2003-10-31 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 get_frame_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
989 return pc + 8;
990 }
991 }
992 #endif /* 0 */
993
994 fdata->offset = -fdata->offset;
995 return last_prologue_pc;
996 }
997
998
999 /*************************************************************************
1000 Support for creating pushing a dummy frame into the stack, and popping
1001 frames, etc.
1002 *************************************************************************/
1003
1004
1005 /* Pop the innermost frame, go back to the caller. */
1006
1007 static void
1008 rs6000_pop_frame (void)
1009 {
1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
1013 int ii, wordsize;
1014
1015 pc = read_pc ();
1016 sp = get_frame_base (frame);
1017
1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
1021 {
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
1025 }
1026
1027 /* Make sure that all registers are valid. */
1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1029
1030 /* Figure out previous %pc value. If the function is frameless, it is
1031 still in the link register, otherwise walk the frames and retrieve the
1032 saved %pc value in the previous frame. */
1033
1034 addr = get_frame_func (frame);
1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1036
1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
1041 prev_sp = read_memory_addr (sp, wordsize);
1042 if (fdata.lr_offset == 0)
1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1044 else
1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
1050 /* reset register values if any was saved earlier. */
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
1057 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
1058 wordsize);
1059 addr += wordsize;
1060 }
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
1068 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1069 addr += 8;
1070 }
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076 }
1077
1078 /* All the ABI's require 16 byte alignment. */
1079 static CORE_ADDR
1080 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1081 {
1082 return (addr & -16);
1083 }
1084
1085 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1086 the first eight words of the argument list (that might be less than
1087 eight parameters if some parameters occupy more than one word) are
1088 passed in r3..r10 registers. float and double parameters are
1089 passed in fpr's, in addition to that. Rest of the parameters if any
1090 are passed in user stack. There might be cases in which half of the
1091 parameter is copied into registers, the other half is pushed into
1092 stack.
1093
1094 Stack must be aligned on 64-bit boundaries when synthesizing
1095 function calls.
1096
1097 If the function is returning a structure, then the return address is passed
1098 in r3, then the first 7 words of the parameters can be passed in registers,
1099 starting from r4. */
1100
1101 static CORE_ADDR
1102 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
1106 {
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1108 int ii;
1109 int len = 0;
1110 int argno; /* current argument number */
1111 int argbytes; /* current argument byte */
1112 char tmp_buffer[50];
1113 int f_argno = 0; /* current floating point argno */
1114 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1115
1116 struct value *arg = 0;
1117 struct type *type;
1118
1119 CORE_ADDR saved_sp;
1120
1121 /* The first eight words of ther arguments are passed in registers.
1122 Copy them appropriately. */
1123 ii = 0;
1124
1125 /* If the function is returning a `struct', then the first word
1126 (which will be passed in r3) is used for struct return address.
1127 In that case we should advance one word and start from r4
1128 register to copy parameters. */
1129 if (struct_return)
1130 {
1131 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1132 struct_addr);
1133 ii++;
1134 }
1135
1136 /*
1137 effectively indirect call... gcc does...
1138
1139 return_val example( float, int);
1140
1141 eabi:
1142 float in fp0, int in r3
1143 offset of stack on overflow 8/16
1144 for varargs, must go by type.
1145 power open:
1146 float in r3&r4, int in r5
1147 offset of stack on overflow different
1148 both:
1149 return in r3 or f0. If no float, must study how gcc emulates floats;
1150 pay attention to arg promotion.
1151 User may have to cast\args to handle promotion correctly
1152 since gdb won't know if prototype supplied or not.
1153 */
1154
1155 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1156 {
1157 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1158
1159 arg = args[argno];
1160 type = check_typedef (VALUE_TYPE (arg));
1161 len = TYPE_LENGTH (type);
1162
1163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1164 {
1165
1166 /* Floating point arguments are passed in fpr's, as well as gpr's.
1167 There are 13 fpr's reserved for passing parameters. At this point
1168 there is no way we would run out of them. */
1169
1170 if (len > 8)
1171 printf_unfiltered (
1172 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1173
1174 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1175 VALUE_CONTENTS (arg),
1176 len);
1177 ++f_argno;
1178 }
1179
1180 if (len > reg_size)
1181 {
1182
1183 /* Argument takes more than one register. */
1184 while (argbytes < len)
1185 {
1186 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1187 reg_size);
1188 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1189 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1190 (len - argbytes) > reg_size
1191 ? reg_size : len - argbytes);
1192 ++ii, argbytes += reg_size;
1193
1194 if (ii >= 8)
1195 goto ran_out_of_registers_for_arguments;
1196 }
1197 argbytes = 0;
1198 --ii;
1199 }
1200 else
1201 {
1202 /* Argument can fit in one register. No problem. */
1203 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1204 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1205 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1206 VALUE_CONTENTS (arg), len);
1207 }
1208 ++argno;
1209 }
1210
1211 ran_out_of_registers_for_arguments:
1212
1213 saved_sp = read_sp ();
1214
1215 /* Location for 8 parameters are always reserved. */
1216 sp -= wordsize * 8;
1217
1218 /* Another six words for back chain, TOC register, link register, etc. */
1219 sp -= wordsize * 6;
1220
1221 /* Stack pointer must be quadword aligned. */
1222 sp &= -16;
1223
1224 /* If there are more arguments, allocate space for them in
1225 the stack, then push them starting from the ninth one. */
1226
1227 if ((argno < nargs) || argbytes)
1228 {
1229 int space = 0, jj;
1230
1231 if (argbytes)
1232 {
1233 space += ((len - argbytes + 3) & -4);
1234 jj = argno + 1;
1235 }
1236 else
1237 jj = argno;
1238
1239 for (; jj < nargs; ++jj)
1240 {
1241 struct value *val = args[jj];
1242 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1243 }
1244
1245 /* Add location required for the rest of the parameters. */
1246 space = (space + 15) & -16;
1247 sp -= space;
1248
1249 /* If the last argument copied into the registers didn't fit there
1250 completely, push the rest of it into stack. */
1251
1252 if (argbytes)
1253 {
1254 write_memory (sp + 24 + (ii * 4),
1255 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1256 len - argbytes);
1257 ++argno;
1258 ii += ((len - argbytes + 3) & -4) / 4;
1259 }
1260
1261 /* Push the rest of the arguments into stack. */
1262 for (; argno < nargs; ++argno)
1263 {
1264
1265 arg = args[argno];
1266 type = check_typedef (VALUE_TYPE (arg));
1267 len = TYPE_LENGTH (type);
1268
1269
1270 /* Float types should be passed in fpr's, as well as in the
1271 stack. */
1272 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1273 {
1274
1275 if (len > 8)
1276 printf_unfiltered (
1277 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1278
1279 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1280 VALUE_CONTENTS (arg),
1281 len);
1282 ++f_argno;
1283 }
1284
1285 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1286 ii += ((len + 3) & -4) / 4;
1287 }
1288 }
1289
1290 /* set back chain properly */
1291 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1292 write_memory (sp, tmp_buffer, 4);
1293
1294 /* Set the stack pointer. According to the ABI, the SP is meant to
1295 be set _before_ the corresponding stack space is used. No need
1296 for that here though - the target has been completely stopped -
1297 it isn't possible for an exception handler to stomp on the stack. */
