */
4676 record_full_arch_list_add_reg (regcache,
4677 tdep->ppc_gp0_regnum + PPC_RT (insn));
4678 return 0;
4679
4680 case 597: /* Load String Word Immediate */
4681 case 533: /* Load String Word Indexed */
4682 if (ext == 597)
4683 {
4684 nr = PPC_NB (insn);
4685 if (nr == 0)
4686 nr = 32;
4687 }
4688 else
4689 {
4690 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4691 nr = PPC_XER_NB (xer);
4692 }
4693
4694 nr = (nr + 3) >> 2;
4695
4696 /* If n=0, the contents of register RT are undefined. */
4697 if (nr == 0)
4698 nr = 1;
4699
4700 for (i = 0; i < nr; i++)
4701 record_full_arch_list_add_reg (regcache,
4702 tdep->ppc_gp0_regnum
4703 + ((PPC_RT (insn) + i) & 0x1f));
4704 return 0;
4705
4706 case 276: /* Load Quadword And Reserve Indexed */
4707 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4708 record_full_arch_list_add_reg (regcache, tmp);
4709 record_full_arch_list_add_reg (regcache, tmp + 1);
4710 return 0;
4711
4712 /* These write VRT. */
4713 case 6: /* Load Vector for Shift Left Indexed */
4714 case 38: /* Load Vector for Shift Right Indexed */
4715 case 7: /* Load Vector Element Byte Indexed */
4716 case 39: /* Load Vector Element Halfword Indexed */
4717 case 71: /* Load Vector Element Word Indexed */
4718 case 103: /* Load Vector Indexed */
4719 case 359: /* Load Vector Indexed LRU */
4720 record_full_arch_list_add_reg (regcache,
4721 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4722 return 0;
4723
4724 /* These write FRT. Update RA if 'update indexed.' */
4725 case 567: /* Load Floating-Point Single with Update Indexed */
4726 case 631: /* Load Floating-Point Double with Update Indexed */
4727 record_full_arch_list_add_reg (regcache,
4728 tdep->ppc_gp0_regnum + PPC_RA (insn));
4729 /* FALL-THROUGH */
4730 case 535: /* Load Floating-Point Single Indexed */
4731 case 599: /* Load Floating-Point Double Indexed */
4732 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4733 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4734 record_full_arch_list_add_reg (regcache,
4735 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4736 return 0;
4737
4738 case 791: /* Load Floating-Point Double Pair Indexed */
4739 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4740 record_full_arch_list_add_reg (regcache, tmp);
4741 record_full_arch_list_add_reg (regcache, tmp + 1);
4742 return 0;
4743
4744 case 179: /* Move To VSR Doubleword */
4745 case 211: /* Move To VSR Word Algebraic */
4746 case 243: /* Move To VSR Word and Zero */
4747 case 588: /* Load VSX Scalar Doubleword Indexed */
4748 case 524: /* Load VSX Scalar Single-Precision Indexed */
4749 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4750 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4751 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4752 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4753 case 780: /* Load VSX Vector Word*4 Indexed */
4754 case 268: /* Load VSX Vector Indexed */
4755 case 364: /* Load VSX Vector Word & Splat Indexed */
4756 case 812: /* Load VSX Vector Halfword*8 Indexed */
4757 case 876: /* Load VSX Vector Byte*16 Indexed */
4758 case 269: /* Load VSX Vector with Length */
4759 case 301: /* Load VSX Vector Left-justified with Length */
4760 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4761 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4762 case 403: /* Move To VSR Word & Splat */
4763 case 435: /* Move To VSR Double Doubleword */
4764 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4765 return 0;
4766
4767 /* These write RA. Update CR if RC is set. */
4768 case 24: /* Shift Left Word */
4769 case 26: /* Count Leading Zeros Word */
4770 case 27: /* Shift Left Doubleword */
4771 case 28: /* AND */
4772 case 58: /* Count Leading Zeros Doubleword */
4773 case 60: /* AND with Complement */
4774 case 124: /* NOR */
4775 case 284: /* Equivalent */
4776 case 316: /* XOR */
4777 case 476: /* NAND */
4778 case 412: /* OR with Complement */
4779 case 444: /* OR */
4780 case 536: /* Shift Right Word */
4781 case 539: /* Shift Right Doubleword */
4782 case 922: /* Extend Sign Halfword */
4783 case 954: /* Extend Sign Byte */
4784 case 986: /* Extend Sign Word */
4785 case 538: /* Count Trailing Zeros Word */
4786 case 570: /* Count Trailing Zeros Doubleword */
4787 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4788 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
4789
4790 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4791 && (PPC_RS (insn) == PPC_RA (insn))
4792 && (PPC_RA (insn) == PPC_RB (insn))
4793 && !PPC_RC (insn))
4794 {
4795 /* or Rx,Rx,Rx alters PRI in PPR. */
4796 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4797 return 0;
4798 }
4799
4800 if (PPC_RC (insn))
4801 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4802 record_full_arch_list_add_reg (regcache,
4803 tdep->ppc_gp0_regnum + PPC_RA (insn));
4804 return 0;
4805
4806 /* Store memory. */
4807 case 181: /* Store Doubleword with Update Indexed */
4808 case 183: /* Store Word with Update Indexed */
4809 case 247: /* Store Byte with Update Indexed */
4810 case 439: /* Store Half Word with Update Indexed */
4811 case 695: /* Store Floating-Point Single with Update Indexed */
4812 case 759: /* Store Floating-Point Double with Update Indexed */
4813 record_full_arch_list_add_reg (regcache,
4814 tdep->ppc_gp0_regnum + PPC_RA (insn));
4815 /* FALL-THROUGH */
4816 case 135: /* Store Vector Element Byte Indexed */
4817 case 167: /* Store Vector Element Halfword Indexed */
4818 case 199: /* Store Vector Element Word Indexed */
4819 case 231: /* Store Vector Indexed */
4820 case 487: /* Store Vector Indexed LRU */
4821 case 716: /* Store VSX Scalar Doubleword Indexed */
4822 case 140: /* Store VSX Scalar as Integer Word Indexed */
4823 case 652: /* Store VSX Scalar Single-Precision Indexed */
4824 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4825 case 908: /* Store VSX Vector Word*4 Indexed */
4826 case 149: /* Store Doubleword Indexed */
4827 case 151: /* Store Word Indexed */
4828 case 215: /* Store Byte Indexed */
4829 case 407: /* Store Half Word Indexed */
4830 case 694: /* Store Byte Conditional Indexed */
4831 case 726: /* Store Halfword Conditional Indexed */
4832 case 150: /* Store Word Conditional Indexed */
4833 case 214: /* Store Doubleword Conditional Indexed */
4834 case 182: /* Store Quadword Conditional Indexed */
4835 case 662: /* Store Word Byte-Reverse Indexed */
4836 case 918: /* Store Halfword Byte-Reverse Indexed */
4837 case 660: /* Store Doubleword Byte-Reverse Indexed */
4838 case 663: /* Store Floating-Point Single Indexed */
4839 case 727: /* Store Floating-Point Double Indexed */
4840 case 919: /* Store Floating-Point Double Pair Indexed */
4841 case 983: /* Store Floating-Point as Integer Word Indexed */
4842 case 396: /* Store VSX Vector Indexed */
4843 case 940: /* Store VSX Vector Halfword*8 Indexed */
4844 case 1004: /* Store VSX Vector Byte*16 Indexed */
4845 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4846 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4847 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4848 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4849
4850 ra = 0;
4851 if (PPC_RA (insn) != 0)
4852 regcache_raw_read_unsigned (regcache,
4853 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4854 regcache_raw_read_unsigned (regcache,
4855 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4856 ea = ra + rb;
4857
4858 switch (ext)
4859 {
4860 case 183: /* Store Word with Update Indexed */
4861 case 199: /* Store Vector Element Word Indexed */
4862 case 140: /* Store VSX Scalar as Integer Word Indexed */
4863 case 652: /* Store VSX Scalar Single-Precision Indexed */
4864 case 151: /* Store Word Indexed */
4865 case 150: /* Store Word Conditional Indexed */
4866 case 662: /* Store Word Byte-Reverse Indexed */
4867 case 663: /* Store Floating-Point Single Indexed */
4868 case 695: /* Store Floating-Point Single with Update Indexed */
4869 case 983: /* Store Floating-Point as Integer Word Indexed */
4870 size = 4;
4871 break;
4872 case 247: /* Store Byte with Update Indexed */
4873 case 135: /* Store Vector Element Byte Indexed */
4874 case 215: /* Store Byte Indexed */
4875 case 694: /* Store Byte Conditional Indexed */
4876 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4877 size = 1;
4878 break;
4879 case 439: /* Store Halfword with Update Indexed */
4880 case 167: /* Store Vector Element Halfword Indexed */
4881 case 407: /* Store Halfword Indexed */
4882 case 726: /* Store Halfword Conditional Indexed */
4883 case 918: /* Store Halfword Byte-Reverse Indexed */
4884 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
4885 size = 2;
4886 break;
4887 case 181: /* Store Doubleword with Update Indexed */
4888 case 716: /* Store VSX Scalar Doubleword Indexed */
4889 case 149: /* Store Doubleword Indexed */
4890 case 214: /* Store Doubleword Conditional Indexed */
4891 case 660: /* Store Doubleword Byte-Reverse Indexed */
4892 case 727: /* Store Floating-Point Double Indexed */
4893 case 759: /* Store Floating-Point Double with Update Indexed */
4894 size = 8;
4895 break;
4896 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4897 case 908: /* Store VSX Vector Word*4 Indexed */
4898 case 182: /* Store Quadword Conditional Indexed */
4899 case 231: /* Store Vector Indexed */
4900 case 487: /* Store Vector Indexed LRU */
4901 case 919: /* Store Floating-Point Double Pair Indexed */
