* valops.c (value_arg_coerce): Now takes param_type argument.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27
28 #include "xcoffsolib.h"
29
30 #include <a.out.h>
31
32 extern struct obstack frame_cache_obstack;
33
34 extern int errno;
35
36 /* Nonzero if we just simulated a single step break. */
37 int one_stepped;
38
39 /* Breakpoint shadows for the single step instructions will be kept here. */
40
41 static struct sstep_breaks {
42 /* Address, or 0 if this is not in use. */
43 CORE_ADDR address;
44 /* Shadow contents. */
45 char data[4];
46 } stepBreaks[2];
47
48 /* Static function prototypes */
49
50 static CORE_ADDR
51 find_toc_address PARAMS ((CORE_ADDR pc));
52
53 static CORE_ADDR
54 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
55
56 static void
57 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
58 struct aix_framedata *fdatap));
59
60 /*
61 * Calculate the destination of a branch/jump. Return -1 if not a branch.
62 */
63 static CORE_ADDR
64 branch_dest (opcode, instr, pc, safety)
65 int opcode;
66 int instr;
67 CORE_ADDR pc;
68 CORE_ADDR safety;
69 {
70 register long offset;
71 CORE_ADDR dest;
72 int immediate;
73 int absolute;
74 int ext_op;
75
76 absolute = (int) ((instr >> 1) & 1);
77
78 switch (opcode) {
79 case 18 :
80 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
81
82 case 16 :
83 if (opcode != 18) /* br conditional */
84 immediate = ((instr & ~3) << 16) >> 16;
85 if (absolute)
86 dest = immediate;
87 else
88 dest = pc + immediate;
89 break;
90
91 case 19 :
92 ext_op = (instr>>1) & 0x3ff;
93
94 if (ext_op == 16) /* br conditional register */
95 dest = read_register (LR_REGNUM) & ~3;
96
97 else if (ext_op == 528) /* br cond to count reg */
98 {
99 dest = read_register (CTR_REGNUM) & ~3;
100
101 /* If we are about to execute a system call, dest is something
102 like 0x22fc or 0x3b00. Upon completion the system call
103 will return to the address in the link register. */
104 if (dest < TEXT_SEGMENT_BASE)
105 dest = read_register (LR_REGNUM) & ~3;
106 }
107 else return -1;
108 break;
109
110 default: return -1;
111 }
112 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
113 }
114
115
116
117 /* AIX does not support PT_STEP. Simulate it. */
118
119 void
120 single_step (signal)
121 int signal;
122 {
123 #define INSNLEN(OPCODE) 4
124
125 static char breakp[] = BREAKPOINT;
126 int ii, insn;
127 CORE_ADDR loc;
128 CORE_ADDR breaks[2];
129 int opcode;
130
131 if (!one_stepped) {
132 loc = read_pc ();
133
134 read_memory (loc, (char *) &insn, 4);
135
136 breaks[0] = loc + INSNLEN(insn);
137 opcode = insn >> 26;
138 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
139
140 /* Don't put two breakpoints on the same address. */
141 if (breaks[1] == breaks[0])
142 breaks[1] = -1;
143
144 stepBreaks[1].address = 0;
145
146 for (ii=0; ii < 2; ++ii) {
147
148 /* ignore invalid breakpoint. */
149 if ( breaks[ii] == -1)
150 continue;
151
152 read_memory (breaks[ii], stepBreaks[ii].data, 4);
153
154 write_memory (breaks[ii], breakp, 4);
155 stepBreaks[ii].address = breaks[ii];
156 }
157
158 one_stepped = 1;
159 } else {
160
161 /* remove step breakpoints. */
162 for (ii=0; ii < 2; ++ii)
163 if (stepBreaks[ii].address != 0)
164 write_memory
165 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
166
167 one_stepped = 0;
168 }
169 errno = 0; /* FIXME, don't ignore errors! */
170 /* What errors? {read,write}_memory call error(). */
171 }
172
173
174 /* return pc value after skipping a function prologue. */
175
176 skip_prologue (pc)
177 CORE_ADDR pc;
178 {
179 char buf[4];
180 unsigned int tmp;
181 unsigned long op;
182
183 if (target_read_memory (pc, buf, 4))
184 return pc; /* Can't access it -- assume no prologue. */
185 op = extract_unsigned_integer (buf, 4);
186
187 /* Assume that subsequent fetches can fail with low probability. */
188
189 if (op == 0x7c0802a6) { /* mflr r0 */
190 pc += 4;
191 op = read_memory_integer (pc, 4);
192 }
193
194 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
195 pc += 4;
196 op = read_memory_integer (pc, 4);
197 }
198
199 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
200 pc += 4;
201 op = read_memory_integer (pc, 4);
202
203 /* At this point, make sure this is not a trampoline function
204 (a function that simply calls another functions, and nothing else).
