2002-08-21 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41 #include "coff/xcoff.h"
42 #include "libxcoff.h"
43
44 #include "elf-bfd.h"
45
46 #include "solib-svr4.h"
47 #include "ppc-tdep.h"
48
49 /* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56 #define SIG_FRAME_PC_OFFSET 96
57 #define SIG_FRAME_LR_OFFSET 108
58 #define SIG_FRAME_FP_OFFSET 284
59
60 /* To be used by skip_prologue. */
61
62 struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
69 int saved_vr; /* smallest # of saved vr */
70 int alloca_reg; /* alloca register number (frame ptr) */
71 char frameless; /* true if frameless functions. */
72 char nosavedpc; /* true if pc not saved. */
73 int gpr_offset; /* offset of saved gprs from prev sp */
74 int fpr_offset; /* offset of saved fprs from prev sp */
75 int vr_offset; /* offset of saved vrs from prev sp */
76 int lr_offset; /* offset of saved lr */
77 int cr_offset; /* offset of saved cr */
78 int vrsave_offset; /* offset of saved vrsave register */
79 };
80
81 /* Description of a single register. */
82
83 struct reg
84 {
85 char *name; /* name of register */
86 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
87 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
88 unsigned char fpr; /* whether register is floating-point */
89 unsigned char pseudo; /* whether register is pseudo */
90 };
91
92 /* Breakpoint shadows for the single step instructions will be kept here. */
93
94 static struct sstep_breaks
95 {
96 /* Address, or 0 if this is not in use. */
97 CORE_ADDR address;
98 /* Shadow contents. */
99 char data[4];
100 }
101 stepBreaks[2];
102
103 /* Hook for determining the TOC address when calling functions in the
104 inferior under AIX. The initialization code in rs6000-nat.c sets
105 this hook to point to find_toc_address. */
106
107 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
108
109 /* Hook to set the current architecture when starting a child process.
110 rs6000-nat.c sets this. */
111
112 void (*rs6000_set_host_arch_hook) (int) = NULL;
113
114 /* Static function prototypes */
115
116 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
117 CORE_ADDR safety);
118 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
119 struct rs6000_framedata *);
120 static void frame_get_saved_regs (struct frame_info * fi,
121 struct rs6000_framedata * fdatap);
122 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
123
124 /* Read a LEN-byte address from debugged memory address MEMADDR. */
125
126 static CORE_ADDR
127 read_memory_addr (CORE_ADDR memaddr, int len)
128 {
129 return read_memory_unsigned_integer (memaddr, len);
130 }
131
132 static CORE_ADDR
133 rs6000_skip_prologue (CORE_ADDR pc)
134 {
135 struct rs6000_framedata frame;
136 pc = skip_prologue (pc, 0, &frame);
137 return pc;
138 }
139
140
141 /* Fill in fi->saved_regs */
142
143 struct frame_extra_info
144 {
145 /* Functions calling alloca() change the value of the stack
146 pointer. We need to use initial stack pointer (which is saved in
147 r31 by gcc) in such cases. If a compiler emits traceback table,
148 then we should use the alloca register specified in traceback
149 table. FIXME. */
150 CORE_ADDR initial_sp; /* initial stack pointer. */
151 };
152
153 void
154 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
155 {
156 fi->extra_info = (struct frame_extra_info *)
157 frame_obstack_alloc (sizeof (struct frame_extra_info));
158 fi->extra_info->initial_sp = 0;
159 if (fi->next != (CORE_ADDR) 0
160 && fi->pc < TEXT_SEGMENT_BASE)
161 /* We're in get_prev_frame */
162 /* and this is a special signal frame. */
163 /* (fi->pc will be some low address in the kernel, */
164 /* to which the signal handler returns). */
165 fi->signal_handler_caller = 1;
166 }
167
168 /* Put here the code to store, into a struct frame_saved_regs,
169 the addresses of the saved registers of frame described by FRAME_INFO.
170 This includes special registers such as pc and fp saved in special
171 ways in the stack frame. sp is even more special:
172 the address we return for it IS the sp for the next frame. */
173
174 /* In this implementation for RS/6000, we do *not* save sp. I am
175 not sure if it will be needed. The following function takes care of gpr's
176 and fpr's only. */
177
178 void
179 rs6000_frame_init_saved_regs (struct frame_info *fi)
180 {
181 frame_get_saved_regs (fi, NULL);
182 }
183
184 static CORE_ADDR
185 rs6000_frame_args_address (struct frame_info *fi)
186 {
187 if (fi->extra_info->initial_sp != 0)
188 return fi->extra_info->initial_sp;
189 else
190 return frame_initial_stack_address (fi);
191 }
192
193 /* Immediately after a function call, return the saved pc.
194 Can't go through the frames for this because on some machines
195 the new frame is not set up until the new function executes
196 some instructions. */
197
198 static CORE_ADDR
199 rs6000_saved_pc_after_call (struct frame_info *fi)
200 {
201 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
202 }
203
204 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
205
206 static CORE_ADDR
207 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
208 {
209 CORE_ADDR dest;
210 int immediate;
211 int absolute;
212 int ext_op;
213
214 absolute = (int) ((instr >> 1) & 1);
215
216 switch (opcode)
217 {
218 case 18:
219 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
220 if (absolute)
221 dest = immediate;
222 else
223 dest = pc + immediate;
224 break;
225
226 case 16:
227 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
228 if (absolute)
229 dest = immediate;
230 else
231 dest = pc + immediate;
232 break;
233
234 case 19:
235 ext_op = (instr >> 1) & 0x3ff;
236
237 if (ext_op == 16) /* br conditional register */
238 {
239 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
240
241 /* If we are about to return from a signal handler, dest is
242 something like 0x3c90. The current frame is a signal handler
243 caller frame, upon completion of the sigreturn system call
244 execution will return to the saved PC in the frame. */
245 if (dest < TEXT_SEGMENT_BASE)
246 {
247 struct frame_info *fi;
248
249 fi = get_current_frame ();
250 if (fi != NULL)
251 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
252 gdbarch_tdep (current_gdbarch)->wordsize);
253 }
254 }
255
256 else if (ext_op == 528) /* br cond to count reg */
257 {
258 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
259
260 /* If we are about to execute a system call, dest is something
261 like 0x22fc or 0x3b00. Upon completion the system call
262 will return to the address in the link register. */
263 if (dest < TEXT_SEGMENT_BASE)
264 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
265 }
266 else
267 return -1;
268 break;
269
270 default:
271 return -1;
272 }
273 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
274 }
275
276
277 /* Sequence of bytes for breakpoint instruction. */
278
279 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
280 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
281
282 const static unsigned char *
283 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
284 {
285 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
286 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
287 *bp_size = 4;
288 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
289 return big_breakpoint;
290 else
291 return little_breakpoint;
292 }
293
294
295 /* AIX does not support PT_STEP. Simulate it. */
296
297 void
298 rs6000_software_single_step (enum target_signal signal,
299 int insert_breakpoints_p)
300 {
301 CORE_ADDR dummy;
302 int breakp_sz;
303 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
304 int ii, insn;
305 CORE_ADDR loc;
306 CORE_ADDR breaks[2];
307 int opcode;
308
309 if (insert_breakpoints_p)
310 {
311
312 loc = read_pc ();
313
314 insn = read_memory_integer (loc, 4);
315
316 breaks[0] = loc + breakp_sz;
317 opcode = insn >> 26;
318 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
319
320 /* Don't put two breakpoints on the same address. */
321 if (breaks[1] == breaks[0])
322 breaks[1] = -1;
323
324 stepBreaks[1].address = 0;
325
326 for (ii = 0; ii < 2; ++ii)
327 {
328
329 /* ignore invalid breakpoint. */
330 if (breaks[ii] == -1)
331 continue;
332 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
333 stepBreaks[ii].address = breaks[ii];
334 }
335
336 }
337 else
338 {
339
340 /* remove step breakpoints. */
341 for (ii = 0; ii < 2; ++ii)
342 if (stepBreaks[ii].address != 0)
343 target_remove_breakpoint (stepBreaks[ii].address,
344 stepBreaks[ii].data);
345 }
346 errno = 0; /* FIXME, don't ignore errors! */
347 /* What errors? {read,write}_memory call error(). */
348 }
349
350
351 /* return pc value after skipping a function prologue and also return
352 information about a function frame.
353
354 in struct rs6000_framedata fdata:
355 - frameless is TRUE, if function does not have a frame.
356 - nosavedpc is TRUE, if function does not save %pc value in its frame.
357 - offset is the initial size of this stack frame --- the amount by
358 which we decrement the sp to allocate the frame.
359 - saved_gpr is the number of the first saved gpr.
360 - saved_fpr is the number of the first saved fpr.
361 - saved_vr is the number of the first saved vr.
362 - alloca_reg is the number of the register used for alloca() handling.
363 Otherwise -1.
364 - gpr_offset is the offset of the first saved gpr from the previous frame.
365 - fpr_offset is the offset of the first saved fpr from the previous frame.
366 - vr_offset is the offset of the first saved vr from the previous frame.
