2003-09-04 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 frame_read_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
989 return pc + 8;
990 }
991 }
992 #endif /* 0 */
993
994 fdata->offset = -fdata->offset;
995 return last_prologue_pc;
996 }
997
998
999 /*************************************************************************
1000 Support for creating pushing a dummy frame into the stack, and popping
1001 frames, etc.
1002 *************************************************************************/
1003
1004
1005 /* Pop the innermost frame, go back to the caller. */
1006
1007 static void
1008 rs6000_pop_frame (void)
1009 {
1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
1013 int ii, wordsize;
1014
1015 pc = read_pc ();
1016 sp = get_frame_base (frame);
1017
1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
1021 {
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
1025 }
1026
1027 /* Make sure that all registers are valid. */
1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1029
1030 /* Figure out previous %pc value. If the function is frameless, it is
1031 still in the link register, otherwise walk the frames and retrieve the
1032 saved %pc value in the previous frame. */
1033
1034 addr = get_frame_func (frame);
1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1036
1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
1041 prev_sp = read_memory_addr (sp, wordsize);
1042 if (fdata.lr_offset == 0)
1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1044 else
1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
1050 /* reset register values if any was saved earlier. */
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1058 wordsize);
1059 addr += wordsize;
1060 }
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
1068 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1069 addr += 8;
1070 }
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076 }
1077
1078 /* Fixup the call sequence of a dummy function, with the real function
1079 address. Its arguments will be passed by gdb. */
1080
1081 static void
1082 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1083 int nargs, struct value **args, struct type *type,
1084 int gcc_p)
1085 {
1086 int ii;
1087 CORE_ADDR target_addr;
1088
1089 if (rs6000_find_toc_address_hook != NULL)
1090 {
1091 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1092 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1093 tocvalue);
1094 }
1095 }
1096
1097 /* All the ABI's require 16 byte alignment. */
1098 static CORE_ADDR
1099 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1100 {
1101 return (addr & -16);
1102 }
1103
1104 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1105 the first eight words of the argument list (that might be less than
1106 eight parameters if some parameters occupy more than one word) are
1107 passed in r3..r10 registers. float and double parameters are
1108 passed in fpr's, in addition to that. Rest of the parameters if any
1109 are passed in user stack. There might be cases in which half of the
1110 parameter is copied into registers, the other half is pushed into
1111 stack.
1112
1113 Stack must be aligned on 64-bit boundaries when synthesizing
1114 function calls.
1115
1116 If the function is returning a structure, then the return address is passed
1117 in r3, then the first 7 words of the parameters can be passed in registers,
1118 starting from r4. */
1119
1120 static CORE_ADDR
1121 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1122 int struct_return, CORE_ADDR struct_addr)
1123 {
1124 int ii;
1125 int len = 0;
1126 int argno; /* current argument number */
1127 int argbytes; /* current argument byte */
1128 char tmp_buffer[50];
1129 int f_argno = 0; /* current floating point argno */
1130 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1131
1132 struct value *arg = 0;
1133 struct type *type;
1134
1135 CORE_ADDR saved_sp;
1136
1137 /* The first eight words of ther arguments are passed in registers.
1138 Copy them appropriately.
1139
1140 If the function is returning a `struct', then the first word (which
1141 will be passed in r3) is used for struct return address. In that
1142 case we should advance one word and start from r4 register to copy
1143 parameters. */
1144
1145 ii = struct_return ? 1 : 0;
1146
1147 /*
1148 effectively indirect call... gcc does...
1149
1150 return_val example( float, int);
1151
1152 eabi:
1153 float in fp0, int in r3
1154 offset of stack on overflow 8/16
1155 for varargs, must go by type.
1156 power open:
1157 float in r3&r4, int in r5
1158 offset of stack on overflow different
1159 both:
1160 return in r3 or f0. If no float, must study how gcc emulates floats;
1161 pay attention to arg promotion.
1162 User may have to cast\args to handle promotion correctly
1163 since gdb won't know if prototype supplied or not.
1164 */
1165
1166 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1167 {
1168 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1169
1170 arg = args[argno];
1171 type = check_typedef (VALUE_TYPE (arg));
1172 len = TYPE_LENGTH (type);
1173
1174 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1175 {
1176
1177 /* Floating point arguments are passed in fpr's, as well as gpr's.
1178 There are 13 fpr's reserved for passing parameters. At this point
1179 there is no way we would run out of them. */
1180
1181 if (len > 8)
1182 printf_unfiltered (
1183 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1184
1185 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1186 VALUE_CONTENTS (arg),
1187 len);
1188 ++f_argno;
1189 }
1190
1191 if (len > reg_size)
1192 {
1193
1194 /* Argument takes more than one register. */
1195 while (argbytes < len)
1196 {
1197 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1198 reg_size);
1199 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1200 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1201 (len - argbytes) > reg_size
1202 ? reg_size : len - argbytes);
1203 ++ii, argbytes += reg_size;
1204
1205 if (ii >= 8)
1206 goto ran_out_of_registers_for_arguments;
1207 }
1208 argbytes = 0;
1209 --ii;
1210 }
1211 else
1212 {
1213 /* Argument can fit in one register. No problem. */
1214 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1215 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1216 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1217 VALUE_CONTENTS (arg), len);
1218 }
1219 ++argno;
1220 }
1221
1222 ran_out_of_registers_for_arguments:
1223
1224 saved_sp = read_sp ();
1225
1226 /* Location for 8 parameters are always reserved. */
1227 sp -= wordsize * 8;
1228
1229 /* Another six words for back chain, TOC register, link register, etc. */
1230 sp -= wordsize * 6;
1231
1232 /* Stack pointer must be quadword aligned. */
1233 sp &= -16;
1234
1235 /* If there are more arguments, allocate space for them in
1236 the stack, then push them starting from the ninth one. */
1237
1238 if ((argno < nargs) || argbytes)
1239 {
1240 int space = 0, jj;
1241
1242 if (argbytes)
1243 {
1244 space += ((len - argbytes + 3) & -4);
1245 jj = argno + 1;