205 If the next is not a nop, this branch was part of the function
206 prologue. */
207
208 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
209 op == 0x0)
210 return pc - 4; /* don't skip over this branch */
211 }
212
213 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
214 pc += 4; /* store floating register double */
215 op = read_memory_integer (pc, 4);
216 }
217
218 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
219 pc += 4;
220 op = read_memory_integer (pc, 4);
221 }
222
223 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
224 (tmp == 0x9421) || /* stu r1, NUM(r1) */
225 (tmp == 0x93e1)) /* st r31,NUM(r1) */
226 {
227 pc += 4;
228 op = read_memory_integer (pc, 4);
229 }
230
231 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
232 pc += 4; /* l r30, ... */
233 op = read_memory_integer (pc, 4);
234 }
235
236 /* store parameters into stack */
237 while(
238 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
239 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
240 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
241 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
242 {
243 pc += 4; /* store fpr double */
244 op = read_memory_integer (pc, 4);
245 }
246
247 if (op == 0x603f0000 /* oril r31, r1, 0x0 */
248 || op == 0x7c3f0b78) { /* mr r31, r1 */
249 pc += 4; /* this happens if r31 is used as */
250 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
251
252 tmp = 0;
253 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
254 pc += 4; /* st r4, NUM(r31), ... */
255 op = read_memory_integer (pc, 4);
256 tmp += 0x20;
257 }
258 }
259 #if 0
260 /* I have problems with skipping over __main() that I need to address
261 * sometime. Previously, I used to use misc_function_vector which
262 * didn't work as well as I wanted to be. -MGO */
263
264 /* If the first thing after skipping a prolog is a branch to a function,
265 this might be a call to an initializer in main(), introduced by gcc2.
266 We'd like to skip over it as well. Fortunately, xlc does some extra
267 work before calling a function right after a prologue, thus we can
268 single out such gcc2 behaviour. */
269
270
271 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
272 op = read_memory_integer (pc+4, 4);
273
274 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
275
276 /* check and see if we are in main. If so, skip over this initializer
277 function as well. */
278
279 tmp = find_pc_misc_function (pc);
280 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
281 return pc + 8;
282 }
283 }
284 #endif /* 0 */
285
286 return pc;
287 }
288
289
290 /*************************************************************************
291 Support for creating pushind a dummy frame into the stack, and popping
292 frames, etc.
293 *************************************************************************/
294
295 /* The total size of dummy frame is 436, which is;
296
297 32 gpr's - 128 bytes
298 32 fpr's - 256 "
299 7 the rest - 28 "
300 and 24 extra bytes for the callee's link area. The last 24 bytes
301 for the link area might not be necessary, since it will be taken
302 care of by push_arguments(). */
303
304 #define DUMMY_FRAME_SIZE 436
305
306 #define DUMMY_FRAME_ADDR_SIZE 10
307
308 /* Make sure you initialize these in somewhere, in case gdb gives up what it
309 was debugging and starts debugging something else. FIXMEibm */
310
311 static int dummy_frame_count = 0;
312 static int dummy_frame_size = 0;
313 static CORE_ADDR *dummy_frame_addr = 0;
314
315 extern int stop_stack_dummy;
316
317 /* push a dummy frame into stack, save all register. Currently we are saving
318 only gpr's and fpr's, which is not good enough! FIXMEmgo */
319
320 void
321 push_dummy_frame ()
322 {
323 /* stack pointer. */
324 CORE_ADDR sp;
325
326 /* link register. */
327 CORE_ADDR pc;
328 /* Same thing, target byte order. */
329 char pc_targ[4];
330
331 int ii;
332
333 target_fetch_registers (-1);
334
335 if (dummy_frame_count >= dummy_frame_size) {
336 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
337 if (dummy_frame_addr)
338 dummy_frame_addr = (CORE_ADDR*) xrealloc
339 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
340 else
341 dummy_frame_addr = (CORE_ADDR*)
342 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
343 }
344
345 sp = read_register(SP_REGNUM);
346 pc = read_register(PC_REGNUM);
347 memcpy (pc_targ, (char *) &pc, 4);
348
349 dummy_frame_addr [dummy_frame_count++] = sp;
350
351 /* Be careful! If the stack pointer is not decremented first, then kernel
352 thinks he is free to use the space underneath it. And kernel actually
353 uses that area for IPC purposes when executing ptrace(2) calls. So
354 before writing register values into the new frame, decrement and update
355 %sp first in order to secure your frame. */
356
357 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
358
359 /* gdb relies on the state of current_frame. We'd better update it,
360 otherwise things like do_registers_info() wouldn't work properly! */
361
362 flush_cached_frames ();
363
364 /* save program counter in link register's space. */
365 write_memory (sp+8, pc_targ, 4);
366
367 /* save all floating point and general purpose registers here. */
368
369 /* fpr's, f0..f31 */
370 for (ii = 0; ii < 32; ++ii)
371 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
372
373 /* gpr's r0..r31 */
374 for (ii=1; ii <=32; ++ii)
375 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
376
377 /* so far, 32*2 + 32 words = 384 bytes have been written.