367 - lr_offset is the offset of the saved lr
368 - cr_offset is the offset of the saved cr
369 - vrsave_offset is the offset of the saved vrsave register
370 */
371
372 #define SIGNED_SHORT(x) \
373 ((sizeof (short) == 2) \
374 ? ((int)(short)(x)) \
375 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
376
377 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
378
379 /* Limit the number of skipped non-prologue instructions, as the examining
380 of the prologue is expensive. */
381 static int max_skip_non_prologue_insns = 10;
382
383 /* Given PC representing the starting address of a function, and
384 LIM_PC which is the (sloppy) limit to which to scan when looking
385 for a prologue, attempt to further refine this limit by using
386 the line data in the symbol table. If successful, a better guess
387 on where the prologue ends is returned, otherwise the previous
388 value of lim_pc is returned. */
389 static CORE_ADDR
390 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
391 {
392 struct symtab_and_line prologue_sal;
393
394 prologue_sal = find_pc_line (pc, 0);
395 if (prologue_sal.line != 0)
396 {
397 int i;
398 CORE_ADDR addr = prologue_sal.end;
399
400 /* Handle the case in which compiler's optimizer/scheduler
401 has moved instructions into the prologue. We scan ahead
402 in the function looking for address ranges whose corresponding
403 line number is less than or equal to the first one that we
404 found for the function. (It can be less than when the
405 scheduler puts a body instruction before the first prologue
406 instruction.) */
407 for (i = 2 * max_skip_non_prologue_insns;
408 i > 0 && (lim_pc == 0 || addr < lim_pc);
409 i--)
410 {
411 struct symtab_and_line sal;
412
413 sal = find_pc_line (addr, 0);
414 if (sal.line == 0)
415 break;
416 if (sal.line <= prologue_sal.line
417 && sal.symtab == prologue_sal.symtab)
418 {
419 prologue_sal = sal;
420 }
421 addr = sal.end;
422 }
423
424 if (lim_pc == 0 || prologue_sal.end < lim_pc)
425 lim_pc = prologue_sal.end;
426 }
427 return lim_pc;
428 }
429
430
431 static CORE_ADDR
432 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
433 {
434 CORE_ADDR orig_pc = pc;
435 CORE_ADDR last_prologue_pc = pc;
436 CORE_ADDR li_found_pc = 0;
437 char buf[4];
438 unsigned long op;
439 long offset = 0;
440 long vr_saved_offset = 0;
441 int lr_reg = -1;
442 int cr_reg = -1;
443 int vr_reg = -1;
444 int vrsave_reg = -1;
445 int reg;
446 int framep = 0;
447 int minimal_toc_loaded = 0;
448 int prev_insn_was_prologue_insn = 1;
449 int num_skip_non_prologue_insns = 0;
450
451 /* Attempt to find the end of the prologue when no limit is specified.
452 Note that refine_prologue_limit() has been written so that it may
453 be used to "refine" the limits of non-zero PC values too, but this
454 is only safe if we 1) trust the line information provided by the
455 compiler and 2) iterate enough to actually find the end of the
456 prologue.
457
458 It may become a good idea at some point (for both performance and
459 accuracy) to unconditionally call refine_prologue_limit(). But,
460 until we can make a clear determination that this is beneficial,
461 we'll play it safe and only use it to obtain a limit when none
462 has been specified. */
463 if (lim_pc == 0)
464 lim_pc = refine_prologue_limit (pc, lim_pc);
465
466 memset (fdata, 0, sizeof (struct rs6000_framedata));
467 fdata->saved_gpr = -1;
468 fdata->saved_fpr = -1;
469 fdata->saved_vr = -1;
470 fdata->alloca_reg = -1;
471 fdata->frameless = 1;
472 fdata->nosavedpc = 1;
473
474 for (;; pc += 4)
475 {
476 /* Sometimes it isn't clear if an instruction is a prologue
477 instruction or not. When we encounter one of these ambiguous
478 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
479 Otherwise, we'll assume that it really is a prologue instruction. */
480 if (prev_insn_was_prologue_insn)
481 last_prologue_pc = pc;
482
483 /* Stop scanning if we've hit the limit. */
484 if (lim_pc != 0 && pc >= lim_pc)
485 break;
486
487 prev_insn_was_prologue_insn = 1;
488
489 /* Fetch the instruction and convert it to an integer. */
490 if (target_read_memory (pc, buf, 4))
491 break;
492 op = extract_signed_integer (buf, 4);
493
494 if ((op & 0xfc1fffff) == 0x7c0802a6)
495 { /* mflr Rx */
496 lr_reg = (op & 0x03e00000) | 0x90010000;
497 continue;
498
499 }
500 else if ((op & 0xfc1fffff) == 0x7c000026)
501 { /* mfcr Rx */
502 cr_reg = (op & 0x03e00000) | 0x90010000;
503 continue;
504
505 }
506 else if ((op & 0xfc1f0000) == 0xd8010000)
507 { /* stfd Rx,NUM(r1) */
508 reg = GET_SRC_REG (op);
509 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
510 {
511 fdata->saved_fpr = reg;
512 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
513 }
514 continue;
515
516 }
517 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
518 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
519 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
520 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
521 {
522
523 reg = GET_SRC_REG (op);
524 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
525 {
526 fdata->saved_gpr = reg;
527 if ((op & 0xfc1f0003) == 0xf8010000)
528 op = (op >> 1) << 1;
529 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
530 }
531 continue;
532
533 }
534 else if ((op & 0xffff0000) == 0x60000000)
535 {
536 /* nop */
537 /* Allow nops in the prologue, but do not consider them to
538 be part of the prologue unless followed by other prologue
539 instructions. */
540 prev_insn_was_prologue_insn = 0;
541 continue;
542
543 }
544 else if ((op & 0xffff0000) == 0x3c000000)
545 { /* addis 0,0,NUM, used
546 for >= 32k frames */
547 fdata->offset = (op & 0x0000ffff) << 16;
548 fdata->frameless = 0;
549 continue;
550
551 }
552 else if ((op & 0xffff0000) == 0x60000000)
553 { /* ori 0,0,NUM, 2nd ha
554 lf of >= 32k frames */
555 fdata->offset |= (op & 0x0000ffff);
556 fdata->frameless = 0;
557 continue;
558
559 }
560 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
561 { /* st Rx,NUM(r1)
562 where Rx == lr */
563 fdata->lr_offset = SIGNED_SHORT (op) + offset;
564 fdata->nosavedpc = 0;
565 lr_reg = 0;
566 continue;
567
568 }
569 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
570 { /* st Rx,NUM(r1)
571 where Rx == cr */
572 fdata->cr_offset = SIGNED_SHORT (op) + offset;
573 cr_reg = 0;
574 continue;
575
576 }
577 else if (op == 0x48000005)
578 { /* bl .+4 used in
579 -mrelocatable */
580 continue;
581
582 }
583 else if (op == 0x48000004)
584 { /* b .+4 (xlc) */
585 break;
586
587 }
588 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
589 in V.4 -mminimal-toc */
590 (op & 0xffff0000) == 0x3bde0000)
591 { /* addi 30,30,foo@l */
592 continue;
593
594 }
595 else if ((op & 0xfc000001) == 0x48000001)
596 { /* bl foo,
597 to save fprs??? */
598
599 fdata->frameless = 0;
600 /* Don't skip over the subroutine call if it is not within
601 the first three instructions of the prologue. */
602 if ((pc - orig_pc) > 8)
603 break;
604
605 op = read_memory_integer (pc + 4, 4);
606
607 /* At this point, make sure this is not a trampoline
608 function (a function that simply calls another functions,
609 and nothing else). If the next is not a nop, this branch
610 was part of the function prologue. */
611
612 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
613 break; /* don't skip over
614 this branch */
615 continue;
616
617 /* update stack pointer */
618 }
619 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
620 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
621 {
622 fdata->frameless = 0;
623 if ((op & 0xffff0003) == 0xf8210001)
624 op = (op >> 1) << 1;
625 fdata->offset = SIGNED_SHORT (op);
626 offset = fdata->offset;
627 continue;
628
629 }
630 else if (op == 0x7c21016e)
631 { /* stwux 1,1,0 */
632 fdata->frameless = 0;
633 offset = fdata->offset;
634 continue;
635
636 /* Load up minimal toc pointer */
637 }
638 else if ((op >> 22) == 0x20f
639 && !minimal_toc_loaded)
640 { /* l r31,... or l r30,... */
641 minimal_toc_loaded = 1;
642 continue;
643
644 /* move parameters from argument registers to local variable
645 registers */
646 }
647 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
648 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
649 (((op >> 21) & 31) <= 10) &&
650 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
651 {
652 continue;
653
654 /* store parameters in stack */
655 }
656 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
657 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
658 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
659 {
660 continue;
661
662 /* store parameters in stack via frame pointer */
663 }
664 else if (framep &&
665 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
666 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
667 (op & 0xfc1f0000) == 0xfc1f0000))
668 { /* frsp, fp?,NUM(r1) */
669 continue;
670
671 /* Set up frame pointer */
672 }
673 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
674 || op == 0x7c3f0b78)
675 { /* mr r31, r1 */
676 fdata->frameless = 0;
677 framep = 1;
678 fdata->alloca_reg = 31;
679 continue;
680
681 /* Another way to set up the frame pointer. */
682 }
683 else if ((op & 0xfc1fffff) == 0x38010000)
684 { /* addi rX, r1, 0x0 */
685 fdata->frameless = 0;
686 framep = 1;
687 fdata->alloca_reg = (op & ~0x38010000) >> 21;
688 continue;
689 }
690 /* AltiVec related instructions. */
691 /* Store the vrsave register (spr 256) in another register for
692 later manipulation, or load a register into the vrsave
693 register. 2 instructions are used: mfvrsave and
694 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
695 and mtspr SPR256, Rn. */
696 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
697 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
698 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
699 {
700 vrsave_reg = GET_SRC_REG (op);
701 continue;
702 }
703 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
704 {
705 continue;
706 }
707 /* Store the register where vrsave was saved to onto the stack:
708 rS is the register where vrsave was stored in a previous
709 instruction. */
710 /* 100100 sssss 00001 dddddddd dddddddd */
711 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
712 {
713 if (vrsave_reg == GET_SRC_REG (op))
714 {
715 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
716 vrsave_reg = -1;
717 }
718 continue;
719 }
720 /* Compute the new value of vrsave, by modifying the register
721 where vrsave was saved to. */
722 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
723 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
724 {
725 continue;
726 }
727 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
728 in a pair of insns to save the vector registers on the
729 stack. */
730 /* 001110 00000 00000 iiii iiii iiii iiii */
731 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
732 {
733 li_found_pc = pc;
734 vr_saved_offset = SIGNED_SHORT (op);
735 }
736 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
737 /* 011111 sssss 11111 00000 00111001110 */
738 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
739 {
740 if (pc == (li_found_pc + 4))
741 {
742 vr_reg = GET_SRC_REG (op);
743 /* If this is the first vector reg to be saved, or if
744 it has a lower number than others previously seen,
745 reupdate the frame info. */
746 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
747 {
748 fdata->saved_vr = vr_reg;
749 fdata->vr_offset = vr_saved_offset + offset;
750 }
751 vr_saved_offset = -1;
752 vr_reg = -1;
753 li_found_pc = 0;
754 }
755 }
756 /* End AltiVec related instructions. */
757 else
758 {
759 /* Not a recognized prologue instruction.