1246 }
1247 else
1248 jj = argno;
1249
1250 for (; jj < nargs; ++jj)
1251 {
1252 struct value *val = args[jj];
1253 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1254 }
1255
1256 /* Add location required for the rest of the parameters. */
1257 space = (space + 15) & -16;
1258 sp -= space;
1259
1260 /* This is another instance we need to be concerned about
1261 securing our stack space. If we write anything underneath %sp
1262 (r1), we might conflict with the kernel who thinks he is free
1263 to use this area. So, update %sp first before doing anything
1264 else. */
1265
1266 write_register (SP_REGNUM, sp);
1267
1268 /* If the last argument copied into the registers didn't fit there
1269 completely, push the rest of it into stack. */
1270
1271 if (argbytes)
1272 {
1273 write_memory (sp + 24 + (ii * 4),
1274 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1275 len - argbytes);
1276 ++argno;
1277 ii += ((len - argbytes + 3) & -4) / 4;
1278 }
1279
1280 /* Push the rest of the arguments into stack. */
1281 for (; argno < nargs; ++argno)
1282 {
1283
1284 arg = args[argno];
1285 type = check_typedef (VALUE_TYPE (arg));
1286 len = TYPE_LENGTH (type);
1287
1288
1289 /* Float types should be passed in fpr's, as well as in the
1290 stack. */
1291 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1292 {
1293
1294 if (len > 8)
1295 printf_unfiltered (
1296 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1297
1298 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1299 VALUE_CONTENTS (arg),
1300 len);
1301 ++f_argno;
1302 }
1303
1304 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1305 ii += ((len + 3) & -4) / 4;
1306 }
1307 }
1308 else
1309 /* Secure stack areas first, before doing anything else. */
1310 write_register (SP_REGNUM, sp);
1311
1312 /* set back chain properly */
1313 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1314 write_memory (sp, tmp_buffer, 4);
1315
1316 target_store_registers (-1);
1317 return sp;
1318 }
1319
1320 /* Function: ppc_push_return_address (pc, sp)
1321 Set up the return address for the inferior function call. */
1322
1323 static CORE_ADDR
1324 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1325 {
1326 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1327 entry_point_address ());
1328 return sp;
1329 }
1330
1331 /* Extract a function return value of type TYPE from raw register array
1332 REGBUF, and copy that return value into VALBUF in virtual format. */
1333 static void
1334 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1335 {
1336 int offset = 0;
1337 int vallen = TYPE_LENGTH (valtype);
1338 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1339
1340 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1341 && vallen == 8
1342 && TYPE_VECTOR (valtype))
1343 {
1344 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1345 }
1346 else
1347 {
1348 /* Return value is copied starting from r3. Note that r3 for us
1349 is a pseudo register. */
1350 int offset = 0;
1351 int return_regnum = tdep->ppc_gp0_regnum + 3;
1352 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1353 int reg_part_size;
1354 char *val_buffer;
1355 int copied = 0;
1356 int i = 0;
1357
1358 /* Compute where we will start storing the value from. */
1359 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1360 {
1361 if (vallen <= reg_size)
1362 offset = reg_size - vallen;
1363 else
1364 offset = reg_size + (reg_size - vallen);
1365 }
1366
1367 /* How big does the local buffer need to be? */
1368 if (vallen <= reg_size)
1369 val_buffer = alloca (reg_size);
1370 else
1371 val_buffer = alloca (vallen);
1372
1373 /* Read all we need into our private buffer. We copy it in
1374 chunks that are as long as one register, never shorter, even
1375 if the value is smaller than the register. */
1376 while (copied < vallen)
1377 {
1378 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1379 /* It is a pseudo/cooked register. */
1380 regcache_cooked_read (regbuf, return_regnum + i,
1381 val_buffer + copied);
1382 copied += reg_part_size;
1383 i++;
1384 }
1385 /* Put the stuff in the return buffer. */
1386 memcpy (valbuf, val_buffer + offset, vallen);
1387 }
1388 }
1389
1390 static void
1391 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1392 {
1393 int offset = 0;
1394 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1395
1396 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1397 {
1398
1399 double dd;
1400 float ff;
1401 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1402 We need to truncate the return value into float size (4 byte) if
1403 necessary. */
1404
1405 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1406 memcpy (valbuf,
1407 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1408 TYPE_LENGTH (valtype));
1409 else
1410 { /* float */
1411 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1412 ff = (float) dd;
1413 memcpy (valbuf, &ff, sizeof (float));
1414 }
1415 }
1416 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1417 && TYPE_LENGTH (valtype) == 16
1418 && TYPE_VECTOR (valtype))
1419 {
1420 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1421 TYPE_LENGTH (valtype));
1422 }
1423 else
1424 {
1425 /* return value is copied starting from r3. */
1426 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1427 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1428 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1429
1430 memcpy (valbuf,
1431 regbuf + REGISTER_BYTE (3) + offset,
1432 TYPE_LENGTH (valtype));
1433 }
1434 }
1435
1436 /* Return whether handle_inferior_event() should proceed through code
1437 starting at PC in function NAME when stepping.
1438
1439 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1440 handle memory references that are too distant to fit in instructions
1441 generated by the compiler. For example, if 'foo' in the following
1442 instruction:
1443
1444 lwz r9,foo(r2)
1445
1446 is greater than 32767, the linker might replace the lwz with a branch to
1447 somewhere in @FIX1 that does the load in 2 instructions and then branches
1448 back to where execution should continue.
1449
1450 GDB should silently step over @FIX code, just like AIX dbx does.
1451 Unfortunately, the linker uses the "b" instruction for the branches,
1452 meaning that the link register doesn't get set. Therefore, GDB's usual
1453 step_over_function() mechanism won't work.
1454
1455 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1456 in handle_inferior_event() to skip past @FIX code. */
1457
1458 int
1459 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1460 {
1461 return name && !strncmp (name, "@FIX", 4);
1462 }
1463
1464 /* Skip code that the user doesn't want to see when stepping:
1465
1466 1. Indirect function calls use a piece of trampoline code to do context
1467 switching, i.e. to set the new TOC table. Skip such code if we are on
1468 its first instruction (as when we have single-stepped to here).
1469
1470 2. Skip shared library trampoline code (which is different from
1471 indirect function call trampolines).
1472
1473 3. Skip bigtoc fixup code.