4902 case 396: /* Store VSX Vector Indexed */
4903 case 940: /* Store VSX Vector Halfword*8 Indexed */
4904 case 1004: /* Store VSX Vector Byte*16 Indexed */
4905 size = 16;
4906 break;
4907 default:
4908 gdb_assert (0);
4909 }
4910
4911 /* Align address for Store Vector instructions. */
4912 switch (ext)
4913 {
4914 case 167: /* Store Vector Element Halfword Indexed */
4915 addr = addr & ~0x1ULL;
4916 break;
4917
4918 case 199: /* Store Vector Element Word Indexed */
4919 addr = addr & ~0x3ULL;
4920 break;
4921
4922 case 231: /* Store Vector Indexed */
4923 case 487: /* Store Vector Indexed LRU */
4924 addr = addr & ~0xfULL;
4925 break;
4926 }
4927
4928 record_full_arch_list_add_mem (addr, size);
4929 return 0;
4930
4931 case 397: /* Store VSX Vector with Length */
4932 case 429: /* Store VSX Vector Left-justified with Length */
4933 ra = 0;
4934 if (PPC_RA (insn) != 0)
4935 regcache_raw_read_unsigned (regcache,
4936 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4937 ea = ra;
4938 regcache_raw_read_unsigned (regcache,
4939 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4940 /* Store up to 16 bytes. */
4941 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4942 if (nb > 0)
4943 record_full_arch_list_add_mem (ea, nb);
4944 return 0;
4945
4946 case 710: /* Store Word Atomic */
4947 case 742: /* Store Doubleword Atomic */
4948 ra = 0;
4949 if (PPC_RA (insn) != 0)
4950 regcache_raw_read_unsigned (regcache,
4951 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4952 ea = ra;
4953 switch (ext)
4954 {
4955 case 710: /* Store Word Atomic */
4956 size = 8;
4957 break;
4958 case 742: /* Store Doubleword Atomic */
4959 size = 16;
4960 break;
4961 default:
4962 gdb_assert (0);
4963 }
4964 record_full_arch_list_add_mem (ea, size);
4965 return 0;
4966
4967 case 725: /* Store String Word Immediate */
4968 ra = 0;
4969 if (PPC_RA (insn) != 0)
4970 regcache_raw_read_unsigned (regcache,
4971 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4972 ea += ra;
4973
4974 nb = PPC_NB (insn);
4975 if (nb == 0)
4976 nb = 32;
4977
4978 record_full_arch_list_add_mem (ea, nb);
4979
4980 return 0;
4981
4982 case 661: /* Store String Word Indexed */
4983 ra = 0;
4984 if (PPC_RA (insn) != 0)
4985 regcache_raw_read_unsigned (regcache,
4986 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4987 ea += ra;
4988
4989 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4990 nb = PPC_XER_NB (xer);
4991
4992 if (nb != 0)
4993 {
4994 regcache_raw_read_unsigned (regcache,
4995 tdep->ppc_gp0_regnum + PPC_RB (insn),
4996 &rb);
4997 ea += rb;
4998 record_full_arch_list_add_mem (ea, nb);
4999 }
5000
5001 return 0;
5002
5003 case 467: /* Move To Special Purpose Register */
5004 switch (PPC_SPR (insn))
5005 {
5006 case 1: /* XER */
5007 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5008 return 0;
5009 case 3: /* DSCR */
5010 if (tdep->ppc_dscr_regnum >= 0)
5011 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5012 return 0;
5013 case 8: /* LR */
5014 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5015 return 0;
5016 case 9: /* CTR */
5017 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5018 return 0;
5019 case 256: /* VRSAVE */
5020 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5021 return 0;
5022 case 815: /* TAR */
5023 if (tdep->ppc_tar_regnum >= 0)
5024 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5025 return 0;
5026 case 896:
5027 case 898: /* PPR */
5028 if (tdep->ppc_ppr_regnum >= 0)
5029 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5030 return 0;
5031 }
5032
5033 goto UNKNOWN_OP;
5034
5035 case 147: /* Move To Split Little Endian */
5036 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5037 return 0;
5038
5039 case 512: /* Move to Condition Register from XER */
5040 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5041 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5042 return 0;
5043
5044 case 4: /* Trap Word */
5045 case 68: /* Trap Doubleword */
5046 case 430: /* Clear BHRB */
5047 case 598: /* Synchronize */
5048 case 62: /* Wait for Interrupt */
5049 case 30: /* Wait */
5050 case 22: /* Instruction Cache Block Touch */
5051 case 854: /* Enforce In-order Execution of I/O */
5052 case 246: /* Data Cache Block Touch for Store */
5053 case 54: /* Data Cache Block Store */
5054 case 86: /* Data Cache Block Flush */
5055 case 278: /* Data Cache Block Touch */
5056 case 758: /* Data Cache Block Allocate */
5057 case 982: /* Instruction Cache Block Invalidate */
5058 case 774: /* Copy */
5059 case 838: /* CP_Abort */
5060 return 0;
5061
5062 case 654: /* Transaction Begin */
5063 case 686: /* Transaction End */
5064 case 750: /* Transaction Suspend or Resume */
5065 case 782: /* Transaction Abort Word Conditional */
5066 case 814: /* Transaction Abort Doubleword Conditional */
5067 case 846: /* Transaction Abort Word Conditional Immediate */
5068 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5069 case 910: /* Transaction Abort */
5070 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5071 /* FALL-THROUGH */
5072 case 718: /* Transaction Check */
5073 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5074 return 0;
5075
5076 case 1014: /* Data Cache Block set to Zero */
5077 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
5078 || at_dcsz == 0)
5079 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5080
5081 ra = 0;
5082 if (PPC_RA (insn) != 0)
5083 regcache_raw_read_unsigned (regcache,
5084 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5085 regcache_raw_read_unsigned (regcache,
5086 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5087 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5088 record_full_arch_list_add_mem (ea, at_dcsz);
5089 return 0;
5090 }
5091
5092 UNKNOWN_OP:
5093 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5094 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5095 return -1;
5096 }
5097
5098 /* Parse and record instructions of primary opcode-59 at ADDR.
5099 Return 0 if successful. */
5100
5101 static int
5102 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5103 CORE_ADDR addr, uint32_t insn)
5104 {
5105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5106 int ext = PPC_EXTOP (insn);
5107
5108 switch (ext & 0x1f)
5109 {
5110 case 18: /* Floating Divide */
5111 case 20: /* Floating Subtract */
5112 case 21: /* Floating Add */
5113 case 22: /* Floating Square Root */
5114 case 24: /* Floating Reciprocal Estimate */
5115 case 25: /* Floating Multiply */
5116 case 26: /* Floating Reciprocal Square Root Estimate */
5117 case 28: /* Floating Multiply-Subtract */
5118 case 29: /* Floating Multiply-Add */
5119 case 30: /* Floating Negative Multiply-Subtract */
5120 case 31: /* Floating Negative Multiply-Add */
5121 record_full_arch_list_add_reg (regcache,
5122 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5123 if (PPC_RC (insn))
5124 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5125 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5126
5127 return 0;
5128 }
5129
5130 switch (ext)
5131 {
5132 case 2: /* DFP Add */
5133 case 3: /* DFP Quantize */
5134 case 34: /* DFP Multiply */
5135 case 35: /* DFP Reround */
5136 case 67: /* DFP Quantize Immediate */
5137 case 99: /* DFP Round To FP Integer With Inexact */
5138 case 227: /* DFP Round To FP Integer Without Inexact */
5139 case 258: /* DFP Convert To DFP Long! */
5140 case 290: /* DFP Convert To Fixed */
5141 case 514: /* DFP Subtract */
5142 case 546: /* DFP Divide */
5143 case 770: /* DFP Round To DFP Short! */
5144 case 802: /* DFP Convert From Fixed */
5145 case 834: /* DFP Encode BCD To DPD */
5146 if (PPC_RC (insn))
5147 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5148 record_full_arch_list_add_reg (regcache,
5149 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5150 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5151 return 0;
5152
5153 case 130: /* DFP Compare Ordered */
5154 case 162: /* DFP Test Exponent */
5155 case 194: /* DFP Test Data Class */
5156 case 226: /* DFP Test Data Group */
5157 case 642: /* DFP Compare Unordered */
5158 case 674: /* DFP Test Significance */
5159 case 675: /* DFP Test Significance Immediate */
5160 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5161 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5162 return 0;
5163
5164 case 66: /* DFP Shift Significand Left Immediate */
5165 case 98: /* DFP Shift Significand Right Immediate */
5166 case 322: /* DFP Decode DPD To BCD */
5167 case 354: /* DFP Extract Biased Exponent */
5168 case 866: /* DFP Insert Biased Exponent */
5169 record_full_arch_list_add_reg (regcache,
5170 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5171 if (PPC_RC (insn))
5172 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5173 return 0;
5174
5175 case 846: /* Floating Convert From Integer Doubleword Single */
5176 case 974: /* Floating Convert From Integer Doubleword Unsigned
5177 Single */
5178 record_full_arch_list_add_reg (regcache,
5179 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5180 if (PPC_RC (insn))
5181 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5182 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5183
5184 return 0;
5185 }
5186
5187 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5188 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5189 return -1;
5190 }
5191
5192 /* Parse and record instructions of primary opcode-60 at ADDR.