1298 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1299
1300 /* Point the inferior function call's return address at the dummy's
1301 breakpoint. */
1302 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1303
1304 /* Set the TOC register, get the value from the objfile reader
1305 which, in turn, gets it from the VMAP table. */
1306 if (rs6000_find_toc_address_hook != NULL)
1307 {
1308 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1309 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1310 }
1311
1312 target_store_registers (-1);
1313 return sp;
1314 }
1315
1316 /* PowerOpen always puts structures in memory. Vectors, which were
1317 added later, do get returned in a register though. */
1318
1319 static int
1320 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1321 {
1322 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1323 && TYPE_VECTOR (value_type))
1324 return 0;
1325 return 1;
1326 }
1327
1328 static void
1329 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1330 {
1331 int offset = 0;
1332 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1333
1334 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1335 {
1336
1337 double dd;
1338 float ff;
1339 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1340 We need to truncate the return value into float size (4 byte) if
1341 necessary. */
1342
1343 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1344 memcpy (valbuf,
1345 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1346 TYPE_LENGTH (valtype));
1347 else
1348 { /* float */
1349 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1350 ff = (float) dd;
1351 memcpy (valbuf, &ff, sizeof (float));
1352 }
1353 }
1354 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1355 && TYPE_LENGTH (valtype) == 16
1356 && TYPE_VECTOR (valtype))
1357 {
1358 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1359 TYPE_LENGTH (valtype));
1360 }
1361 else
1362 {
1363 /* return value is copied starting from r3. */
1364 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1365 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1366 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1367
1368 memcpy (valbuf,
1369 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1370 TYPE_LENGTH (valtype));
1371 }
1372 }
1373
1374 /* Return whether handle_inferior_event() should proceed through code
1375 starting at PC in function NAME when stepping.
1376
1377 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1378 handle memory references that are too distant to fit in instructions
1379 generated by the compiler. For example, if 'foo' in the following
1380 instruction:
1381
1382 lwz r9,foo(r2)
1383
1384 is greater than 32767, the linker might replace the lwz with a branch to
1385 somewhere in @FIX1 that does the load in 2 instructions and then branches
1386 back to where execution should continue.
1387
1388 GDB should silently step over @FIX code, just like AIX dbx does.
1389 Unfortunately, the linker uses the "b" instruction for the branches,
1390 meaning that the link register doesn't get set. Therefore, GDB's usual
1391 step_over_function() mechanism won't work.
1392
1393 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1394 in handle_inferior_event() to skip past @FIX code. */
1395
1396 int
1397 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1398 {
1399 return name && !strncmp (name, "@FIX", 4);
1400 }
1401
1402 /* Skip code that the user doesn't want to see when stepping:
1403
1404 1. Indirect function calls use a piece of trampoline code to do context
1405 switching, i.e. to set the new TOC table. Skip such code if we are on
1406 its first instruction (as when we have single-stepped to here).
1407
1408 2. Skip shared library trampoline code (which is different from
1409 indirect function call trampolines).
1410
1411 3. Skip bigtoc fixup code.
1412
1413 Result is desired PC to step until, or NULL if we are not in
1414 code that should be skipped. */
1415
1416 CORE_ADDR
1417 rs6000_skip_trampoline_code (CORE_ADDR pc)
1418 {
1419 unsigned int ii, op;
1420 int rel;
1421 CORE_ADDR solib_target_pc;
1422 struct minimal_symbol *msymbol;
1423
1424 static unsigned trampoline_code[] =
1425 {
1426 0x800b0000, /* l r0,0x0(r11) */
1427 0x90410014, /* st r2,0x14(r1) */
1428 0x7c0903a6, /* mtctr r0 */
1429 0x804b0004, /* l r2,0x4(r11) */
1430 0x816b0008, /* l r11,0x8(r11) */
1431 0x4e800420, /* bctr */
1432 0x4e800020, /* br */
1433 0
1434 };
1435
1436 /* Check for bigtoc fixup code. */
1437 msymbol = lookup_minimal_symbol_by_pc (pc);
1438 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1439 {
1440 /* Double-check that the third instruction from PC is relative "b". */
1441 op = read_memory_integer (pc + 8, 4);
1442 if ((op & 0xfc000003) == 0x48000000)
1443 {
1444 /* Extract bits 6-29 as a signed 24-bit relative word address and
1445 add it to the containing PC. */
1446 rel = ((int)(op << 6) >> 6);
1447 return pc + 8 + rel;
1448 }
1449 }
1450
1451 /* If pc is in a shared library trampoline, return its target. */
1452 solib_target_pc = find_solib_trampoline_target (pc);
1453 if (solib_target_pc)
1454 return solib_target_pc;
1455
1456 for (ii = 0; trampoline_code[ii]; ++ii)
1457 {
1458 op = read_memory_integer (pc + (ii * 4), 4);
1459 if (op != trampoline_code[ii])
1460 return 0;
1461 }
1462 ii = read_register (11); /* r11 holds destination addr */
1463 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1464 return pc;
1465 }
1466
1467 /* Determines whether the function FI has a frame on the stack or not. */
1468
1469 int
1470 rs6000_frameless_function_invocation (struct frame_info *fi)
1471 {
1472 CORE_ADDR func_start;
1473 struct rs6000_framedata fdata;
1474
1475 /* Don't even think about framelessness except on the innermost frame
1476 or if the function was interrupted by a signal. */
1477 if (get_next_frame (fi) != NULL
1478 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1479 return 0;
1480
1481 func_start = get_frame_func (fi);
1482
1483 /* If we failed to find the start of the function, it is a mistake
1484 to inspect the instructions. */
1485
1486 if (!func_start)
1487 {
1488 /* A frame with a zero PC is usually created by dereferencing a NULL
1489 function pointer, normally causing an immediate core dump of the
1490 inferior. Mark function as frameless, as the inferior has no chance
1491 of setting up a stack frame. */
1492 if (get_frame_pc (fi) == 0)
1493 return 1;
1494 else
1495 return 0;
1496 }
1497
1498 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1499 return fdata.frameless;
1500 }
1501
1502 /* Return the PC saved in a frame. */
1503
1504 CORE_ADDR
1505 rs6000_frame_saved_pc (struct frame_info *fi)
1506 {
1507 CORE_ADDR func_start;
1508 struct rs6000_framedata fdata;
1509 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1510 int wordsize = tdep->wordsize;
1511
1512 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1513 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1514 wordsize);
1515
1516 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1517 get_frame_base (fi),
1518 get_frame_base (fi)))
1519 return deprecated_read_register_dummy (get_frame_pc (fi),
1520 get_frame_base (fi), PC_REGNUM);
1521
1522 func_start = get_frame_func (fi);
1523
1524 /* If we failed to find the start of the function, it is a mistake
1525 to inspect the instructions. */
1526 if (!func_start)
1527 return 0;
1528
1529 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1530
1531 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1532 {
1533 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1534 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1535 + SIG_FRAME_LR_OFFSET),
1536 wordsize);
1537 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1538 /* The link register wasn't saved by this frame and the next
1539 (inner, newer) frame is a dummy. Get the link register
1540 value by unwinding it from that [dummy] frame. */
1541 {
1542 ULONGEST lr;
1543 frame_unwind_unsigned_register (get_next_frame (fi),
1544 tdep->ppc_lr_regnum, &lr);
1545 return lr;
1546 }
1547 else
1548 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1549 + tdep->lr_frame_offset,
1550 wordsize);
1551 }
1552
1553 if (fdata.lr_offset == 0)
1554 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1555
1556 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1557 wordsize);
1558 }
1559
1560 /* If saved registers of frame FI are not known yet, read and cache them.