1474
1475 Result is desired PC to step until, or NULL if we are not in
1476 code that should be skipped. */
1477
1478 CORE_ADDR
1479 rs6000_skip_trampoline_code (CORE_ADDR pc)
1480 {
1481 register unsigned int ii, op;
1482 int rel;
1483 CORE_ADDR solib_target_pc;
1484 struct minimal_symbol *msymbol;
1485
1486 static unsigned trampoline_code[] =
1487 {
1488 0x800b0000, /* l r0,0x0(r11) */
1489 0x90410014, /* st r2,0x14(r1) */
1490 0x7c0903a6, /* mtctr r0 */
1491 0x804b0004, /* l r2,0x4(r11) */
1492 0x816b0008, /* l r11,0x8(r11) */
1493 0x4e800420, /* bctr */
1494 0x4e800020, /* br */
1495 0
1496 };
1497
1498 /* Check for bigtoc fixup code. */
1499 msymbol = lookup_minimal_symbol_by_pc (pc);
1500 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1501 {
1502 /* Double-check that the third instruction from PC is relative "b". */
1503 op = read_memory_integer (pc + 8, 4);
1504 if ((op & 0xfc000003) == 0x48000000)
1505 {
1506 /* Extract bits 6-29 as a signed 24-bit relative word address and
1507 add it to the containing PC. */
1508 rel = ((int)(op << 6) >> 6);
1509 return pc + 8 + rel;
1510 }
1511 }
1512
1513 /* If pc is in a shared library trampoline, return its target. */
1514 solib_target_pc = find_solib_trampoline_target (pc);
1515 if (solib_target_pc)
1516 return solib_target_pc;
1517
1518 for (ii = 0; trampoline_code[ii]; ++ii)
1519 {
1520 op = read_memory_integer (pc + (ii * 4), 4);
1521 if (op != trampoline_code[ii])
1522 return 0;
1523 }
1524 ii = read_register (11); /* r11 holds destination addr */
1525 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1526 return pc;
1527 }
1528
1529 /* Determines whether the function FI has a frame on the stack or not. */
1530
1531 int
1532 rs6000_frameless_function_invocation (struct frame_info *fi)
1533 {
1534 CORE_ADDR func_start;
1535 struct rs6000_framedata fdata;
1536
1537 /* Don't even think about framelessness except on the innermost frame
1538 or if the function was interrupted by a signal. */
1539 if (get_next_frame (fi) != NULL
1540 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1541 return 0;
1542
1543 func_start = get_frame_func (fi);
1544
1545 /* If we failed to find the start of the function, it is a mistake
1546 to inspect the instructions. */
1547
1548 if (!func_start)
1549 {
1550 /* A frame with a zero PC is usually created by dereferencing a NULL
1551 function pointer, normally causing an immediate core dump of the
1552 inferior. Mark function as frameless, as the inferior has no chance
1553 of setting up a stack frame. */
1554 if (get_frame_pc (fi) == 0)
1555 return 1;
1556 else
1557 return 0;
1558 }
1559
1560 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1561 return fdata.frameless;
1562 }
1563
1564 /* Return the PC saved in a frame. */
1565
1566 CORE_ADDR
1567 rs6000_frame_saved_pc (struct frame_info *fi)
1568 {
1569 CORE_ADDR func_start;
1570 struct rs6000_framedata fdata;
1571 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1572 int wordsize = tdep->wordsize;
1573
1574 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1575 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1576 wordsize);
1577
1578 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1579 get_frame_base (fi),
1580 get_frame_base (fi)))
1581 return deprecated_read_register_dummy (get_frame_pc (fi),
1582 get_frame_base (fi), PC_REGNUM);
1583
1584 func_start = get_frame_func (fi);
1585
1586 /* If we failed to find the start of the function, it is a mistake
1587 to inspect the instructions. */
1588 if (!func_start)
1589 return 0;
1590
1591 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1592
1593 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1594 {
1595 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1596 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1597 + SIG_FRAME_LR_OFFSET),
1598 wordsize);
1599 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1600 /* The link register wasn't saved by this frame and the next
1601 (inner, newer) frame is a dummy. Get the link register
1602 value by unwinding it from that [dummy] frame. */
1603 {
1604 ULONGEST lr;
1605 frame_unwind_unsigned_register (get_next_frame (fi),
1606 tdep->ppc_lr_regnum, &lr);
1607 return lr;
1608 }
1609 else
1610 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1611 + tdep->lr_frame_offset,
1612 wordsize);
1613 }
1614
1615 if (fdata.lr_offset == 0)
1616 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1617
1618 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1619 wordsize);
1620 }
1621
1622 /* If saved registers of frame FI are not known yet, read and cache them.
1623 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1624 in which case the framedata are read. */
1625
1626 static void
1627 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1628 {
1629 CORE_ADDR frame_addr;
1630 struct rs6000_framedata work_fdata;
1631 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1632 int wordsize = tdep->wordsize;
1633
1634 if (get_frame_saved_regs (fi))
1635 return;
1636
1637 if (fdatap == NULL)
1638 {
1639 fdatap = &work_fdata;
1640 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1641 }
1642
1643 frame_saved_regs_zalloc (fi);
1644
1645 /* If there were any saved registers, figure out parent's stack
1646 pointer. */
1647 /* The following is true only if the frame doesn't have a call to
1648 alloca(), FIXME. */
1649
1650 if (fdatap->saved_fpr == 0
1651 && fdatap->saved_gpr == 0
1652 && fdatap->saved_vr == 0
1653 && fdatap->saved_ev == 0
1654 && fdatap->lr_offset == 0
1655 && fdatap->cr_offset == 0
1656 && fdatap->vr_offset == 0
1657 && fdatap->ev_offset == 0)
1658 frame_addr = 0;
1659 else
1660 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1661 address of the current frame. Things might be easier if the
1662 ->frame pointed to the outer-most address of the frame. In the
1663 mean time, the address of the prev frame is used as the base
1664 address of this frame. */
1665 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1666
1667 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1668 All fpr's from saved_fpr to fp31 are saved. */
1669
1670 if (fdatap->saved_fpr >= 0)
1671 {
1672 int i;
1673 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1674 for (i = fdatap->saved_fpr; i < 32; i++)
1675 {
1676 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1677 fpr_addr += 8;
1678 }
1679 }
1680
1681 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1682 All gpr's from saved_gpr to gpr31 are saved. */
1683
1684 if (fdatap->saved_gpr >= 0)
1685 {
1686 int i;
1687 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1688 for (i = fdatap->saved_gpr; i < 32; i++)
1689 {
1690 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1691 gpr_addr += wordsize;
1692 }
1693 }
1694
1695 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1696 All vr's from saved_vr to vr31 are saved. */
1697 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1698 {
1699 if (fdatap->saved_vr >= 0)
1700 {
1701 int i;
1702 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1703 for (i = fdatap->saved_vr; i < 32; i++)
1704 {
1705 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1706 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1707 }
1708 }
1709 }
1710
1711 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1712 All vr's from saved_ev to ev31 are saved. ????? */
1713 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1714 {
1715 if (fdatap->saved_ev >= 0)
1716 {
1717 int i;
1718 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1719 for (i = fdatap->saved_ev; i < 32; i++)
1720 {
1721 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1722 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1723 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1724 }
1725 }
1726 }
1727
1728 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1729 the CR. */
1730 if (fdatap->cr_offset != 0)
1731 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1732
1733 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1734 the LR. */
1735 if (fdatap->lr_offset != 0)
1736 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1737
1738 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1739 the VRSAVE. */
1740 if (fdatap->vrsave_offset != 0)
1741 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1742 }
1743
1744 /* Return the address of a frame. This is the inital %sp value when the frame
1745 was first allocated. For functions calling alloca(), it might be saved in
1746 an alloca register. */
1747
1748 static CORE_ADDR
1749 frame_initial_stack_address (struct frame_info *fi)
1750 {
1751 CORE_ADDR tmpaddr;
1752 struct rs6000_framedata fdata;
1753 struct frame_info *callee_fi;
1754
1755 /* If the initial stack pointer (frame address) of this frame is known,
1756 just return it. */
1757
1758 if (get_frame_extra_info (fi)->initial_sp)
1759 return get_frame_extra_info (fi)->initial_sp;
1760
1761 /* Find out if this function is using an alloca register. */
1762
1763 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1764
1765 /* If saved registers of this frame are not known yet, read and
1766 cache them. */
1767
1768 if (!get_frame_saved_regs (fi))
1769 frame_get_saved_regs (fi, &fdata);
1770
1771 /* If no alloca register used, then fi->frame is the value of the %sp for
1772 this frame, and it is good enough. */
1773
1774 if (fdata.alloca_reg < 0)
1775 {
1776 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1777 return get_frame_extra_info (fi)->initial_sp;
1778 }
1779
1780 /* There is an alloca register, use its value, in the current frame,