5193 Return 0 if successful. */
5194
5195 static int
5196 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5197 CORE_ADDR addr, uint32_t insn)
5198 {
5199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5200 int ext = PPC_EXTOP (insn);
5201
5202 switch (ext >> 2)
5203 {
5204 case 0: /* VSX Scalar Add Single-Precision */
5205 case 32: /* VSX Scalar Add Double-Precision */
5206 case 24: /* VSX Scalar Divide Single-Precision */
5207 case 56: /* VSX Scalar Divide Double-Precision */
5208 case 176: /* VSX Scalar Copy Sign Double-Precision */
5209 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5210 case 41: /* ditto */
5211 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5212 case 9: /* ditto */
5213 case 160: /* VSX Scalar Maximum Double-Precision */
5214 case 168: /* VSX Scalar Minimum Double-Precision */
5215 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5216 case 57: /* ditto */
5217 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5218 case 25: /* ditto */
5219 case 48: /* VSX Scalar Multiply Double-Precision */
5220 case 16: /* VSX Scalar Multiply Single-Precision */
5221 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5222 case 169: /* ditto */
5223 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5224 case 137: /* ditto */
5225 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5226 case 185: /* ditto */
5227 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5228 case 153: /* ditto */
5229 case 40: /* VSX Scalar Subtract Double-Precision */
5230 case 8: /* VSX Scalar Subtract Single-Precision */
5231 case 96: /* VSX Vector Add Double-Precision */
5232 case 64: /* VSX Vector Add Single-Precision */
5233 case 120: /* VSX Vector Divide Double-Precision */
5234 case 88: /* VSX Vector Divide Single-Precision */
5235 case 97: /* VSX Vector Multiply-Add Double-Precision */
5236 case 105: /* ditto */
5237 case 65: /* VSX Vector Multiply-Add Single-Precision */
5238 case 73: /* ditto */
5239 case 224: /* VSX Vector Maximum Double-Precision */
5240 case 192: /* VSX Vector Maximum Single-Precision */
5241 case 232: /* VSX Vector Minimum Double-Precision */
5242 case 200: /* VSX Vector Minimum Single-Precision */
5243 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5244 case 121: /* ditto */
5245 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5246 case 89: /* ditto */
5247 case 112: /* VSX Vector Multiply Double-Precision */
5248 case 80: /* VSX Vector Multiply Single-Precision */
5249 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5250 case 233: /* ditto */
5251 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5252 case 201: /* ditto */
5253 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5254 case 249: /* ditto */
5255 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5256 case 217: /* ditto */
5257 case 104: /* VSX Vector Subtract Double-Precision */
5258 case 72: /* VSX Vector Subtract Single-Precision */
5259 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5260 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5261 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5262 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5263 case 3: /* VSX Scalar Compare Equal Double-Precision */
5264 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5265 case 19: /* VSX Scalar Compare Greater Than or Equal
5266 Double-Precision */
5267 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5268 /* FALL-THROUGH */
5269 case 240: /* VSX Vector Copy Sign Double-Precision */
5270 case 208: /* VSX Vector Copy Sign Single-Precision */
5271 case 130: /* VSX Logical AND */
5272 case 138: /* VSX Logical AND with Complement */
5273 case 186: /* VSX Logical Equivalence */
5274 case 178: /* VSX Logical NAND */
5275 case 170: /* VSX Logical OR with Complement */
5276 case 162: /* VSX Logical NOR */
5277 case 146: /* VSX Logical OR */
5278 case 154: /* VSX Logical XOR */
5279 case 18: /* VSX Merge High Word */
5280 case 50: /* VSX Merge Low Word */
5281 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5282 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5283 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5284 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5285 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5286 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5287 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5288 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5289 case 216: /* VSX Vector Insert Exponent Single-Precision */
5290 case 248: /* VSX Vector Insert Exponent Double-Precision */
5291 case 26: /* VSX Vector Permute */
5292 case 58: /* VSX Vector Permute Right-indexed */
5293 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5294 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5295 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5296 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5297 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5298 return 0;
5299
5300 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5301 case 125: /* VSX Vector Test for software Divide Double-Precision */
5302 case 93: /* VSX Vector Test for software Divide Single-Precision */
5303 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5304 return 0;
5305
5306 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5307 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5308 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5309 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5310 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5311 return 0;
5312 }
5313
5314 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5315 {
5316 case 99: /* VSX Vector Compare Equal To Double-Precision */
5317 case 67: /* VSX Vector Compare Equal To Single-Precision */
5318 case 115: /* VSX Vector Compare Greater Than or
5319 Equal To Double-Precision */
5320 case 83: /* VSX Vector Compare Greater Than or
5321 Equal To Single-Precision */
5322 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5323 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5324 if (PPC_Rc (insn))
5325 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5326 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5327 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5328 return 0;
5329 }
5330
5331 switch (ext >> 1)
5332 {
5333 case 265: /* VSX Scalar round Double-Precision to
5334 Single-Precision and Convert to
5335 Single-Precision format */
5336 case 344: /* VSX Scalar truncate Double-Precision to
5337 Integer and Convert to Signed Integer
5338 Doubleword format with Saturate */
5339 case 88: /* VSX Scalar truncate Double-Precision to
5340 Integer and Convert to Signed Integer Word
5341 Format with Saturate */
5342 case 328: /* VSX Scalar truncate Double-Precision integer
5343 and Convert to Unsigned Integer Doubleword
5344 Format with Saturate */
5345 case 72: /* VSX Scalar truncate Double-Precision to
5346 Integer and Convert to Unsigned Integer Word
5347 Format with Saturate */
5348 case 329: /* VSX Scalar Convert Single-Precision to
5349 Double-Precision format */
5350 case 376: /* VSX Scalar Convert Signed Integer
5351 Doubleword to floating-point format and
5352 Round to Double-Precision format */
5353 case 312: /* VSX Scalar Convert Signed Integer
5354 Doubleword to floating-point format and
5355 round to Single-Precision */
5356 case 360: /* VSX Scalar Convert Unsigned Integer
5357 Doubleword to floating-point format and
5358 Round to Double-Precision format */
5359 case 296: /* VSX Scalar Convert Unsigned Integer
5360 Doubleword to floating-point format and
5361 Round to Single-Precision */
5362 case 73: /* VSX Scalar Round to Double-Precision Integer
5363 Using Round to Nearest Away */
5364 case 107: /* VSX Scalar Round to Double-Precision Integer
5365 Exact using Current rounding mode */
5366 case 121: /* VSX Scalar Round to Double-Precision Integer
5367 Using Round toward -Infinity */
5368 case 105: /* VSX Scalar Round to Double-Precision Integer
5369 Using Round toward +Infinity */
5370 case 89: /* VSX Scalar Round to Double-Precision Integer
5371 Using Round toward Zero */
5372 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5373 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5374 case 281: /* VSX Scalar Round to Single-Precision */
5375 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5376 Double-Precision */
5377 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5378 Single-Precision */
5379 case 75: /* VSX Scalar Square Root Double-Precision */
5380 case 11: /* VSX Scalar Square Root Single-Precision */
5381 case 393: /* VSX Vector round Double-Precision to
5382 Single-Precision and Convert to
5383 Single-Precision format */
5384 case 472: /* VSX Vector truncate Double-Precision to
5385 Integer and Convert to Signed Integer
5386 Doubleword format with Saturate */
5387 case 216: /* VSX Vector truncate Double-Precision to
5388 Integer and Convert to Signed Integer Word
5389 Format with Saturate */
5390 case 456: /* VSX Vector truncate Double-Precision to
5391 Integer and Convert to Unsigned Integer
5392 Doubleword format with Saturate */
5393 case 200: /* VSX Vector truncate Double-Precision to
5394 Integer and Convert to Unsigned Integer Word
5395 Format with Saturate */
5396 case 457: /* VSX Vector Convert Single-Precision to
5397 Double-Precision format */
5398 case 408: /* VSX Vector truncate Single-Precision to
5399 Integer and Convert to Signed Integer
5400 Doubleword format with Saturate */
5401 case 152: /* VSX Vector truncate Single-Precision to
5402 Integer and Convert to Signed Integer Word
5403 Format with Saturate */
5404 case 392: /* VSX Vector truncate Single-Precision to
5405 Integer and Convert to Unsigned Integer
5406 Doubleword format with Saturate */
5407 case 136: /* VSX Vector truncate Single-Precision to
5408 Integer and Convert to Unsigned Integer Word
5409 Format with Saturate */
5410 case 504: /* VSX Vector Convert and round Signed Integer
5411 Doubleword to Double-Precision format */
5412 case 440: /* VSX Vector Convert and round Signed Integer
5413 Doubleword to Single-Precision format */
5414 case 248: /* VSX Vector Convert Signed Integer Word to
5415 Double-Precision format */
5416 case 184: /* VSX Vector Convert and round Signed Integer
5417 Word to Single-Precision format */
5418 case 488: /* VSX Vector Convert and round Unsigned
5419 Integer Doubleword to Double-Precision format */
5420 case 424: /* VSX Vector Convert and round Unsigned
5421 Integer Doubleword to Single-Precision format */
5422 case 232: /* VSX Vector Convert and round Unsigned
5423 Integer Word to Double-Precision format */
5424 case 168: /* VSX Vector Convert and round Unsigned
5425 Integer Word to Single-Precision format */
5426 case 201: /* VSX Vector Round to Double-Precision
5427 Integer using round to Nearest Away */
5428 case 235: /* VSX Vector Round to Double-Precision
5429 Integer Exact using Current rounding mode */
5430 case 249: /* VSX Vector Round to Double-Precision
5431 Integer using round toward -Infinity */
5432 case 233: /* VSX Vector Round to Double-Precision
5433 Integer using round toward +Infinity */
5434 case 217: /* VSX Vector Round to Double-Precision
5435 Integer using round toward Zero */
5436 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5437 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5438 case 137: /* VSX Vector Round to Single-Precision Integer
5439 Using Round to Nearest Away */
5440 case 171: /* VSX Vector Round to Single-Precision Integer
5441 Exact Using Current rounding mode */
5442 case 185: /* VSX Vector Round to Single-Precision Integer
5443 Using Round toward -Infinity */
5444 case 169: /* VSX Vector Round to Single-Precision Integer
5445 Using Round toward +Infinity */
5446 case 153: /* VSX Vector Round to Single-Precision Integer
5447 Using round toward Zero */
5448 case 202: /* VSX Vector Reciprocal Square Root Estimate
5449 Double-Precision */
5450 case 138: /* VSX Vector Reciprocal Square Root Estimate
5451 Single-Precision */
5452 case 203: /* VSX Vector Square Root Double-Precision */
5453 case 139: /* VSX Vector Square Root Single-Precision */
5454 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5455 /* FALL-THROUGH */
5456 case 345: /* VSX Scalar Absolute Value Double-Precision */
5457 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5458 Vector Single-Precision format Non-signalling */
5459 case 331: /* VSX Scalar Convert Single-Precision to
5460 Double-Precision format Non-signalling */
5461 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5462 case 377: /* VSX Scalar Negate Double-Precision */
5463 case 473: /* VSX Vector Absolute Value Double-Precision */
5464 case 409: /* VSX Vector Absolute Value Single-Precision */
5465 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5466 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5467 case 505: /* VSX Vector Negate Double-Precision */
5468 case 441: /* VSX Vector Negate Single-Precision */
5469 case 164: /* VSX Splat Word */
5470 case 165: /* VSX Vector Extract Unsigned Word */
5471 case 181: /* VSX Vector Insert Word */
5472 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5473 return 0;
5474
5475 case 298: /* VSX Scalar Test Data Class Single-Precision */
5476 case 362: /* VSX Scalar Test Data Class Double-Precision */
5477 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5478 /* FALL-THROUGH */
5479 case 106: /* VSX Scalar Test for software Square Root
5480 Double-Precision */
5481 case 234: /* VSX Vector Test for software Square Root
5482 Double-Precision */
5483 case 170: /* VSX Vector Test for software Square Root
5484 Single-Precision */
5485 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5486 return 0;
5487
5488 case 347:
5489 switch (PPC_FIELD (insn, 11, 5))
5490 {
5491 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5492 case 1: /* VSX Scalar Extract Significand Double-Precision */
5493 record_full_arch_list_add_reg (regcache,
5494 tdep->ppc_gp0_regnum + PPC_RT (insn));
5495 return 0;
5496 case 16: /* VSX Scalar Convert Half-Precision format to
5497 Double-Precision format */
5498 case 17: /* VSX Scalar round & Convert Double-Precision format
5499 to Half-Precision format */
5500 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5501 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5502 return 0;
5503 }
5504 break;
5505
5506 case 475:
5507 switch (PPC_FIELD (insn, 11, 5))
5508 {
5509 case 24: /* VSX Vector Convert Half-Precision format to
5510 Single-Precision format */
5511 case 25: /* VSX Vector round and Convert Single-Precision format
5512 to Half-Precision format */
5513 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5514 /* FALL-THROUGH */
5515 case 0: /* VSX Vector Extract Exponent Double-Precision */
5516 case 1: /* VSX Vector Extract Significand Double-Precision */
5517 case 7: /* VSX Vector Byte-Reverse Halfword */
5518 case 8: /* VSX Vector Extract Exponent Single-Precision */
5519 case 9: /* VSX Vector Extract Significand Single-Precision */
5520 case 15: /* VSX Vector Byte-Reverse Word */
5521 case 23: /* VSX Vector Byte-Reverse Doubleword */
5522 case 31: /* VSX Vector Byte-Reverse Quadword */
5523 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5524 return 0;
5525 }
5526 break;
5527 }
5528
5529 switch (ext)
5530 {
5531 case 360: /* VSX Vector Splat Immediate Byte */
5532 if (PPC_FIELD (insn, 11, 2) == 0)
5533 {
5534 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5535 return 0;
5536 }
5537 break;
5538 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5539 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5540 return 0;
5541 }
5542
5543 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5544 {
5545 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5546 return 0;
5547 }
5548
5549 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5550 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5551 return -1;
5552 }
5553
5554 /* Parse and record instructions of primary opcode-61 at ADDR.
