2004-02-14 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 get_frame_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0
989 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
990 return pc + 8;
991 }
992 }
993 #endif /* 0 */
994
995 fdata->offset = -fdata->offset;
996 return last_prologue_pc;
997 }
998
999
1000 /*************************************************************************
1001 Support for creating pushing a dummy frame into the stack, and popping
1002 frames, etc.
1003 *************************************************************************/
1004
1005
1006 /* Pop the innermost frame, go back to the caller. */
1007
1008 static void
1009 rs6000_pop_frame (void)
1010 {
1011 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1012 struct rs6000_framedata fdata;
1013 struct frame_info *frame = get_current_frame ();
1014 int ii, wordsize;
1015
1016 pc = read_pc ();
1017 sp = get_frame_base (frame);
1018
1019 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1020 get_frame_base (frame),
1021 get_frame_base (frame)))
1022 {
1023 generic_pop_dummy_frame ();
1024 flush_cached_frames ();
1025 return;
1026 }
1027
1028 /* Make sure that all registers are valid. */
1029 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1030
1031 /* Figure out previous %pc value. If the function is frameless, it is
1032 still in the link register, otherwise walk the frames and retrieve the
1033 saved %pc value in the previous frame. */
1034
1035 addr = get_frame_func (frame);
1036 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1037
1038 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1039 if (fdata.frameless)
1040 prev_sp = sp;
1041 else
1042 prev_sp = read_memory_addr (sp, wordsize);
1043 if (fdata.lr_offset == 0)
1044 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1045 else
1046 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1047
1048 /* reset %pc value. */
1049 write_register (PC_REGNUM, lr);
1050
1051 /* reset register values if any was saved earlier. */
1052
1053 if (fdata.saved_gpr != -1)
1054 {
1055 addr = prev_sp + fdata.gpr_offset;
1056 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1057 {
1058 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
1059 wordsize);
1060 addr += wordsize;
1061 }
1062 }
1063
1064 if (fdata.saved_fpr != -1)
1065 {
1066 addr = prev_sp + fdata.fpr_offset;
1067 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1068 {
1069 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1070 addr += 8;
1071 }
1072 }
1073
1074 write_register (SP_REGNUM, prev_sp);
1075 target_store_registers (-1);
1076 flush_cached_frames ();
1077 }
1078
1079 /* All the ABI's require 16 byte alignment. */
1080 static CORE_ADDR
1081 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1082 {
1083 return (addr & -16);
1084 }
1085
1086 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1087 the first eight words of the argument list (that might be less than
1088 eight parameters if some parameters occupy more than one word) are
1089 passed in r3..r10 registers. float and double parameters are
1090 passed in fpr's, in addition to that. Rest of the parameters if any
1091 are passed in user stack. There might be cases in which half of the
1092 parameter is copied into registers, the other half is pushed into
1093 stack.
1094
1095 Stack must be aligned on 64-bit boundaries when synthesizing
1096 function calls.
1097
1098 If the function is returning a structure, then the return address is passed
1099 in r3, then the first 7 words of the parameters can be passed in registers,
1100 starting from r4. */
1101
1102 static CORE_ADDR
1103 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1104 struct regcache *regcache, CORE_ADDR bp_addr,
1105 int nargs, struct value **args, CORE_ADDR sp,
1106 int struct_return, CORE_ADDR struct_addr)
1107 {
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1109 int ii;
1110 int len = 0;
1111 int argno; /* current argument number */
1112 int argbytes; /* current argument byte */
1113 char tmp_buffer[50];
1114 int f_argno = 0; /* current floating point argno */
1115 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1116
1117 struct value *arg = 0;
1118 struct type *type;
1119
1120 CORE_ADDR saved_sp;
1121
1122 /* The first eight words of ther arguments are passed in registers.
1123 Copy them appropriately. */
1124 ii = 0;
1125
1126 /* If the function is returning a `struct', then the first word
1127 (which will be passed in r3) is used for struct return address.
1128 In that case we should advance one word and start from r4
1129 register to copy parameters. */
1130 if (struct_return)
1131 {
1132 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1133 struct_addr);
1134 ii++;
1135 }
1136
1137 /*
1138 effectively indirect call... gcc does...
1139
1140 return_val example( float, int);
1141
1142 eabi:
1143 float in fp0, int in r3
1144 offset of stack on overflow 8/16
1145 for varargs, must go by type.
1146 power open:
1147 float in r3&r4, int in r5
1148 offset of stack on overflow different
1149 both:
1150 return in r3 or f0. If no float, must study how gcc emulates floats;
1151 pay attention to arg promotion.
1152 User may have to cast\args to handle promotion correctly
1153 since gdb won't know if prototype supplied or not.
1154 */
1155
1156 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1157 {
1158 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1159
1160 arg = args[argno];
1161 type = check_typedef (VALUE_TYPE (arg));
1162 len = TYPE_LENGTH (type);
1163
1164 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1165 {
1166
1167 /* Floating point arguments are passed in fpr's, as well as gpr's.
1168 There are 13 fpr's reserved for passing parameters. At this point
1169 there is no way we would run out of them. */
1170
1171 if (len > 8)
1172 printf_unfiltered (
1173 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1174
1175 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1176 VALUE_CONTENTS (arg),
1177 len);
1178 ++f_argno;
1179 }
1180
1181 if (len > reg_size)
1182 {
1183
1184 /* Argument takes more than one register. */
1185 while (argbytes < len)
1186 {
1187 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1188 reg_size);
1189 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1190 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1191 (len - argbytes) > reg_size
1192 ? reg_size : len - argbytes);
1193 ++ii, argbytes += reg_size;
1194
1195 if (ii >= 8)
1196 goto ran_out_of_registers_for_arguments;
1197 }
1198 argbytes = 0;
1199 --ii;
1200 }
1201 else
1202 {
1203 /* Argument can fit in one register. No problem. */
1204 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1205 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1206 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1207 VALUE_CONTENTS (arg), len);
1208 }
1209 ++argno;
1210 }
1211
1212 ran_out_of_registers_for_arguments:
1213
1214 saved_sp = read_sp ();
1215
1216 /* Location for 8 parameters are always reserved. */
1217 sp -= wordsize * 8;
1218
1219 /* Another six words for back chain, TOC register, link register, etc. */
1220 sp -= wordsize * 6;
1221
1222 /* Stack pointer must be quadword aligned. */
1223 sp &= -16;
1224
1225 /* If there are more arguments, allocate space for them in
1226 the stack, then push them starting from the ninth one. */
1227
1228 if ((argno < nargs) || argbytes)
1229 {
1230 int space = 0, jj;
1231
1232 if (argbytes)
1233 {
1234 space += ((len - argbytes + 3) & -4);
1235 jj = argno + 1;
1236 }
1237 else
1238 jj = argno;
1239
1240 for (; jj < nargs; ++jj)
1241 {
1242 struct value *val = args[jj];
1243 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1244 }
1245
1246 /* Add location required for the rest of the parameters. */
1247 space = (space + 15) & -16;
1248 sp -= space;
1249
1250 /* This is another instance we need to be concerned about
1251 securing our stack space. If we write anything underneath %sp
1252 (r1), we might conflict with the kernel who thinks he is free
1253 to use this area. So, update %sp first before doing anything
1254 else. */
1255
1256 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1257
1258 /* If the last argument copied into the registers didn't fit there
1259 completely, push the rest of it into stack. */
1260
1261 if (argbytes)
1262 {
1263 write_memory (sp + 24 + (ii * 4),
1264 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1265 len - argbytes);
1266 ++argno;
1267 ii += ((len - argbytes + 3) & -4) / 4;
1268 }
1269
1270 /* Push the rest of the arguments into stack. */
1271 for (; argno < nargs; ++argno)
1272 {
1273
1274 arg = args[argno];
1275 type = check_typedef (VALUE_TYPE (arg));
1276 len = TYPE_LENGTH (type);
1277
1278
1279 /* Float types should be passed in fpr's, as well as in the
1280 stack. */
1281 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1282 {
1283
1284 if (len > 8)
1285 printf_unfiltered (
1286 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1287
1288 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1289 VALUE_CONTENTS (arg),
1290 len);
1291 ++f_argno;
1292 }
1293
1294 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1295 ii += ((len + 3) & -4) / 4;
1296 }
1297 }
1298
1299 /* Set the stack pointer. According to the ABI, the SP is meant to
1300 be set _before_ the corresponding stack space is used. On AIX,
1301 this even applies when the target has been completely stopped!