1781 as the initial stack pointer. */
1782 {
1783 char tmpbuf[MAX_REGISTER_SIZE];
1784 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1785 {
1786 get_frame_extra_info (fi)->initial_sp
1787 = extract_unsigned_integer (tmpbuf,
1788 REGISTER_RAW_SIZE (fdata.alloca_reg));
1789 }
1790 else
1791 /* NOTE: cagney/2002-04-17: At present the only time
1792 frame_register_read will fail is when the register isn't
1793 available. If that does happen, use the frame. */
1794 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1795 }
1796 return get_frame_extra_info (fi)->initial_sp;
1797 }
1798
1799 /* Describe the pointer in each stack frame to the previous stack frame
1800 (its caller). */
1801
1802 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1803 the frame's chain-pointer. */
1804
1805 /* In the case of the RS/6000, the frame's nominal address
1806 is the address of a 4-byte word containing the calling frame's address. */
1807
1808 CORE_ADDR
1809 rs6000_frame_chain (struct frame_info *thisframe)
1810 {
1811 CORE_ADDR fp, fpp, lr;
1812 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1813
1814 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1815 get_frame_base (thisframe),
1816 get_frame_base (thisframe)))
1817 /* A dummy frame always correctly chains back to the previous
1818 frame. */
1819 return read_memory_addr (get_frame_base (thisframe), wordsize);
1820
1821 if (inside_entry_file (get_frame_pc (thisframe))
1822 || get_frame_pc (thisframe) == entry_point_address ())
1823 return 0;
1824
1825 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1826 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1827 wordsize);
1828 else if (get_next_frame (thisframe) != NULL
1829 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1830 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1831 /* A frameless function interrupted by a signal did not change the
1832 frame pointer. */
1833 fp = get_frame_base (thisframe);
1834 else
1835 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1836 return fp;
1837 }
1838
1839 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1840 isn't available with that word size, return 0. */
1841
1842 static int
1843 regsize (const struct reg *reg, int wordsize)
1844 {
1845 return wordsize == 8 ? reg->sz64 : reg->sz32;
1846 }
1847
1848 /* Return the name of register number N, or null if no such register exists
1849 in the current architecture. */
1850
1851 static const char *
1852 rs6000_register_name (int n)
1853 {
1854 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1855 const struct reg *reg = tdep->regs + n;
1856
1857 if (!regsize (reg, tdep->wordsize))
1858 return NULL;
1859 return reg->name;
1860 }
1861
1862 /* Index within `registers' of the first byte of the space for
1863 register N. */
1864
1865 static int
1866 rs6000_register_byte (int n)
1867 {
1868 return gdbarch_tdep (current_gdbarch)->regoff[n];
1869 }
1870
1871 /* Return the number of bytes of storage in the actual machine representation
1872 for register N if that register is available, else return 0. */
1873
1874 static int
1875 rs6000_register_raw_size (int n)
1876 {
1877 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1878 const struct reg *reg = tdep->regs + n;
1879 return regsize (reg, tdep->wordsize);
1880 }
1881
1882 /* Return the GDB type object for the "standard" data type
1883 of data in register N. */
1884
1885 static struct type *
1886 rs6000_register_virtual_type (int n)
1887 {
1888 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1889 const struct reg *reg = tdep->regs + n;
1890
1891 if (reg->fpr)
1892 return builtin_type_double;
1893 else
1894 {
1895 int size = regsize (reg, tdep->wordsize);
1896 switch (size)
1897 {
1898 case 0:
1899 return builtin_type_int0;
1900 case 4:
1901 return builtin_type_int32;
1902 case 8:
1903 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1904 return builtin_type_vec64;
1905 else
1906 return builtin_type_int64;
1907 break;
1908 case 16:
1909 return builtin_type_vec128;
1910 break;
1911 default:
1912 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1913 n, size);
1914 }
1915 }
1916 }
1917
1918 /* Return whether register N requires conversion when moving from raw format
1919 to virtual format.
1920
1921 The register format for RS/6000 floating point registers is always
1922 double, we need a conversion if the memory format is float. */
1923
1924 static int
1925 rs6000_register_convertible (int n)
1926 {
1927 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1928 return reg->fpr;
1929 }
1930
1931 /* Convert data from raw format for register N in buffer FROM
1932 to virtual format with type TYPE in buffer TO. */
1933
1934 static void
1935 rs6000_register_convert_to_virtual (int n, struct type *type,
1936 char *from, char *to)
1937 {
1938 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1939 {
1940 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1941 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1942 }
1943 else
1944 memcpy (to, from, REGISTER_RAW_SIZE (n));
1945 }
1946
1947 /* Convert data from virtual format with type TYPE in buffer FROM
1948 to raw format for register N in buffer TO. */
1949
1950 static void
1951 rs6000_register_convert_to_raw (struct type *type, int n,
1952 const char *from, char *to)
1953 {
1954 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1955 {
1956 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1957 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
1958 }
1959 else
1960 memcpy (to, from, REGISTER_RAW_SIZE (n));
1961 }
1962
1963 static void
1964 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1965 int reg_nr, void *buffer)
1966 {
1967 int base_regnum;
1968 int offset = 0;
1969 char temp_buffer[MAX_REGISTER_SIZE];
1970 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1971
1972 if (reg_nr >= tdep->ppc_gp0_regnum
1973 && reg_nr <= tdep->ppc_gplast_regnum)
1974 {
1975 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1976
1977 /* Build the value in the provided buffer. */
1978 /* Read the raw register of which this one is the lower portion. */
1979 regcache_raw_read (regcache, base_regnum, temp_buffer);
1980 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1981 offset = 4;
1982 memcpy ((char *) buffer, temp_buffer + offset, 4);
1983 }
1984 }
1985
1986 static void
1987 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1988 int reg_nr, const void *buffer)
1989 {
1990 int base_regnum;
1991 int offset = 0;
1992 char temp_buffer[MAX_REGISTER_SIZE];
1993 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1994
1995 if (reg_nr >= tdep->ppc_gp0_regnum
1996 && reg_nr <= tdep->ppc_gplast_regnum)
1997 {
1998 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1999 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
2000 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2001 offset = 4;
2002
2003 /* Let's read the value of the base register into a temporary
2004 buffer, so that overwriting the last four bytes with the new
2005 value of the pseudo will leave the upper 4 bytes unchanged. */
2006 regcache_raw_read (regcache, base_regnum, temp_buffer);
2007
2008 /* Write as an 8 byte quantity. */
2009 memcpy (temp_buffer + offset, (char *) buffer, 4);
2010 regcache_raw_write (regcache, base_regnum, temp_buffer);
2011 }
2012 }
2013
2014 /* Convert a dwarf2 register number to a gdb REGNUM. */
2015 static int
2016 e500_dwarf2_reg_to_regnum (int num)
2017 {
2018 int regnum;
2019 if (0 <= num && num <= 31)
2020 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2021 else
2022 return num;
2023 }
2024
2025 /* Convert a dbx stab register number (from `r' declaration) to a gdb
2026 REGNUM. */
2027 static int
2028 rs6000_stab_reg_to_regnum (int num)
2029 {
2030 int regnum;
2031 switch (num)
2032 {
2033 case 64:
2034 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2035 break;
2036 case 65:
2037 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2038 break;
2039 case 66:
2040 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2041 break;
2042 case 76:
2043 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2044 break;
2045 default:
2046 regnum = num;
2047 break;
2048 }
2049 return regnum;
2050 }
2051
2052 /* Store the address of the place in which to copy the structure the
2053 subroutine will return. */
2054
2055 static void
2056 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2057 {
2058 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2059 write_register (tdep->ppc_gp0_regnum + 3, addr);
2060 }
2061
2062 /* Write into appropriate registers a function return value
2063 of type TYPE, given in virtual format. */
2064 static void
2065 e500_store_return_value (struct type *type, char *valbuf)
2066 {
2067 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2068
2069 /* Everything is returned in GPR3 and up. */
2070 int copied = 0;
2071 int i = 0;
2072 int len = TYPE_LENGTH (type);
2073 while (copied < len)
2074 {
2075 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2076 int reg_size = REGISTER_RAW_SIZE (regnum);
2077 char *reg_val_buf = alloca (reg_size);
2078
2079 memcpy (reg_val_buf, valbuf + copied, reg_size);
2080 copied += reg_size;
2081 deprecated_write_register_gen (regnum, reg_val_buf);
2082 i++;
2083 }
2084 }
2085
2086 static void
2087 rs6000_store_return_value (struct type *type, char *valbuf)
2088 {
2089 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2090
2091 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2092
2093 /* Floating point values are returned starting from FPR1 and up.