1561 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1562 in which case the framedata are read. */
1563
1564 static void
1565 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1566 {
1567 CORE_ADDR frame_addr;
1568 struct rs6000_framedata work_fdata;
1569 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1570 int wordsize = tdep->wordsize;
1571
1572 if (deprecated_get_frame_saved_regs (fi))
1573 return;
1574
1575 if (fdatap == NULL)
1576 {
1577 fdatap = &work_fdata;
1578 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1579 }
1580
1581 frame_saved_regs_zalloc (fi);
1582
1583 /* If there were any saved registers, figure out parent's stack
1584 pointer. */
1585 /* The following is true only if the frame doesn't have a call to
1586 alloca(), FIXME. */
1587
1588 if (fdatap->saved_fpr == 0
1589 && fdatap->saved_gpr == 0
1590 && fdatap->saved_vr == 0
1591 && fdatap->saved_ev == 0
1592 && fdatap->lr_offset == 0
1593 && fdatap->cr_offset == 0
1594 && fdatap->vr_offset == 0
1595 && fdatap->ev_offset == 0)
1596 frame_addr = 0;
1597 else
1598 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1599 address of the current frame. Things might be easier if the
1600 ->frame pointed to the outer-most address of the frame. In the
1601 mean time, the address of the prev frame is used as the base
1602 address of this frame. */
1603 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1604
1605 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1606 All fpr's from saved_fpr to fp31 are saved. */
1607
1608 if (fdatap->saved_fpr >= 0)
1609 {
1610 int i;
1611 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1612 for (i = fdatap->saved_fpr; i < 32; i++)
1613 {
1614 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1615 fpr_addr += 8;
1616 }
1617 }
1618
1619 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1620 All gpr's from saved_gpr to gpr31 are saved. */
1621
1622 if (fdatap->saved_gpr >= 0)
1623 {
1624 int i;
1625 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1626 for (i = fdatap->saved_gpr; i < 32; i++)
1627 {
1628 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1629 gpr_addr += wordsize;
1630 }
1631 }
1632
1633 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1634 All vr's from saved_vr to vr31 are saved. */
1635 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1636 {
1637 if (fdatap->saved_vr >= 0)
1638 {
1639 int i;
1640 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1641 for (i = fdatap->saved_vr; i < 32; i++)
1642 {
1643 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1644 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1645 }
1646 }
1647 }
1648
1649 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1650 All vr's from saved_ev to ev31 are saved. ????? */
1651 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1652 {
1653 if (fdatap->saved_ev >= 0)
1654 {
1655 int i;
1656 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1657 for (i = fdatap->saved_ev; i < 32; i++)
1658 {
1659 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1660 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1661 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1662 }
1663 }
1664 }
1665
1666 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1667 the CR. */
1668 if (fdatap->cr_offset != 0)
1669 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1670
1671 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1672 the LR. */
1673 if (fdatap->lr_offset != 0)
1674 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1675
1676 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1677 the VRSAVE. */
1678 if (fdatap->vrsave_offset != 0)
1679 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1680 }
1681
1682 /* Return the address of a frame. This is the inital %sp value when the frame
1683 was first allocated. For functions calling alloca(), it might be saved in
1684 an alloca register. */
1685
1686 static CORE_ADDR
1687 frame_initial_stack_address (struct frame_info *fi)
1688 {
1689 CORE_ADDR tmpaddr;
1690 struct rs6000_framedata fdata;
1691 struct frame_info *callee_fi;
1692
1693 /* If the initial stack pointer (frame address) of this frame is known,
1694 just return it. */
1695
1696 if (get_frame_extra_info (fi)->initial_sp)
1697 return get_frame_extra_info (fi)->initial_sp;
1698
1699 /* Find out if this function is using an alloca register. */
1700
1701 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1702
1703 /* If saved registers of this frame are not known yet, read and
1704 cache them. */
1705
1706 if (!deprecated_get_frame_saved_regs (fi))
1707 frame_get_saved_regs (fi, &fdata);
1708
1709 /* If no alloca register used, then fi->frame is the value of the %sp for
1710 this frame, and it is good enough. */
1711
1712 if (fdata.alloca_reg < 0)
1713 {
1714 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1715 return get_frame_extra_info (fi)->initial_sp;
1716 }
1717
1718 /* There is an alloca register, use its value, in the current frame,
1719 as the initial stack pointer. */
1720 {
1721 char tmpbuf[MAX_REGISTER_SIZE];
1722 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1723 {
1724 get_frame_extra_info (fi)->initial_sp
1725 = extract_unsigned_integer (tmpbuf,
1726 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
1727 }
1728 else
1729 /* NOTE: cagney/2002-04-17: At present the only time
1730 frame_register_read will fail is when the register isn't
1731 available. If that does happen, use the frame. */
1732 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1733 }
1734 return get_frame_extra_info (fi)->initial_sp;
1735 }
1736
1737 /* Describe the pointer in each stack frame to the previous stack frame
1738 (its caller). */
1739
1740 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1741 the frame's chain-pointer. */
1742
1743 /* In the case of the RS/6000, the frame's nominal address
1744 is the address of a 4-byte word containing the calling frame's address. */
1745
1746 CORE_ADDR
1747 rs6000_frame_chain (struct frame_info *thisframe)
1748 {
1749 CORE_ADDR fp, fpp, lr;
1750 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1751
1752 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1753 get_frame_base (thisframe),
1754 get_frame_base (thisframe)))
1755 /* A dummy frame always correctly chains back to the previous
1756 frame. */
1757 return read_memory_addr (get_frame_base (thisframe), wordsize);
1758
1759 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1760 || get_frame_pc (thisframe) == entry_point_address ())
1761 return 0;
1762
1763 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1764 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1765 wordsize);
1766 else if (get_next_frame (thisframe) != NULL
1767 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1768 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1769 /* A frameless function interrupted by a signal did not change the
1770 frame pointer. */
1771 fp = get_frame_base (thisframe);
1772 else
1773 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1774 return fp;
1775 }
1776
1777 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1778 isn't available with that word size, return 0. */
1779
1780 static int
1781 regsize (const struct reg *reg, int wordsize)
1782 {
1783 return wordsize == 8 ? reg->sz64 : reg->sz32;
1784 }
1785
1786 /* Return the name of register number N, or null if no such register exists
1787 in the current architecture. */
1788
1789 static const char *
1790 rs6000_register_name (int n)
1791 {
1792 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1793 const struct reg *reg = tdep->regs + n;