1302 Not doing this can lead to conflicts with the kernel which thinks
1303 that it still has control over this not-yet-allocated stack
1304 region. */
1305 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1306
1307 /* Set back chain properly. */
1308 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1309 write_memory (sp, tmp_buffer, 4);
1310
1311 /* Point the inferior function call's return address at the dummy's
1312 breakpoint. */
1313 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1314
1315 /* Set the TOC register, get the value from the objfile reader
1316 which, in turn, gets it from the VMAP table. */
1317 if (rs6000_find_toc_address_hook != NULL)
1318 {
1319 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1320 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1321 }
1322
1323 target_store_registers (-1);
1324 return sp;
1325 }
1326
1327 /* PowerOpen always puts structures in memory. Vectors, which were
1328 added later, do get returned in a register though. */
1329
1330 static int
1331 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1332 {
1333 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1334 && TYPE_VECTOR (value_type))
1335 return 0;
1336 return 1;
1337 }
1338
1339 static void
1340 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1341 {
1342 int offset = 0;
1343 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1344
1345 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1346 {
1347
1348 double dd;
1349 float ff;
1350 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1351 We need to truncate the return value into float size (4 byte) if
1352 necessary. */
1353
1354 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1355 memcpy (valbuf,
1356 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
1357 TYPE_LENGTH (valtype));
1358 else
1359 { /* float */
1360 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1361 ff = (float) dd;
1362 memcpy (valbuf, &ff, sizeof (float));
1363 }
1364 }
1365 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1366 && TYPE_LENGTH (valtype) == 16
1367 && TYPE_VECTOR (valtype))
1368 {
1369 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1370 TYPE_LENGTH (valtype));
1371 }
1372 else
1373 {
1374 /* return value is copied starting from r3. */
1375 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1376 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1377 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1378
1379 memcpy (valbuf,
1380 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1381 TYPE_LENGTH (valtype));
1382 }
1383 }
1384
1385 /* Return whether handle_inferior_event() should proceed through code
1386 starting at PC in function NAME when stepping.
1387
1388 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1389 handle memory references that are too distant to fit in instructions
1390 generated by the compiler. For example, if 'foo' in the following
1391 instruction:
1392
1393 lwz r9,foo(r2)
1394
1395 is greater than 32767, the linker might replace the lwz with a branch to
1396 somewhere in @FIX1 that does the load in 2 instructions and then branches
1397 back to where execution should continue.
1398
1399 GDB should silently step over @FIX code, just like AIX dbx does.
1400 Unfortunately, the linker uses the "b" instruction for the branches,
1401 meaning that the link register doesn't get set. Therefore, GDB's usual
1402 step_over_function() mechanism won't work.
1403
1404 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1405 in handle_inferior_event() to skip past @FIX code. */
1406
1407 int
1408 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1409 {
1410 return name && !strncmp (name, "@FIX", 4);
1411 }
1412
1413 /* Skip code that the user doesn't want to see when stepping:
1414
1415 1. Indirect function calls use a piece of trampoline code to do context
1416 switching, i.e. to set the new TOC table. Skip such code if we are on
1417 its first instruction (as when we have single-stepped to here).
1418
1419 2. Skip shared library trampoline code (which is different from
1420 indirect function call trampolines).
1421
1422 3. Skip bigtoc fixup code.
1423
1424 Result is desired PC to step until, or NULL if we are not in
1425 code that should be skipped. */
1426
1427 CORE_ADDR
1428 rs6000_skip_trampoline_code (CORE_ADDR pc)
1429 {
1430 unsigned int ii, op;
1431 int rel;
1432 CORE_ADDR solib_target_pc;
1433 struct minimal_symbol *msymbol;
1434
1435 static unsigned trampoline_code[] =
1436 {
1437 0x800b0000, /* l r0,0x0(r11) */
1438 0x90410014, /* st r2,0x14(r1) */
1439 0x7c0903a6, /* mtctr r0 */
1440 0x804b0004, /* l r2,0x4(r11) */
1441 0x816b0008, /* l r11,0x8(r11) */
1442 0x4e800420, /* bctr */
1443 0x4e800020, /* br */
1444 0
1445 };
1446
1447 /* Check for bigtoc fixup code. */
1448 msymbol = lookup_minimal_symbol_by_pc (pc);
1449 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1450 {
1451 /* Double-check that the third instruction from PC is relative "b". */
1452 op = read_memory_integer (pc + 8, 4);
1453 if ((op & 0xfc000003) == 0x48000000)
1454 {
1455 /* Extract bits 6-29 as a signed 24-bit relative word address and
1456 add it to the containing PC. */
1457 rel = ((int)(op << 6) >> 6);
1458 return pc + 8 + rel;
1459 }
1460 }
1461
1462 /* If pc is in a shared library trampoline, return its target. */
1463 solib_target_pc = find_solib_trampoline_target (pc);
1464 if (solib_target_pc)
1465 return solib_target_pc;
1466
1467 for (ii = 0; trampoline_code[ii]; ++ii)
1468 {
1469 op = read_memory_integer (pc + (ii * 4), 4);
1470 if (op != trampoline_code[ii])
1471 return 0;
1472 }
1473 ii = read_register (11); /* r11 holds destination addr */
1474 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1475 return pc;
1476 }
1477
1478 /* Determines whether the function FI has a frame on the stack or not. */
1479
1480 int
1481 rs6000_frameless_function_invocation (struct frame_info *fi)
1482 {
1483 CORE_ADDR func_start;
1484 struct rs6000_framedata fdata;
1485
1486 /* Don't even think about framelessness except on the innermost frame
1487 or if the function was interrupted by a signal. */
1488 if (get_next_frame (fi) != NULL
1489 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1490 return 0;
1491
1492 func_start = get_frame_func (fi);
1493
1494 /* If we failed to find the start of the function, it is a mistake
1495 to inspect the instructions. */
1496
1497 if (!func_start)
1498 {
1499 /* A frame with a zero PC is usually created by dereferencing a NULL
1500 function pointer, normally causing an immediate core dump of the
1501 inferior. Mark function as frameless, as the inferior has no chance
1502 of setting up a stack frame. */
1503 if (get_frame_pc (fi) == 0)
1504 return 1;
1505 else
1506 return 0;
1507 }
1508
1509 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1510 return fdata.frameless;
1511 }
1512
1513 /* Return the PC saved in a frame. */
1514
1515 CORE_ADDR
1516 rs6000_frame_saved_pc (struct frame_info *fi)
1517 {
1518 CORE_ADDR func_start;
1519 struct rs6000_framedata fdata;
1520 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1521 int wordsize = tdep->wordsize;
1522
1523 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1524 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1525 wordsize);
1526
1527 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1528 get_frame_base (fi),
1529 get_frame_base (fi)))