2094 Say a double_double_double type could be returned in
2095 FPR1/FPR2/FPR3 triple. */
2096
2097 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2098 TYPE_LENGTH (type));
2099 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2100 {
2101 if (TYPE_LENGTH (type) == 16
2102 && TYPE_VECTOR (type))
2103 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2104 valbuf, TYPE_LENGTH (type));
2105 }
2106 else
2107 /* Everything else is returned in GPR3 and up. */
2108 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2109 valbuf, TYPE_LENGTH (type));
2110 }
2111
2112 /* Extract from an array REGBUF containing the (raw) register state
2113 the address in which a function should return its structure value,
2114 as a CORE_ADDR (or an expression that can be used as one). */
2115
2116 static CORE_ADDR
2117 rs6000_extract_struct_value_address (struct regcache *regcache)
2118 {
2119 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2120 function call GDB knows the address of the struct return value
2121 and hence, should not need to call this function. Unfortunately,
2122 the current call_function_by_hand() code only saves the most
2123 recent struct address leading to occasional calls. The code
2124 should instead maintain a stack of such addresses (in the dummy
2125 frame object). */
2126 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2127 really got no idea where the return value is being stored. While
2128 r3, on function entry, contained the address it will have since
2129 been reused (scratch) and hence wouldn't be valid */
2130 return 0;
2131 }
2132
2133 /* Return whether PC is in a dummy function call.
2134
2135 FIXME: This just checks for the end of the stack, which is broken
2136 for things like stepping through gcc nested function stubs. */
2137
2138 static int
2139 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2140 {
2141 return sp < pc && pc < fp;
2142 }
2143
2144 /* Hook called when a new child process is started. */
2145
2146 void
2147 rs6000_create_inferior (int pid)
2148 {
2149 if (rs6000_set_host_arch_hook)
2150 rs6000_set_host_arch_hook (pid);
2151 }
2152 \f
2153 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2154
2155 Usually a function pointer's representation is simply the address
2156 of the function. On the RS/6000 however, a function pointer is
2157 represented by a pointer to a TOC entry. This TOC entry contains
2158 three words, the first word is the address of the function, the
2159 second word is the TOC pointer (r2), and the third word is the
2160 static chain value. Throughout GDB it is currently assumed that a
2161 function pointer contains the address of the function, which is not
2162 easy to fix. In addition, the conversion of a function address to
2163 a function pointer would require allocation of a TOC entry in the
2164 inferior's memory space, with all its drawbacks. To be able to
2165 call C++ virtual methods in the inferior (which are called via
2166 function pointers), find_function_addr uses this function to get the
2167 function address from a function pointer. */
2168
2169 /* Return real function address if ADDR (a function pointer) is in the data
2170 space and is therefore a special function pointer. */
2171
2172 static CORE_ADDR
2173 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2174 {
2175 struct obj_section *s;
2176
2177 s = find_pc_section (addr);
2178 if (s && s->the_bfd_section->flags & SEC_CODE)
2179 return addr;
2180
2181 /* ADDR is in the data space, so it's a special function pointer. */
2182 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2183 }
2184 \f
2185
2186 /* Handling the various POWER/PowerPC variants. */
2187
2188
2189 /* The arrays here called registers_MUMBLE hold information about available
2190 registers.
2191
2192 For each family of PPC variants, I've tried to isolate out the
2193 common registers and put them up front, so that as long as you get
2194 the general family right, GDB will correctly identify the registers
2195 common to that family. The common register sets are:
2196
2197 For the 60x family: hid0 hid1 iabr dabr pir
2198
2199 For the 505 and 860 family: eie eid nri
2200
2201 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2202 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2203 pbu1 pbl2 pbu2
2204
2205 Most of these register groups aren't anything formal. I arrived at
2206 them by looking at the registers that occurred in more than one
2207 processor.
2208
2209 Note: kevinb/2002-04-30: Support for the fpscr register was added
2210 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2211 for Power. For PowerPC, slot 70 was unused and was already in the
2212 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2213 slot 70 was being used for "mq", so the next available slot (71)
2214 was chosen. It would have been nice to be able to make the
2215 register numbers the same across processor cores, but this wasn't
2216 possible without either 1) renumbering some registers for some
2217 processors or 2) assigning fpscr to a really high slot that's
2218 larger than any current register number. Doing (1) is bad because
2219 existing stubs would break. Doing (2) is undesirable because it
2220 would introduce a really large gap between fpscr and the rest of
2221 the registers for most processors. */
2222
2223 /* Convenience macros for populating register arrays. */
2224
2225 /* Within another macro, convert S to a string. */
2226
2227 #define STR(s) #s
2228
2229 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2230 and 64 bits on 64-bit systems. */
2231 #define R(name) { STR(name), 4, 8, 0, 0 }
2232
2233 /* Return a struct reg defining register NAME that's 32 bits on all
2234 systems. */
2235 #define R4(name) { STR(name), 4, 4, 0, 0 }
2236
2237 /* Return a struct reg defining register NAME that's 64 bits on all
2238 systems. */
2239 #define R8(name) { STR(name), 8, 8, 0, 0 }
2240
2241 /* Return a struct reg defining register NAME that's 128 bits on all
2242 systems. */
2243 #define R16(name) { STR(name), 16, 16, 0, 0 }
2244
2245 /* Return a struct reg defining floating-point register NAME. */
2246 #define F(name) { STR(name), 8, 8, 1, 0 }
2247
2248 /* Return a struct reg defining a pseudo register NAME. */
2249 #define P(name) { STR(name), 4, 8, 0, 1}
2250
2251 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2252 systems and that doesn't exist on 64-bit systems. */
2253 #define R32(name) { STR(name), 4, 0, 0, 0 }
2254
2255 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2256 systems and that doesn't exist on 32-bit systems. */
2257 #define R64(name) { STR(name), 0, 8, 0, 0 }
2258
2259 /* Return a struct reg placeholder for a register that doesn't exist. */
2260 #define R0 { 0, 0, 0, 0, 0 }
2261
2262 /* UISA registers common across all architectures, including POWER. */
2263
2264 #define COMMON_UISA_REGS \
2265 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2266 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2267 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2268 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2269 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2270 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2271 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2272 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2273 /* 64 */ R(pc), R(ps)
2274
2275 #define COMMON_UISA_NOFP_REGS \
2276 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2277 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2278 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2279 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2280 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2281 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2282 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2283 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2284 /* 64 */ R(pc), R(ps)
2285
2286 /* UISA-level SPRs for PowerPC. */
2287 #define PPC_UISA_SPRS \
2288 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2289
2290 /* UISA-level SPRs for PowerPC without floating point support. */
2291 #define PPC_UISA_NOFP_SPRS \
2292 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2293
2294 /* Segment registers, for PowerPC. */
2295 #define PPC_SEGMENT_REGS \
2296 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2297 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2298 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2299 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2300
2301 /* OEA SPRs for PowerPC. */
2302 #define PPC_OEA_SPRS \
2303 /* 87 */ R4(pvr), \