1794
1795 if (!regsize (reg, tdep->wordsize))
1796 return NULL;
1797 return reg->name;
1798 }
1799
1800 /* Index within `registers' of the first byte of the space for
1801 register N. */
1802
1803 static int
1804 rs6000_register_byte (int n)
1805 {
1806 return gdbarch_tdep (current_gdbarch)->regoff[n];
1807 }
1808
1809 /* Return the number of bytes of storage in the actual machine representation
1810 for register N if that register is available, else return 0. */
1811
1812 static int
1813 rs6000_register_raw_size (int n)
1814 {
1815 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1816 const struct reg *reg = tdep->regs + n;
1817 return regsize (reg, tdep->wordsize);
1818 }
1819
1820 /* Return the GDB type object for the "standard" data type
1821 of data in register N. */
1822
1823 static struct type *
1824 rs6000_register_virtual_type (int n)
1825 {
1826 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1827 const struct reg *reg = tdep->regs + n;
1828
1829 if (reg->fpr)
1830 return builtin_type_double;
1831 else
1832 {
1833 int size = regsize (reg, tdep->wordsize);
1834 switch (size)
1835 {
1836 case 0:
1837 return builtin_type_int0;
1838 case 4:
1839 return builtin_type_int32;
1840 case 8:
1841 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1842 return builtin_type_vec64;
1843 else
1844 return builtin_type_int64;
1845 break;
1846 case 16:
1847 return builtin_type_vec128;
1848 break;
1849 default:
1850 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1851 n, size);
1852 }
1853 }
1854 }
1855
1856 /* Return whether register N requires conversion when moving from raw format
1857 to virtual format.
1858
1859 The register format for RS/6000 floating point registers is always
1860 double, we need a conversion if the memory format is float. */
1861
1862 static int
1863 rs6000_register_convertible (int n)
1864 {
1865 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1866 return reg->fpr;
1867 }
1868
1869 /* Convert data from raw format for register N in buffer FROM
1870 to virtual format with type TYPE in buffer TO. */
1871
1872 static void
1873 rs6000_register_convert_to_virtual (int n, struct type *type,
1874 char *from, char *to)
1875 {
1876 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1877 {
1878 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1879 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1880 }
1881 else
1882 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1883 }
1884
1885 /* Convert data from virtual format with type TYPE in buffer FROM
1886 to raw format for register N in buffer TO. */
1887
1888 static void
1889 rs6000_register_convert_to_raw (struct type *type, int n,
1890 const char *from, char *to)
1891 {
1892 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1893 {
1894 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1895 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1896 }
1897 else
1898 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1899 }
1900
1901 static void
1902 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1903 int reg_nr, void *buffer)
1904 {
1905 int base_regnum;
1906 int offset = 0;
1907 char temp_buffer[MAX_REGISTER_SIZE];
1908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1909
1910 if (reg_nr >= tdep->ppc_gp0_regnum
1911 && reg_nr <= tdep->ppc_gplast_regnum)
1912 {
1913 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1914
1915 /* Build the value in the provided buffer. */
1916 /* Read the raw register of which this one is the lower portion. */
1917 regcache_raw_read (regcache, base_regnum, temp_buffer);
1918 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1919 offset = 4;
1920 memcpy ((char *) buffer, temp_buffer + offset, 4);
1921 }
1922 }
1923
1924 static void
1925 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1926 int reg_nr, const void *buffer)
1927 {
1928 int base_regnum;
1929 int offset = 0;
1930 char temp_buffer[MAX_REGISTER_SIZE];
1931 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1932
1933 if (reg_nr >= tdep->ppc_gp0_regnum
1934 && reg_nr <= tdep->ppc_gplast_regnum)
1935 {
1936 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1937 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1938 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1939 offset = 4;
1940
1941 /* Let's read the value of the base register into a temporary
1942 buffer, so that overwriting the last four bytes with the new
1943 value of the pseudo will leave the upper 4 bytes unchanged. */
1944 regcache_raw_read (regcache, base_regnum, temp_buffer);
1945
1946 /* Write as an 8 byte quantity. */
1947 memcpy (temp_buffer + offset, (char *) buffer, 4);
1948 regcache_raw_write (regcache, base_regnum, temp_buffer);
1949 }
1950 }
1951
1952 /* Convert a dwarf2 register number to a gdb REGNUM. */
1953 static int
1954 e500_dwarf2_reg_to_regnum (int num)
1955 {
1956 int regnum;
1957 if (0 <= num && num <= 31)
1958 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1959 else
1960 return num;
1961 }
1962
1963 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1964 REGNUM. */
1965 static int
1966 rs6000_stab_reg_to_regnum (int num)
1967 {
1968 int regnum;
1969 switch (num)
1970 {
1971 case 64:
1972 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1973 break;
1974 case 65:
1975 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1976 break;
1977 case 66:
1978 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1979 break;
1980 case 76:
1981 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1982 break;
1983 default:
1984 regnum = num;
1985 break;
1986 }
1987 return regnum;
1988 }
1989
1990 static void
1991 rs6000_store_return_value (struct type *type, char *valbuf)
1992 {
1993 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1994
1995 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1996
1997 /* Floating point values are returned starting from FPR1 and up.
1998 Say a double_double_double type could be returned in
1999 FPR1/FPR2/FPR3 triple. */
2000
2001 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2002 TYPE_LENGTH (type));
2003 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2004 {
2005 if (TYPE_LENGTH (type) == 16
2006 && TYPE_VECTOR (type))
2007 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2008 valbuf, TYPE_LENGTH (type));
2009 }
2010 else
2011 /* Everything else is returned in GPR3 and up. */
2012 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2013 valbuf, TYPE_LENGTH (type));
2014 }
2015
2016 /* Extract from an array REGBUF containing the (raw) register state
2017 the address in which a function should return its structure value,
2018 as a CORE_ADDR (or an expression that can be used as one). */
2019
2020 static CORE_ADDR
2021 rs6000_extract_struct_value_address (struct regcache *regcache)
2022 {
2023 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2024 function call GDB knows the address of the struct return value
2025 and hence, should not need to call this function. Unfortunately,
2026 the current call_function_by_hand() code only saves the most
2027 recent struct address leading to occasional calls. The code
2028 should instead maintain a stack of such addresses (in the dummy
2029 frame object). */
2030 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2031 really got no idea where the return value is being stored. While
2032 r3, on function entry, contained the address it will have since
2033 been reused (scratch) and hence wouldn't be valid */
2034 return 0;
2035 }
2036
2037 /* Return whether PC is in a dummy function call.