378 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
379
380 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
381 write_memory (sp-384-(ii*4),
382 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
383 }
384
385 /* Save sp or so called back chain right here. */
386 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
387 sp -= DUMMY_FRAME_SIZE;
388
389 /* And finally, this is the back chain. */
390 write_memory (sp+8, pc_targ, 4);
391 }
392
393
394 /* Pop a dummy frame.
395
396 In rs6000 when we push a dummy frame, we save all of the registers. This
397 is usually done before user calls a function explicitly.
398
399 After a dummy frame is pushed, some instructions are copied into stack,
400 and stack pointer is decremented even more. Since we don't have a frame
401 pointer to get back to the parent frame of the dummy, we start having
402 trouble poping it. Therefore, we keep a dummy frame stack, keeping
403 addresses of dummy frames as such. When poping happens and when we
404 detect that was a dummy frame, we pop it back to its parent by using
405 dummy frame stack (`dummy_frame_addr' array).
406
407 FIXME: This whole concept is broken. You should be able to detect
408 a dummy stack frame *on the user's stack itself*. When you do,
409 then you know the format of that stack frame -- including its
410 saved SP register! There should *not* be a separate stack in the
411 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
412 */
413
414 pop_dummy_frame ()
415 {
416 CORE_ADDR sp, pc;
417 int ii;
418 sp = dummy_frame_addr [--dummy_frame_count];
419
420 /* restore all fpr's. */
421 for (ii = 1; ii <= 32; ++ii)
422 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
423
424 /* restore all gpr's */
425 for (ii=1; ii <= 32; ++ii) {
426 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
427 }
428
429 /* restore the rest of the registers. */
430 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
431 read_memory (sp-384-(ii*4),
432 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
433
434 read_memory (sp-(DUMMY_FRAME_SIZE-8),
435 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
436
437 /* when a dummy frame was being pushed, we had to decrement %sp first, in
438 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
439 one we should restore. Change it with the one we need. */
440
441 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
442
443 /* Now we can restore all registers. */
444
445 target_store_registers (-1);
446 pc = read_pc ();
447 flush_cached_frames ();
448 }
449
450
451 /* pop the innermost frame, go back to the caller. */
452
453 void
454 pop_frame ()
455 {
456 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
457 struct aix_framedata fdata;
458 struct frame_info *frame = get_current_frame ();
459 int addr, ii;
460
461 pc = read_pc ();
462 sp = FRAME_FP (frame);
463
464 if (stop_stack_dummy && dummy_frame_count) {
465 pop_dummy_frame ();
466 return;
467 }
468
469 /* Make sure that all registers are valid. */
470 read_register_bytes (0, NULL, REGISTER_BYTES);
471
472 /* figure out previous %pc value. If the function is frameless, it is
473 still in the link register, otherwise walk the frames and retrieve the
474 saved %pc value in the previous frame. */
475
476 addr = get_pc_function_start (frame->pc) + FUNCTION_START_OFFSET;
477 function_frame_info (addr, &fdata);
478
479 if (fdata.frameless)
480 prev_sp = sp;
481 else
482 prev_sp = read_memory_integer (sp, 4);
483 if (fdata.nosavedpc)
484 lr = read_register (LR_REGNUM);
485 else
486 lr = read_memory_integer (prev_sp+8, 4);
487
488 /* reset %pc value. */
489 write_register (PC_REGNUM, lr);
490
491 /* reset register values if any was saved earlier. */
492 addr = prev_sp - fdata.offset;
493
494 if (fdata.saved_gpr != -1)
495 for (ii = fdata.saved_gpr; ii <= 31; ++ii) {
496 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
497 addr += 4;
498 }
499
500 if (fdata.saved_fpr != -1)
501 for (ii = fdata.saved_fpr; ii <= 31; ++ii) {
502 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
503 addr += 8;
504 }
505
506 write_register (SP_REGNUM, prev_sp);
507 target_store_registers (-1);
508 flush_cached_frames ();
509 }
510
511 /* fixup the call sequence of a dummy function, with the real function address.