2304 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2305 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2306 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2307 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2308 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2309 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2310 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2311 /* 116 */ R4(dec), R(dabr), R4(ear)
2312
2313 /* AltiVec registers. */
2314 #define PPC_ALTIVEC_REGS \
2315 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2316 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2317 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2318 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2319 /*151*/R4(vscr), R4(vrsave)
2320
2321 /* Vectors of hi-lo general purpose registers. */
2322 #define PPC_EV_REGS \
2323 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2324 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2325 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2326 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2327
2328 /* Lower half of the EV registers. */
2329 #define PPC_GPRS_PSEUDO_REGS \
2330 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2331 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2332 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2333 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2334
2335 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2336 user-level SPR's. */
2337 static const struct reg registers_power[] =
2338 {
2339 COMMON_UISA_REGS,
2340 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2341 /* 71 */ R4(fpscr)
2342 };
2343
2344 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2345 view of the PowerPC. */
2346 static const struct reg registers_powerpc[] =
2347 {
2348 COMMON_UISA_REGS,
2349 PPC_UISA_SPRS,
2350 PPC_ALTIVEC_REGS
2351 };
2352
2353 /* PowerPC UISA - a PPC processor as viewed by user-level
2354 code, but without floating point registers. */
2355 static const struct reg registers_powerpc_nofp[] =
2356 {
2357 COMMON_UISA_NOFP_REGS,
2358 PPC_UISA_SPRS
2359 };
2360
2361 /* IBM PowerPC 403. */
2362 static const struct reg registers_403[] =
2363 {
2364 COMMON_UISA_REGS,
2365 PPC_UISA_SPRS,
2366 PPC_SEGMENT_REGS,
2367 PPC_OEA_SPRS,
2368 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2369 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2370 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2371 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2372 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2373 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2374 };
2375
2376 /* IBM PowerPC 403GC. */
2377 static const struct reg registers_403GC[] =
2378 {
2379 COMMON_UISA_REGS,
2380 PPC_UISA_SPRS,
2381 PPC_SEGMENT_REGS,
2382 PPC_OEA_SPRS,
2383 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2384 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2385 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2386 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2387 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2388 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2389 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2390 /* 147 */ R(tbhu), R(tblu)
2391 };
2392
2393 /* Motorola PowerPC 505. */
2394 static const struct reg registers_505[] =
2395 {
2396 COMMON_UISA_REGS,
2397 PPC_UISA_SPRS,
2398 PPC_SEGMENT_REGS,
2399 PPC_OEA_SPRS,
2400 /* 119 */ R(eie), R(eid), R(nri)
2401 };
2402
2403 /* Motorola PowerPC 860 or 850. */
2404 static const struct reg registers_860[] =
2405 {
2406 COMMON_UISA_REGS,
2407 PPC_UISA_SPRS,
2408 PPC_SEGMENT_REGS,
2409 PPC_OEA_SPRS,
2410 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2411 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2412 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2413 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2414 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2415 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2416 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2417 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2418 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2419 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2420 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2421 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2422 };
2423
2424 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2425 for reading and writing RTCU and RTCL. However, how one reads and writes a
2426 register is the stub's problem. */
2427 static const struct reg registers_601[] =
2428 {
2429 COMMON_UISA_REGS,
2430 PPC_UISA_SPRS,
2431 PPC_SEGMENT_REGS,
2432 PPC_OEA_SPRS,
2433 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2434 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2435 };
2436
2437 /* Motorola PowerPC 602. */
2438 static const struct reg registers_602[] =
2439 {
2440 COMMON_UISA_REGS,
2441 PPC_UISA_SPRS,
2442 PPC_SEGMENT_REGS,
2443 PPC_OEA_SPRS,
2444 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2445 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2446 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2447 };
2448
2449 /* Motorola/IBM PowerPC 603 or 603e. */
2450 static const struct reg registers_603[] =
2451 {
2452 COMMON_UISA_REGS,
2453 PPC_UISA_SPRS,
2454 PPC_SEGMENT_REGS,
2455 PPC_OEA_SPRS,
2456 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2457 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2458 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2459 };
2460
2461 /* Motorola PowerPC 604 or 604e. */
2462 static const struct reg registers_604[] =
2463 {
2464 COMMON_UISA_REGS,
2465 PPC_UISA_SPRS,
2466 PPC_SEGMENT_REGS,
2467 PPC_OEA_SPRS,
2468 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2469 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2470 /* 127 */ R(sia), R(sda)
2471 };
2472
2473 /* Motorola/IBM PowerPC 750 or 740. */
2474 static const struct reg registers_750[] =
2475 {
2476 COMMON_UISA_REGS,
2477 PPC_UISA_SPRS,
2478 PPC_SEGMENT_REGS,
2479 PPC_OEA_SPRS,
2480 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2481 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2482 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2483 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2484 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2485 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2486 };
2487
2488
2489 /* Motorola PowerPC 7400. */
2490 static const struct reg registers_7400[] =
2491 {
2492 /* gpr0-gpr31, fpr0-fpr31 */
2493 COMMON_UISA_REGS,
2494 /* ctr, xre, lr, cr */
2495 PPC_UISA_SPRS,
2496 /* sr0-sr15 */
2497 PPC_SEGMENT_REGS,
2498 PPC_OEA_SPRS,
2499 /* vr0-vr31, vrsave, vscr */
2500 PPC_ALTIVEC_REGS
2501 /* FIXME? Add more registers? */
2502 };
2503
2504 /* Motorola e500. */
2505 static const struct reg registers_e500[] =
2506 {
2507 R(pc), R(ps),
2508 /* cr, lr, ctr, xer, "" */
2509 PPC_UISA_NOFP_SPRS,
2510 /* 7...38 */
2511 PPC_EV_REGS,
2512 R8(acc), R(spefscr),
2513 /* NOTE: Add new registers here the end of the raw register
2514 list and just before the first pseudo register. */
2515 /* 39...70 */
2516 PPC_GPRS_PSEUDO_REGS
2517 };
2518
2519 /* Information about a particular processor variant. */
2520
2521 struct variant
2522 {
2523 /* Name of this variant. */
2524 char *name;
2525
2526 /* English description of the variant. */
2527 char *description;
2528
2529 /* bfd_arch_info.arch corresponding to variant. */
2530 enum bfd_architecture arch;
2531
2532 /* bfd_arch_info.mach corresponding to variant. */
2533 unsigned long mach;
2534
2535 /* Number of real registers. */
2536 int nregs;
2537
2538 /* Number of pseudo registers. */
2539 int npregs;
2540
2541 /* Number of total registers (the sum of nregs and npregs). */
2542 int num_tot_regs;
2543
2544 /* Table of register names; registers[R] is the name of the register
2545 number R. */
2546 const struct reg *regs;
2547 };
2548
2549 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2550
2551 static int
2552 num_registers (const struct reg *reg_list, int num_tot_regs)
2553 {
2554 int i;
2555 int nregs = 0;
2556
2557 for (i = 0; i < num_tot_regs; i++)
2558 if (!reg_list[i].pseudo)
2559 nregs++;
2560
2561 return nregs;
2562 }
2563
2564 static int
2565 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2566 {
2567 int i;
2568 int npregs = 0;
2569
2570 for (i = 0; i < num_tot_regs; i++)
2571 if (reg_list[i].pseudo)
2572 npregs ++;
2573
2574 return npregs;
2575 }
2576
2577 /* Information in this table comes from the following web sites:
2578 IBM: http://www.chips.ibm.com:80/products/embedded/
2579 Motorola: http://www.mot.com/SPS/PowerPC/
2580
2581 I'm sure I've got some of the variant descriptions not quite right.
2582 Please report any inaccuracies you find to GDB's maintainer.
2583
2584 If you add entries to this table, please be sure to allow the new
2585 value as an argument to the --with-cpu flag, in configure.in. */
2586
2587 static struct variant variants[] =
2588 {
2589
2590 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2591 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2592 registers_powerpc},
2593 {"power", "POWER user-level", bfd_arch_rs6000,
2594 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2595 registers_power},
2596 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2597 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2598 registers_403},
2599 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2600 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2601 registers_601},
2602 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2603 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2604 registers_602},
2605 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2606 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2607 registers_603},
2608 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2609 604, -1, -1, tot_num_registers (registers_604),
2610 registers_604},
2611 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2612 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2613 registers_403GC},
2614 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2615 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2616 registers_505},
2617 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2618 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2619 registers_860},
2620 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2621 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2622 registers_750},
2623 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2624 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2625 registers_7400},
2626 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2627 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2628 registers_e500},
2629
2630 /* 64-bit */
2631 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2632 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2633 registers_powerpc},
2634 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2635 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2636 registers_powerpc},
2637 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2638 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2639 registers_powerpc},
2640 {"a35", "PowerPC A35", bfd_arch_powerpc,
2641 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2642 registers_powerpc},
2643 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2644 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2645 registers_powerpc},
2646 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2647 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2648 registers_powerpc},
2649
2650 /* FIXME: I haven't checked the register sets of the following. */
2651 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2652 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2653 registers_power},
2654 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2655 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2656 registers_power},
2657 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2658 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2659 registers_power},
2660
2661 {0, 0, 0, 0, 0, 0, 0, 0}
2662 };
2663
2664 /* Initialize the number of registers and pseudo registers in each variant. */
2665
2666 static void
2667 init_variants (void)
2668 {
2669 struct variant *v;
2670
2671 for (v = variants; v->name; v++)
2672 {
2673 if (v->nregs == -1)
2674 v->nregs = num_registers (v->regs, v->num_tot_regs);
2675 if (v->npregs == -1)
2676 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2677 }
2678 }
2679
2680 /* Return the variant corresponding to architecture ARCH and machine number
2681 MACH. If no such variant exists, return null. */
2682
2683 static const struct variant *
2684 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2685 {
2686 const struct variant *v;
2687
2688 for (v = variants; v->name; v++)
2689 if (arch == v->arch && mach == v->mach)
2690 return v;
2691
2692 return NULL;
2693 }
2694
2695 static int
2696 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2697 {
2698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2699 return print_insn_big_powerpc (memaddr, info);
2700 else
2701 return print_insn_little_powerpc (memaddr, info);
2702 }
2703 \f
2704 /* Initialize the current architecture based on INFO. If possible, re-use an
2705 architecture from ARCHES, which is a list of architectures already created
2706 during this debugging session.
2707
2708 Called e.g. at program startup, when reading a core file, and when reading
2709 a binary file. */
2710
2711 static struct gdbarch *
2712 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2713 {
2714 struct gdbarch *gdbarch;
2715 struct gdbarch_tdep *tdep;
2716 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2717 struct reg *regs;
2718 const struct variant *v;
2719 enum bfd_architecture arch;
2720 unsigned long mach;
2721 bfd abfd;
2722 int sysv_abi;
2723 asection *sect;
2724
2725 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2726 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2727
2728 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2729 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2730
2731 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2732
2733 /* Check word size. If INFO is from a binary file, infer it from
2734 that, else choose a likely default. */
2735 if (from_xcoff_exec)
2736 {
2737 if (bfd_xcoff_is_xcoff64 (info.abfd))
2738 wordsize = 8;
2739 else
2740 wordsize = 4;
2741 }
2742 else if (from_elf_exec)
2743 {
2744 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2745 wordsize = 8;
2746 else
2747 wordsize = 4;
2748 }
2749 else
2750 {
2751 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2752 wordsize = info.bfd_arch_info->bits_per_word /
2753 info.bfd_arch_info->bits_per_byte;
2754 else
2755 wordsize = 4;
2756 }
2757
2758 /* Find a candidate among extant architectures. */
2759 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2760 arches != NULL;
2761 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2762 {
2763 /* Word size in the various PowerPC bfd_arch_info structs isn't
2764 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2765 separate word size check. */
2766 tdep = gdbarch_tdep (arches->gdbarch);
2767 if (tdep && tdep->wordsize == wordsize)
2768 return arches->gdbarch;
2769 }
2770
2771 /* None found, create a new architecture from INFO, whose bfd_arch_info
2772 validity depends on the source:
2773 - executable useless
2774 - rs6000_host_arch() good
2775 - core file good
2776 - "set arch" trust blindly
2777 - GDB startup useless but harmless */
2778
2779 if (!from_xcoff_exec)
2780 {
2781 arch = info.bfd_arch_info->arch;
2782 mach = info.bfd_arch_info->mach;
2783 }
2784 else
2785 {
2786 arch = bfd_arch_powerpc;
2787 bfd_default_set_arch_mach (&abfd, arch, 0);
2788 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2789 mach = info.bfd_arch_info->mach;
2790 }
2791 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2792 tdep->wordsize = wordsize;
2793
2794 /* For e500 executables, the apuinfo section is of help here. Such
2795 section contains the identifier and revision number of each
2796 Application-specific Processing Unit that is present on the
2797 chip. The content of the section is determined by the assembler
2798 which looks at each instruction and determines which unit (and
2799 which version of it) can execute it. In our case we just look for
2800 the existance of the section. */
2801
2802 if (info.abfd)
2803 {
2804 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2805 if (sect)
2806 {
2807 arch = info.bfd_arch_info->arch;
2808 mach = bfd_mach_ppc_e500;
2809 bfd_default_set_arch_mach (&abfd, arch, mach);
2810 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2811 }
2812 }
2813
2814 gdbarch = gdbarch_alloc (&info, tdep);
2815 power = arch == bfd_arch_rs6000;
2816
2817 /* Initialize the number of real and pseudo registers in each variant. */
2818 init_variants ();
2819
2820 /* Choose variant. */
2821 v = find_variant_by_arch (arch, mach);
2822 if (!v)
2823 return NULL;
2824