2038
2039 FIXME: This just checks for the end of the stack, which is broken
2040 for things like stepping through gcc nested function stubs. */
2041
2042 static int
2043 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2044 {
2045 return sp < pc && pc < fp;
2046 }
2047
2048 /* Hook called when a new child process is started. */
2049
2050 void
2051 rs6000_create_inferior (int pid)
2052 {
2053 if (rs6000_set_host_arch_hook)
2054 rs6000_set_host_arch_hook (pid);
2055 }
2056 \f
2057 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2058
2059 Usually a function pointer's representation is simply the address
2060 of the function. On the RS/6000 however, a function pointer is
2061 represented by a pointer to a TOC entry. This TOC entry contains
2062 three words, the first word is the address of the function, the
2063 second word is the TOC pointer (r2), and the third word is the
2064 static chain value. Throughout GDB it is currently assumed that a
2065 function pointer contains the address of the function, which is not
2066 easy to fix. In addition, the conversion of a function address to
2067 a function pointer would require allocation of a TOC entry in the
2068 inferior's memory space, with all its drawbacks. To be able to
2069 call C++ virtual methods in the inferior (which are called via
2070 function pointers), find_function_addr uses this function to get the
2071 function address from a function pointer. */
2072
2073 /* Return real function address if ADDR (a function pointer) is in the data
2074 space and is therefore a special function pointer. */
2075
2076 static CORE_ADDR
2077 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2078 CORE_ADDR addr,
2079 struct target_ops *targ)
2080 {
2081 struct obj_section *s;
2082
2083 s = find_pc_section (addr);
2084 if (s && s->the_bfd_section->flags & SEC_CODE)
2085 return addr;
2086
2087 /* ADDR is in the data space, so it's a special function pointer. */
2088 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2089 }
2090 \f
2091
2092 /* Handling the various POWER/PowerPC variants. */
2093
2094
2095 /* The arrays here called registers_MUMBLE hold information about available
2096 registers.
2097
2098 For each family of PPC variants, I've tried to isolate out the
2099 common registers and put them up front, so that as long as you get
2100 the general family right, GDB will correctly identify the registers
2101 common to that family. The common register sets are:
2102
2103 For the 60x family: hid0 hid1 iabr dabr pir
2104
2105 For the 505 and 860 family: eie eid nri
2106
2107 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2108 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2109 pbu1 pbl2 pbu2
2110
2111 Most of these register groups aren't anything formal. I arrived at
2112 them by looking at the registers that occurred in more than one
2113 processor.
2114
2115 Note: kevinb/2002-04-30: Support for the fpscr register was added
2116 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2117 for Power. For PowerPC, slot 70 was unused and was already in the
2118 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2119 slot 70 was being used for "mq", so the next available slot (71)
2120 was chosen. It would have been nice to be able to make the
2121 register numbers the same across processor cores, but this wasn't
2122 possible without either 1) renumbering some registers for some
2123 processors or 2) assigning fpscr to a really high slot that's
2124 larger than any current register number. Doing (1) is bad because
2125 existing stubs would break. Doing (2) is undesirable because it
2126 would introduce a really large gap between fpscr and the rest of
2127 the registers for most processors. */
2128
2129 /* Convenience macros for populating register arrays. */
2130
2131 /* Within another macro, convert S to a string. */
2132
2133 #define STR(s) #s
2134
2135 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2136 and 64 bits on 64-bit systems. */
2137 #define R(name) { STR(name), 4, 8, 0, 0 }
2138
2139 /* Return a struct reg defining register NAME that's 32 bits on all
2140 systems. */
2141 #define R4(name) { STR(name), 4, 4, 0, 0 }
2142
2143 /* Return a struct reg defining register NAME that's 64 bits on all
2144 systems. */
2145 #define R8(name) { STR(name), 8, 8, 0, 0 }
2146
2147 /* Return a struct reg defining register NAME that's 128 bits on all
2148 systems. */
2149 #define R16(name) { STR(name), 16, 16, 0, 0 }
2150
2151 /* Return a struct reg defining floating-point register NAME. */
2152 #define F(name) { STR(name), 8, 8, 1, 0 }
2153
2154 /* Return a struct reg defining a pseudo register NAME. */
2155 #define P(name) { STR(name), 4, 8, 0, 1}
2156
2157 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2158 systems and that doesn't exist on 64-bit systems. */
2159 #define R32(name) { STR(name), 4, 0, 0, 0 }
2160
2161 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2162 systems and that doesn't exist on 32-bit systems. */
2163 #define R64(name) { STR(name), 0, 8, 0, 0 }
2164
2165 /* Return a struct reg placeholder for a register that doesn't exist. */
2166 #define R0 { 0, 0, 0, 0, 0 }
2167
2168 /* UISA registers common across all architectures, including POWER. */
2169
2170 #define COMMON_UISA_REGS \
2171 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2172 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2173 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2174 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2175 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2176 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2177 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2178 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2179 /* 64 */ R(pc), R(ps)
2180
2181 #define COMMON_UISA_NOFP_REGS \
2182 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2183 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2184 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2185 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2186 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2187 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2188 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2189 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2190 /* 64 */ R(pc), R(ps)
2191
2192 /* UISA-level SPRs for PowerPC. */
2193 #define PPC_UISA_SPRS \
2194 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2195
2196 /* UISA-level SPRs for PowerPC without floating point support. */
2197 #define PPC_UISA_NOFP_SPRS \
2198 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2199
2200 /* Segment registers, for PowerPC. */
2201 #define PPC_SEGMENT_REGS \
2202 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2203 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2204 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2205 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2206
2207 /* OEA SPRs for PowerPC. */
2208 #define PPC_OEA_SPRS \
2209 /* 87 */ R4(pvr), \
2210 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2211 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2212 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2213 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2214 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2215 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2216 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2217 /* 116 */ R4(dec), R(dabr), R4(ear)
2218
2219 /* AltiVec registers. */
2220 #define PPC_ALTIVEC_REGS \
2221 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2222 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2223 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2224 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2225 /*151*/R4(vscr), R4(vrsave)