760 Handle optimizer code motions into the prologue by continuing
761 the search if we have no valid frame yet or if the return
762 address is not yet saved in the frame. */
763 if (fdata->frameless == 0
764 && (lr_reg == -1 || fdata->nosavedpc == 0))
765 break;
766
767 if (op == 0x4e800020 /* blr */
768 || op == 0x4e800420) /* bctr */
769 /* Do not scan past epilogue in frameless functions or
770 trampolines. */
771 break;
772 if ((op & 0xf4000000) == 0x40000000) /* bxx */
773 /* Never skip branches. */
774 break;
775
776 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
777 /* Do not scan too many insns, scanning insns is expensive with
778 remote targets. */
779 break;
780
781 /* Continue scanning. */
782 prev_insn_was_prologue_insn = 0;
783 continue;
784 }
785 }
786
787 #if 0
788 /* I have problems with skipping over __main() that I need to address
789 * sometime. Previously, I used to use misc_function_vector which
790 * didn't work as well as I wanted to be. -MGO */
791
792 /* If the first thing after skipping a prolog is a branch to a function,
793 this might be a call to an initializer in main(), introduced by gcc2.
794 We'd like to skip over it as well. Fortunately, xlc does some extra
795 work before calling a function right after a prologue, thus we can
796 single out such gcc2 behaviour. */
797
798
799 if ((op & 0xfc000001) == 0x48000001)
800 { /* bl foo, an initializer function? */
801 op = read_memory_integer (pc + 4, 4);
802
803 if (op == 0x4def7b82)
804 { /* cror 0xf, 0xf, 0xf (nop) */
805
806 /* Check and see if we are in main. If so, skip over this
807 initializer function as well. */
808
809 tmp = find_pc_misc_function (pc);
810 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
811 return pc + 8;
812 }
813 }
814 #endif /* 0 */
815
816 fdata->offset = -fdata->offset;
817 return last_prologue_pc;
818 }
819
820
821 /*************************************************************************
822 Support for creating pushing a dummy frame into the stack, and popping
823 frames, etc.
824 *************************************************************************/
825
826
827 /* Pop the innermost frame, go back to the caller. */
828
829 static void
830 rs6000_pop_frame (void)
831 {
832 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
833 struct rs6000_framedata fdata;
834 struct frame_info *frame = get_current_frame ();
835 int ii, wordsize;
836
837 pc = read_pc ();
838 sp = FRAME_FP (frame);
839
840 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
841 {
842 generic_pop_dummy_frame ();
843 flush_cached_frames ();
844 return;
845 }
846
847 /* Make sure that all registers are valid. */
848 read_register_bytes (0, NULL, REGISTER_BYTES);
849
850 /* Figure out previous %pc value. If the function is frameless, it is
851 still in the link register, otherwise walk the frames and retrieve the
852 saved %pc value in the previous frame. */
853
854 addr = get_pc_function_start (frame->pc);
855 (void) skip_prologue (addr, frame->pc, &fdata);
856
857 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
858 if (fdata.frameless)
859 prev_sp = sp;
860 else
861 prev_sp = read_memory_addr (sp, wordsize);
862 if (fdata.lr_offset == 0)
863 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
864 else
865 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
866
867 /* reset %pc value. */
868 write_register (PC_REGNUM, lr);
869
870 /* reset register values if any was saved earlier. */
871
872 if (fdata.saved_gpr != -1)
873 {
874 addr = prev_sp + fdata.gpr_offset;
875 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
876 {
877 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
878 addr += wordsize;
879 }
880 }
881
882 if (fdata.saved_fpr != -1)
883 {
884 addr = prev_sp + fdata.fpr_offset;
885 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
886 {
887 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
888 addr += 8;
889 }
890 }
891
892 write_register (SP_REGNUM, prev_sp);
893 target_store_registers (-1);
894 flush_cached_frames ();
895 }
896
897 /* Fixup the call sequence of a dummy function, with the real function
898 address. Its arguments will be passed by gdb. */
899
900 static void
901 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
902 int nargs, struct value **args, struct type *type,
903 int gcc_p)
904 {
905 int ii;
906 CORE_ADDR target_addr;
907
908 if (rs6000_find_toc_address_hook != NULL)
909 {
910 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
911 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
912 tocvalue);
913 }
914 }
915
916 /* Pass the arguments in either registers, or in the stack. In RS/6000,
917 the first eight words of the argument list (that might be less than
918 eight parameters if some parameters occupy more than one word) are
919 passed in r3..r10 registers. float and double parameters are
920 passed in fpr's, in addition to that. Rest of the parameters if any
921 are passed in user stack. There might be cases in which half of the
922 parameter is copied into registers, the other half is pushed into
923 stack.
924
925 Stack must be aligned on 64-bit boundaries when synthesizing
926 function calls.
927
928 If the function is returning a structure, then the return address is passed
929 in r3, then the first 7 words of the parameters can be passed in registers,
930 starting from r4. */
931
932 static CORE_ADDR
933 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
934 int struct_return, CORE_ADDR struct_addr)
935 {
936 int ii;
937 int len = 0;
938 int argno; /* current argument number */
939 int argbytes; /* current argument byte */
940 char tmp_buffer[50];
941 int f_argno = 0; /* current floating point argno */
942 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
943
944 struct value *arg = 0;
945 struct type *type;
946
947 CORE_ADDR saved_sp;
948
949 /* The first eight words of ther arguments are passed in registers.
950 Copy them appropriately.
951
952 If the function is returning a `struct', then the first word (which
953 will be passed in r3) is used for struct return address. In that
954 case we should advance one word and start from r4 register to copy
955 parameters. */
956
957 ii = struct_return ? 1 : 0;
958
959 /*
960 effectively indirect call... gcc does...
961
962 return_val example( float, int);
963
964 eabi:
965 float in fp0, int in r3
966 offset of stack on overflow 8/16
967 for varargs, must go by type.
968 power open:
969 float in r3&r4, int in r5
970 offset of stack on overflow different
971 both:
972 return in r3 or f0. If no float, must study how gcc emulates floats;
973 pay attention to arg promotion.
974 User may have to cast\args to handle promotion correctly
975 since gdb won't know if prototype supplied or not.
976 */
977
978 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
979 {
980 int reg_size = REGISTER_RAW_SIZE (ii + 3);
981
982 arg = args[argno];
983 type = check_typedef (VALUE_TYPE (arg));
984 len = TYPE_LENGTH (type);
985
986 if (TYPE_CODE (type) == TYPE_CODE_FLT)
987 {
988
989 /* Floating point arguments are passed in fpr's, as well as gpr's.