1530 return deprecated_read_register_dummy (get_frame_pc (fi),
1531 get_frame_base (fi), PC_REGNUM);
1532
1533 func_start = get_frame_func (fi);
1534
1535 /* If we failed to find the start of the function, it is a mistake
1536 to inspect the instructions. */
1537 if (!func_start)
1538 return 0;
1539
1540 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1541
1542 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1543 {
1544 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1545 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1546 + SIG_FRAME_LR_OFFSET),
1547 wordsize);
1548 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1549 /* The link register wasn't saved by this frame and the next
1550 (inner, newer) frame is a dummy. Get the link register
1551 value by unwinding it from that [dummy] frame. */
1552 {
1553 ULONGEST lr;
1554 frame_unwind_unsigned_register (get_next_frame (fi),
1555 tdep->ppc_lr_regnum, &lr);
1556 return lr;
1557 }
1558 else
1559 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1560 + tdep->lr_frame_offset,
1561 wordsize);
1562 }
1563
1564 if (fdata.lr_offset == 0)
1565 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1566
1567 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1568 wordsize);
1569 }
1570
1571 /* If saved registers of frame FI are not known yet, read and cache them.
1572 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1573 in which case the framedata are read. */
1574
1575 static void
1576 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1577 {
1578 CORE_ADDR frame_addr;
1579 struct rs6000_framedata work_fdata;
1580 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1581 int wordsize = tdep->wordsize;
1582
1583 if (deprecated_get_frame_saved_regs (fi))
1584 return;
1585
1586 if (fdatap == NULL)
1587 {
1588 fdatap = &work_fdata;
1589 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1590 }
1591
1592 frame_saved_regs_zalloc (fi);
1593
1594 /* If there were any saved registers, figure out parent's stack
1595 pointer. */
1596 /* The following is true only if the frame doesn't have a call to
1597 alloca(), FIXME. */
1598
1599 if (fdatap->saved_fpr == 0
1600 && fdatap->saved_gpr == 0
1601 && fdatap->saved_vr == 0
1602 && fdatap->saved_ev == 0
1603 && fdatap->lr_offset == 0
1604 && fdatap->cr_offset == 0
1605 && fdatap->vr_offset == 0
1606 && fdatap->ev_offset == 0)
1607 frame_addr = 0;
1608 else
1609 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1610 address of the current frame. Things might be easier if the
1611 ->frame pointed to the outer-most address of the frame. In the
1612 mean time, the address of the prev frame is used as the base
1613 address of this frame. */
1614 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1615
1616 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1617 All fpr's from saved_fpr to fp31 are saved. */
1618
1619 if (fdatap->saved_fpr >= 0)
1620 {
1621 int i;
1622 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1623 for (i = fdatap->saved_fpr; i < 32; i++)
1624 {
1625 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1626 fpr_addr += 8;
1627 }
1628 }
1629
1630 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1631 All gpr's from saved_gpr to gpr31 are saved. */
1632
1633 if (fdatap->saved_gpr >= 0)
1634 {
1635 int i;
1636 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1637 for (i = fdatap->saved_gpr; i < 32; i++)
1638 {
1639 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1640 gpr_addr += wordsize;
1641 }
1642 }
1643
1644 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1645 All vr's from saved_vr to vr31 are saved. */
1646 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1647 {
1648 if (fdatap->saved_vr >= 0)
1649 {
1650 int i;
1651 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1652 for (i = fdatap->saved_vr; i < 32; i++)
1653 {
1654 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1655 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1656 }
1657 }
1658 }
1659
1660 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1661 All vr's from saved_ev to ev31 are saved. ????? */
1662 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1663 {
1664 if (fdatap->saved_ev >= 0)
1665 {
1666 int i;
1667 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1668 for (i = fdatap->saved_ev; i < 32; i++)
1669 {
1670 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1671 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1672 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1673 }
1674 }
1675 }
1676
1677 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1678 the CR. */
1679 if (fdatap->cr_offset != 0)
1680 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1681
1682 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1683 the LR. */
1684 if (fdatap->lr_offset != 0)
1685 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1686
1687 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1688 the VRSAVE. */
1689 if (fdatap->vrsave_offset != 0)
1690 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1691 }
1692
1693 /* Return the address of a frame. This is the inital %sp value when the frame
1694 was first allocated. For functions calling alloca(), it might be saved in
1695 an alloca register. */
1696
1697 static CORE_ADDR
1698 frame_initial_stack_address (struct frame_info *fi)
1699 {
1700 CORE_ADDR tmpaddr;
1701 struct rs6000_framedata fdata;
1702 struct frame_info *callee_fi;
1703
1704 /* If the initial stack pointer (frame address) of this frame is known,
1705 just return it. */
1706
1707 if (get_frame_extra_info (fi)->initial_sp)
1708 return get_frame_extra_info (fi)->initial_sp;
1709
1710 /* Find out if this function is using an alloca register. */
1711
1712 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1713
1714 /* If saved registers of this frame are not known yet, read and
1715 cache them. */
1716
1717 if (!deprecated_get_frame_saved_regs (fi))
1718 frame_get_saved_regs (fi, &fdata);
1719
1720 /* If no alloca register used, then fi->frame is the value of the %sp for
1721 this frame, and it is good enough. */
1722
1723 if (fdata.alloca_reg < 0)
1724 {
1725 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1726 return get_frame_extra_info (fi)->initial_sp;
1727 }
1728
1729 /* There is an alloca register, use its value, in the current frame,
1730 as the initial stack pointer. */
1731 {
1732 char tmpbuf[MAX_REGISTER_SIZE];
1733 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1734 {
1735 get_frame_extra_info (fi)->initial_sp
1736 = extract_unsigned_integer (tmpbuf,
1737 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
1738 }
1739 else
1740 /* NOTE: cagney/2002-04-17: At present the only time
1741 frame_register_read will fail is when the register isn't
1742 available. If that does happen, use the frame. */
1743 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1744 }
1745 return get_frame_extra_info (fi)->initial_sp;
1746 }
1747
1748 /* Describe the pointer in each stack frame to the previous stack frame
1749 (its caller). */
1750
1751 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1752 the frame's chain-pointer. */
1753
1754 /* In the case of the RS/6000, the frame's nominal address
1755 is the address of a 4-byte word containing the calling frame's address. */
1756
1757 CORE_ADDR
1758 rs6000_frame_chain (struct frame_info *thisframe)
1759 {
1760 CORE_ADDR fp, fpp, lr;