512 its argumets will be passed by gdb. */
513
514 void
515 fix_call_dummy(dummyname, pc, fun, nargs, type)
516 char *dummyname;
517 CORE_ADDR pc;
518 CORE_ADDR fun;
519 int nargs; /* not used */
520 int type; /* not used */
521 {
522 #define TOC_ADDR_OFFSET 20
523 #define TARGET_ADDR_OFFSET 28
524
525 int ii;
526 CORE_ADDR target_addr;
527 CORE_ADDR tocvalue;
528
529 target_addr = fun;
530 tocvalue = find_toc_address (target_addr);
531
532 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
533 ii = (ii & 0xffff0000) | (tocvalue >> 16);
534 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
535
536 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
537 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
538 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
539
540 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
541 ii = (ii & 0xffff0000) | (target_addr >> 16);
542 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
543
544 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
545 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
546 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
547 }
548
549
550 /* return information about a function frame.
551 in struct aix_frameinfo fdata:
552 - frameless is TRUE, if function does not have a frame.
553 - nosavedpc is TRUE, if function does not save %pc value in its frame.
554 - offset is the number of bytes used in the frame to save registers.
555 - saved_gpr is the number of the first saved gpr.
556 - saved_fpr is the number of the first saved fpr.
557 - alloca_reg is the number of the register used for alloca() handling.
558 Otherwise -1.
559 */
560 void
561 function_frame_info (pc, fdata)
562 CORE_ADDR pc;
563 struct aix_framedata *fdata;
564 {
565 unsigned int tmp;
566 register unsigned int op;
567 char buf[4];
568
569 fdata->offset = 0;
570 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
571 fdata->frameless = 1;
572
573 /* Do not error out if we can't access the instructions. */
574 if (target_read_memory (pc, buf, 4))
575 return;
576 op = extract_unsigned_integer (buf, 4);
577 if (op == 0x7c0802a6) { /* mflr r0 */
578 pc += 4;
579 op = read_memory_integer (pc, 4);
580 fdata->nosavedpc = 0;
581 fdata->frameless = 0;
582 }
583 else /* else, pc is not saved */
584 fdata->nosavedpc = 1;
585
586 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
587 pc += 4;
588 op = read_memory_integer (pc, 4);
589 fdata->frameless = 0;
590 }
591
592 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
593 pc += 4;
594 op = read_memory_integer (pc, 4);
595 /* At this point, make sure this is not a trampoline function
596 (a function that simply calls another functions, and nothing else).