990 There are 13 fpr's reserved for passing parameters. At this point
991 there is no way we would run out of them. */
992
993 if (len > 8)
994 printf_unfiltered (
995 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
996
997 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
998 VALUE_CONTENTS (arg),
999 len);
1000 ++f_argno;
1001 }
1002
1003 if (len > reg_size)
1004 {
1005
1006 /* Argument takes more than one register. */
1007 while (argbytes < len)
1008 {
1009 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1010 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1011 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1012 (len - argbytes) > reg_size
1013 ? reg_size : len - argbytes);
1014 ++ii, argbytes += reg_size;
1015
1016 if (ii >= 8)
1017 goto ran_out_of_registers_for_arguments;
1018 }
1019 argbytes = 0;
1020 --ii;
1021 }
1022 else
1023 {
1024 /* Argument can fit in one register. No problem. */
1025 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1026 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1027 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1028 VALUE_CONTENTS (arg), len);
1029 }
1030 ++argno;
1031 }
1032
1033 ran_out_of_registers_for_arguments:
1034
1035 saved_sp = read_sp ();
1036
1037 /* Location for 8 parameters are always reserved. */
1038 sp -= wordsize * 8;
1039
1040 /* Another six words for back chain, TOC register, link register, etc. */
1041 sp -= wordsize * 6;
1042
1043 /* Stack pointer must be quadword aligned. */
1044 sp &= -16;
1045
1046 /* If there are more arguments, allocate space for them in
1047 the stack, then push them starting from the ninth one. */
1048
1049 if ((argno < nargs) || argbytes)
1050 {
1051 int space = 0, jj;
1052
1053 if (argbytes)
1054 {
1055 space += ((len - argbytes + 3) & -4);
1056 jj = argno + 1;
1057 }
1058 else
1059 jj = argno;
1060
1061 for (; jj < nargs; ++jj)
1062 {
1063 struct value *val = args[jj];
1064 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1065 }
1066
1067 /* Add location required for the rest of the parameters. */
1068 space = (space + 15) & -16;
1069 sp -= space;
1070
1071 /* This is another instance we need to be concerned about
1072 securing our stack space. If we write anything underneath %sp
1073 (r1), we might conflict with the kernel who thinks he is free
1074 to use this area. So, update %sp first before doing anything
1075 else. */
1076
1077 write_register (SP_REGNUM, sp);
1078
1079 /* If the last argument copied into the registers didn't fit there
1080 completely, push the rest of it into stack. */
1081
1082 if (argbytes)
1083 {
1084 write_memory (sp + 24 + (ii * 4),
1085 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1086 len - argbytes);
1087 ++argno;
1088 ii += ((len - argbytes + 3) & -4) / 4;
1089 }
1090
1091 /* Push the rest of the arguments into stack. */
1092 for (; argno < nargs; ++argno)
1093 {
1094
1095 arg = args[argno];
1096 type = check_typedef (VALUE_TYPE (arg));
1097 len = TYPE_LENGTH (type);
1098
1099
1100 /* Float types should be passed in fpr's, as well as in the
1101 stack. */
1102 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1103 {
1104
1105 if (len > 8)
1106 printf_unfiltered (
1107 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1108
1109 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1110 VALUE_CONTENTS (arg),
1111 len);
1112 ++f_argno;
1113 }
1114
1115 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1116 ii += ((len + 3) & -4) / 4;
1117 }
1118 }
1119 else
1120 /* Secure stack areas first, before doing anything else. */
1121 write_register (SP_REGNUM, sp);
1122
1123 /* set back chain properly */
1124 store_address (tmp_buffer, 4, saved_sp);
1125 write_memory (sp, tmp_buffer, 4);
1126
1127 target_store_registers (-1);
1128 return sp;
1129 }
1130
1131 /* Function: ppc_push_return_address (pc, sp)
1132 Set up the return address for the inferior function call. */
1133
1134 static CORE_ADDR
1135 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1136 {
1137 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1138 CALL_DUMMY_ADDRESS ());
1139 return sp;
1140 }
1141
1142 /* Extract a function return value of type TYPE from raw register array
1143 REGBUF, and copy that return value into VALBUF in virtual format. */
1144
1145 static void
1146 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1147 {
1148 int offset = 0;
1149 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1150
1151 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1152 {
1153
1154 double dd;
1155 float ff;
1156 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1157 We need to truncate the return value into float size (4 byte) if
1158 necessary. */
1159
1160 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1161 memcpy (valbuf,
1162 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1163 TYPE_LENGTH (valtype));
1164 else
1165 { /* float */
1166 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1167 ff = (float) dd;
1168 memcpy (valbuf, &ff, sizeof (float));
1169 }
1170 }
1171 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1172 && TYPE_LENGTH (valtype) == 16
1173 && TYPE_VECTOR (valtype))
1174 {
1175 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1176 TYPE_LENGTH (valtype));
1177 }
1178 else
1179 {
1180 /* return value is copied starting from r3. */
1181 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1182 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1183 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1184
1185 memcpy (valbuf,
1186 regbuf + REGISTER_BYTE (3) + offset,
1187 TYPE_LENGTH (valtype));
1188 }
1189 }
1190
1191 /* Keep structure return address in this variable.
1192 FIXME: This is a horrid kludge which should not be allowed to continue
1193 living. This only allows a single nested call to a structure-returning
1194 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1195
1196 static CORE_ADDR rs6000_struct_return_address;
1197
1198 /* Return whether handle_inferior_event() should proceed through code
1199 starting at PC in function NAME when stepping.
1200
1201 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1202 handle memory references that are too distant to fit in instructions
1203 generated by the compiler. For example, if 'foo' in the following
1204 instruction:
1205
1206 lwz r9,foo(r2)
1207
1208 is greater than 32767, the linker might replace the lwz with a branch to
1209 somewhere in @FIX1 that does the load in 2 instructions and then branches
1210 back to where execution should continue.
1211
1212 GDB should silently step over @FIX code, just like AIX dbx does.
1213 Unfortunately, the linker uses the "b" instruction for the branches,
1214 meaning that the link register doesn't get set. Therefore, GDB's usual
1215 step_over_function() mechanism won't work.
1216
1217 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1218 in handle_inferior_event() to skip past @FIX code. */
1219
1220 int
1221 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1222 {
1223 return name && !strncmp (name, "@FIX", 4);
1224 }
1225
1226 /* Skip code that the user doesn't want to see when stepping:
1227
1228 1. Indirect function calls use a piece of trampoline code to do context
1229 switching, i.e. to set the new TOC table. Skip such code if we are on
1230 its first instruction (as when we have single-stepped to here).
1231
1232 2. Skip shared library trampoline code (which is different from
1233 indirect function call trampolines).
1234
1235 3. Skip bigtoc fixup code.
1236
1237 Result is desired PC to step until, or NULL if we are not in
1238 code that should be skipped. */
1239
1240 CORE_ADDR
1241 rs6000_skip_trampoline_code (CORE_ADDR pc)
1242 {
1243 register unsigned int ii, op;
1244 int rel;
1245 CORE_ADDR solib_target_pc;
1246 struct minimal_symbol *msymbol;
1247
1248 static unsigned trampoline_code[] =
1249 {
1250 0x800b0000, /* l r0,0x0(r11) */
1251 0x90410014, /* st r2,0x14(r1) */
1252 0x7c0903a6, /* mtctr r0 */
1253 0x804b0004, /* l r2,0x4(r11) */
1254 0x816b0008, /* l r11,0x8(r11) */
1255 0x4e800420, /* bctr */
1256 0x4e800020, /* br */
1257 0
1258 };
1259
1260 /* Check for bigtoc fixup code. */
1261 msymbol = lookup_minimal_symbol_by_pc (pc);
1262 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1263 {
1264 /* Double-check that the third instruction from PC is relative "b". */
1265 op = read_memory_integer (pc + 8, 4);
1266 if ((op & 0xfc000003) == 0x48000000)
1267 {
1268 /* Extract bits 6-29 as a signed 24-bit relative word address and
1269 add it to the containing PC. */
1270 rel = ((int)(op << 6) >> 6);
1271 return pc + 8 + rel;
1272 }
1273 }
1274
1275 /* If pc is in a shared library trampoline, return its target. */
1276 solib_target_pc = find_solib_trampoline_target (pc);
1277 if (solib_target_pc)
1278 return solib_target_pc;
1279
1280 for (ii = 0; trampoline_code[ii]; ++ii)
1281 {
1282 op = read_memory_integer (pc + (ii * 4), 4);
1283 if (op != trampoline_code[ii])
1284 return 0;
1285 }
1286 ii = read_register (11); /* r11 holds destination addr */
1287 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1288 return pc;
1289 }
1290
1291 /* Determines whether the function FI has a frame on the stack or not. */
1292
1293 int
1294 rs6000_frameless_function_invocation (struct frame_info *fi)
1295 {
1296 CORE_ADDR func_start;
1297 struct rs6000_framedata fdata;
1298
1299 /* Don't even think about framelessness except on the innermost frame
1300 or if the function was interrupted by a signal. */
1301 if (fi->next != NULL && !fi->next->signal_handler_caller)
1302 return 0;
1303
1304 func_start = get_pc_function_start (fi->pc);
1305
1306 /* If we failed to find the start of the function, it is a mistake
1307 to inspect the instructions. */
1308
1309 if (!func_start)
1310 {
1311 /* A frame with a zero PC is usually created by dereferencing a NULL
1312 function pointer, normally causing an immediate core dump of the
1313 inferior. Mark function as frameless, as the inferior has no chance
1314 of setting up a stack frame. */
1315 if (fi->pc == 0)
1316 return 1;
1317 else
1318 return 0;
1319 }
1320
1321 (void) skip_prologue (func_start, fi->pc, &fdata);
1322 return fdata.frameless;
1323 }
1324
1325 /* Return the PC saved in a frame. */
1326
1327 CORE_ADDR
1328 rs6000_frame_saved_pc (struct frame_info *fi)
1329 {
1330 CORE_ADDR func_start;
1331 struct rs6000_framedata fdata;
1332 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1333 int wordsize = tdep->wordsize;
1334
1335 if (fi->signal_handler_caller)
1336 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1337
1338 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1339 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1340
1341 func_start = get_pc_function_start (fi->pc);
1342
1343 /* If we failed to find the start of the function, it is a mistake
1344 to inspect the instructions. */
1345 if (!func_start)
1346 return 0;
1347
1348 (void) skip_prologue (func_start, fi->pc, &fdata);
1349
1350 if (fdata.lr_offset == 0 && fi->next != NULL)
1351 {
1352 if (fi->next->signal_handler_caller)
1353 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1354 wordsize);
1355 else
1356 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1357 wordsize);
1358 }
1359
1360 if (fdata.lr_offset == 0)
1361 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1362
1363 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1364 }
1365
1366 /* If saved registers of frame FI are not known yet, read and cache them.