1761 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1762
1763 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1764 get_frame_base (thisframe),
1765 get_frame_base (thisframe)))
1766 /* A dummy frame always correctly chains back to the previous
1767 frame. */
1768 return read_memory_addr (get_frame_base (thisframe), wordsize);
1769
1770 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
1771 || get_frame_pc (thisframe) == entry_point_address ())
1772 return 0;
1773
1774 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1775 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1776 wordsize);
1777 else if (get_next_frame (thisframe) != NULL
1778 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1779 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1780 /* A frameless function interrupted by a signal did not change the
1781 frame pointer. */
1782 fp = get_frame_base (thisframe);
1783 else
1784 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1785 return fp;
1786 }
1787
1788 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1789 isn't available with that word size, return 0. */
1790
1791 static int
1792 regsize (const struct reg *reg, int wordsize)
1793 {
1794 return wordsize == 8 ? reg->sz64 : reg->sz32;
1795 }
1796
1797 /* Return the name of register number N, or null if no such register exists
1798 in the current architecture. */
1799
1800 static const char *
1801 rs6000_register_name (int n)
1802 {
1803 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1804 const struct reg *reg = tdep->regs + n;
1805
1806 if (!regsize (reg, tdep->wordsize))
1807 return NULL;
1808 return reg->name;
1809 }
1810
1811 /* Index within `registers' of the first byte of the space for
1812 register N. */
1813
1814 static int
1815 rs6000_register_byte (int n)
1816 {
1817 return gdbarch_tdep (current_gdbarch)->regoff[n];
1818 }
1819
1820 /* Return the number of bytes of storage in the actual machine representation
1821 for register N if that register is available, else return 0. */
1822
1823 static int
1824 rs6000_register_raw_size (int n)
1825 {
1826 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1827 const struct reg *reg = tdep->regs + n;
1828 return regsize (reg, tdep->wordsize);
1829 }
1830
1831 /* Return the GDB type object for the "standard" data type
1832 of data in register N. */
1833
1834 static struct type *
1835 rs6000_register_virtual_type (int n)
1836 {
1837 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1838 const struct reg *reg = tdep->regs + n;
1839
1840 if (reg->fpr)
1841 return builtin_type_double;
1842 else
1843 {
1844 int size = regsize (reg, tdep->wordsize);
1845 switch (size)
1846 {
1847 case 0:
1848 return builtin_type_int0;
1849 case 4:
1850 return builtin_type_int32;
1851 case 8:
1852 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1853 return builtin_type_vec64;
1854 else
1855 return builtin_type_int64;
1856 break;
1857 case 16:
1858 return builtin_type_vec128;
1859 break;
1860 default:
1861 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1862 n, size);
1863 }
1864 }
1865 }
1866
1867 /* Return whether register N requires conversion when moving from raw format
1868 to virtual format.
1869
1870 The register format for RS/6000 floating point registers is always
1871 double, we need a conversion if the memory format is float. */
1872
1873 static int
1874 rs6000_register_convertible (int n)
1875 {
1876 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1877 return reg->fpr;
1878 }
1879
1880 /* Convert data from raw format for register N in buffer FROM
1881 to virtual format with type TYPE in buffer TO. */
1882
1883 static void
1884 rs6000_register_convert_to_virtual (int n, struct type *type,
1885 char *from, char *to)
1886 {
1887 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1888 {
1889 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
1890 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1891 }
1892 else
1893 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1894 }
1895
1896 /* Convert data from virtual format with type TYPE in buffer FROM
1897 to raw format for register N in buffer TO. */
1898
1899 static void
1900 rs6000_register_convert_to_raw (struct type *type, int n,
1901 const char *from, char *to)
1902 {
1903 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
1904 {
1905 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1906 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
1907 }
1908 else
1909 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
1910 }
1911
1912 static void
1913 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1914 int reg_nr, void *buffer)
1915 {
1916 int base_regnum;
1917 int offset = 0;
1918 char temp_buffer[MAX_REGISTER_SIZE];
1919 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1920
1921 if (reg_nr >= tdep->ppc_gp0_regnum
1922 && reg_nr <= tdep->ppc_gplast_regnum)
1923 {
1924 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1925
1926 /* Build the value in the provided buffer. */
1927 /* Read the raw register of which this one is the lower portion. */
1928 regcache_raw_read (regcache, base_regnum, temp_buffer);
1929 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1930 offset = 4;
1931 memcpy ((char *) buffer, temp_buffer + offset, 4);
1932 }
1933 }
1934
1935 static void
1936 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1937 int reg_nr, const void *buffer)
1938 {
1939 int base_regnum;
1940 int offset = 0;
1941 char temp_buffer[MAX_REGISTER_SIZE];
1942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1943
1944 if (reg_nr >= tdep->ppc_gp0_regnum
1945 && reg_nr <= tdep->ppc_gplast_regnum)
1946 {
1947 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1948 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1949 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1950 offset = 4;
1951
1952 /* Let's read the value of the base register into a temporary
1953 buffer, so that overwriting the last four bytes with the new
1954 value of the pseudo will leave the upper 4 bytes unchanged. */
1955 regcache_raw_read (regcache, base_regnum, temp_buffer);
1956
1957 /* Write as an 8 byte quantity. */
1958 memcpy (temp_buffer + offset, (char *) buffer, 4);
1959 regcache_raw_write (regcache, base_regnum, temp_buffer);
1960 }
1961 }
1962
1963 /* Convert a dwarf2 register number to a gdb REGNUM. */
1964 static int
1965 e500_dwarf2_reg_to_regnum (int num)
1966 {
1967 int regnum;
1968 if (0 <= num && num <= 31)
1969 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1970 else
1971 return num;
1972 }
1973
1974 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1975 REGNUM. */
1976 static int
1977 rs6000_stab_reg_to_regnum (int num)
1978 {
1979 int regnum;
1980 switch (num)
1981 {
1982 case 64:
1983 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1984 break;
1985 case 65:
1986 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1987 break;
1988 case 66:
1989 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1990 break;
1991 case 76:
1992 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1993 break;
1994 default:
1995 regnum = num;
1996 break;
1997 }
1998 return regnum;
1999 }
2000
2001 static void
2002 rs6000_store_return_value (struct type *type, char *valbuf)
2003 {
2004 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2005
2006 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2007
2008 /* Floating point values are returned starting from FPR1 and up.