597 If the next is not a nop, this branch was part of the function
598 prologue. */
599
600 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
601 op == 0x0)
602 return; /* prologue is over */
603 fdata->frameless = 0;
604 }
605
606 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
607 pc += 4; /* store floating register double */
608 op = read_memory_integer (pc, 4);
609 fdata->frameless = 0;
610 }
611
612 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
613 int tmp2;
614 fdata->saved_gpr = (op >> 21) & 0x1f;
615 tmp2 = op & 0xffff;
616 if (tmp2 > 0x7fff)
617 tmp2 = (~0 &~ 0xffff) | tmp2;
618
619 if (tmp2 < 0) {
620 tmp2 = tmp2 * -1;
621 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
622 if ( fdata->saved_fpr > 0)
623 fdata->saved_fpr = 32 - fdata->saved_fpr;
624 else
625 fdata->saved_fpr = -1;
626 }
627 fdata->offset = tmp2;
628 pc += 4;
629 op = read_memory_integer (pc, 4);
630 fdata->frameless = 0;
631 }
632
633 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
634 (tmp == 0x9421) || /* stu r1, NUM(r1) */
635 (tmp == 0x93e1)) /* st r31, NUM(r1) */
636 {
637 int tmp2;
638
639 /* gcc takes a short cut and uses this instruction to save r31 only. */
640
641 if (tmp == 0x93e1) {
642 if (fdata->offset)
643 /* fatal ("Unrecognized prolog."); */
644 printf_unfiltered ("Unrecognized prolog!\n");
645
646 fdata->saved_gpr = 31;
647 tmp2 = op & 0xffff;
648 if (tmp2 > 0x7fff) {
649 tmp2 = - ((~0 &~ 0xffff) | tmp2);
650 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
651 if ( fdata->saved_fpr > 0)
652 fdata->saved_fpr = 32 - fdata->saved_fpr;
653 else
654 fdata->saved_fpr = -1;
655 }
656 fdata->offset = tmp2;
657 }
658 pc += 4;
659 op = read_memory_integer (pc, 4);
660 fdata->frameless = 0;
661 }
662
663 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
664 pc += 4; /* l r30, ... */
665 op = read_memory_integer (pc, 4);
666 fdata->frameless = 0;
667 }
668
669 /* store parameters into stack */
670 while(
671 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
672 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
673 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
674 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
675 {
676 pc += 4; /* store fpr double */
677 op = read_memory_integer (pc, 4);
678 fdata->frameless = 0;
679 }
680
681 if (op == 0x603f0000 /* oril r31, r1, 0x0 */
682 || op == 0x7c3f0b78) /* mr r31, r1 */
683 {
684 fdata->alloca_reg = 31;
685 fdata->frameless = 0;
686 }
687 }
688
689
690 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
691 eight words of the argument list (that might be less than eight parameters if
692 some parameters occupy more than one word) are passed in r3..r11 registers.
693 float and double parameters are passed in fpr's, in addition to that. Rest of
694 the parameters if any are passed in user stack. There might be cases in which
695 half of the parameter is copied into registers, the other half is pushed into
696 stack.
697
698 If the function is returning a structure, then the return address is passed
699 in r3, then the first 7 words of the parametes can be passed in registers,
700 starting from r4. */
701
702 CORE_ADDR
703 push_arguments (nargs, args, sp, struct_return, struct_addr)
704 int nargs;
705 value_ptr *args;
706 CORE_ADDR sp;
707 int struct_return;
708 CORE_ADDR struct_addr;
709 {
710 int ii, len;
711 int argno; /* current argument number */
712 int argbytes; /* current argument byte */
713 char tmp_buffer [50];
714 value_ptr arg;
715 int f_argno = 0; /* current floating point argno */
716
717 CORE_ADDR saved_sp, pc;
718
719 if ( dummy_frame_count <= 0)
720 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
721
722 /* The first eight words of ther arguments are passed in registers. Copy
723 them appropriately.
724
725 If the function is returning a `struct', then the first word (which
726 will be passed in r3) is used for struct return address. In that
727 case we should advance one word and start from r4 register to copy
728 parameters. */
729
730 ii = struct_return ? 1 : 0;
731
732 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
733
734 arg = args[argno];
735 len = TYPE_LENGTH (VALUE_TYPE (arg));
736
737 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
738
739 /* floating point arguments are passed in fpr's, as well as gpr's.