1367 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1368 in which case the framedata are read. */
1369
1370 static void
1371 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1372 {
1373 CORE_ADDR frame_addr;
1374 struct rs6000_framedata work_fdata;
1375 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1376 int wordsize = tdep->wordsize;
1377
1378 if (fi->saved_regs)
1379 return;
1380
1381 if (fdatap == NULL)
1382 {
1383 fdatap = &work_fdata;
1384 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1385 }
1386
1387 frame_saved_regs_zalloc (fi);
1388
1389 /* If there were any saved registers, figure out parent's stack
1390 pointer. */
1391 /* The following is true only if the frame doesn't have a call to
1392 alloca(), FIXME. */
1393
1394 if (fdatap->saved_fpr == 0
1395 && fdatap->saved_gpr == 0
1396 && fdatap->saved_vr == 0
1397 && fdatap->lr_offset == 0
1398 && fdatap->cr_offset == 0
1399 && fdatap->vr_offset == 0)
1400 frame_addr = 0;
1401 else
1402 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1403 address of the current frame. Things might be easier if the
1404 ->frame pointed to the outer-most address of the frame. In the
1405 mean time, the address of the prev frame is used as the base
1406 address of this frame. */
1407 frame_addr = FRAME_CHAIN (fi);
1408
1409 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1410 All fpr's from saved_fpr to fp31 are saved. */
1411
1412 if (fdatap->saved_fpr >= 0)
1413 {
1414 int i;
1415 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1416 for (i = fdatap->saved_fpr; i < 32; i++)
1417 {
1418 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1419 fpr_addr += 8;
1420 }
1421 }
1422
1423 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1424 All gpr's from saved_gpr to gpr31 are saved. */
1425
1426 if (fdatap->saved_gpr >= 0)
1427 {
1428 int i;
1429 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1430 for (i = fdatap->saved_gpr; i < 32; i++)
1431 {
1432 fi->saved_regs[i] = gpr_addr;
1433 gpr_addr += wordsize;
1434 }
1435 }
1436
1437 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1438 All vr's from saved_vr to vr31 are saved. */
1439 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1440 {
1441 if (fdatap->saved_vr >= 0)
1442 {
1443 int i;
1444 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1445 for (i = fdatap->saved_vr; i < 32; i++)
1446 {
1447 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1448 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1449 }
1450 }
1451 }
1452
1453 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1454 the CR. */
1455 if (fdatap->cr_offset != 0)
1456 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1457
1458 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1459 the LR. */
1460 if (fdatap->lr_offset != 0)
1461 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1462
1463 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1464 the VRSAVE. */
1465 if (fdatap->vrsave_offset != 0)
1466 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1467 }
1468
1469 /* Return the address of a frame. This is the inital %sp value when the frame
1470 was first allocated. For functions calling alloca(), it might be saved in
1471 an alloca register. */
1472
1473 static CORE_ADDR
1474 frame_initial_stack_address (struct frame_info *fi)
1475 {
1476 CORE_ADDR tmpaddr;
1477 struct rs6000_framedata fdata;
1478 struct frame_info *callee_fi;
1479
1480 /* If the initial stack pointer (frame address) of this frame is known,
1481 just return it. */
1482
1483 if (fi->extra_info->initial_sp)
1484 return fi->extra_info->initial_sp;
1485
1486 /* Find out if this function is using an alloca register. */
1487
1488 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1489
1490 /* If saved registers of this frame are not known yet, read and
1491 cache them. */
1492
1493 if (!fi->saved_regs)
1494 frame_get_saved_regs (fi, &fdata);
1495
1496 /* If no alloca register used, then fi->frame is the value of the %sp for
1497 this frame, and it is good enough. */
1498
1499 if (fdata.alloca_reg < 0)
1500 {
1501 fi->extra_info->initial_sp = fi->frame;
1502 return fi->extra_info->initial_sp;
1503 }
1504
1505 /* There is an alloca register, use its value, in the current frame,
1506 as the initial stack pointer. */
1507 {
1508 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1509 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1510 {
1511 fi->extra_info->initial_sp
1512 = extract_unsigned_integer (tmpbuf,
1513 REGISTER_RAW_SIZE (fdata.alloca_reg));
1514 }
1515 else
1516 /* NOTE: cagney/2002-04-17: At present the only time
1517 frame_register_read will fail is when the register isn't
1518 available. If that does happen, use the frame. */
1519 fi->extra_info->initial_sp = fi->frame;
1520 }
1521 return fi->extra_info->initial_sp;
1522 }
1523
1524 /* Describe the pointer in each stack frame to the previous stack frame
1525 (its caller). */
1526
1527 /* FRAME_CHAIN takes a frame's nominal address
1528 and produces the frame's chain-pointer. */
1529
1530 /* In the case of the RS/6000, the frame's nominal address
1531 is the address of a 4-byte word containing the calling frame's address. */
1532
1533 CORE_ADDR
1534 rs6000_frame_chain (struct frame_info *thisframe)
1535 {
1536 CORE_ADDR fp, fpp, lr;
1537 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1538
1539 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1540 return thisframe->frame; /* dummy frame same as caller's frame */
1541
1542 if (inside_entry_file (thisframe->pc) ||
1543 thisframe->pc == entry_point_address ())
1544 return 0;
1545
1546 if (thisframe->signal_handler_caller)
1547 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1548 wordsize);
1549 else if (thisframe->next != NULL
1550 && thisframe->next->signal_handler_caller
1551 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1552 /* A frameless function interrupted by a signal did not change the
1553 frame pointer. */
1554 fp = FRAME_FP (thisframe);
1555 else
1556 fp = read_memory_addr ((thisframe)->frame, wordsize);
1557
1558 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1559 if (lr == entry_point_address ())
1560 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1561 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1562 return fpp;
1563
1564 return fp;
1565 }
1566
1567 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1568 isn't available with that word size, return 0. */
1569
1570 static int
1571 regsize (const struct reg *reg, int wordsize)
1572 {
1573 return wordsize == 8 ? reg->sz64 : reg->sz32;
1574 }
1575
1576 /* Return the name of register number N, or null if no such register exists
1577 in the current architecture. */
1578
1579 static const char *
1580 rs6000_register_name (int n)
1581 {
1582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1583 const struct reg *reg = tdep->regs + n;
1584
1585 if (!regsize (reg, tdep->wordsize))
1586 return NULL;
1587 return reg->name;
1588 }
1589
1590 /* Index within `registers' of the first byte of the space for
1591 register N. */
1592
1593 static int
1594 rs6000_register_byte (int n)
1595 {
1596 return gdbarch_tdep (current_gdbarch)->regoff[n];
1597 }
1598
1599 /* Return the number of bytes of storage in the actual machine representation
1600 for register N if that register is available, else return 0. */
1601
1602 static int
1603 rs6000_register_raw_size (int n)
1604 {
1605 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1606 const struct reg *reg = tdep->regs + n;
1607 return regsize (reg, tdep->wordsize);
1608 }
1609
1610 /* Return the GDB type object for the "standard" data type
1611 of data in register N. */
1612
1613 static struct type *
1614 rs6000_register_virtual_type (int n)
1615 {
1616 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1617 const struct reg *reg = tdep->regs + n;
1618
1619 if (reg->fpr)
1620 return builtin_type_double;
1621 else
1622 {
1623 int size = regsize (reg, tdep->wordsize);
1624 switch (size)
1625 {
1626 case 8:
1627 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1628 return builtin_type_vec64;
1629 else
1630 return builtin_type_int64;
1631 break;
1632 case 16:
1633 return builtin_type_vec128;
1634 break;
1635 default:
1636 return builtin_type_int32;
1637 break;
1638 }
1639 }
1640 }
1641
1642 /* For the PowerPC, it appears that the debug info marks float parameters as
1643 floats regardless of whether the function is prototyped, but the actual
1644 values are always passed in as doubles. Tell gdb to always assume that
1645 floats are passed as doubles and then converted in the callee. */
1646
1647 static int
1648 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1649 {
1650 return 1;
1651 }
1652
1653 /* Return whether register N requires conversion when moving from raw format
1654 to virtual format.
1655
1656 The register format for RS/6000 floating point registers is always
1657 double, we need a conversion if the memory format is float. */
1658
1659 static int
1660 rs6000_register_convertible (int n)
1661 {
1662 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1663 return reg->fpr;
1664 }
1665
1666 /* Convert data from raw format for register N in buffer FROM
1667 to virtual format with type TYPE in buffer TO. */
1668
1669 static void
1670 rs6000_register_convert_to_virtual (int n, struct type *type,
1671 char *from, char *to)
1672 {
1673 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1674 {
1675 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1676 store_floating (to, TYPE_LENGTH (type), val);
1677 }
1678 else
1679 memcpy (to, from, REGISTER_RAW_SIZE (n));
1680 }
1681
1682 /* Convert data from virtual format with type TYPE in buffer FROM
1683 to raw format for register N in buffer TO. */
1684
1685 static void
1686 rs6000_register_convert_to_raw (struct type *type, int n,
1687 char *from, char *to)
1688 {
1689 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1690 {
1691 double val = extract_floating (from, TYPE_LENGTH (type));
1692 store_floating (to, REGISTER_RAW_SIZE (n), val);
1693 }
1694 else
1695 memcpy (to, from, REGISTER_RAW_SIZE (n));
1696 }
1697
1698 static void
1699 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1700 int reg_nr, void *buffer)
1701 {
1702 int base_regnum;
1703 int offset = 0;
1704 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1705 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1706
1707 if (reg_nr >= tdep->ppc_gp0_regnum
1708 && reg_nr <= tdep->ppc_gplast_regnum)
1709 {
1710 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1711
1712 /* Build the value in the provided buffer. */
1713 /* Read the raw register of which this one is the lower portion. */
1714 regcache_raw_read (regcache, base_regnum, temp_buffer);
1715 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1716 offset = 4;
1717 memcpy ((char *) buffer, temp_buffer + offset, 4);
1718 }
1719 }
1720
1721 static void
1722 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1723 int reg_nr, const void *buffer)
1724 {
1725 int base_regnum;
1726 int offset = 0;
1727 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1728 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1729
1730 if (reg_nr >= tdep->ppc_gp0_regnum
1731 && reg_nr <= tdep->ppc_gplast_regnum)
1732 {
1733 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1734 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1735 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1736 offset = 4;
1737
1738 /* Let's read the value of the base register into a temporary
1739 buffer, so that overwriting the last four bytes with the new
1740 value of the pseudo will leave the upper 4 bytes unchanged. */
1741 regcache_raw_read (regcache, base_regnum, temp_buffer);
1742
1743 /* Write as an 8 byte quantity. */
1744 memcpy (temp_buffer + offset, (char *) buffer, 4);
1745 regcache_raw_write (regcache, base_regnum, temp_buffer);
1746 }
1747 }
1748
1749 /* Convert a dwarf2 register number to a gdb REGNUM. */
1750 static int
1751 e500_dwarf2_reg_to_regnum (int num)
1752 {
1753 int regnum;
1754 if (0 <= num && num <= 31)
1755 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1756 else
1757 return num;
1758 }
1759
1760 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1761 REGNUM. */
1762 static int
1763 rs6000_stab_reg_to_regnum (int num)
1764 {
1765 int regnum;
1766 switch (num)
1767 {
1768 case 64:
1769 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1770 break;
1771 case 65:
1772 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1773 break;
1774 case 66:
1775 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1776 break;
1777 case 76:
1778 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1779 break;
1780 default:
1781 regnum = num;
1782 break;
1783 }
1784 return regnum;
1785 }
1786
1787 /* Store the address of the place in which to copy the structure the
1788 subroutine will return. This is called from call_function.