2226
2227 /* Vectors of hi-lo general purpose registers. */
2228 #define PPC_EV_REGS \
2229 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2230 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2231 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2232 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2233
2234 /* Lower half of the EV registers. */
2235 #define PPC_GPRS_PSEUDO_REGS \
2236 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2237 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2238 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2239 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2240
2241 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2242 user-level SPR's. */
2243 static const struct reg registers_power[] =
2244 {
2245 COMMON_UISA_REGS,
2246 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2247 /* 71 */ R4(fpscr)
2248 };
2249
2250 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2251 view of the PowerPC. */
2252 static const struct reg registers_powerpc[] =
2253 {
2254 COMMON_UISA_REGS,
2255 PPC_UISA_SPRS,
2256 PPC_ALTIVEC_REGS
2257 };
2258
2259 /* PowerPC UISA - a PPC processor as viewed by user-level
2260 code, but without floating point registers. */
2261 static const struct reg registers_powerpc_nofp[] =
2262 {
2263 COMMON_UISA_NOFP_REGS,
2264 PPC_UISA_SPRS
2265 };
2266
2267 /* IBM PowerPC 403. */
2268 static const struct reg registers_403[] =
2269 {
2270 COMMON_UISA_REGS,
2271 PPC_UISA_SPRS,
2272 PPC_SEGMENT_REGS,
2273 PPC_OEA_SPRS,
2274 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2275 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2276 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2277 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2278 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2279 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2280 };
2281
2282 /* IBM PowerPC 403GC. */
2283 static const struct reg registers_403GC[] =
2284 {
2285 COMMON_UISA_REGS,
2286 PPC_UISA_SPRS,
2287 PPC_SEGMENT_REGS,
2288 PPC_OEA_SPRS,
2289 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2290 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2291 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2292 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2293 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2294 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2295 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2296 /* 147 */ R(tbhu), R(tblu)
2297 };
2298
2299 /* Motorola PowerPC 505. */
2300 static const struct reg registers_505[] =
2301 {
2302 COMMON_UISA_REGS,
2303 PPC_UISA_SPRS,
2304 PPC_SEGMENT_REGS,
2305 PPC_OEA_SPRS,
2306 /* 119 */ R(eie), R(eid), R(nri)
2307 };
2308
2309 /* Motorola PowerPC 860 or 850. */
2310 static const struct reg registers_860[] =
2311 {
2312 COMMON_UISA_REGS,
2313 PPC_UISA_SPRS,
2314 PPC_SEGMENT_REGS,
2315 PPC_OEA_SPRS,
2316 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2317 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2318 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2319 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2320 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2321 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2322 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2323 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2324 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2325 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2326 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2327 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2328 };
2329
2330 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2331 for reading and writing RTCU and RTCL. However, how one reads and writes a
2332 register is the stub's problem. */
2333 static const struct reg registers_601[] =
2334 {
2335 COMMON_UISA_REGS,
2336 PPC_UISA_SPRS,
2337 PPC_SEGMENT_REGS,
2338 PPC_OEA_SPRS,
2339 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2340 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2341 };
2342
2343 /* Motorola PowerPC 602. */
2344 static const struct reg registers_602[] =
2345 {
2346 COMMON_UISA_REGS,
2347 PPC_UISA_SPRS,
2348 PPC_SEGMENT_REGS,
2349 PPC_OEA_SPRS,
2350 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2351 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2352 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2353 };
2354
2355 /* Motorola/IBM PowerPC 603 or 603e. */
2356 static const struct reg registers_603[] =
2357 {
2358 COMMON_UISA_REGS,
2359 PPC_UISA_SPRS,
2360 PPC_SEGMENT_REGS,
2361 PPC_OEA_SPRS,
2362 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2363 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2364 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2365 };
2366
2367 /* Motorola PowerPC 604 or 604e. */
2368 static const struct reg registers_604[] =
2369 {
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2375 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2376 /* 127 */ R(sia), R(sda)
2377 };
2378
2379 /* Motorola/IBM PowerPC 750 or 740. */
2380 static const struct reg registers_750[] =
2381 {
2382 COMMON_UISA_REGS,
2383 PPC_UISA_SPRS,
2384 PPC_SEGMENT_REGS,
2385 PPC_OEA_SPRS,
2386 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2387 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2388 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2389 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2390 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2391 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2392 };
2393
2394
2395 /* Motorola PowerPC 7400. */
2396 static const struct reg registers_7400[] =
2397 {
2398 /* gpr0-gpr31, fpr0-fpr31 */
2399 COMMON_UISA_REGS,
2400 /* ctr, xre, lr, cr */
2401 PPC_UISA_SPRS,
2402 /* sr0-sr15 */
2403 PPC_SEGMENT_REGS,
2404 PPC_OEA_SPRS,
2405 /* vr0-vr31, vrsave, vscr */
2406 PPC_ALTIVEC_REGS
2407 /* FIXME? Add more registers? */
2408 };
2409
2410 /* Motorola e500. */
2411 static const struct reg registers_e500[] =
2412 {
2413 R(pc), R(ps),
2414 /* cr, lr, ctr, xer, "" */
2415 PPC_UISA_NOFP_SPRS,
2416 /* 7...38 */
2417 PPC_EV_REGS,
2418 R8(acc), R(spefscr),
2419 /* NOTE: Add new registers here the end of the raw register
2420 list and just before the first pseudo register. */
2421 /* 39...70 */
2422 PPC_GPRS_PSEUDO_REGS
2423 };
2424
2425 /* Information about a particular processor variant. */
2426
2427 struct variant
2428 {
2429 /* Name of this variant. */
2430 char *name;
2431
2432 /* English description of the variant. */
2433 char *description;
2434
2435 /* bfd_arch_info.arch corresponding to variant. */
2436 enum bfd_architecture arch;
2437
2438 /* bfd_arch_info.mach corresponding to variant. */
2439 unsigned long mach;
2440
2441 /* Number of real registers. */
2442 int nregs;
2443
2444 /* Number of pseudo registers. */
2445 int npregs;
2446
2447 /* Number of total registers (the sum of nregs and npregs). */
2448 int num_tot_regs;
2449
2450 /* Table of register names; registers[R] is the name of the register
2451 number R. */
2452 const struct reg *regs;
2453 };
2454
2455 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2456
2457 static int
2458 num_registers (const struct reg *reg_list, int num_tot_regs)
2459 {
2460 int i;
2461 int nregs = 0;
2462
2463 for (i = 0; i < num_tot_regs; i++)
2464 if (!reg_list[i].pseudo)
2465 nregs++;
2466
2467 return nregs;
2468 }
2469
2470 static int
2471 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2472 {
2473 int i;
2474 int npregs = 0;
2475
2476 for (i = 0; i < num_tot_regs; i++)
2477 if (reg_list[i].pseudo)
2478 npregs ++;
2479
2480 return npregs;
2481 }
2482
2483 /* Information in this table comes from the following web sites:
2484 IBM: http://www.chips.ibm.com:80/products/embedded/
2485 Motorola: http://www.mot.com/SPS/PowerPC/
2486
2487 I'm sure I've got some of the variant descriptions not quite right.
2488 Please report any inaccuracies you find to GDB's maintainer.
2489
2490 If you add entries to this table, please be sure to allow the new
2491 value as an argument to the --with-cpu flag, in configure.in. */
2492
2493 static struct variant variants[] =
2494 {
2495
2496 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2497 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2498 registers_powerpc},
2499 {"power", "POWER user-level", bfd_arch_rs6000,
2500 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2501 registers_power},
2502 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2503 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2504 registers_403},
2505 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2506 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2507 registers_601},
2508 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2509 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2510 registers_602},
2511 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2512 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2513 registers_603},
2514 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2515 604, -1, -1, tot_num_registers (registers_604),
2516 registers_604},
2517 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2518 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2519 registers_403GC},
2520 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2521 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2522 registers_505},
2523 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2524 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2525 registers_860},
2526 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2527 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2528 registers_750},
2529 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2530 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2531 registers_7400},
2532 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2533 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2534 registers_e500},
2535
2536 /* 64-bit */
2537 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2538 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2539 registers_powerpc},
2540 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2541 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2542 registers_powerpc},
2543 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2544 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2545 registers_powerpc},
2546 {"a35", "PowerPC A35", bfd_arch_powerpc,
2547 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2548 registers_powerpc},
2549 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2550 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2551 registers_powerpc},
2552 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2553 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2554 registers_powerpc},
2555
2556 /* FIXME: I haven't checked the register sets of the following. */
2557 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2558 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2559 registers_power},
2560 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2561 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2562 registers_power},
2563 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2564 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2565 registers_power},
2566
2567 {0, 0, 0, 0, 0, 0, 0, 0}
2568 };
2569
2570 /* Initialize the number of registers and pseudo registers in each variant. */
2571
2572 static void
2573 init_variants (void)
2574 {
2575 struct variant *v;
2576
2577 for (v = variants; v->name; v++)
2578 {
2579 if (v->nregs == -1)
2580 v->nregs = num_registers (v->regs, v->num_tot_regs);
2581 if (v->npregs == -1)
2582 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2583 }
2584 }
2585
2586 /* Return the variant corresponding to architecture ARCH and machine number
2587 MACH. If no such variant exists, return null. */
2588
2589 static const struct variant *
2590 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2591 {
2592 const struct variant *v;
2593
2594 for (v = variants; v->name; v++)
2595 if (arch == v->arch && mach == v->mach)
2596 return v;
2597
2598 return NULL;
2599 }
2600
2601 static int
2602 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2603 {
2604 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2605 return print_insn_big_powerpc (memaddr, info);
2606 else
2607 return print_insn_little_powerpc (memaddr, info);
2608 }
2609 \f
2610 /* Initialize the current architecture based on INFO. If possible, re-use an
2611 architecture from ARCHES, which is a list of architectures already created
2612 during this debugging session.
2613
2614 Called e.g. at program startup, when reading a core file, and when reading
2615 a binary file. */
2616
2617 static struct gdbarch *
2618 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2619 {
2620 struct gdbarch *gdbarch;
2621 struct gdbarch_tdep *tdep;
2622 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2623 struct reg *regs;
2624 const struct variant *v;
2625 enum bfd_architecture arch;
2626 unsigned long mach;
2627 bfd abfd;
2628 int sysv_abi;
2629 asection *sect;
2630
2631 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2632 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2633
2634 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2635 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2636
2637 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2638
2639 /* Check word size. If INFO is from a binary file, infer it from
2640 that, else choose a likely default. */
2641 if (from_xcoff_exec)
2642 {
2643 if (bfd_xcoff_is_xcoff64 (info.abfd))
2644 wordsize = 8;
2645 else
2646 wordsize = 4;
2647 }
2648 else if (from_elf_exec)
2649 {
2650 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2651 wordsize = 8;
2652 else
2653 wordsize = 4;
2654 }
2655 else
2656 {
2657 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2658 wordsize = info.bfd_arch_info->bits_per_word /
2659 info.bfd_arch_info->bits_per_byte;
2660 else
2661 wordsize = 4;
2662 }
2663
2664 /* Find a candidate among extant architectures. */
2665 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2666 arches != NULL;
2667 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2668 {
2669 /* Word size in the various PowerPC bfd_arch_info structs isn't
2670 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2671 separate word size check. */
2672 tdep = gdbarch_tdep (arches->gdbarch);
2673 if (tdep && tdep->wordsize == wordsize)
2674 return arches->gdbarch;
2675 }
2676
2677 /* None found, create a new architecture from INFO, whose bfd_arch_info
2678 validity depends on the source:
2679 - executable useless
2680 - rs6000_host_arch() good
2681 - core file good
2682 - "set arch" trust blindly
2683 - GDB startup useless but harmless */
2684
2685 if (!from_xcoff_exec)
2686 {
2687 arch = info.bfd_arch_info->arch;
2688 mach = info.bfd_arch_info->mach;
2689 }
2690 else
2691 {
2692 arch = bfd_arch_powerpc;
2693 bfd_default_set_arch_mach (&abfd, arch, 0);
2694 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2695 mach = info.bfd_arch_info->mach;
2696 }
2697 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2698 tdep->wordsize = wordsize;
2699
2700 /* For e500 executables, the apuinfo section is of help here. Such
2701 section contains the identifier and revision number of each
2702 Application-specific Processing Unit that is present on the
2703 chip. The content of the section is determined by the assembler
2704 which looks at each instruction and determines which unit (and
2705 which version of it) can execute it. In our case we just look for
2706 the existance of the section. */
2707
2708 if (info.abfd)
2709 {
2710 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2711 if (sect)
2712 {
2713 arch = info.bfd_arch_info->arch;
2714 mach = bfd_mach_ppc_e500;
2715 bfd_default_set_arch_mach (&abfd, arch, mach);
2716 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2717 }
2718 }
2719
2720 gdbarch = gdbarch_alloc (&info, tdep);
2721 power = arch == bfd_arch_rs6000;
2722
2723 /* Initialize the number of real and pseudo registers in each variant. */
2724 init_variants ();
2725
2726 /* Choose variant. */
2727 v = find_variant_by_arch (arch, mach);
2728 if (!v)
2729 return NULL;
2730
2731 tdep->regs = v->regs;
2732
2733 tdep->ppc_gp0_regnum = 0;
2734 tdep->ppc_gplast_regnum = 31;
2735 tdep->ppc_toc_regnum = 2;
2736 tdep->ppc_ps_regnum = 65;
2737 tdep->ppc_cr_regnum = 66;
2738 tdep->ppc_lr_regnum = 67;
2739 tdep->ppc_ctr_regnum = 68;
2740 tdep->ppc_xer_regnum = 69;
2741 if (v->mach == bfd_mach_ppc_601)
2742 tdep->ppc_mq_regnum = 124;
2743 else if (power)
2744 tdep->ppc_mq_regnum = 70;
2745 else
2746 tdep->ppc_mq_regnum = -1;
2747 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2748
2749 set_gdbarch_pc_regnum (gdbarch, 64);