5555 Return 0 if successful. */
5556
5557 static int
5558 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5559 CORE_ADDR addr, uint32_t insn)
5560 {
5561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5562 ULONGEST ea = 0;
5563 int size;
5564
5565 switch (insn & 0x3)
5566 {
5567 case 0: /* Store Floating-Point Double Pair */
5568 case 2: /* Store VSX Scalar Doubleword */
5569 case 3: /* Store VSX Scalar Single */
5570 if (PPC_RA (insn) != 0)
5571 regcache_raw_read_unsigned (regcache,
5572 tdep->ppc_gp0_regnum + PPC_RA (insn),
5573 &ea);
5574 ea += PPC_DS (insn) << 2;
5575 switch (insn & 0x3)
5576 {
5577 case 0: /* Store Floating-Point Double Pair */
5578 size = 16;
5579 break;
5580 case 2: /* Store VSX Scalar Doubleword */
5581 size = 8;
5582 break;
5583 case 3: /* Store VSX Scalar Single */
5584 size = 4;
5585 break;
5586 default:
5587 gdb_assert (0);
5588 }
5589 record_full_arch_list_add_mem (ea, size);
5590 return 0;
5591 }
5592
5593 switch (insn & 0x7)
5594 {
5595 case 1: /* Load VSX Vector */
5596 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5597 return 0;
5598 case 5: /* Store VSX Vector */
5599 if (PPC_RA (insn) != 0)
5600 regcache_raw_read_unsigned (regcache,
5601 tdep->ppc_gp0_regnum + PPC_RA (insn),
5602 &ea);
5603 ea += PPC_DQ (insn) << 4;
5604 record_full_arch_list_add_mem (ea, 16);
5605 return 0;
5606 }
5607
5608 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5609 "at %s.\n", insn, paddress (gdbarch, addr));
5610 return -1;
5611 }
5612
5613 /* Parse and record instructions of primary opcode-63 at ADDR.
5614 Return 0 if successful. */
5615
5616 static int
5617 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5618 CORE_ADDR addr, uint32_t insn)
5619 {
5620 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5621 int ext = PPC_EXTOP (insn);
5622 int tmp;
5623
5624 switch (ext & 0x1f)
5625 {
5626 case 18: /* Floating Divide */
5627 case 20: /* Floating Subtract */
5628 case 21: /* Floating Add */
5629 case 22: /* Floating Square Root */
5630 case 24: /* Floating Reciprocal Estimate */
5631 case 25: /* Floating Multiply */
5632 case 26: /* Floating Reciprocal Square Root Estimate */
5633 case 28: /* Floating Multiply-Subtract */
5634 case 29: /* Floating Multiply-Add */
5635 case 30: /* Floating Negative Multiply-Subtract */
5636 case 31: /* Floating Negative Multiply-Add */
5637 record_full_arch_list_add_reg (regcache,
5638 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5639 if (PPC_RC (insn))
5640 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5641 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5642 return 0;
5643
5644 case 23: /* Floating Select */
5645 record_full_arch_list_add_reg (regcache,
5646 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5647 if (PPC_RC (insn))
5648 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5649 return 0;
5650 }
5651
5652 switch (ext & 0xff)
5653 {
5654 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5655 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5656 Precision */
5657 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5658 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5659 return 0;
5660 }
5661
5662 switch (ext)
5663 {
5664 case 2: /* DFP Add Quad */
5665 case 3: /* DFP Quantize Quad */
5666 case 34: /* DFP Multiply Quad */
5667 case 35: /* DFP Reround Quad */
5668 case 67: /* DFP Quantize Immediate Quad */
5669 case 99: /* DFP Round To FP Integer With Inexact Quad */
5670 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5671 case 258: /* DFP Convert To DFP Extended Quad */
5672 case 514: /* DFP Subtract Quad */
5673 case 546: /* DFP Divide Quad */
5674 case 770: /* DFP Round To DFP Long Quad */
5675 case 802: /* DFP Convert From Fixed Quad */
5676 case 834: /* DFP Encode BCD To DPD Quad */
5677 if (PPC_RC (insn))
5678 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5679 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5680 record_full_arch_list_add_reg (regcache, tmp);
5681 record_full_arch_list_add_reg (regcache, tmp + 1);
5682 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5683 return 0;
5684
5685 case 130: /* DFP Compare Ordered Quad */
5686 case 162: /* DFP Test Exponent Quad */
5687 case 194: /* DFP Test Data Class Quad */
5688 case 226: /* DFP Test Data Group Quad */
5689 case 642: /* DFP Compare Unordered Quad */
5690 case 674: /* DFP Test Significance Quad */
5691 case 675: /* DFP Test Significance Immediate Quad */
5692 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5693 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5694 return 0;
5695
5696 case 66: /* DFP Shift Significand Left Immediate Quad */
5697 case 98: /* DFP Shift Significand Right Immediate Quad */
5698 case 322: /* DFP Decode DPD To BCD Quad */
5699 case 866: /* DFP Insert Biased Exponent Quad */
5700 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5701 record_full_arch_list_add_reg (regcache, tmp);
5702 record_full_arch_list_add_reg (regcache, tmp + 1);
5703 if (PPC_RC (insn))
5704 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5705 return 0;
5706
5707 case 290: /* DFP Convert To Fixed Quad */
5708 record_full_arch_list_add_reg (regcache,
5709 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5710 if (PPC_RC (insn))
5711 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5712 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5713 return 0;
5714
5715 case 354: /* DFP Extract Biased Exponent Quad */
5716 record_full_arch_list_add_reg (regcache,
5717 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5718 if (PPC_RC (insn))
5719 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5720 return 0;
5721
5722 case 12: /* Floating Round to Single-Precision */
5723 case 14: /* Floating Convert To Integer Word */
5724 case 15: /* Floating Convert To Integer Word
5725 with round toward Zero */
5726 case 142: /* Floating Convert To Integer Word Unsigned */
5727 case 143: /* Floating Convert To Integer Word Unsigned
5728 with round toward Zero */
5729 case 392: /* Floating Round to Integer Nearest */
5730 case 424: /* Floating Round to Integer Toward Zero */
5731 case 456: /* Floating Round to Integer Plus */
5732 case 488: /* Floating Round to Integer Minus */
5733 case 814: /* Floating Convert To Integer Doubleword */
5734 case 815: /* Floating Convert To Integer Doubleword
5735 with round toward Zero */
5736 case 846: /* Floating Convert From Integer Doubleword */
5737 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5738 case 943: /* Floating Convert To Integer Doubleword Unsigned
5739 with round toward Zero */
5740 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5741 record_full_arch_list_add_reg (regcache,
5742 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5743 if (PPC_RC (insn))
5744 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5745 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5746 return 0;
5747
5748 case 583:
5749 switch (PPC_FIELD (insn, 11, 5))
5750 {
5751 case 1: /* Move From FPSCR & Clear Enables */
5752 case 20: /* Move From FPSCR Control & set DRN */
5753 case 21: /* Move From FPSCR Control & set DRN Immediate */
5754 case 22: /* Move From FPSCR Control & set RN */
5755 case 23: /* Move From FPSCR Control & set RN Immediate */
5756 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5757 /* Fall through. */
5758 case 0: /* Move From FPSCR */
5759 case 24: /* Move From FPSCR Lightweight */
5760 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5761 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5762 record_full_arch_list_add_reg (regcache,
5763 tdep->ppc_fp0_regnum
5764 + PPC_FRT (insn));
5765 return 0;
5766 }
5767 break;
5768
5769 case 8: /* Floating Copy Sign */
5770 case 40: /* Floating Negate */
5771 case 72: /* Floating Move Register */
5772 case 136: /* Floating Negative Absolute Value */
5773 case 264: /* Floating Absolute Value */
5774 record_full_arch_list_add_reg (regcache,
5775 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5776 if (PPC_RC (insn))
5777 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5778 return 0;
5779
5780 case 838: /* Floating Merge Odd Word */
5781 case 966: /* Floating Merge Even Word */
5782 record_full_arch_list_add_reg (regcache,
5783 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5784 return 0;
5785
5786 case 38: /* Move To FPSCR Bit 1 */
5787 case 70: /* Move To FPSCR Bit 0 */
5788 case 134: /* Move To FPSCR Field Immediate */
5789 case 711: /* Move To FPSCR Fields */
5790 if (PPC_RC (insn))
5791 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5792 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5793 return 0;
5794
5795 case 0: /* Floating Compare Unordered */
5796 case 32: /* Floating Compare Ordered */
5797 case 64: /* Move to Condition Register from FPSCR */
5798 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5799 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5800 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5801 case 708: /* VSX Scalar Test Data Class Quad-Precision */
5802 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5803 /* FALL-THROUGH */
5804 case 128: /* Floating Test for software Divide */
5805 case 160: /* Floating Test for software Square Root */
5806 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5807 return 0;
5808
5809 case 4: /* VSX Scalar Add Quad-Precision */
5810 case 36: /* VSX Scalar Multiply Quad-Precision */
5811 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5812 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5813 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5814 case 484: /* VSX Scalar Negative Multiply-Subtract
5815 Quad-Precision */
5816 case 516: /* VSX Scalar Subtract Quad-Precision */
5817 case 548: /* VSX Scalar Divide Quad-Precision */
5818 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5819 /* FALL-THROUGH */
5820 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5821 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5822 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5823 return 0;
5824
5825 case 804:
5826 switch (PPC_FIELD (insn, 11, 5))
5827 {
5828 case 27: /* VSX Scalar Square Root Quad-Precision */
5829 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5830 /* FALL-THROUGH */
5831 case 0: /* VSX Scalar Absolute Quad-Precision */
5832 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5833 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5834 case 16: /* VSX Scalar Negate Quad-Precision */
5835 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5836 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5837 return 0;
5838 }
5839 break;
5840
5841 case 836:
5842 switch (PPC_FIELD (insn, 11, 5))
5843 {
5844 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5845 to Unsigned Word format */
5846 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5847 Quad-Precision format */
5848 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5849 to Signed Word format */
5850 case 10: /* VSX Scalar Convert Signed Doubleword format to
5851 Quad-Precision format */
5852 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5853 to Unsigned Doubleword format */
5854 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5855 Double-Precision format */
5856 case 22: /* VSX Scalar Convert Double-Precision format to
5857 Quad-Precision format */
5858 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5859 to Signed Doubleword format */
5860 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5861 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5862 return 0;
5863 }
5864 }
5865
5866 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5867 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
5868 return -1;
5869 }
5870
5871 /* Parse the current instruction and record the values of the registers and
5872 memory that will be changed in current instruction to "record_arch_list".