1789
1790 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1791 In function return, callee is not responsible of returning this address
1792 back. Since gdb needs to find it, we will store in a designated variable
1793 `rs6000_struct_return_address'. */
1794
1795 static void
1796 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1797 {
1798 write_register (3, addr);
1799 rs6000_struct_return_address = addr;
1800 }
1801
1802 /* Write into appropriate registers a function return value
1803 of type TYPE, given in virtual format. */
1804
1805 static void
1806 rs6000_store_return_value (struct type *type, char *valbuf)
1807 {
1808 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1809
1810 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1811
1812 /* Floating point values are returned starting from FPR1 and up.
1813 Say a double_double_double type could be returned in
1814 FPR1/FPR2/FPR3 triple. */
1815
1816 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1817 TYPE_LENGTH (type));
1818 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1819 {
1820 if (TYPE_LENGTH (type) == 16
1821 && TYPE_VECTOR (type))
1822 write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1823 valbuf, TYPE_LENGTH (type));
1824 }
1825 else
1826 /* Everything else is returned in GPR3 and up. */
1827 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1828 valbuf, TYPE_LENGTH (type));
1829 }
1830
1831 /* Extract from an array REGBUF containing the (raw) register state
1832 the address in which a function should return its structure value,
1833 as a CORE_ADDR (or an expression that can be used as one). */
1834
1835 static CORE_ADDR
1836 rs6000_extract_struct_value_address (char *regbuf)
1837 {
1838 return rs6000_struct_return_address;
1839 }
1840
1841 /* Return whether PC is in a dummy function call.
1842
1843 FIXME: This just checks for the end of the stack, which is broken
1844 for things like stepping through gcc nested function stubs. */
1845
1846 static int
1847 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1848 {
1849 return sp < pc && pc < fp;
1850 }
1851
1852 /* Hook called when a new child process is started. */
1853
1854 void
1855 rs6000_create_inferior (int pid)
1856 {
1857 if (rs6000_set_host_arch_hook)
1858 rs6000_set_host_arch_hook (pid);
1859 }
1860 \f
1861 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1862
1863 Usually a function pointer's representation is simply the address
1864 of the function. On the RS/6000 however, a function pointer is
1865 represented by a pointer to a TOC entry. This TOC entry contains
1866 three words, the first word is the address of the function, the
1867 second word is the TOC pointer (r2), and the third word is the
1868 static chain value. Throughout GDB it is currently assumed that a
1869 function pointer contains the address of the function, which is not
1870 easy to fix. In addition, the conversion of a function address to
1871 a function pointer would require allocation of a TOC entry in the
1872 inferior's memory space, with all its drawbacks. To be able to
1873 call C++ virtual methods in the inferior (which are called via
1874 function pointers), find_function_addr uses this function to get the
1875 function address from a function pointer. */
1876
1877 /* Return real function address if ADDR (a function pointer) is in the data
1878 space and is therefore a special function pointer. */
1879
1880 CORE_ADDR
1881 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1882 {
1883 struct obj_section *s;
1884
1885 s = find_pc_section (addr);
1886 if (s && s->the_bfd_section->flags & SEC_CODE)
1887 return addr;
1888
1889 /* ADDR is in the data space, so it's a special function pointer. */
1890 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
1891 }
1892 \f
1893
1894 /* Handling the various POWER/PowerPC variants. */
1895
1896
1897 /* The arrays here called registers_MUMBLE hold information about available
1898 registers.
1899
1900 For each family of PPC variants, I've tried to isolate out the
1901 common registers and put them up front, so that as long as you get
1902 the general family right, GDB will correctly identify the registers
1903 common to that family. The common register sets are:
1904
1905 For the 60x family: hid0 hid1 iabr dabr pir
1906
1907 For the 505 and 860 family: eie eid nri
1908
1909 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1910 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1911 pbu1 pbl2 pbu2
1912
1913 Most of these register groups aren't anything formal. I arrived at
1914 them by looking at the registers that occurred in more than one
1915 processor.
1916
1917 Note: kevinb/2002-04-30: Support for the fpscr register was added
1918 during April, 2002. Slot 70 is being used for PowerPC and slot 71
1919 for Power. For PowerPC, slot 70 was unused and was already in the
1920 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
1921 slot 70 was being used for "mq", so the next available slot (71)
1922 was chosen. It would have been nice to be able to make the
1923 register numbers the same across processor cores, but this wasn't
1924 possible without either 1) renumbering some registers for some
1925 processors or 2) assigning fpscr to a really high slot that's
1926 larger than any current register number. Doing (1) is bad because
1927 existing stubs would break. Doing (2) is undesirable because it
1928 would introduce a really large gap between fpscr and the rest of
1929 the registers for most processors. */
1930
1931 /* Convenience macros for populating register arrays. */
1932
1933 /* Within another macro, convert S to a string. */
1934
1935 #define STR(s) #s
1936
1937 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1938 and 64 bits on 64-bit systems. */
1939 #define R(name) { STR(name), 4, 8, 0, 0 }
1940
1941 /* Return a struct reg defining register NAME that's 32 bits on all
1942 systems. */
1943 #define R4(name) { STR(name), 4, 4, 0, 0 }
1944
1945 /* Return a struct reg defining register NAME that's 64 bits on all
1946 systems. */
1947 #define R8(name) { STR(name), 8, 8, 0, 0 }
1948
1949 /* Return a struct reg defining register NAME that's 128 bits on all
1950 systems. */
1951 #define R16(name) { STR(name), 16, 16, 0, 0 }
1952
1953 /* Return a struct reg defining floating-point register NAME. */
1954 #define F(name) { STR(name), 8, 8, 1, 0 }
1955
1956 /* Return a struct reg defining a pseudo register NAME. */
1957 #define P(name) { STR(name), 4, 8, 0, 1}
1958
1959 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
1960 systems and that doesn't exist on 64-bit systems. */
1961 #define R32(name) { STR(name), 4, 0, 0, 0 }
1962
1963 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
1964 systems and that doesn't exist on 32-bit systems. */
1965 #define R64(name) { STR(name), 0, 8, 0, 0 }
1966
1967 /* Return a struct reg placeholder for a register that doesn't exist. */
1968 #define R0 { 0, 0, 0, 0, 0 }
1969
1970 /* UISA registers common across all architectures, including POWER. */
1971
1972 #define COMMON_UISA_REGS \
1973 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1974 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1975 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1976 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1977 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1978 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1979 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1980 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1981 /* 64 */ R(pc), R(ps)
1982
1983 #define COMMON_UISA_NOFP_REGS \
1984 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1985 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1986 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1987 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1988 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1989 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1990 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1991 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1992 /* 64 */ R(pc), R(ps)
1993
1994 /* UISA-level SPRs for PowerPC. */
1995 #define PPC_UISA_SPRS \
1996 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
1997
1998 /* UISA-level SPRs for PowerPC without floating point support. */
1999 #define PPC_UISA_NOFP_SPRS \
2000 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2001
2002 /* Segment registers, for PowerPC. */
2003 #define PPC_SEGMENT_REGS \
2004 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2005 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2006 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2007 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2008
2009 /* OEA SPRs for PowerPC. */
2010 #define PPC_OEA_SPRS \
2011 /* 87 */ R4(pvr), \
2012 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2013 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2014 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2015 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2016 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2017 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2018 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2019 /* 116 */ R4(dec), R(dabr), R4(ear)
2020
2021 /* AltiVec registers. */
2022 #define PPC_ALTIVEC_REGS \
2023 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2024 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2025 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2026 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2027 /*151*/R4(vscr), R4(vrsave)
2028
2029 /* Vectors of hi-lo general purpose registers. */
2030 #define PPC_EV_REGS \
2031 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2032 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2033 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2034 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2035
2036 /* Lower half of the EV registers. */
2037 #define PPC_GPRS_PSEUDO_REGS \
2038 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2039 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2040 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2041 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2042
2043 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2044 user-level SPR's. */
2045 static const struct reg registers_power[] =
2046 {
2047 COMMON_UISA_REGS,
2048 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2049 /* 71 */ R4(fpscr)
2050 };
2051
2052 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2053 view of the PowerPC. */
2054 static const struct reg registers_powerpc[] =
2055 {
2056 COMMON_UISA_REGS,
2057 PPC_UISA_SPRS,
2058 PPC_ALTIVEC_REGS
2059 };
2060
2061 /* PowerPC UISA - a PPC processor as viewed by user-level
2062 code, but without floating point registers. */
2063 static const struct reg registers_powerpc_nofp[] =
2064 {
2065 COMMON_UISA_NOFP_REGS,
2066 PPC_UISA_SPRS
2067 };
2068
2069 /* IBM PowerPC 403. */
2070 static const struct reg registers_403[] =
2071 {
2072 COMMON_UISA_REGS,
2073 PPC_UISA_SPRS,
2074 PPC_SEGMENT_REGS,