2825 tdep->regs = v->regs;
2826
2827 tdep->ppc_gp0_regnum = 0;
2828 tdep->ppc_gplast_regnum = 31;
2829 tdep->ppc_toc_regnum = 2;
2830 tdep->ppc_ps_regnum = 65;
2831 tdep->ppc_cr_regnum = 66;
2832 tdep->ppc_lr_regnum = 67;
2833 tdep->ppc_ctr_regnum = 68;
2834 tdep->ppc_xer_regnum = 69;
2835 if (v->mach == bfd_mach_ppc_601)
2836 tdep->ppc_mq_regnum = 124;
2837 else if (power)
2838 tdep->ppc_mq_regnum = 70;
2839 else
2840 tdep->ppc_mq_regnum = -1;
2841 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2842
2843 set_gdbarch_pc_regnum (gdbarch, 64);
2844 set_gdbarch_sp_regnum (gdbarch, 1);
2845 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2846 set_gdbarch_deprecated_extract_return_value (gdbarch,
2847 rs6000_extract_return_value);
2848 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2849
2850 if (v->arch == bfd_arch_powerpc)
2851 switch (v->mach)
2852 {
2853 case bfd_mach_ppc:
2854 tdep->ppc_vr0_regnum = 71;
2855 tdep->ppc_vrsave_regnum = 104;
2856 tdep->ppc_ev0_regnum = -1;
2857 tdep->ppc_ev31_regnum = -1;
2858 break;
2859 case bfd_mach_ppc_7400:
2860 tdep->ppc_vr0_regnum = 119;
2861 tdep->ppc_vrsave_regnum = 152;
2862 tdep->ppc_ev0_regnum = -1;
2863 tdep->ppc_ev31_regnum = -1;
2864 break;
2865 case bfd_mach_ppc_e500:
2866 tdep->ppc_gp0_regnum = 41;
2867 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2868 tdep->ppc_toc_regnum = -1;
2869 tdep->ppc_ps_regnum = 1;
2870 tdep->ppc_cr_regnum = 2;
2871 tdep->ppc_lr_regnum = 3;
2872 tdep->ppc_ctr_regnum = 4;
2873 tdep->ppc_xer_regnum = 5;
2874 tdep->ppc_ev0_regnum = 7;
2875 tdep->ppc_ev31_regnum = 38;
2876 set_gdbarch_pc_regnum (gdbarch, 0);
2877 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2878 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2879 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2880 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2881 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2882 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2883 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2884 break;
2885 default:
2886 tdep->ppc_vr0_regnum = -1;
2887 tdep->ppc_vrsave_regnum = -1;
2888 tdep->ppc_ev0_regnum = -1;
2889 tdep->ppc_ev31_regnum = -1;
2890 break;
2891 }
2892
2893 /* Sanity check on registers. */
2894 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2895
2896 /* Set lr_frame_offset. */
2897 if (wordsize == 8)
2898 tdep->lr_frame_offset = 16;
2899 else if (sysv_abi)
2900 tdep->lr_frame_offset = 4;
2901 else
2902 tdep->lr_frame_offset = 8;
2903
2904 /* Calculate byte offsets in raw register array. */
2905 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2906 for (i = off = 0; i < v->num_tot_regs; i++)
2907 {
2908 tdep->regoff[i] = off;
2909 off += regsize (v->regs + i, wordsize);
2910 }
2911
2912 /* Select instruction printer. */
2913 if (arch == power)
2914 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2915 else
2916 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2917
2918 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2919 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
2920
2921 set_gdbarch_num_regs (gdbarch, v->nregs);
2922 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2923 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2924 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2925 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2926 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2927 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2928 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
2929 set_gdbarch_deprecated_register_virtual_size (gdbarch, generic_register_size);
2930 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
2931 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2932
2933 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2934 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2935 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2936 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2937 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2938 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2939 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2940 if (sysv_abi)
2941 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2942 else
2943 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2944 set_gdbarch_char_signed (gdbarch, 0);
2945
2946 set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2947 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2948 if (sysv_abi && wordsize == 8)
2949 /* PPC64 SYSV. */
2950 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2951 else if (!sysv_abi && wordsize == 4)
2952 /* PowerOpen / AIX 32 bit. */
2953 set_gdbarch_frame_red_zone_size (gdbarch, 220);
2954 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2955 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
2956 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2957
2958 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2959 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2960 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2961 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2962 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2963 is correct for the SysV ABI when the wordsize is 8, but I'm also
2964 fairly certain that ppc_sysv_abi_push_arguments() will give even
2965 worse results since it only works for 32-bit code. So, for the moment,
2966 we're better off calling rs6000_push_arguments() since it works for
2967 64-bit code. At some point in the future, this matter needs to be
2968 revisited. */
2969 if (sysv_abi && wordsize == 4)
2970 set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2971 else
2972 set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments);
2973
2974 set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
2975 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2976 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2977
2978 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2979 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2980 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2981 set_gdbarch_function_start_offset (gdbarch, 0);
2982 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2983
2984 /* Not sure on this. FIXMEmgo */
2985 set_gdbarch_frame_args_skip (gdbarch, 8);
2986
2987 if (sysv_abi)
2988 set_gdbarch_use_struct_convention (gdbarch,
2989 ppc_sysv_abi_use_struct_convention);
2990 else
2991 set_gdbarch_use_struct_convention (gdbarch,
2992 generic_use_struct_convention);
2993
2994 set_gdbarch_frameless_function_invocation (gdbarch,
2995 rs6000_frameless_function_invocation);
2996 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2997 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2998
2999 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
3000 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
3001
3002 if (!sysv_abi)
3003 {
3004 /* Handle RS/6000 function pointers (which are really function
3005 descriptors). */
3006 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3007 rs6000_convert_from_func_ptr_addr);
3008 }
3009 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
3010 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
3011 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
3012
3013 /* Helpers for function argument information. */
3014 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3015
3016 /* Hook in ABI-specific overrides, if they have been registered. */
3017 gdbarch_init_osabi (info, gdbarch);
3018
3019 return gdbarch;
3020 }
3021
3022 static void
3023 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3024 {
3025 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3026
3027 if (tdep == NULL)
3028 return;
3029
3030 /* FIXME: Dump gdbarch_tdep. */
3031 }
3032
3033 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3034
3035 static void
3036 rs6000_info_powerpc_command (char *args, int from_tty)
3037 {
3038 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3039 }
3040
3041 /* Initialization code. */
3042
3043 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3044
3045 void
3046 _initialize_rs6000_tdep (void)
3047 {
3048 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3049 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3050
3051 /* Add root prefix command for "info powerpc" commands */
3052 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3053 "Various POWERPC info specific commands.",
3054 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3055 }
This page took 0.088449 seconds and 5 git commands to generate.