5873 Return -1 if something wrong. */
5874
5875 int
5876 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5877 CORE_ADDR addr)
5878 {
5879 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5880 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5881 uint32_t insn;
5882 int op6, tmp, i;
5883
5884 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5885 op6 = PPC_OP6 (insn);
5886
5887 switch (op6)
5888 {
5889 case 2: /* Trap Doubleword Immediate */
5890 case 3: /* Trap Word Immediate */
5891 /* Do nothing. */
5892 break;
5893
5894 case 4:
5895 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5896 return -1;
5897 break;
5898
5899 case 17: /* System call */
5900 if (PPC_LEV (insn) != 0)
5901 goto UNKNOWN_OP;
5902
5903 if (tdep->ppc_syscall_record != NULL)
5904 {
5905 if (tdep->ppc_syscall_record (regcache) != 0)
5906 return -1;
5907 }
5908 else
5909 {
5910 printf_unfiltered (_("no syscall record support\n"));
5911 return -1;
5912 }
5913 break;
5914
5915 case 7: /* Multiply Low Immediate */
5916 record_full_arch_list_add_reg (regcache,
5917 tdep->ppc_gp0_regnum + PPC_RT (insn));
5918 break;
5919
5920 case 8: /* Subtract From Immediate Carrying */
5921 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5922 record_full_arch_list_add_reg (regcache,
5923 tdep->ppc_gp0_regnum + PPC_RT (insn));
5924 break;
5925
5926 case 10: /* Compare Logical Immediate */
5927 case 11: /* Compare Immediate */
5928 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5929 break;
5930
5931 case 13: /* Add Immediate Carrying and Record */
5932 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5933 /* FALL-THROUGH */
5934 case 12: /* Add Immediate Carrying */
5935 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5936 /* FALL-THROUGH */
5937 case 14: /* Add Immediate */
5938 case 15: /* Add Immediate Shifted */
5939 record_full_arch_list_add_reg (regcache,
5940 tdep->ppc_gp0_regnum + PPC_RT (insn));
5941 break;
5942
5943 case 16: /* Branch Conditional */
5944 if ((PPC_BO (insn) & 0x4) == 0)
5945 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5946 /* FALL-THROUGH */
5947 case 18: /* Branch */
5948 if (PPC_LK (insn))
5949 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5950 break;
5951
5952 case 19:
5953 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5954 return -1;
5955 break;
5956
5957 case 20: /* Rotate Left Word Immediate then Mask Insert */
5958 case 21: /* Rotate Left Word Immediate then AND with Mask */
5959 case 23: /* Rotate Left Word then AND with Mask */
5960 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5961 /* Rotate Left Doubleword Immediate then Clear Right */
5962 /* Rotate Left Doubleword Immediate then Clear */
5963 /* Rotate Left Doubleword then Clear Left */
5964 /* Rotate Left Doubleword then Clear Right */
5965 /* Rotate Left Doubleword Immediate then Mask Insert */
5966 if (PPC_RC (insn))
5967 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5968 record_full_arch_list_add_reg (regcache,
5969 tdep->ppc_gp0_regnum + PPC_RA (insn));
5970 break;
5971
5972 case 28: /* AND Immediate */
5973 case 29: /* AND Immediate Shifted */
5974 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5975 /* FALL-THROUGH */
5976 case 24: /* OR Immediate */
5977 case 25: /* OR Immediate Shifted */
5978 case 26: /* XOR Immediate */
5979 case 27: /* XOR Immediate Shifted */
5980 record_full_arch_list_add_reg (regcache,
5981 tdep->ppc_gp0_regnum + PPC_RA (insn));
5982 break;
5983
5984 case 31:
5985 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5986 return -1;
5987 break;
5988
5989 case 33: /* Load Word and Zero with Update */
5990 case 35: /* Load Byte and Zero with Update */
5991 case 41: /* Load Halfword and Zero with Update */
5992 case 43: /* Load Halfword Algebraic with Update */
5993 record_full_arch_list_add_reg (regcache,
5994 tdep->ppc_gp0_regnum + PPC_RA (insn));
5995 /* FALL-THROUGH */
5996 case 32: /* Load Word and Zero */
5997 case 34: /* Load Byte and Zero */
5998 case 40: /* Load Halfword and Zero */
5999 case 42: /* Load Halfword Algebraic */
6000 record_full_arch_list_add_reg (regcache,
6001 tdep->ppc_gp0_regnum + PPC_RT (insn));
6002 break;
6003
6004 case 46: /* Load Multiple Word */
6005 for (i = PPC_RT (insn); i < 32; i++)
6006 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
6007 break;
6008
6009 case 56: /* Load Quadword */
6010 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
6011 record_full_arch_list_add_reg (regcache, tmp);
6012 record_full_arch_list_add_reg (regcache, tmp + 1);
6013 break;
6014
6015 case 49: /* Load Floating-Point Single with Update */
6016 case 51: /* Load Floating-Point Double with Update */
6017 record_full_arch_list_add_reg (regcache,
6018 tdep->ppc_gp0_regnum + PPC_RA (insn));
6019 /* FALL-THROUGH */
6020 case 48: /* Load Floating-Point Single */
6021 case 50: /* Load Floating-Point Double */
6022 record_full_arch_list_add_reg (regcache,
6023 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6024 break;
6025
6026 case 47: /* Store Multiple Word */
6027 {
6028 ULONGEST iaddr = 0;
6029
6030 if (PPC_RA (insn) != 0)
6031 regcache_raw_read_unsigned (regcache,
6032 tdep->ppc_gp0_regnum + PPC_RA (insn),
6033 &iaddr);
6034
6035 iaddr += PPC_D (insn);
6036 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
6037 }
6038 break;
6039
6040 case 37: /* Store Word with Update */
6041 case 39: /* Store Byte with Update */
6042 case 45: /* Store Halfword with Update */
6043 case 53: /* Store Floating-Point Single with Update */
6044 case 55: /* Store Floating-Point Double with Update */
6045 record_full_arch_list_add_reg (regcache,
6046 tdep->ppc_gp0_regnum + PPC_RA (insn));
6047 /* FALL-THROUGH */
6048 case 36: /* Store Word */
6049 case 38: /* Store Byte */
6050 case 44: /* Store Halfword */
6051 case 52: /* Store Floating-Point Single */
6052 case 54: /* Store Floating-Point Double */
6053 {
6054 ULONGEST iaddr = 0;
6055 int size = -1;
6056
6057 if (PPC_RA (insn) != 0)
6058 regcache_raw_read_unsigned (regcache,
6059 tdep->ppc_gp0_regnum + PPC_RA (insn),
6060 &iaddr);
6061 iaddr += PPC_D (insn);
6062
6063 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6064 size = 4;
6065 else if (op6 == 54 || op6 == 55)
6066 size = 8;
6067 else if (op6 == 44 || op6 == 45)
6068 size = 2;
6069 else if (op6 == 38 || op6 == 39)
6070 size = 1;
6071 else
6072 gdb_assert (0);
6073
6074 record_full_arch_list_add_mem (iaddr, size);
6075 }
6076 break;
6077
6078 case 57:
6079 switch (insn & 0x3)
6080 {
6081 case 0: /* Load Floating-Point Double Pair */
6082 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6083 record_full_arch_list_add_reg (regcache, tmp);
6084 record_full_arch_list_add_reg (regcache, tmp + 1);
6085 break;
6086 case 2: /* Load VSX Scalar Doubleword */
6087 case 3: /* Load VSX Scalar Single */
6088 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6089 break;
6090 default:
6091 goto UNKNOWN_OP;
6092 }
6093 break;
6094
6095 case 58: /* Load Doubleword */
6096 /* Load Doubleword with Update */
6097 /* Load Word Algebraic */
6098 if (PPC_FIELD (insn, 30, 2) > 2)
6099 goto UNKNOWN_OP;
6100
6101 record_full_arch_list_add_reg (regcache,
6102 tdep->ppc_gp0_regnum + PPC_RT (insn));
6103 if (PPC_BIT (insn, 31))
6104 record_full_arch_list_add_reg (regcache,
6105 tdep->ppc_gp0_regnum + PPC_RA (insn));
6106 break;
6107
6108 case 59:
6109 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6110 return -1;
6111 break;
6112
6113 case 60:
6114 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6115 return -1;
6116 break;
6117
6118 case 61:
6119 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6120 return -1;
6121 break;
6122
6123 case 62: /* Store Doubleword */
6124 /* Store Doubleword with Update */
6125 /* Store Quadword with Update */
6126 {
6127 ULONGEST iaddr = 0;
6128 int size;
6129 int sub2 = PPC_FIELD (insn, 30, 2);
6130
6131 if (sub2 > 2)
6132 goto UNKNOWN_OP;
6133
6134 if (PPC_RA (insn) != 0)
6135 regcache_raw_read_unsigned (regcache,
6136 tdep->ppc_gp0_regnum + PPC_RA (insn),
6137 &iaddr);
6138
6139 size = (sub2 == 2) ? 16 : 8;
6140
6141 iaddr += PPC_DS (insn) << 2;
6142 record_full_arch_list_add_mem (iaddr, size);
6143
6144 if (op6 == 62 && sub2 == 1)
6145 record_full_arch_list_add_reg (regcache,
6146 tdep->ppc_gp0_regnum +
6147 PPC_RA (insn));
6148
6149 break;
6150 }
6151
6152 case 63:
6153 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6154 return -1;
6155 break;
6156
6157 default:
6158 UNKNOWN_OP:
6159 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6160 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
6161 return -1;
6162 }
6163
6164 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6165 return -1;
6166 if (record_full_arch_list_add_end ())
6167 return -1;
6168 return 0;
6169 }
6170
6171 /* Initialize the current architecture based on INFO. If possible, re-use an
6172 architecture from ARCHES, which is a list of architectures already created
6173 during this debugging session.