2075 PPC_OEA_SPRS,
2076 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2077 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2078 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2079 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2080 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2081 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2082 };
2083
2084 /* IBM PowerPC 403GC. */
2085 static const struct reg registers_403GC[] =
2086 {
2087 COMMON_UISA_REGS,
2088 PPC_UISA_SPRS,
2089 PPC_SEGMENT_REGS,
2090 PPC_OEA_SPRS,
2091 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2092 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2093 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2094 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2095 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2096 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2097 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2098 /* 147 */ R(tbhu), R(tblu)
2099 };
2100
2101 /* Motorola PowerPC 505. */
2102 static const struct reg registers_505[] =
2103 {
2104 COMMON_UISA_REGS,
2105 PPC_UISA_SPRS,
2106 PPC_SEGMENT_REGS,
2107 PPC_OEA_SPRS,
2108 /* 119 */ R(eie), R(eid), R(nri)
2109 };
2110
2111 /* Motorola PowerPC 860 or 850. */
2112 static const struct reg registers_860[] =
2113 {
2114 COMMON_UISA_REGS,
2115 PPC_UISA_SPRS,
2116 PPC_SEGMENT_REGS,
2117 PPC_OEA_SPRS,
2118 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2119 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2120 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2121 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2122 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2123 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2124 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2125 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2126 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2127 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2128 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2129 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2130 };
2131
2132 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2133 for reading and writing RTCU and RTCL. However, how one reads and writes a
2134 register is the stub's problem. */
2135 static const struct reg registers_601[] =
2136 {
2137 COMMON_UISA_REGS,
2138 PPC_UISA_SPRS,
2139 PPC_SEGMENT_REGS,
2140 PPC_OEA_SPRS,
2141 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2142 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2143 };
2144
2145 /* Motorola PowerPC 602. */
2146 static const struct reg registers_602[] =
2147 {
2148 COMMON_UISA_REGS,
2149 PPC_UISA_SPRS,
2150 PPC_SEGMENT_REGS,
2151 PPC_OEA_SPRS,
2152 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2153 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2154 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2155 };
2156
2157 /* Motorola/IBM PowerPC 603 or 603e. */
2158 static const struct reg registers_603[] =
2159 {
2160 COMMON_UISA_REGS,
2161 PPC_UISA_SPRS,
2162 PPC_SEGMENT_REGS,
2163 PPC_OEA_SPRS,
2164 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2165 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2166 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2167 };
2168
2169 /* Motorola PowerPC 604 or 604e. */
2170 static const struct reg registers_604[] =
2171 {
2172 COMMON_UISA_REGS,
2173 PPC_UISA_SPRS,
2174 PPC_SEGMENT_REGS,
2175 PPC_OEA_SPRS,
2176 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2177 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2178 /* 127 */ R(sia), R(sda)
2179 };
2180
2181 /* Motorola/IBM PowerPC 750 or 740. */
2182 static const struct reg registers_750[] =
2183 {
2184 COMMON_UISA_REGS,
2185 PPC_UISA_SPRS,
2186 PPC_SEGMENT_REGS,
2187 PPC_OEA_SPRS,
2188 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2189 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2190 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2191 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2192 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2193 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2194 };
2195
2196
2197 /* Motorola PowerPC 7400. */
2198 static const struct reg registers_7400[] =
2199 {
2200 /* gpr0-gpr31, fpr0-fpr31 */
2201 COMMON_UISA_REGS,
2202 /* ctr, xre, lr, cr */
2203 PPC_UISA_SPRS,
2204 /* sr0-sr15 */
2205 PPC_SEGMENT_REGS,
2206 PPC_OEA_SPRS,
2207 /* vr0-vr31, vrsave, vscr */
2208 PPC_ALTIVEC_REGS
2209 /* FIXME? Add more registers? */
2210 };
2211
2212 /* Motorola e500. */
2213 static const struct reg registers_e500[] =
2214 {
2215 R(pc), R(ps),
2216 /* cr, lr, ctr, xer, "" */
2217 PPC_UISA_NOFP_SPRS,
2218 /* 7...38 */
2219 PPC_EV_REGS,
2220 /* 39...70 */
2221 PPC_GPRS_PSEUDO_REGS
2222 };
2223
2224 /* Information about a particular processor variant. */
2225
2226 struct variant
2227 {
2228 /* Name of this variant. */
2229 char *name;
2230
2231 /* English description of the variant. */
2232 char *description;
2233
2234 /* bfd_arch_info.arch corresponding to variant. */
2235 enum bfd_architecture arch;
2236
2237 /* bfd_arch_info.mach corresponding to variant. */
2238 unsigned long mach;
2239
2240 /* Number of real registers. */
2241 int nregs;
2242
2243 /* Number of pseudo registers. */
2244 int npregs;
2245
2246 /* Number of total registers (the sum of nregs and npregs). */
2247 int num_tot_regs;
2248
2249 /* Table of register names; registers[R] is the name of the register
2250 number R. */
2251 const struct reg *regs;
2252 };
2253
2254 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2255
2256 static int
2257 num_registers (const struct reg *reg_list, int num_tot_regs)
2258 {
2259 int i;
2260 int nregs = 0;
2261
2262 for (i = 0; i < num_tot_regs; i++)
2263 if (!reg_list[i].pseudo)
2264 nregs++;
2265
2266 return nregs;
2267 }
2268
2269 static int
2270 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2271 {
2272 int i;
2273 int npregs = 0;
2274
2275 for (i = 0; i < num_tot_regs; i++)
2276 if (reg_list[i].pseudo)
2277 npregs ++;
2278
2279 return npregs;
2280 }
2281
2282 /* Information in this table comes from the following web sites:
2283 IBM: http://www.chips.ibm.com:80/products/embedded/
2284 Motorola: http://www.mot.com/SPS/PowerPC/
2285
2286 I'm sure I've got some of the variant descriptions not quite right.
2287 Please report any inaccuracies you find to GDB's maintainer.
2288
2289 If you add entries to this table, please be sure to allow the new
2290 value as an argument to the --with-cpu flag, in configure.in. */
2291
2292 static struct variant variants[] =
2293 {
2294
2295 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2296 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2297 registers_powerpc},
2298 {"power", "POWER user-level", bfd_arch_rs6000,
2299 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2300 registers_power},
2301 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2302 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2303 registers_403},
2304 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2305 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2306 registers_601},
2307 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2308 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2309 registers_602},
2310 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2311 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2312 registers_603},
2313 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2314 604, -1, -1, tot_num_registers (registers_604),
2315 registers_604},
2316 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2317 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2318 registers_403GC},
2319 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2320 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2321 registers_505},
2322 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2323 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2324 registers_860},
2325 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2326 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2327 registers_750},
2328 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2329 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2330 registers_7400},
2331 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2332 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2333 registers_e500},
2334
2335 /* 64-bit */
2336 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2337 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2338 registers_powerpc},
2339 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2340 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2341 registers_powerpc},
2342 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2343 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2344 registers_powerpc},
2345 {"a35", "PowerPC A35", bfd_arch_powerpc,
2346 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2347 registers_powerpc},
2348 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2349 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2350 registers_powerpc},
2351 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2352 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2353 registers_powerpc},
2354
2355 /* FIXME: I haven't checked the register sets of the following. */
2356 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2357 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2358 registers_power},
2359 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2360 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2361 registers_power},
2362 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2363 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2364 registers_power},
2365
2366 {0, 0, 0, 0, 0, 0, 0, 0}
2367 };
2368
2369 /* Initialize the number of registers and pseudo registers in each variant. */
2370
2371 static void
2372 init_variants (void)
2373 {
2374 struct variant *v;
2375
2376 for (v = variants; v->name; v++)
2377 {
2378 if (v->nregs == -1)
2379 v->nregs = num_registers (v->regs, v->num_tot_regs);
2380 if (v->npregs == -1)
2381 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2382 }
2383 }
2384
2385 /* Return the variant corresponding to architecture ARCH and machine number
2386 MACH. If no such variant exists, return null. */
2387
2388 static const struct variant *
2389 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2390 {
2391 const struct variant *v;
2392
2393 for (v = variants; v->name; v++)
2394 if (arch == v->arch && mach == v->mach)
2395 return v;
2396
2397 return NULL;
2398 }
2399
2400 static int
2401 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2402 {
2403 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2404 return print_insn_big_powerpc (memaddr, info);
2405 else
2406 return print_insn_little_powerpc (memaddr, info);
2407 }
2408 \f
2409 /* Initialize the current architecture based on INFO. If possible, re-use an
2410 architecture from ARCHES, which is a list of architectures already created
2411 during this debugging session.