2009 Say a double_double_double type could be returned in
2010 FPR1/FPR2/FPR3 triple. */
2011
2012 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2013 TYPE_LENGTH (type));
2014 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2015 {
2016 if (TYPE_LENGTH (type) == 16
2017 && TYPE_VECTOR (type))
2018 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2019 valbuf, TYPE_LENGTH (type));
2020 }
2021 else
2022 /* Everything else is returned in GPR3 and up. */
2023 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2024 valbuf, TYPE_LENGTH (type));
2025 }
2026
2027 /* Extract from an array REGBUF containing the (raw) register state
2028 the address in which a function should return its structure value,
2029 as a CORE_ADDR (or an expression that can be used as one). */
2030
2031 static CORE_ADDR
2032 rs6000_extract_struct_value_address (struct regcache *regcache)
2033 {
2034 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2035 function call GDB knows the address of the struct return value
2036 and hence, should not need to call this function. Unfortunately,
2037 the current call_function_by_hand() code only saves the most
2038 recent struct address leading to occasional calls. The code
2039 should instead maintain a stack of such addresses (in the dummy
2040 frame object). */
2041 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2042 really got no idea where the return value is being stored. While
2043 r3, on function entry, contained the address it will have since
2044 been reused (scratch) and hence wouldn't be valid */
2045 return 0;
2046 }
2047
2048 /* Hook called when a new child process is started. */
2049
2050 void
2051 rs6000_create_inferior (int pid)
2052 {
2053 if (rs6000_set_host_arch_hook)
2054 rs6000_set_host_arch_hook (pid);
2055 }
2056 \f
2057 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2058
2059 Usually a function pointer's representation is simply the address
2060 of the function. On the RS/6000 however, a function pointer is
2061 represented by a pointer to a TOC entry. This TOC entry contains
2062 three words, the first word is the address of the function, the
2063 second word is the TOC pointer (r2), and the third word is the
2064 static chain value. Throughout GDB it is currently assumed that a
2065 function pointer contains the address of the function, which is not
2066 easy to fix. In addition, the conversion of a function address to
2067 a function pointer would require allocation of a TOC entry in the
2068 inferior's memory space, with all its drawbacks. To be able to
2069 call C++ virtual methods in the inferior (which are called via
2070 function pointers), find_function_addr uses this function to get the
2071 function address from a function pointer. */
2072
2073 /* Return real function address if ADDR (a function pointer) is in the data
2074 space and is therefore a special function pointer. */
2075
2076 static CORE_ADDR
2077 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2078 CORE_ADDR addr,
2079 struct target_ops *targ)
2080 {
2081 struct obj_section *s;
2082
2083 s = find_pc_section (addr);
2084 if (s && s->the_bfd_section->flags & SEC_CODE)
2085 return addr;
2086
2087 /* ADDR is in the data space, so it's a special function pointer. */
2088 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2089 }
2090 \f
2091
2092 /* Handling the various POWER/PowerPC variants. */
2093
2094
2095 /* The arrays here called registers_MUMBLE hold information about available
2096 registers.
2097
2098 For each family of PPC variants, I've tried to isolate out the
2099 common registers and put them up front, so that as long as you get
2100 the general family right, GDB will correctly identify the registers
2101 common to that family. The common register sets are:
2102
2103 For the 60x family: hid0 hid1 iabr dabr pir
2104
2105 For the 505 and 860 family: eie eid nri
2106
2107 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2108 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2109 pbu1 pbl2 pbu2
2110
2111 Most of these register groups aren't anything formal. I arrived at
2112 them by looking at the registers that occurred in more than one
2113 processor.
2114
2115 Note: kevinb/2002-04-30: Support for the fpscr register was added
2116 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2117 for Power. For PowerPC, slot 70 was unused and was already in the
2118 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2119 slot 70 was being used for "mq", so the next available slot (71)
2120 was chosen. It would have been nice to be able to make the
2121 register numbers the same across processor cores, but this wasn't
2122 possible without either 1) renumbering some registers for some
2123 processors or 2) assigning fpscr to a really high slot that's
2124 larger than any current register number. Doing (1) is bad because
2125 existing stubs would break. Doing (2) is undesirable because it
2126 would introduce a really large gap between fpscr and the rest of
2127 the registers for most processors. */
2128
2129 /* Convenience macros for populating register arrays. */
2130
2131 /* Within another macro, convert S to a string. */
2132
2133 #define STR(s) #s
2134
2135 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2136 and 64 bits on 64-bit systems. */
2137 #define R(name) { STR(name), 4, 8, 0, 0 }
2138
2139 /* Return a struct reg defining register NAME that's 32 bits on all
2140 systems. */
2141 #define R4(name) { STR(name), 4, 4, 0, 0 }
2142
2143 /* Return a struct reg defining register NAME that's 64 bits on all
2144 systems. */
2145 #define R8(name) { STR(name), 8, 8, 0, 0 }
2146
2147 /* Return a struct reg defining register NAME that's 128 bits on all
2148 systems. */
2149 #define R16(name) { STR(name), 16, 16, 0, 0 }
2150
2151 /* Return a struct reg defining floating-point register NAME. */
2152 #define F(name) { STR(name), 8, 8, 1, 0 }
2153
2154 /* Return a struct reg defining a pseudo register NAME. */
2155 #define P(name) { STR(name), 4, 8, 0, 1}
2156
2157 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2158 systems and that doesn't exist on 64-bit systems. */
2159 #define R32(name) { STR(name), 4, 0, 0, 0 }
2160
2161 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2162 systems and that doesn't exist on 32-bit systems. */
2163 #define R64(name) { STR(name), 0, 8, 0, 0 }
2164
2165 /* Return a struct reg placeholder for a register that doesn't exist. */
2166 #define R0 { 0, 0, 0, 0, 0 }
2167
2168 /* UISA registers common across all architectures, including POWER. */
2169
2170 #define COMMON_UISA_REGS \
2171 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2172 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2173 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2174 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2175 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2176 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2177 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2178 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2179 /* 64 */ R(pc), R(ps)
2180
2181 #define COMMON_UISA_NOFP_REGS \
2182 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2183 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2184 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2185 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2186 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2187 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2188 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2189 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2190 /* 64 */ R(pc), R(ps)
2191
2192 /* UISA-level SPRs for PowerPC. */
2193 #define PPC_UISA_SPRS \
2194 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2195
2196 /* UISA-level SPRs for PowerPC without floating point support. */
2197 #define PPC_UISA_NOFP_SPRS \
2198 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2199
2200 /* Segment registers, for PowerPC. */
2201 #define PPC_SEGMENT_REGS \
2202 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2203 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2204 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2205 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2206
2207 /* OEA SPRs for PowerPC. */
2208 #define PPC_OEA_SPRS \
2209 /* 87 */ R4(pvr), \