6174
6175 Called e.g. at program startup, when reading a core file, and when reading
6176 a binary file. */
6177
6178 static struct gdbarch *
6179 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6180 {
6181 struct gdbarch *gdbarch;
6182 struct gdbarch_tdep *tdep;
6183 int wordsize, from_xcoff_exec, from_elf_exec;
6184 enum bfd_architecture arch;
6185 unsigned long mach;
6186 bfd abfd;
6187 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6188 int soft_float;
6189 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
6190 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
6191 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
6192 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
6193 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
6194 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6195 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6196 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6197 int have_htm_tar = 0;
6198 int tdesc_wordsize = -1;
6199 const struct target_desc *tdesc = info.target_desc;
6200 tdesc_arch_data_up tdesc_data;
6201 int num_pseudoregs = 0;
6202 int cur_reg;
6203
6204 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
6205 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6206
6207 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6208 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6209
6210 /* Check word size. If INFO is from a binary file, infer it from
6211 that, else choose a likely default. */
6212 if (from_xcoff_exec)
6213 {
6214 if (bfd_xcoff_is_xcoff64 (info.abfd))
6215 wordsize = 8;
6216 else
6217 wordsize = 4;
6218 }
6219 else if (from_elf_exec)
6220 {
6221 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6222 wordsize = 8;
6223 else
6224 wordsize = 4;
6225 }
6226 else if (tdesc_has_registers (tdesc))
6227 wordsize = -1;
6228 else
6229 {
6230 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
6231 wordsize = (info.bfd_arch_info->bits_per_word
6232 / info.bfd_arch_info->bits_per_byte);
6233 else
6234 wordsize = 4;
6235 }
6236
6237 /* Get the architecture and machine from the BFD. */
6238 arch = info.bfd_arch_info->arch;
6239 mach = info.bfd_arch_info->mach;
6240
6241 /* For e500 executables, the apuinfo section is of help here. Such
6242 section contains the identifier and revision number of each
6243 Application-specific Processing Unit that is present on the
6244 chip. The content of the section is determined by the assembler
6245 which looks at each instruction and determines which unit (and
6246 which version of it) can execute it. Grovel through the section
6247 looking for relevant e500 APUs. */
6248
6249 if (bfd_uses_spe_extensions (info.abfd))
6250 {
6251 arch = info.bfd_arch_info->arch;
6252 mach = bfd_mach_ppc_e500;
6253 bfd_default_set_arch_mach (&abfd, arch, mach);
6254 info.bfd_arch_info = bfd_get_arch_info (&abfd);
6255 }
6256
6257 /* Find a default target description which describes our register
6258 layout, if we do not already have one. */
6259 if (! tdesc_has_registers (tdesc))
6260 {
6261 const struct ppc_variant *v;
6262
6263 /* Choose variant. */
6264 v = find_variant_by_arch (arch, mach);
6265 if (!v)
6266 return NULL;
6267
6268 tdesc = *v->tdesc;
6269 }
6270
6271 gdb_assert (tdesc_has_registers (tdesc));
6272
6273 /* Check any target description for validity. */
6274 if (tdesc_has_registers (tdesc))
6275 {
6276 static const char *const gprs[] = {
6277 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6278 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6279 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6280 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6281 };
6282 const struct tdesc_feature *feature;
6283 int i, valid_p;
6284 static const char *const msr_names[] = { "msr", "ps" };
6285 static const char *const cr_names[] = { "cr", "cnd" };
6286 static const char *const ctr_names[] = { "ctr", "cnt" };
6287
6288 feature = tdesc_find_feature (tdesc,
6289 "org.gnu.gdb.power.core");
6290 if (feature == NULL)
6291 return NULL;
6292
6293 tdesc_data = tdesc_data_alloc ();
6294
6295 valid_p = 1;
6296 for (i = 0; i < ppc_num_gprs; i++)
6297 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6298 i, gprs[i]);
6299 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6300 PPC_PC_REGNUM, "pc");
6301 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6302 PPC_LR_REGNUM, "lr");
6303 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6304 PPC_XER_REGNUM, "xer");
6305
6306 /* Allow alternate names for these registers, to accomodate GDB's
6307 historic naming. */
6308 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6309 PPC_MSR_REGNUM, msr_names);
6310 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6311 PPC_CR_REGNUM, cr_names);
6312 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
6313 PPC_CTR_REGNUM, ctr_names);
6314
6315 if (!valid_p)
6316 return NULL;
6317
6318 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6319 PPC_MQ_REGNUM, "mq");
6320
6321 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
6322 if (wordsize == -1)
6323 wordsize = tdesc_wordsize;
6324
6325 feature = tdesc_find_feature (tdesc,
6326 "org.gnu.gdb.power.fpu");
6327 if (feature != NULL)
6328 {
6329 static const char *const fprs[] = {
6330 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6331 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6332 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6333 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6334 };
6335 valid_p = 1;
6336 for (i = 0; i < ppc_num_fprs; i++)
6337 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6338 PPC_F0_REGNUM + i, fprs[i]);
6339 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6340 PPC_FPSCR_REGNUM, "fpscr");
6341
6342 if (!valid_p)
6343 return NULL;
6344 have_fpu = 1;
6345
6346 /* The fpscr register was expanded in isa 2.05 to 64 bits
6347 along with the addition of the decimal floating point
6348 facility. */
6349 if (tdesc_register_bitsize (feature, "fpscr") > 32)
6350 have_dfp = 1;
6351 }
6352 else
6353 have_fpu = 0;
6354
6355 feature = tdesc_find_feature (tdesc,
6356 "org.gnu.gdb.power.altivec");
6357 if (feature != NULL)
6358 {
6359 static const char *const vector_regs[] = {
6360 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6361 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6362 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6363 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6364 };
6365
6366 valid_p = 1;
6367 for (i = 0; i < ppc_num_gprs; i++)
6368 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6369 PPC_VR0_REGNUM + i,
6370 vector_regs[i]);
6371 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6372 PPC_VSCR_REGNUM, "vscr");
6373 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6374 PPC_VRSAVE_REGNUM, "vrsave");
6375
6376 if (have_spe || !valid_p)
6377 return NULL;
6378 have_altivec = 1;
6379 }
6380 else
6381 have_altivec = 0;
6382
6383 /* Check for POWER7 VSX registers support. */
6384 feature = tdesc_find_feature (tdesc,
6385 "org.gnu.gdb.power.vsx");
6386
6387 if (feature != NULL)
6388 {
6389 static const char *const vsx_regs[] = {
6390 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6391 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6392 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6393 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6394 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6395 "vs30h", "vs31h"
6396 };
6397
6398 valid_p = 1;
6399
6400 for (i = 0; i < ppc_num_vshrs; i++)
6401 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6402 PPC_VSR0_UPPER_REGNUM + i,
6403 vsx_regs[i]);
6404
6405 if (!valid_p || !have_fpu || !have_altivec)
6406 return NULL;
6407
6408 have_vsx = 1;
6409 }
6410 else
6411 have_vsx = 0;
6412
6413 /* On machines supporting the SPE APU, the general-purpose registers
6414 are 64 bits long. There are SIMD vector instructions to treat them
6415 as pairs of floats, but the rest of the instruction set treats them
6416 as 32-bit registers, and only operates on their lower halves.
6417
6418 In the GDB regcache, we treat their high and low halves as separate
6419 registers. The low halves we present as the general-purpose
6420 registers, and then we have pseudo-registers that stitch together
6421 the upper and lower halves and present them as pseudo-registers.
6422
6423 Thus, the target description is expected to supply the upper
6424 halves separately. */
6425
6426 feature = tdesc_find_feature (tdesc,
6427 "org.gnu.gdb.power.spe");
6428 if (feature != NULL)
6429 {
6430 static const char *const upper_spe[] = {
6431 "ev0h", "ev1h", "ev2h", "ev3h",
6432 "ev4h", "ev5h", "ev6h", "ev7h",
6433 "ev8h", "ev9h", "ev10h", "ev11h",
6434 "ev12h", "ev13h", "ev14h", "ev15h",
6435 "ev16h", "ev17h", "ev18h", "ev19h",
6436 "ev20h", "ev21h", "ev22h", "ev23h",
6437 "ev24h", "ev25h", "ev26h", "ev27h",
6438 "ev28h", "ev29h", "ev30h", "ev31h"
6439 };
6440
6441 valid_p = 1;
6442 for (i = 0; i < ppc_num_gprs; i++)
6443 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6444 PPC_SPE_UPPER_GP0_REGNUM + i,
6445 upper_spe[i]);
6446 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6447 PPC_SPE_ACC_REGNUM, "acc");
6448 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6449 PPC_SPE_FSCR_REGNUM, "spefscr");
6450
6451 if (have_mq || have_fpu || !valid_p)
6452 return NULL;
6453 have_spe = 1;
6454 }
6455 else
6456 have_spe = 0;
6457
6458 /* Program Priority Register. */
6459 feature = tdesc_find_feature (tdesc,
6460 "org.gnu.gdb.power.ppr");
6461 if (feature != NULL)
6462 {
6463 valid_p = 1;
6464 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6465 PPC_PPR_REGNUM, "ppr");
6466
6467 if (!valid_p)
6468 return NULL;
6469 have_ppr = 1;
6470 }
6471 else
6472 have_ppr = 0;
6473
6474 /* Data Stream Control Register. */
6475 feature = tdesc_find_feature (tdesc,
6476 "org.gnu.gdb.power.dscr");
6477 if (feature != NULL)
6478 {
6479 valid_p = 1;
6480 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6481 PPC_DSCR_REGNUM, "dscr");
6482
6483 if (!valid_p)
6484 return NULL;
6485 have_dscr = 1;
6486 }
6487 else
6488 have_dscr = 0;
6489
6490 /* Target Address Register. */
6491 feature = tdesc_find_feature (tdesc,
6492 "org.gnu.gdb.power.tar");
6493 if (feature != NULL)
6494 {
6495 valid_p = 1;
6496 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6497 PPC_TAR_REGNUM, "tar");
6498
6499 if (!valid_p)
6500 return NULL;
6501 have_tar = 1;
6502 }
6503 else
6504 have_tar = 0;
6505
6506 /* Event-based Branching Registers. */
6507 feature = tdesc_find_feature (tdesc,
6508 "org.gnu.gdb.power.ebb");
6509 if (feature != NULL)
6510 {
6511 static const char *const ebb_regs[] = {
6512 "bescr", "ebbhr", "ebbrr"
6513 };
6514
6515 valid_p = 1;
6516 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6517 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6518 PPC_BESCR_REGNUM + i,
6519 ebb_regs[i]);
6520 if (!valid_p)
6521 return NULL;
6522 have_ebb = 1;
6523 }
6524 else
6525 have_ebb = 0;
6526
6527 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6528 by Linux. */
6529 feature = tdesc_find_feature (tdesc,
6530 "org.gnu.gdb.power.linux.pmu");
6531 if (feature != NULL)
6532 {
6533 valid_p = 1;
6534
6535 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6536 PPC_MMCR0_REGNUM,
6537 "mmcr0");
6538 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6539 PPC_MMCR2_REGNUM,
6540 "mmcr2");
6541 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6542 PPC_SIAR_REGNUM,
6543 "siar");
6544 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6545 PPC_SDAR_REGNUM,
6546 "sdar");
6547 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6548 PPC_SIER_REGNUM,
6549 "sier");
6550
6551 if (!valid_p)
6552 return NULL;
6553 have_pmu = 1;
6554 }
6555 else
6556 have_pmu = 0;
6557
6558 /* Hardware Transactional Memory Registers. */
6559 feature = tdesc_find_feature (tdesc,
6560 "org.gnu.gdb.power.htm.spr");
6561 if (feature != NULL)
6562 {
6563 static const char *const tm_spr_regs[] = {
6564 "tfhar", "texasr", "tfiar"
6565 };
6566
6567 valid_p = 1;
6568 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6569 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6570 PPC_TFHAR_REGNUM + i,
6571 tm_spr_regs[i]);
6572 if (!valid_p)
6573 return NULL;
6574
6575 have_htm_spr = 1;
6576 }
6577 else
6578 have_htm_spr = 0;
6579
6580 feature = tdesc_find_feature (tdesc,
6581 "org.gnu.gdb.power.htm.core");
6582 if (feature != NULL)
6583 {
6584 static const char *const cgprs[] = {