2412
2413 Called e.g. at program startup, when reading a core file, and when reading
2414 a binary file. */
2415
2416 static struct gdbarch *
2417 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2418 {
2419 struct gdbarch *gdbarch;
2420 struct gdbarch_tdep *tdep;
2421 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2422 struct reg *regs;
2423 const struct variant *v;
2424 enum bfd_architecture arch;
2425 unsigned long mach;
2426 bfd abfd;
2427 int sysv_abi;
2428 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2429 asection *sect;
2430
2431 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2432 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2433
2434 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2435 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2436
2437 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2438
2439 if (info.abfd)
2440 osabi = gdbarch_lookup_osabi (info.abfd);
2441
2442 /* Check word size. If INFO is from a binary file, infer it from
2443 that, else choose a likely default. */
2444 if (from_xcoff_exec)
2445 {
2446 if (bfd_xcoff_is_xcoff64 (info.abfd))
2447 wordsize = 8;
2448 else
2449 wordsize = 4;
2450 }
2451 else if (from_elf_exec)
2452 {
2453 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2454 wordsize = 8;
2455 else
2456 wordsize = 4;
2457 }
2458 else
2459 {
2460 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2461 wordsize = info.bfd_arch_info->bits_per_word /
2462 info.bfd_arch_info->bits_per_byte;
2463 else
2464 wordsize = 4;
2465 }
2466
2467 /* Find a candidate among extant architectures. */
2468 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2469 arches != NULL;
2470 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2471 {
2472 /* Word size in the various PowerPC bfd_arch_info structs isn't
2473 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2474 separate word size check. */
2475 tdep = gdbarch_tdep (arches->gdbarch);
2476 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2477 return arches->gdbarch;
2478 }
2479
2480 /* None found, create a new architecture from INFO, whose bfd_arch_info
2481 validity depends on the source:
2482 - executable useless
2483 - rs6000_host_arch() good
2484 - core file good
2485 - "set arch" trust blindly
2486 - GDB startup useless but harmless */
2487
2488 if (!from_xcoff_exec)
2489 {
2490 arch = info.bfd_arch_info->arch;
2491 mach = info.bfd_arch_info->mach;
2492 }
2493 else
2494 {
2495 arch = bfd_arch_powerpc;
2496 mach = 0;
2497 bfd_default_set_arch_mach (&abfd, arch, mach);
2498 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2499 }
2500 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2501 tdep->wordsize = wordsize;
2502 tdep->osabi = osabi;
2503
2504 /* For e500 executables, the apuinfo section is of help here. Such
2505 section contains the identifier and revision number of each
2506 Application-specific Processing Unit that is present on the
2507 chip. The content of the section is determined by the assembler
2508 which looks at each instruction and determines which unit (and
2509 which version of it) can execute it. In our case we just look for
2510 the existance of the section. */
2511
2512 if (info.abfd)
2513 {
2514 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2515 if (sect)
2516 {
2517 arch = info.bfd_arch_info->arch;
2518 mach = bfd_mach_ppc_e500;
2519 bfd_default_set_arch_mach (&abfd, arch, mach);
2520 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2521 }
2522 }
2523
2524 gdbarch = gdbarch_alloc (&info, tdep);
2525 power = arch == bfd_arch_rs6000;
2526
2527 /* Initialize the number of real and pseudo registers in each variant. */
2528 init_variants ();
2529
2530 /* Choose variant. */
2531 v = find_variant_by_arch (arch, mach);
2532 if (!v)
2533 return NULL;
2534
2535 tdep->regs = v->regs;
2536
2537 tdep->ppc_gp0_regnum = 0;
2538 tdep->ppc_gplast_regnum = 31;
2539 tdep->ppc_toc_regnum = 2;
2540 tdep->ppc_ps_regnum = 65;
2541 tdep->ppc_cr_regnum = 66;
2542 tdep->ppc_lr_regnum = 67;
2543 tdep->ppc_ctr_regnum = 68;
2544 tdep->ppc_xer_regnum = 69;
2545 if (v->mach == bfd_mach_ppc_601)
2546 tdep->ppc_mq_regnum = 124;
2547 else if (power)
2548 tdep->ppc_mq_regnum = 70;
2549 else
2550 tdep->ppc_mq_regnum = -1;
2551 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2552
2553 set_gdbarch_pc_regnum (gdbarch, 64);
2554 set_gdbarch_sp_regnum (gdbarch, 1);
2555 set_gdbarch_fp_regnum (gdbarch, 1);
2556
2557 if (v->arch == bfd_arch_powerpc)
2558 switch (v->mach)
2559 {
2560 case bfd_mach_ppc:
2561 tdep->ppc_vr0_regnum = 71;
2562 tdep->ppc_vrsave_regnum = 104;
2563 tdep->ppc_ev0_regnum = -1;
2564 tdep->ppc_ev31_regnum = -1;
2565 break;
2566 case bfd_mach_ppc_7400:
2567 tdep->ppc_vr0_regnum = 119;
2568 tdep->ppc_vrsave_regnum = 153;
2569 tdep->ppc_ev0_regnum = -1;
2570 tdep->ppc_ev31_regnum = -1;
2571 break;
2572 case bfd_mach_ppc_e500:
2573 tdep->ppc_gp0_regnum = 39;
2574 tdep->ppc_gplast_regnum = 70;
2575 tdep->ppc_toc_regnum = -1;
2576 tdep->ppc_ps_regnum = 1;
2577 tdep->ppc_cr_regnum = 2;
2578 tdep->ppc_lr_regnum = 3;
2579 tdep->ppc_ctr_regnum = 4;
2580 tdep->ppc_xer_regnum = 5;
2581 tdep->ppc_ev0_regnum = 7;
2582 tdep->ppc_ev31_regnum = 38;
2583 set_gdbarch_pc_regnum (gdbarch, 0);
2584 set_gdbarch_sp_regnum (gdbarch, 40);
2585 set_gdbarch_fp_regnum (gdbarch, 40);
2586 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2587 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2588 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2589 break;
2590 default:
2591 tdep->ppc_vr0_regnum = -1;
2592 tdep->ppc_vrsave_regnum = -1;
2593 tdep->ppc_ev0_regnum = -1;
2594 tdep->ppc_ev31_regnum = -1;
2595 break;
2596 }
2597
2598 /* Set lr_frame_offset. */
2599 if (wordsize == 8)
2600 tdep->lr_frame_offset = 16;
2601 else if (sysv_abi)
2602 tdep->lr_frame_offset = 4;
2603 else
2604 tdep->lr_frame_offset = 8;
2605
2606 /* Calculate byte offsets in raw register array. */
2607 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2608 for (i = off = 0; i < v->num_tot_regs; i++)
2609 {
2610 tdep->regoff[i] = off;
2611 off += regsize (v->regs + i, wordsize);
2612 }
2613
2614 /* Select instruction printer. */
2615 if (arch == power)
2616 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2617 else
2618 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2619
2620 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2621 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2622 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2623 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2624 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2625
2626 set_gdbarch_num_regs (gdbarch, v->nregs);
2627 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2628 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2629 set_gdbarch_register_size (gdbarch, wordsize);
2630 set_gdbarch_register_bytes (gdbarch, off);
2631 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2632 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2633 set_gdbarch_max_register_raw_size (gdbarch, 16);
2634 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2635 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2636 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2637
2638 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2639 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2640 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2641 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2642 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2643 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2644 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2645 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2646 set_gdbarch_char_signed (gdbarch, 0);
2647
2648 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2649 set_gdbarch_call_dummy_length (gdbarch, 0);
2650 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2651 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2652 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2653 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2654 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2655 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2656 set_gdbarch_call_dummy_p (gdbarch, 1);
2657 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2658 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
2659 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2660 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2661 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2662 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2663 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2664 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2665
2666 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2667 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2668 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2669 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2670
2671 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2672
2673 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2674 is correct for the SysV ABI when the wordsize is 8, but I'm also
2675 fairly certain that ppc_sysv_abi_push_arguments() will give even
2676 worse results since it only works for 32-bit code. So, for the moment,
2677 we're better off calling rs6000_push_arguments() since it works for
2678 64-bit code. At some point in the future, this matter needs to be
2679 revisited. */
2680 if (sysv_abi && wordsize == 4)
2681 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2682 else
2683 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2684
2685 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2686 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2687 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2688 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2689
2690 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2691 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2692 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2693 set_gdbarch_function_start_offset (gdbarch, 0);
2694 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2695
2696 /* Not sure on this. FIXMEmgo */
2697 set_gdbarch_frame_args_skip (gdbarch, 8);
2698
2699 if (sysv_abi)
2700 set_gdbarch_use_struct_convention (gdbarch,
2701 ppc_sysv_abi_use_struct_convention);
2702 else
2703 set_gdbarch_use_struct_convention (gdbarch,
2704 generic_use_struct_convention);
2705
2706 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2707
2708 set_gdbarch_frameless_function_invocation (gdbarch,
2709 rs6000_frameless_function_invocation);
2710 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2711 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2712
2713 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2714 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2715
2716 if (!sysv_abi)
2717 {
2718 /* Handle RS/6000 function pointers (which are really function
2719 descriptors). */
2720 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2721 rs6000_convert_from_func_ptr_addr);
2722 }
2723 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2724 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2725 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2726
2727 /* We can't tell how many args there are
2728 now that the C compiler delays popping them. */
2729 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2730
2731 /* Hook in ABI-specific overrides, if they have been registered. */
2732 gdbarch_init_osabi (info, gdbarch, osabi);
2733
2734 return gdbarch;
2735 }
2736
2737 static void
2738 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2739 {
2740 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2741
2742 if (tdep == NULL)
2743 return;
2744
2745 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2746 gdbarch_osabi_name (tdep->osabi));
2747 }
2748
2749 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2750
2751 static void
2752 rs6000_info_powerpc_command (char *args, int from_tty)
2753 {
2754 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2755 }
2756
2757 /* Initialization code. */
2758
2759 void
2760 _initialize_rs6000_tdep (void)
2761 {
2762 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2763 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2764
2765 /* Add root prefix command for "info powerpc" commands */
2766 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2767 "Various POWERPC info specific commands.",
2768 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2769 }
This page took 0.086543 seconds and 5 git commands to generate.