2210 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2211 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2212 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2213 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2214 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2215 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2216 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2217 /* 116 */ R4(dec), R(dabr), R4(ear)
2218
2219 /* AltiVec registers. */
2220 #define PPC_ALTIVEC_REGS \
2221 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2222 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2223 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2224 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2225 /*151*/R4(vscr), R4(vrsave)
2226
2227 /* Vectors of hi-lo general purpose registers. */
2228 #define PPC_EV_REGS \
2229 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2230 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2231 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2232 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2233
2234 /* Lower half of the EV registers. */
2235 #define PPC_GPRS_PSEUDO_REGS \
2236 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2237 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2238 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2239 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2240
2241 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2242 user-level SPR's. */
2243 static const struct reg registers_power[] =
2244 {
2245 COMMON_UISA_REGS,
2246 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2247 /* 71 */ R4(fpscr)
2248 };
2249
2250 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2251 view of the PowerPC. */
2252 static const struct reg registers_powerpc[] =
2253 {
2254 COMMON_UISA_REGS,
2255 PPC_UISA_SPRS,
2256 PPC_ALTIVEC_REGS
2257 };
2258
2259 /* PowerPC UISA - a PPC processor as viewed by user-level
2260 code, but without floating point registers. */
2261 static const struct reg registers_powerpc_nofp[] =
2262 {
2263 COMMON_UISA_NOFP_REGS,
2264 PPC_UISA_SPRS
2265 };
2266
2267 /* IBM PowerPC 403. */
2268 static const struct reg registers_403[] =
2269 {
2270 COMMON_UISA_REGS,
2271 PPC_UISA_SPRS,
2272 PPC_SEGMENT_REGS,
2273 PPC_OEA_SPRS,
2274 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2275 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2276 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2277 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2278 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2279 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2280 };
2281
2282 /* IBM PowerPC 403GC. */
2283 static const struct reg registers_403GC[] =
2284 {
2285 COMMON_UISA_REGS,
2286 PPC_UISA_SPRS,
2287 PPC_SEGMENT_REGS,
2288 PPC_OEA_SPRS,
2289 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2290 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2291 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2292 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2293 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2294 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2295 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2296 /* 147 */ R(tbhu), R(tblu)
2297 };
2298
2299 /* Motorola PowerPC 505. */
2300 static const struct reg registers_505[] =
2301 {
2302 COMMON_UISA_REGS,
2303 PPC_UISA_SPRS,
2304 PPC_SEGMENT_REGS,
2305 PPC_OEA_SPRS,
2306 /* 119 */ R(eie), R(eid), R(nri)
2307 };
2308
2309 /* Motorola PowerPC 860 or 850. */
2310 static const struct reg registers_860[] =
2311 {
2312 COMMON_UISA_REGS,
2313 PPC_UISA_SPRS,
2314 PPC_SEGMENT_REGS,
2315 PPC_OEA_SPRS,
2316 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2317 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2318 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2319 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2320 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2321 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2322 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2323 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2324 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2325 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2326 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2327 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2328 };
2329
2330 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2331 for reading and writing RTCU and RTCL. However, how one reads and writes a
2332 register is the stub's problem. */
2333 static const struct reg registers_601[] =
2334 {
2335 COMMON_UISA_REGS,
2336 PPC_UISA_SPRS,
2337 PPC_SEGMENT_REGS,
2338 PPC_OEA_SPRS,
2339 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2340 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2341 };
2342
2343 /* Motorola PowerPC 602. */
2344 static const struct reg registers_602[] =
2345 {
2346 COMMON_UISA_REGS,
2347 PPC_UISA_SPRS,
2348 PPC_SEGMENT_REGS,
2349 PPC_OEA_SPRS,
2350 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2351 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2352 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2353 };
2354
2355 /* Motorola/IBM PowerPC 603 or 603e. */
2356 static const struct reg registers_603[] =
2357 {
2358 COMMON_UISA_REGS,
2359 PPC_UISA_SPRS,
2360 PPC_SEGMENT_REGS,
2361 PPC_OEA_SPRS,
2362 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2363 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2364 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2365 };
2366
2367 /* Motorola PowerPC 604 or 604e. */
2368 static const struct reg registers_604[] =
2369 {
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2375 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2376 /* 127 */ R(sia), R(sda)
2377 };
2378
2379 /* Motorola/IBM PowerPC 750 or 740. */
2380 static const struct reg registers_750[] =
2381 {
2382 COMMON_UISA_REGS,
2383 PPC_UISA_SPRS,
2384 PPC_SEGMENT_REGS,
2385 PPC_OEA_SPRS,
2386 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2387 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2388 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2389 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2390 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2391 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2392 };
2393
2394
2395 /* Motorola PowerPC 7400. */
2396 static const struct reg registers_7400[] =
2397 {
2398 /* gpr0-gpr31, fpr0-fpr31 */
2399 COMMON_UISA_REGS,
2400 /* ctr, xre, lr, cr */
2401 PPC_UISA_SPRS,
2402 /* sr0-sr15 */
2403 PPC_SEGMENT_REGS,
2404 PPC_OEA_SPRS,
2405 /* vr0-vr31, vrsave, vscr */
2406 PPC_ALTIVEC_REGS
2407 /* FIXME? Add more registers? */
2408 };
2409
2410 /* Motorola e500. */
2411 static const struct reg registers_e500[] =
2412 {
2413 R(pc), R(ps),
2414 /* cr, lr, ctr, xer, "" */
2415 PPC_UISA_NOFP_SPRS,
2416 /* 7...38 */
2417 PPC_EV_REGS,
2418 R8(acc), R(spefscr),
2419 /* NOTE: Add new registers here the end of the raw register
2420 list and just before the first pseudo register. */
2421 /* 39...70 */
2422 PPC_GPRS_PSEUDO_REGS
2423 };
2424
2425 /* Information about a particular processor variant. */
2426
2427 struct variant
2428 {
2429 /* Name of this variant. */
2430 char *name;
2431
2432 /* English description of the variant. */
2433 char *description;
2434
2435 /* bfd_arch_info.arch corresponding to variant. */
2436 enum bfd_architecture arch;
2437
2438 /* bfd_arch_info.mach corresponding to variant. */
2439 unsigned long mach;
2440
2441 /* Number of real registers. */
2442 int nregs;
2443
2444 /* Number of pseudo registers. */
2445 int npregs;
2446
2447 /* Number of total registers (the sum of nregs and npregs). */
2448 int num_tot_regs;
2449
2450 /* Table of register names; registers[R] is the name of the register
2451 number R. */
2452 const struct reg *regs;
2453 };
2454
2455 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2456
2457 static int
2458 num_registers (const struct reg *reg_list, int num_tot_regs)
2459 {
2460 int i;
2461 int nregs = 0;
2462
2463 for (i = 0; i < num_tot_regs; i++)
2464 if (!reg_list[i].pseudo)
2465 nregs++;
2466
2467 return nregs;
2468 }
2469
2470 static int
2471 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2472 {
2473 int i;
2474 int npregs = 0;
2475
2476 for (i = 0; i < num_tot_regs; i++)
2477 if (reg_list[i].pseudo)
2478 npregs ++;
2479
2480 return npregs;
2481 }
2482
2483 /* Information in this table comes from the following web sites:
2484 IBM: http://www.chips.ibm.com:80/products/embedded/
2485 Motorola: http://www.mot.com/SPS/PowerPC/
2486
2487 I'm sure I've got some of the variant descriptions not quite right.
2488 Please report any inaccuracies you find to GDB's maintainer.
2489
2490 If you add entries to this table, please be sure to allow the new
2491 value as an argument to the --with-cpu flag, in configure.in. */
2492
2493 static struct variant variants[] =
2494 {
2495
2496 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2497 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2498 registers_powerpc},
2499 {"power", "POWER user-level", bfd_arch_rs6000,
2500 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2501 registers_power},
2502 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2503 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2504 registers_403},
2505 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2506 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2507 registers_601},
2508 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2509 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2510 registers_602},
2511 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2512 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2513 registers_603},
2514 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2515 604, -1, -1, tot_num_registers (registers_604),
2516 registers_604},
2517 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2518 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2519 registers_403GC},
2520 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2521 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2522 registers_505},
2523 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2524 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2525 registers_860},
2526 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2527 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2528 registers_750},
2529 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2530 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2531 registers_7400},
2532 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2533 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2534 registers_e500},
2535
2536 /* 64-bit */
2537 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2538 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2539 registers_powerpc},
2540 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2541 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2542 registers_powerpc},
2543 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2544 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2545 registers_powerpc},
2546 {"a35", "PowerPC A35", bfd_arch_powerpc,
2547 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2548 registers_powerpc},
2549 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2550 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2551 registers_powerpc},
2552 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2553 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2554 registers_powerpc},
2555
2556 /* FIXME: I haven't checked the register sets of the following. */
2557 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2558 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2559 registers_power},
2560 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2561 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2562 registers_power},
2563 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2564 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2565 registers_power},
2566
2567 {0, 0, 0, 0, 0, 0, 0, 0}
2568 };
2569
2570 /* Initialize the number of registers and pseudo registers in each variant. */
2571
2572 static void
2573 init_variants (void)
2574 {
2575 struct variant *v;
2576
2577 for (v = variants; v->name; v++)
2578 {
2579 if (v->nregs == -1)
2580 v->nregs = num_registers (v->regs, v->num_tot_regs);
2581 if (v->npregs == -1)
2582 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2583 }
2584 }
2585
2586 /* Return the variant corresponding to architecture ARCH and machine number
2587 MACH. If no such variant exists, return null. */
2588
2589 static const struct variant *
2590 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2591 {
2592 const struct variant *v;
2593
2594 for (v = variants; v->name; v++)
2595 if (arch == v->arch && mach == v->mach)
2596 return v;
2597
2598 return NULL;
2599 }
2600
2601 static int
2602 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2603 {
2604 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2605 return print_insn_big_powerpc (memaddr, info);
2606 else
2607 return print_insn_little_powerpc (memaddr, info);
2608 }
2609 \f
2610 /* Initialize the current architecture based on INFO. If possible, re-use an
2611 architecture from ARCHES, which is a list of architectures already created
2612 during this debugging session.
2613
2614 Called e.g. at program startup, when reading a core file, and when reading
2615 a binary file. */
2616
2617 static struct gdbarch *
2618 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2619 {
2620 struct gdbarch *gdbarch;
2621 struct gdbarch_tdep *tdep;
2622 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2623 struct reg *regs;
2624 const struct variant *v;
2625 enum bfd_architecture arch;
2626 unsigned long mach;
2627 bfd abfd;
2628 int sysv_abi;
2629 asection *sect;
2630
2631 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2632 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2633
2634 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2635 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2636
2637 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2638
2639 /* Check word size. If INFO is from a binary file, infer it from
2640 that, else choose a likely default. */
2641 if (from_xcoff_exec)
2642 {
2643 if (bfd_xcoff_is_xcoff64 (info.abfd))
2644 wordsize = 8;
2645 else
2646 wordsize = 4;
2647 }
2648 else if (from_elf_exec)
2649 {
2650 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2651 wordsize = 8;
2652 else
2653 wordsize = 4;
2654 }
2655 else
2656 {
2657 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2658 wordsize = info.bfd_arch_info->bits_per_word /
2659 info.bfd_arch_info->bits_per_byte;
2660 else
2661 wordsize = 4;
2662 }
2663
2664 /* Find a candidate among extant architectures. */
2665 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2666 arches != NULL;
2667 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2668 {
2669 /* Word size in the various PowerPC bfd_arch_info structs isn't
2670 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2671 separate word size check. */
2672 tdep = gdbarch_tdep (arches->gdbarch);
2673 if (tdep && tdep->wordsize == wordsize)
2674 return arches->gdbarch;
2675 }
2676
2677 /* None found, create a new architecture from INFO, whose bfd_arch_info
2678 validity depends on the source:
2679 - executable useless
2680 - rs6000_host_arch() good
2681 - core file good
2682 - "set arch" trust blindly
2683 - GDB startup useless but harmless */
2684
2685 if (!from_xcoff_exec)
2686 {
2687 arch = info.bfd_arch_info->arch;
2688 mach = info.bfd_arch_info->mach;
2689 }
2690 else
2691 {
2692 arch = bfd_arch_powerpc;
2693 bfd_default_set_arch_mach (&abfd, arch, 0);
2694 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2695 mach = info.bfd_arch_info->mach;
2696 }
2697 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2698 tdep->wordsize = wordsize;
2699
2700 /* For e500 executables, the apuinfo section is of help here. Such
2701 section contains the identifier and revision number of each
2702 Application-specific Processing Unit that is present on the
2703 chip. The content of the section is determined by the assembler
2704 which looks at each instruction and determines which unit (and
2705 which version of it) can execute it. In our case we just look for
2706 the existance of the section. */
2707
2708 if (info.abfd)
2709 {
2710 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2711 if (sect)
2712 {
2713 arch = info.bfd_arch_info->arch;
2714 mach = bfd_mach_ppc_e500;
2715 bfd_default_set_arch_mach (&abfd, arch, mach);
2716 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2717 }
2718 }
2719
2720 gdbarch = gdbarch_alloc (&info, tdep);
2721 power = arch == bfd_arch_rs6000;
2722
2723 /* Initialize the number of real and pseudo registers in each variant. */
2724 init_variants ();
2725
2726 /* Choose variant. */
2727 v = find_variant_by_arch (arch, mach);
2728 if (!v)
2729 return NULL;
2730
2731 tdep->regs = v->regs;
2732
2733 tdep->ppc_gp0_regnum = 0;
2734 tdep->ppc_gplast_regnum = 31;
2735 tdep->ppc_toc_regnum = 2;
2736 tdep->ppc_ps_regnum = 65;
2737 tdep->ppc_cr_regnum = 66;
2738 tdep->ppc_lr_regnum = 67;
2739 tdep->ppc_ctr_regnum = 68;