6585 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6586 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6587 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6588 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6589 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6590 };
6591
6592 valid_p = 1;
6593
6594 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6595 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6596 PPC_CR0_REGNUM + i,
6597 cgprs[i]);
6598 if (!valid_p)
6599 return NULL;
6600
6601 have_htm_core = 1;
6602 }
6603 else
6604 have_htm_core = 0;
6605
6606 feature = tdesc_find_feature (tdesc,
6607 "org.gnu.gdb.power.htm.fpu");
6608 if (feature != NULL)
6609 {
6610 valid_p = 1;
6611
6612 static const char *const cfprs[] = {
6613 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6614 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6615 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6616 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6617 "cf30", "cf31", "cfpscr"
6618 };
6619
6620 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6621 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6622 PPC_CF0_REGNUM + i,
6623 cfprs[i]);
6624
6625 if (!valid_p)
6626 return NULL;
6627 have_htm_fpu = 1;
6628 }
6629 else
6630 have_htm_fpu = 0;
6631
6632 feature = tdesc_find_feature (tdesc,
6633 "org.gnu.gdb.power.htm.altivec");
6634 if (feature != NULL)
6635 {
6636 valid_p = 1;
6637
6638 static const char *const cvmx[] = {
6639 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6640 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6641 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6642 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6643 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6644 "cvrsave"
6645 };
6646
6647 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6648 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6649 PPC_CVR0_REGNUM + i,
6650 cvmx[i]);
6651
6652 if (!valid_p)
6653 return NULL;
6654 have_htm_altivec = 1;
6655 }
6656 else
6657 have_htm_altivec = 0;
6658
6659 feature = tdesc_find_feature (tdesc,
6660 "org.gnu.gdb.power.htm.vsx");
6661 if (feature != NULL)
6662 {
6663 valid_p = 1;
6664
6665 static const char *const cvsx[] = {
6666 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6667 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6668 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6669 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6670 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6671 "cvs30h", "cvs31h"
6672 };
6673
6674 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6675 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6676 (PPC_CVSR0_UPPER_REGNUM
6677 + i),
6678 cvsx[i]);
6679
6680 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6681 return NULL;
6682 have_htm_vsx = 1;
6683 }
6684 else
6685 have_htm_vsx = 0;
6686
6687 feature = tdesc_find_feature (tdesc,
6688 "org.gnu.gdb.power.htm.ppr");
6689 if (feature != NULL)
6690 {
6691 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6692 PPC_CPPR_REGNUM, "cppr");
6693
6694 if (!valid_p)
6695 return NULL;
6696 have_htm_ppr = 1;
6697 }
6698 else
6699 have_htm_ppr = 0;
6700
6701 feature = tdesc_find_feature (tdesc,
6702 "org.gnu.gdb.power.htm.dscr");
6703 if (feature != NULL)
6704 {
6705 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6706 PPC_CDSCR_REGNUM, "cdscr");
6707
6708 if (!valid_p)
6709 return NULL;
6710 have_htm_dscr = 1;
6711 }
6712 else
6713 have_htm_dscr = 0;
6714
6715 feature = tdesc_find_feature (tdesc,
6716 "org.gnu.gdb.power.htm.tar");
6717 if (feature != NULL)
6718 {
6719 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
6720 PPC_CTAR_REGNUM, "ctar");
6721
6722 if (!valid_p)
6723 return NULL;
6724 have_htm_tar = 1;
6725 }
6726 else
6727 have_htm_tar = 0;
6728 }
6729
6730 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6731 complain for a 32-bit binary on a 64-bit target; we do not yet
6732 support that. For instance, the 32-bit ABI routines expect
6733 32-bit GPRs.
6734
6735 As long as there isn't an explicit target description, we'll
6736 choose one based on the BFD architecture and get a word size
6737 matching the binary (probably powerpc:common or
6738 powerpc:common64). So there is only trouble if a 64-bit target
6739 supplies a 64-bit description while debugging a 32-bit
6740 binary. */
6741 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6742 return NULL;
6743
6744 #ifdef HAVE_ELF
6745 if (from_elf_exec)
6746 {
6747 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6748 {
6749 case 1:
6750 elf_abi = POWERPC_ELF_V1;
6751 break;
6752 case 2:
6753 elf_abi = POWERPC_ELF_V2;
6754 break;
6755 default:
6756 break;
6757 }
6758 }
6759
6760 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6761 {
6762 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6763 Tag_GNU_Power_ABI_FP) & 3)
6764 {
6765 case 1:
6766 soft_float_flag = AUTO_BOOLEAN_FALSE;
6767 break;
6768 case 2:
6769 soft_float_flag = AUTO_BOOLEAN_TRUE;
6770 break;
6771 default:
6772 break;
6773 }
6774 }
6775
6776 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6777 {
6778 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6779 Tag_GNU_Power_ABI_FP) >> 2)
6780 {
6781 case 1:
6782 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6783 break;
6784 case 3:
6785 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6786 break;
6787 default:
6788 break;
6789 }
6790 }
6791
6792 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6793 {
6794 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6795 Tag_GNU_Power_ABI_Vector))
6796 {
6797 case 1:
6798 vector_abi = POWERPC_VEC_GENERIC;
6799 break;
6800 case 2:
6801 vector_abi = POWERPC_VEC_ALTIVEC;
6802 break;
6803 case 3:
6804 vector_abi = POWERPC_VEC_SPE;
6805 break;
6806 default:
6807 break;
6808 }
6809 }
6810 #endif
6811
6812 /* At this point, the only supported ELF-based 64-bit little-endian
6813 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6814 default. All other supported ELF-based operating systems use the
6815 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6816 e.g. because we run a legacy binary, or have attached to a process
6817 and have not found any associated binary file, set the default
6818 according to this heuristic. */
6819 if (elf_abi == POWERPC_ELF_AUTO)
6820 {
6821 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6822 elf_abi = POWERPC_ELF_V2;
6823 else
6824 elf_abi = POWERPC_ELF_V1;
6825 }
6826
6827 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6828 soft_float = 1;
6829 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6830 soft_float = 0;
6831 else
6832 soft_float = !have_fpu;
6833
6834 /* If we have a hard float binary or setting but no floating point
6835 registers, downgrade to soft float anyway. We're still somewhat
6836 useful in this scenario. */
6837 if (!soft_float && !have_fpu)
6838 soft_float = 1;
6839
6840 /* Similarly for vector registers. */
6841 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6842 vector_abi = POWERPC_VEC_GENERIC;
6843
6844 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6845 vector_abi = POWERPC_VEC_GENERIC;
6846
6847 if (vector_abi == POWERPC_VEC_AUTO)
6848 {
6849 if (have_altivec)
6850 vector_abi = POWERPC_VEC_ALTIVEC;
6851 else if (have_spe)
6852 vector_abi = POWERPC_VEC_SPE;
6853 else
6854 vector_abi = POWERPC_VEC_GENERIC;
6855 }
6856
6857 /* Do not limit the vector ABI based on available hardware, since we
6858 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6859
6860 /* Find a candidate among extant architectures. */
6861 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6862 arches != NULL;
6863 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6864 {
6865 /* Word size in the various PowerPC bfd_arch_info structs isn't
6866 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6867 separate word size check. */
6868 tdep = gdbarch_tdep (arches->gdbarch);
6869 if (tdep && tdep->elf_abi != elf_abi)
6870 continue;
6871 if (tdep && tdep->soft_float != soft_float)
6872 continue;
6873 if (tdep && tdep->long_double_abi != long_double_abi)
6874 continue;
6875 if (tdep && tdep->vector_abi != vector_abi)
6876 continue;
6877 if (tdep && tdep->wordsize == wordsize)
6878 return arches->gdbarch;
6879 }
6880
6881 /* None found, create a new architecture from INFO, whose bfd_arch_info
6882 validity depends on the source:
6883 - executable useless
6884 - rs6000_host_arch() good
6885 - core file good
6886 - "set arch" trust blindly
6887 - GDB startup useless but harmless */
6888
6889 tdep = XCNEW (struct gdbarch_tdep);
6890 tdep->wordsize = wordsize;
6891 tdep->elf_abi = elf_abi;
6892 tdep->soft_float = soft_float;
6893 tdep->long_double_abi = long_double_abi;
6894 tdep->vector_abi = vector_abi;
6895
6896 gdbarch = gdbarch_alloc (&info, tdep);
6897
6898 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6899 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6900 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6901 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6902 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6903 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6904 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6905 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6906
6907 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6908 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
6909 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
6910 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6911 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6912 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6913 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6914 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
6915 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6916 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
6917 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
6918 tdep->have_ebb = have_ebb;
6919
6920 /* If additional pmu registers are added, care must be taken when
6921 setting new fields in the tdep below, to maintain compatibility
6922 with features that only provide some of the registers. Currently
6923 gdb access to the pmu registers is only supported in linux, and
6924 linux only provides a subset of the pmu registers defined in the
6925 architecture. */
6926
6927 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6928 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6929 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6930 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6931 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
6932
6933 tdep->have_htm_spr = have_htm_spr;
6934 tdep->have_htm_core = have_htm_core;
6935 tdep->have_htm_fpu = have_htm_fpu;
6936 tdep->have_htm_altivec = have_htm_altivec;
6937 tdep->have_htm_vsx = have_htm_vsx;
6938 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6939 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6940 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6941
6942 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6943 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
6944 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
6945 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
6946
6947 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6948 GDB traditionally called it "ps", though, so let GDB add an
6949 alias. */
6950 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6951
6952 if (wordsize == 8)
6953 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
6954 else
6955 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
6956
6957 /* Set lr_frame_offset. */
6958 if (wordsize == 8)
6959 tdep->lr_frame_offset = 16;
6960 else
6961 tdep->lr_frame_offset = 4;
6962
6963 if (have_spe || have_dfp || have_altivec
6964 || have_vsx || have_htm_fpu || have_htm_vsx)
6965 {
6966 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
6967 set_gdbarch_pseudo_register_write (gdbarch,
6968 rs6000_pseudo_register_write);
6969 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6970 rs6000_ax_pseudo_register_collect);
6971 }
6972
6973 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6974
6975 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6976
6977 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
6978
6979 if (have_spe)
6980 num_pseudoregs += 32;
6981 if (have_dfp)
6982 num_pseudoregs += 16;
6983 if (have_altivec)
6984 num_pseudoregs += 32;