2750 set_gdbarch_sp_regnum (gdbarch, 1);
2751 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2752 if (sysv_abi && wordsize == 8)
2753 {
2754 set_gdbarch_extract_return_value (gdbarch, ppc64_sysv_abi_extract_return_value);
2755 set_gdbarch_store_return_value (gdbarch, ppc64_sysv_abi_store_return_value);
2756 }
2757 else if (sysv_abi && wordsize == 4)
2758 {
2759 set_gdbarch_extract_return_value (gdbarch, ppc_sysv_abi_extract_return_value);
2760 set_gdbarch_store_return_value (gdbarch, ppc_sysv_abi_store_return_value);
2761 }
2762 else
2763 {
2764 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2765 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2766 }
2767
2768 if (v->arch == bfd_arch_powerpc)
2769 switch (v->mach)
2770 {
2771 case bfd_mach_ppc:
2772 tdep->ppc_vr0_regnum = 71;
2773 tdep->ppc_vrsave_regnum = 104;
2774 tdep->ppc_ev0_regnum = -1;
2775 tdep->ppc_ev31_regnum = -1;
2776 break;
2777 case bfd_mach_ppc_7400:
2778 tdep->ppc_vr0_regnum = 119;
2779 tdep->ppc_vrsave_regnum = 152;
2780 tdep->ppc_ev0_regnum = -1;
2781 tdep->ppc_ev31_regnum = -1;
2782 break;
2783 case bfd_mach_ppc_e500:
2784 tdep->ppc_gp0_regnum = 41;
2785 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2786 tdep->ppc_toc_regnum = -1;
2787 tdep->ppc_ps_regnum = 1;
2788 tdep->ppc_cr_regnum = 2;
2789 tdep->ppc_lr_regnum = 3;
2790 tdep->ppc_ctr_regnum = 4;
2791 tdep->ppc_xer_regnum = 5;
2792 tdep->ppc_ev0_regnum = 7;
2793 tdep->ppc_ev31_regnum = 38;
2794 set_gdbarch_pc_regnum (gdbarch, 0);
2795 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2796 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2797 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2798 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2799 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2800 break;
2801 default:
2802 tdep->ppc_vr0_regnum = -1;
2803 tdep->ppc_vrsave_regnum = -1;
2804 tdep->ppc_ev0_regnum = -1;
2805 tdep->ppc_ev31_regnum = -1;
2806 break;
2807 }
2808
2809 /* Sanity check on registers. */
2810 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2811
2812 /* Set lr_frame_offset. */
2813 if (wordsize == 8)
2814 tdep->lr_frame_offset = 16;
2815 else if (sysv_abi)
2816 tdep->lr_frame_offset = 4;
2817 else
2818 tdep->lr_frame_offset = 8;
2819
2820 /* Calculate byte offsets in raw register array. */
2821 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2822 for (i = off = 0; i < v->num_tot_regs; i++)
2823 {
2824 tdep->regoff[i] = off;
2825 off += regsize (v->regs + i, wordsize);
2826 }
2827
2828 /* Select instruction printer. */
2829 if (arch == power)
2830 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2831 else
2832 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2833
2834 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2835
2836 set_gdbarch_num_regs (gdbarch, v->nregs);
2837 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2838 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2839 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2840 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2841 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2842 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2843 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2844
2845 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2846 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2847 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2848 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2849 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2850 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2851 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2852 if (sysv_abi)
2853 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2854 else
2855 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2856 set_gdbarch_char_signed (gdbarch, 0);
2857
2858 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2859 if (sysv_abi && wordsize == 8)
2860 /* PPC64 SYSV. */
2861 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2862 else if (!sysv_abi && wordsize == 4)
2863 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2864 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2865 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2866 224. */
2867 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2868 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2869 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2870
2871 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2872 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2873 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2874 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2875 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2876 is correct for the SysV ABI when the wordsize is 8, but I'm also
2877 fairly certain that ppc_sysv_abi_push_arguments() will give even
2878 worse results since it only works for 32-bit code. So, for the moment,
2879 we're better off calling rs6000_push_arguments() since it works for
2880 64-bit code. At some point in the future, this matter needs to be
2881 revisited. */
2882 if (sysv_abi && wordsize == 4)
2883 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2884 else if (sysv_abi && wordsize == 8)
2885 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2886 else
2887 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2888
2889 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2890 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2891
2892 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2893 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2894 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2895 set_gdbarch_function_start_offset (gdbarch, 0);
2896 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2897
2898 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2899 for the descriptor and ".FN" for the entry-point -- a user
2900 specifying "break FN" will unexpectedly end up with a breakpoint
2901 on the descriptor and not the function. This architecture method
2902 transforms any breakpoints on descriptors into breakpoints on the
2903 corresponding entry point. */
2904 if (sysv_abi && wordsize == 8)
2905 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2906
2907 /* Not sure on this. FIXMEmgo */
2908 set_gdbarch_frame_args_skip (gdbarch, 8);
2909
2910 if (sysv_abi && wordsize == 4)
2911 set_gdbarch_use_struct_convention (gdbarch,
2912 ppc_sysv_abi_use_struct_convention);
2913 else if (sysv_abi && wordsize == 8)
2914 set_gdbarch_use_struct_convention (gdbarch, ppc64_sysv_abi_use_struct_convention);
2915 else
2916 set_gdbarch_use_struct_convention (gdbarch,
2917 rs6000_use_struct_convention);
2918
2919 set_gdbarch_frameless_function_invocation (gdbarch,
2920 rs6000_frameless_function_invocation);
2921 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2922 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2923
2924 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2925 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2926
2927 if (!sysv_abi)
2928 {
2929 /* Handle RS/6000 function pointers (which are really function
2930 descriptors). */
2931 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2932 rs6000_convert_from_func_ptr_addr);
2933 }
2934 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2935 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2936 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2937
2938 /* Helpers for function argument information. */
2939 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2940
2941 /* Hook in ABI-specific overrides, if they have been registered. */
2942 gdbarch_init_osabi (info, gdbarch);
2943
2944 if (from_xcoff_exec)
2945 {
2946 /* NOTE: jimix/2003-06-09: This test should really check for
2947 GDB_OSABI_AIX when that is defined and becomes
2948 available. (Actually, once things are properly split apart,
2949 the test goes away.) */
2950 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2951 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2952 }
2953
2954 return gdbarch;
2955 }
2956
2957 static void
2958 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2959 {
2960 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2961
2962 if (tdep == NULL)
2963 return;
2964
2965 /* FIXME: Dump gdbarch_tdep. */
2966 }
2967
2968 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2969
2970 static void
2971 rs6000_info_powerpc_command (char *args, int from_tty)
2972 {
2973 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2974 }
2975
2976 /* Initialization code. */
2977
2978 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2979
2980 void
2981 _initialize_rs6000_tdep (void)
2982 {
2983 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2984 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2985
2986 /* Add root prefix command for "info powerpc" commands */
2987 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2988 "Various POWERPC info specific commands.",
2989 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2990 }
This page took 0.087885 seconds and 5 git commands to generate.