2740 tdep->ppc_xer_regnum = 69;
2741 if (v->mach == bfd_mach_ppc_601)
2742 tdep->ppc_mq_regnum = 124;
2743 else if (power)
2744 tdep->ppc_mq_regnum = 70;
2745 else
2746 tdep->ppc_mq_regnum = -1;
2747 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2748
2749 set_gdbarch_pc_regnum (gdbarch, 64);
2750 set_gdbarch_sp_regnum (gdbarch, 1);
2751 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2752 if (sysv_abi && wordsize == 8)
2753 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2754 else if (sysv_abi && wordsize == 4)
2755 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2756 else
2757 {
2758 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2759 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2760 }
2761
2762 if (v->arch == bfd_arch_powerpc)
2763 switch (v->mach)
2764 {
2765 case bfd_mach_ppc:
2766 tdep->ppc_vr0_regnum = 71;
2767 tdep->ppc_vrsave_regnum = 104;
2768 tdep->ppc_ev0_regnum = -1;
2769 tdep->ppc_ev31_regnum = -1;
2770 break;
2771 case bfd_mach_ppc_7400:
2772 tdep->ppc_vr0_regnum = 119;
2773 tdep->ppc_vrsave_regnum = 152;
2774 tdep->ppc_ev0_regnum = -1;
2775 tdep->ppc_ev31_regnum = -1;
2776 break;
2777 case bfd_mach_ppc_e500:
2778 tdep->ppc_gp0_regnum = 41;
2779 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2780 tdep->ppc_toc_regnum = -1;
2781 tdep->ppc_ps_regnum = 1;
2782 tdep->ppc_cr_regnum = 2;
2783 tdep->ppc_lr_regnum = 3;
2784 tdep->ppc_ctr_regnum = 4;
2785 tdep->ppc_xer_regnum = 5;
2786 tdep->ppc_ev0_regnum = 7;
2787 tdep->ppc_ev31_regnum = 38;
2788 set_gdbarch_pc_regnum (gdbarch, 0);
2789 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2790 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2791 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2792 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2793 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2794 break;
2795 default:
2796 tdep->ppc_vr0_regnum = -1;
2797 tdep->ppc_vrsave_regnum = -1;
2798 tdep->ppc_ev0_regnum = -1;
2799 tdep->ppc_ev31_regnum = -1;
2800 break;
2801 }
2802
2803 /* Sanity check on registers. */
2804 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2805
2806 /* Set lr_frame_offset. */
2807 if (wordsize == 8)
2808 tdep->lr_frame_offset = 16;
2809 else if (sysv_abi)
2810 tdep->lr_frame_offset = 4;
2811 else
2812 tdep->lr_frame_offset = 8;
2813
2814 /* Calculate byte offsets in raw register array. */
2815 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2816 for (i = off = 0; i < v->num_tot_regs; i++)
2817 {
2818 tdep->regoff[i] = off;
2819 off += regsize (v->regs + i, wordsize);
2820 }
2821
2822 /* Select instruction printer. */
2823 if (arch == power)
2824 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2825 else
2826 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2827
2828 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2829
2830 set_gdbarch_num_regs (gdbarch, v->nregs);
2831 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2832 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2833 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2834 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2835 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2836 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2837 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2838
2839 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2840 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2841 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2842 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2843 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2844 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2845 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2846 if (sysv_abi)
2847 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2848 else
2849 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2850 set_gdbarch_char_signed (gdbarch, 0);
2851
2852 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2853 if (sysv_abi && wordsize == 8)
2854 /* PPC64 SYSV. */
2855 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2856 else if (!sysv_abi && wordsize == 4)
2857 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2858 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2859 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2860 224. */
2861 set_gdbarch_frame_red_zone_size (gdbarch, 224);
2862 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2863 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2864
2865 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2866 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2867 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2868 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2869 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2870 is correct for the SysV ABI when the wordsize is 8, but I'm also
2871 fairly certain that ppc_sysv_abi_push_arguments() will give even
2872 worse results since it only works for 32-bit code. So, for the moment,
2873 we're better off calling rs6000_push_arguments() since it works for
2874 64-bit code. At some point in the future, this matter needs to be
2875 revisited. */
2876 if (sysv_abi && wordsize == 4)
2877 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2878 else if (sysv_abi && wordsize == 8)
2879 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
2880 else
2881 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2882
2883 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2884 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2885
2886 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2887 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2888 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2889
2890 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2891 for the descriptor and ".FN" for the entry-point -- a user
2892 specifying "break FN" will unexpectedly end up with a breakpoint
2893 on the descriptor and not the function. This architecture method
2894 transforms any breakpoints on descriptors into breakpoints on the
2895 corresponding entry point. */
2896 if (sysv_abi && wordsize == 8)
2897 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2898
2899 /* Not sure on this. FIXMEmgo */
2900 set_gdbarch_frame_args_skip (gdbarch, 8);
2901
2902 if (!sysv_abi)
2903 set_gdbarch_use_struct_convention (gdbarch,
2904 rs6000_use_struct_convention);
2905
2906 set_gdbarch_frameless_function_invocation (gdbarch,
2907 rs6000_frameless_function_invocation);
2908 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2909 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2910
2911 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2912 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2913
2914 if (!sysv_abi)
2915 {
2916 /* Handle RS/6000 function pointers (which are really function
2917 descriptors). */
2918 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2919 rs6000_convert_from_func_ptr_addr);
2920 }
2921 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2922 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
2923 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2924
2925 /* Helpers for function argument information. */
2926 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2927
2928 /* Hook in ABI-specific overrides, if they have been registered. */
2929 gdbarch_init_osabi (info, gdbarch);
2930
2931 if (from_xcoff_exec)
2932 {
2933 /* NOTE: jimix/2003-06-09: This test should really check for
2934 GDB_OSABI_AIX when that is defined and becomes
2935 available. (Actually, once things are properly split apart,
2936 the test goes away.) */
2937 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2938 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2939 }
2940
2941 return gdbarch;
2942 }
2943
2944 static void
2945 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2946 {
2947 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2948
2949 if (tdep == NULL)
2950 return;
2951
2952 /* FIXME: Dump gdbarch_tdep. */
2953 }
2954
2955 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2956
2957 static void
2958 rs6000_info_powerpc_command (char *args, int from_tty)
2959 {
2960 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2961 }
2962
2963 /* Initialization code. */
2964
2965 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
2966
2967 void
2968 _initialize_rs6000_tdep (void)
2969 {
2970 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2971 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2972
2973 /* Add root prefix command for "info powerpc" commands */
2974 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2975 "Various POWERPC info specific commands.",
2976 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2977 }
This page took 0.168142 seconds and 5 git commands to generate.