6985 if (have_vsx)
6986 /* Include both VSX and Extended FP registers. */
6987 num_pseudoregs += 96;
6988 if (have_htm_fpu)
6989 num_pseudoregs += 16;
6990 /* Include both checkpointed VSX and EFP registers. */
6991 if (have_htm_vsx)
6992 num_pseudoregs += 64 + 32;
6993
6994 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
6995
6996 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6997 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6998 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6999 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7000 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7001 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7002 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7003 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
7004 set_gdbarch_char_signed (gdbarch, 0);
7005
7006 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7007 if (wordsize == 8)
7008 /* PPC64 SYSV. */
7009 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7010
7011 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7012 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7013 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7014
7015 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7016 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
7017
7018 if (wordsize == 4)
7019 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
7020 else if (wordsize == 8)
7021 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7022
7023 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
7024 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
7025 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
7026
7027 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7028
7029 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7030 rs6000_breakpoint::kind_from_pc);
7031 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7032 rs6000_breakpoint::bp_from_kind);
7033
7034 /* The value of symbols of type N_SO and N_FUN maybe null when
7035 it shouldn't be. */
7036 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7037
7038 /* Handles single stepping of atomic sequences. */
7039 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
7040
7041 /* Not sure on this. FIXMEmgo */
7042 set_gdbarch_frame_args_skip (gdbarch, 8);
7043
7044 /* Helpers for function argument information. */
7045 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7046
7047 /* Trampoline. */
7048 set_gdbarch_in_solib_return_trampoline
7049 (gdbarch, rs6000_in_solib_return_trampoline);
7050 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7051
7052 /* Hook in the DWARF CFI frame unwinder. */
7053 dwarf2_append_unwinders (gdbarch);
7054 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7055
7056 /* Frame handling. */
7057 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7058
7059 /* Setup displaced stepping. */
7060 set_gdbarch_displaced_step_copy_insn (gdbarch,
7061 ppc_displaced_step_copy_insn);
7062 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7063 ppc_displaced_step_hw_singlestep);
7064 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
7065 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
7066 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
7067 set_gdbarch_displaced_step_restore_all_in_ptid
7068 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
7069
7070 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7071
7072 /* Hook in ABI-specific overrides, if they have been registered. */
7073 info.target_desc = tdesc;
7074 info.tdesc_data = tdesc_data.get ();
7075 gdbarch_init_osabi (info, gdbarch);
7076
7077 switch (info.osabi)
7078 {
7079 case GDB_OSABI_LINUX:
7080 case GDB_OSABI_NETBSD:
7081 case GDB_OSABI_UNKNOWN:
7082 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7083 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7084 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7085 break;
7086 default:
7087 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7088
7089 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
7090 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
7091 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7092 }
7093
7094 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
7095 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7096 rs6000_pseudo_register_reggroup_p);
7097 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7098
7099 /* Override the normal target description method to make the SPE upper
7100 halves anonymous. */
7101 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7102
7103 /* Choose register numbers for all supported pseudo-registers. */
7104 tdep->ppc_ev0_regnum = -1;
7105 tdep->ppc_dl0_regnum = -1;
7106 tdep->ppc_v0_alias_regnum = -1;
7107 tdep->ppc_vsr0_regnum = -1;
7108 tdep->ppc_efpr0_regnum = -1;
7109 tdep->ppc_cdl0_regnum = -1;
7110 tdep->ppc_cvsr0_regnum = -1;
7111 tdep->ppc_cefpr0_regnum = -1;
7112
7113 cur_reg = gdbarch_num_regs (gdbarch);
7114
7115 if (have_spe)
7116 {
7117 tdep->ppc_ev0_regnum = cur_reg;
7118 cur_reg += 32;
7119 }
7120 if (have_dfp)
7121 {
7122 tdep->ppc_dl0_regnum = cur_reg;
7123 cur_reg += 16;
7124 }
7125 if (have_altivec)
7126 {
7127 tdep->ppc_v0_alias_regnum = cur_reg;
7128 cur_reg += 32;
7129 }
7130 if (have_vsx)
7131 {
7132 tdep->ppc_vsr0_regnum = cur_reg;
7133 cur_reg += 64;
7134 tdep->ppc_efpr0_regnum = cur_reg;
7135 cur_reg += 32;
7136 }
7137 if (have_htm_fpu)
7138 {
7139 tdep->ppc_cdl0_regnum = cur_reg;
7140 cur_reg += 16;
7141 }
7142 if (have_htm_vsx)
7143 {
7144 tdep->ppc_cvsr0_regnum = cur_reg;
7145 cur_reg += 64;
7146 tdep->ppc_cefpr0_regnum = cur_reg;
7147 cur_reg += 32;
7148 }
7149
7150 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
7151
7152 /* Register the ravenscar_arch_ops. */
7153 if (mach == bfd_mach_ppc_e500)
7154 register_e500_ravenscar_ops (gdbarch);
7155 else
7156 register_ppc_ravenscar_ops (gdbarch);
7157
7158 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7159 set_gdbarch_valid_disassembler_options (gdbarch,
7160 disassembler_options_powerpc ());
7161
7162 return gdbarch;
7163 }
7164
7165 static void
7166 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7167 {
7168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7169
7170 if (tdep == NULL)
7171 return;
7172
7173 /* FIXME: Dump gdbarch_tdep. */
7174 }
7175
7176 static void
7177 powerpc_set_soft_float (const char *args, int from_tty,
7178 struct cmd_list_element *c)
7179 {
7180 struct gdbarch_info info;
7181
7182 /* Update the architecture. */
7183 gdbarch_info_init (&info);
7184 if (!gdbarch_update_p (info))
7185 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7186 }
7187
7188 static void
7189 powerpc_set_vector_abi (const char *args, int from_tty,
7190 struct cmd_list_element *c)
7191 {
7192 struct gdbarch_info info;
7193 int vector_abi;
7194
7195 for (vector_abi = POWERPC_VEC_AUTO;
7196 vector_abi != POWERPC_VEC_LAST;
7197 vector_abi++)
7198 if (strcmp (powerpc_vector_abi_string,
7199 powerpc_vector_strings[vector_abi]) == 0)
7200 {
7201 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
7202 break;
7203 }
7204
7205 if (vector_abi == POWERPC_VEC_LAST)
7206 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7207 powerpc_vector_abi_string);
7208
7209 /* Update the architecture. */
7210 gdbarch_info_init (&info);
7211 if (!gdbarch_update_p (info))
7212 internal_error (__FILE__, __LINE__, _("could not update architecture"));
7213 }
7214
7215 /* Show the current setting of the exact watchpoints flag. */
7216
7217 static void
7218 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7219 struct cmd_list_element *c,
7220 const char *value)
7221 {
7222 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7223 }
7224
7225 /* Read a PPC instruction from memory. */
7226
7227 static unsigned int
7228 read_insn (struct frame_info *frame, CORE_ADDR pc)
7229 {
7230 struct gdbarch *gdbarch = get_frame_arch (frame);
7231 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7232
7233 return read_memory_unsigned_integer (pc, 4, byte_order);
7234 }
7235
7236 /* Return non-zero if the instructions at PC match the series
7237 described in PATTERN, or zero otherwise. PATTERN is an array of
7238 'struct ppc_insn_pattern' objects, terminated by an entry whose
7239 mask is zero.
7240
7241 When the match is successful, fill INSNS[i] with what PATTERN[i]
7242 matched. If PATTERN[i] is optional, and the instruction wasn't
7243 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7244 INSNS should have as many elements as PATTERN, minus the terminator.
7245 Note that, if PATTERN contains optional instructions which aren't
7246 present in memory, then INSNS will have holes, so INSNS[i] isn't
7247 necessarily the i'th instruction in memory. */
7248
7249 int
7250 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7251 const struct ppc_insn_pattern *pattern,
7252 unsigned int *insns)
7253 {
7254 int i;
7255 unsigned int insn;
7256
7257 for (i = 0, insn = 0; pattern[i].mask; i++)
7258 {
7259 if (insn == 0)
7260 insn = read_insn (frame, pc);
7261 insns[i] = 0;
7262 if ((insn & pattern[i].mask) == pattern[i].data)
7263 {
7264 insns[i] = insn;
7265 pc += 4;
7266 insn = 0;
7267 }
7268 else if (!pattern[i].optional)
7269 return 0;
7270 }
7271
7272 return 1;
7273 }
7274
7275 /* Return the 'd' field of the d-form instruction INSN, properly
7276 sign-extended. */
7277
7278 CORE_ADDR
7279 ppc_insn_d_field (unsigned int insn)
7280 {
7281 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7282 }
7283
7284 /* Return the 'ds' field of the ds-form instruction INSN, with the two
7285 zero bits concatenated at the right, and properly
7286 sign-extended. */
7287
7288 CORE_ADDR
7289 ppc_insn_ds_field (unsigned int insn)
7290 {
7291 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7292 }
7293
7294 /* Initialization code. */
7295
7296 void _initialize_rs6000_tdep ();
7297 void
7298 _initialize_rs6000_tdep ()
7299 {
7300 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7301 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7302
7303 /* Initialize the standard target descriptions. */
7304 initialize_tdesc_powerpc_32 ();
7305 initialize_tdesc_powerpc_altivec32 ();
7306 initialize_tdesc_powerpc_vsx32 ();
7307 initialize_tdesc_powerpc_403 ();
7308 initialize_tdesc_powerpc_403gc ();
7309 initialize_tdesc_powerpc_405 ();
7310 initialize_tdesc_powerpc_505 ();
7311 initialize_tdesc_powerpc_601 ();
7312 initialize_tdesc_powerpc_602 ();
7313 initialize_tdesc_powerpc_603 ();
7314 initialize_tdesc_powerpc_604 ();
7315 initialize_tdesc_powerpc_64 ();
7316 initialize_tdesc_powerpc_altivec64 ();
7317 initialize_tdesc_powerpc_vsx64 ();
7318 initialize_tdesc_powerpc_7400 ();
7319 initialize_tdesc_powerpc_750 ();
7320 initialize_tdesc_powerpc_860 ();
7321 initialize_tdesc_powerpc_e500 ();
7322 initialize_tdesc_rs6000 ();
7323
7324 /* Add root prefix command for all "set powerpc"/"show powerpc"
7325 commands. */
7326 add_basic_prefix_cmd ("powerpc", no_class,
7327 _("Various PowerPC-specific commands."),
7328 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
7329
7330 add_show_prefix_cmd ("powerpc", no_class,
7331 _("Various PowerPC-specific commands."),
7332 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7333
7334 /* Add a command to allow the user to force the ABI. */
7335 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7336 &powerpc_soft_float_global,
7337 _("Set whether to use a soft-float ABI."),
7338 _("Show whether to use a soft-float ABI."),
7339 NULL,
7340 powerpc_set_soft_float, NULL,
7341 &setpowerpccmdlist, &showpowerpccmdlist);
7342
7343 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7344 &powerpc_vector_abi_string,
7345 _("Set the vector ABI."),
7346 _("Show the vector ABI."),
7347 NULL, powerpc_set_vector_abi, NULL,
7348 &setpowerpccmdlist, &showpowerpccmdlist);
7349
7350 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7351 &target_exact_watchpoints,
7352 _("\
7353 Set whether to use just one debug register for watchpoints on scalars."),
7354 _("\
7355 Show whether to use just one debug register for watchpoints on scalars."),
7356 _("\
7357 If true, GDB will use only one debug register when watching a variable of\n\
7358 scalar type, thus assuming that the variable is accessed through the address\n\
7359 of its first byte."),
7360 NULL, show_powerpc_exact_watchpoints,
7361 &setpowerpccmdlist, &showpowerpccmdlist);
7362 }
This page took 0.178101 seconds and 5 git commands to generate.