740 There are 13 fpr's reserved for passing parameters. At this point
741 there is no way we would run out of them. */
742
743 if (len > 8)
744 printf_unfiltered (
745 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
746
747 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
748 len);
749 ++f_argno;
750 }
751
752 if (len > 4) {
753
754 /* Argument takes more than one register. */
755 while (argbytes < len) {
756
757 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
758 memcpy (&registers[REGISTER_BYTE(ii+3)],
759 ((char*)VALUE_CONTENTS (arg))+argbytes,
760 (len - argbytes) > 4 ? 4 : len - argbytes);
761 ++ii, argbytes += 4;
762
763 if (ii >= 8)
764 goto ran_out_of_registers_for_arguments;
765 }
766 argbytes = 0;
767 --ii;
768 }
769 else { /* Argument can fit in one register. No problem. */
770 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
771 memcpy (&registers[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
772 }
773 ++argno;
774 }
775
776 ran_out_of_registers_for_arguments:
777
778 /* location for 8 parameters are always reserved. */
779 sp -= 4 * 8;
780
781 /* another six words for back chain, TOC register, link register, etc. */
782 sp -= 24;
783
784 /* if there are more arguments, allocate space for them in
785 the stack, then push them starting from the ninth one. */
786
787 if ((argno < nargs) || argbytes) {
788 int space = 0, jj;
789 value_ptr val;
790
791 if (argbytes) {
792 space += ((len - argbytes + 3) & -4);
793 jj = argno + 1;
794 }
795 else
796 jj = argno;
797
798 for (; jj < nargs; ++jj) {
799 val = args[jj];
800 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
801 }
802
803 /* add location required for the rest of the parameters */
804 space = (space + 7) & -8;
805 sp -= space;
806
807 /* This is another instance we need to be concerned about securing our
808 stack space. If we write anything underneath %sp (r1), we might conflict
809 with the kernel who thinks he is free to use this area. So, update %sp
810 first before doing anything else. */
811
812 write_register (SP_REGNUM, sp);
813
814 /* if the last argument copied into the registers didn't fit there
815 completely, push the rest of it into stack. */
816
817 if (argbytes) {
818 write_memory (
819 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
820 ++argno;
821 ii += ((len - argbytes + 3) & -4) / 4;
822 }
823
824 /* push the rest of the arguments into stack. */
825 for (; argno < nargs; ++argno) {
826
827 arg = args[argno];
828 len = TYPE_LENGTH (VALUE_TYPE (arg));
829
830
831 /* float types should be passed in fpr's, as well as in the stack. */
832 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
833
834 if (len > 8)
835 printf_unfiltered (
836 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
837
838 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
839 len);
840 ++f_argno;
841 }
842
843 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
844 ii += ((len + 3) & -4) / 4;
845 }
846 }
847 else
848 /* Secure stack areas first, before doing anything else. */
849 write_register (SP_REGNUM, sp);
850
851 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
852 read_memory (saved_sp, tmp_buffer, 24);
853 write_memory (sp, tmp_buffer, 24);
854
855 write_memory (sp, &saved_sp, 4); /* set back chain properly */
856
857 target_store_registers (-1);
858 return sp;
859 }
860
861 /* a given return value in `regbuf' with a type `valtype', extract and copy its
862 value into `valbuf' */
863
864 void
865 extract_return_value (valtype, regbuf, valbuf)
866 struct type *valtype;
867 char regbuf[REGISTER_BYTES];
868 char *valbuf;
869 {
870
871 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
872
873 double dd; float ff;
874 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
875 We need to truncate the return value into float size (4 byte) if
876 necessary. */
877
878 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
879 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
880 TYPE_LENGTH (valtype));
881 else { /* float */
882 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
883 ff = (float)dd;
884 memcpy (valbuf, &ff, sizeof(float));
885 }
886 }
887 else
888 /* return value is copied starting from r3. */
889 memcpy (valbuf, &regbuf[REGISTER_BYTE (3)], TYPE_LENGTH (valtype));
890 }
891
892
893 /* keep structure return address in this variable.
894 FIXME: This is a horrid kludge which should not be allowed to continue
895 living. This only allows a single nested call to a structure-returning
896 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
897
898 CORE_ADDR rs6000_struct_return_address;
899
900
901 /* Indirect function calls use a piece of trampoline code to do context
902 switching, i.e. to set the new TOC table. Skip such code if we are on
903 its first instruction (as when we have single-stepped to here).
904 Also skip shared library trampoline code (which is different from
905 indirect function call trampolines).
906 Result is desired PC to step until, or NULL if we are not in
907 trampoline code. */
908
909 CORE_ADDR
910 skip_trampoline_code (pc)
911 CORE_ADDR pc;
912 {
913 register unsigned int ii, op;
914 CORE_ADDR solib_target_pc;
915
916 static unsigned trampoline_code[] = {
917 0x800b0000, /* l r0,0x0(r11) */
918 0x90410014, /* st r2,0x14(r1) */
919 0x7c0903a6, /* mtctr r0 */
920 0x804b0004, /* l r2,0x4(r11) */
921 0x816b0008, /* l r11,0x8(r11) */
922 0x4e800420, /* bctr */
923 0x4e800020, /* br */
924 0
925 };
926
927 /* If pc is in a shared library trampoline, return its target. */
928 solib_target_pc = find_solib_trampoline_target (pc);
929 if (solib_target_pc)
930 return solib_target_pc;
931
932 for (ii=0; trampoline_code[ii]; ++ii) {
933 op = read_memory_integer (pc + (ii*4), 4);
934 if (op != trampoline_code [ii])
935 return 0;
936 }
937 ii = read_register (11); /* r11 holds destination addr */
938 pc = read_memory_integer (ii, 4); /* (r11) value */
939 return pc;
940 }
941
942
943 /* Determines whether the function FI has a frame on the stack or not.
944 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
945 second argument of 0, and from the FRAME_SAVED_PC macro with a
946 second argument of 1. */
947
948 int
949 frameless_function_invocation (fi, pcsaved)
950 struct frame_info *fi;
951 int pcsaved;
952 {
953 CORE_ADDR func_start;
954 struct aix_framedata fdata;
955
956 if (fi->next != NULL)
957 /* Don't even think about framelessness except on the innermost frame. */
958 /* FIXME: Can also be frameless if fi->next->signal_handler_caller (if
959 a signal happens while executing in a frameless function). */
960 return 0;
961
962 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
963
964 /* If we failed to find the start of the function, it is a mistake
965 to inspect the instructions. */
966
967 if (!func_start)
968 return 0;
969
970 function_frame_info (func_start, &fdata);
971 return pcsaved ? fdata.nosavedpc : fdata.frameless;
972 }
973
974
975 /* If saved registers of frame FI are not known yet, read and cache them.
976 &FDATAP contains aix_framedata; TDATAP can be NULL,
977 in which case the framedata are read. */
978
979 static void
980 frame_get_cache_fsr (fi, fdatap)
981 struct frame_info *fi;
982 struct aix_framedata *fdatap;
983 {
984 int ii;
985 CORE_ADDR frame_addr;
986 struct aix_framedata work_fdata;
987
988 if (fi->cache_fsr)
989 return;
990
991 if (fdatap == NULL) {
992 fdatap = &work_fdata;
993 function_frame_info (get_pc_function_start (fi->pc), fdatap);
994 }
995
996 fi->cache_fsr = (struct frame_saved_regs *)
997 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
998 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
999
1000 if (fi->prev && fi->prev->frame)
1001 frame_addr = fi->prev->frame;
1002 else
1003 frame_addr = read_memory_integer (fi->frame, 4);
1004
1005 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1006 All fpr's from saved_fpr to fp31 are saved right underneath caller
1007 stack pointer, starting from fp31 first. */
1008
1009 if (fdatap->saved_fpr >= 0) {
1010 for (ii=31; ii >= fdatap->saved_fpr; --ii)
1011 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
1012 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1013 }
1014
1015 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1016 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1017 starting from r31 first. */
1018
1019 if (fdatap->saved_gpr >= 0)
1020 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1021 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1022 }
1023
1024 /* Return the address of a frame. This is the inital %sp value when the frame
1025 was first allocated. For functions calling alloca(), it might be saved in
1026 an alloca register. */
1027
1028 CORE_ADDR
1029 frame_initial_stack_address (fi)
1030 struct frame_info *fi;
1031 {
1032 CORE_ADDR tmpaddr;
1033 struct aix_framedata fdata;
1034 struct frame_info *callee_fi;
1035
1036 /* if the initial stack pointer (frame address) of this frame is known,
1037 just return it. */
1038
1039 if (fi->initial_sp)
1040 return fi->initial_sp;
1041
1042 /* find out if this function is using an alloca register.. */
1043
1044 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1045
1046 /* if saved registers of this frame are not known yet, read and cache them. */
1047
1048 if (!fi->cache_fsr)
1049 frame_get_cache_fsr (fi, &fdata);
1050
1051 /* If no alloca register used, then fi->frame is the value of the %sp for
1052 this frame, and it is good enough. */
1053
1054 if (fdata.alloca_reg < 0) {
1055 fi->initial_sp = fi->frame;
1056 return fi->initial_sp;
1057 }
1058
1059 /* This function has an alloca register. If this is the top-most frame
1060 (with the lowest address), the value in alloca register is good. */
1061
1062 if (!fi->next)
1063 return fi->initial_sp = read_register (fdata.alloca_reg);
1064
1065 /* Otherwise, this is a caller frame. Callee has usually already saved
1066 registers, but there are exceptions (such as when the callee
1067 has no parameters). Find the address in which caller's alloca
1068 register is saved. */
1069
1070 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1071
1072 if (!callee_fi->cache_fsr)
1073 frame_get_cache_fsr (callee_fi, NULL);
1074
1075 /* this is the address in which alloca register is saved. */
1076
1077 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1078 if (tmpaddr) {
1079 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1080 return fi->initial_sp;
1081 }
1082
1083 /* Go look into deeper levels of the frame chain to see if any one of
1084 the callees has saved alloca register. */
1085 }
1086
1087 /* If alloca register was not saved, by the callee (or any of its callees)
1088 then the value in the register is still good. */
1089
1090 return fi->initial_sp = read_register (fdata.alloca_reg);
1091 }
1092
1093 CORE_ADDR
1094 rs6000_frame_chain (thisframe)
1095 struct frame_info *thisframe;
1096 {
1097 CORE_ADDR fp;
1098 if (inside_entry_file ((thisframe)->pc))
1099 return 0;
1100 if (thisframe->signal_handler_caller)
1101 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1102 else
1103 fp = read_memory_integer ((thisframe)->frame, 4);
1104
1105 return fp;
1106 }
1107 \f
1108 /* Keep an array of load segment information and their TOC table addresses.
1109 This info will be useful when calling a shared library function by hand. */
1110
1111 struct loadinfo {
1112 CORE_ADDR textorg, dataorg;
1113 unsigned long toc_offset;
1114 };
1115
1116 #define LOADINFOLEN 10
1117
1118 static struct loadinfo *loadinfo = NULL;
1119 static int loadinfolen = 0;
1120 static int loadinfotocindex = 0;
1121 static int loadinfotextindex = 0;
1122
1123
1124 void
1125 xcoff_init_loadinfo ()
1126 {
1127 loadinfotocindex = 0;
1128 loadinfotextindex = 0;
1129
1130 if (loadinfolen == 0) {
1131 loadinfo = (struct loadinfo *)
1132 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1133 loadinfolen = LOADINFOLEN;
1134 }
1135 }
1136
1137
1138 /* FIXME -- this is never called! */
1139 void
1140 free_loadinfo ()
1141 {
1142 if (loadinfo)
1143 free (loadinfo);
1144 loadinfo = NULL;
1145 loadinfolen = 0;
1146 loadinfotocindex = 0;
1147 loadinfotextindex = 0;
1148 }
1149
1150 /* this is called from xcoffread.c */
1151
1152 void
1153 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1154 {
1155 while (loadinfotocindex >= loadinfolen) {
1156 loadinfolen += LOADINFOLEN;
1157 loadinfo = (struct loadinfo *)
1158 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1159 }
1160 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1161 }
1162
1163 void
1164 add_text_to_loadinfo (textaddr, dataaddr)
1165 CORE_ADDR textaddr;
1166 CORE_ADDR dataaddr;
1167 {
1168 while (loadinfotextindex >= loadinfolen) {
1169 loadinfolen += LOADINFOLEN;
1170 loadinfo = (struct loadinfo *)
1171 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1172 }
1173 loadinfo [loadinfotextindex].textorg = textaddr;
1174 loadinfo [loadinfotextindex].dataorg = dataaddr;
1175 ++loadinfotextindex;
1176 }
1177
1178
1179 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1180 of a member of this array are correlated with the "toc_offset"
1181 element of the same member. But they are sequentially assigned in wildly
1182 different places, and probably there is no correlation. FIXME! */
1183
1184 static CORE_ADDR
1185 find_toc_address (pc)
1186 CORE_ADDR pc;
1187 {
1188 int ii, toc_entry, tocbase = 0;
1189
1190 for (ii=0; ii < loadinfotextindex; ++ii)
1191 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1192 toc_entry = ii;
1193 tocbase = loadinfo[ii].textorg;
1194 }
1195
1196 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1197 }
1198
1199 void
1200 _initialize_rs6000_tdep ()
1201 {
1202 /* FIXME, this should not be decided via ifdef. */
1203 #ifdef GDB_TARGET_POWERPC
1204 tm_print_insn = print_insn_big_powerpc;
1205 #else
1206 tm_print_insn = print_insn_rs6000;
1207 #endif
1208 }
This page took 0.053756 seconds and 5 git commands to generate.