2002-12-18 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41 #include "coff/xcoff.h"
42 #include "libxcoff.h"
43
44 #include "elf-bfd.h"
45
46 #include "solib-svr4.h"
47 #include "ppc-tdep.h"
48
49 /* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56 #define SIG_FRAME_PC_OFFSET 96
57 #define SIG_FRAME_LR_OFFSET 108
58 #define SIG_FRAME_FP_OFFSET 284
59
60 /* To be used by skip_prologue. */
61
62 struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
69 int saved_vr; /* smallest # of saved vr */
70 int saved_ev; /* smallest # of saved ev */
71 int alloca_reg; /* alloca register number (frame ptr) */
72 char frameless; /* true if frameless functions. */
73 char nosavedpc; /* true if pc not saved. */
74 int gpr_offset; /* offset of saved gprs from prev sp */
75 int fpr_offset; /* offset of saved fprs from prev sp */
76 int vr_offset; /* offset of saved vrs from prev sp */
77 int ev_offset; /* offset of saved evs from prev sp */
78 int lr_offset; /* offset of saved lr */
79 int cr_offset; /* offset of saved cr */
80 int vrsave_offset; /* offset of saved vrsave register */
81 };
82
83 /* Description of a single register. */
84
85 struct reg
86 {
87 char *name; /* name of register */
88 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
89 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
90 unsigned char fpr; /* whether register is floating-point */
91 unsigned char pseudo; /* whether register is pseudo */
92 };
93
94 /* Breakpoint shadows for the single step instructions will be kept here. */
95
96 static struct sstep_breaks
97 {
98 /* Address, or 0 if this is not in use. */
99 CORE_ADDR address;
100 /* Shadow contents. */
101 char data[4];
102 }
103 stepBreaks[2];
104
105 /* Hook for determining the TOC address when calling functions in the
106 inferior under AIX. The initialization code in rs6000-nat.c sets
107 this hook to point to find_toc_address. */
108
109 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
111 /* Hook to set the current architecture when starting a child process.
112 rs6000-nat.c sets this. */
113
114 void (*rs6000_set_host_arch_hook) (int) = NULL;
115
116 /* Static function prototypes */
117
118 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 CORE_ADDR safety);
120 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121 struct rs6000_framedata *);
122 static void frame_get_saved_regs (struct frame_info * fi,
123 struct rs6000_framedata * fdatap);
124 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137 /* Read a LEN-byte address from debugged memory address MEMADDR. */
138
139 static CORE_ADDR
140 read_memory_addr (CORE_ADDR memaddr, int len)
141 {
142 return read_memory_unsigned_integer (memaddr, len);
143 }
144
145 static CORE_ADDR
146 rs6000_skip_prologue (CORE_ADDR pc)
147 {
148 struct rs6000_framedata frame;
149 pc = skip_prologue (pc, 0, &frame);
150 return pc;
151 }
152
153
154 /* Fill in fi->saved_regs */
155
156 struct frame_extra_info
157 {
158 /* Functions calling alloca() change the value of the stack
159 pointer. We need to use initial stack pointer (which is saved in
160 r31 by gcc) in such cases. If a compiler emits traceback table,
161 then we should use the alloca register specified in traceback
162 table. FIXME. */
163 CORE_ADDR initial_sp; /* initial stack pointer. */
164 };
165
166 void
167 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
168 {
169 struct frame_extra_info *extra_info =
170 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
171 extra_info->initial_sp = 0;
172 if (get_next_frame (fi) != NULL
173 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
174 /* We're in get_prev_frame */
175 /* and this is a special signal frame. */
176 /* (fi->pc will be some low address in the kernel, */
177 /* to which the signal handler returns). */
178 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
179 }
180
181 /* Put here the code to store, into a struct frame_saved_regs,
182 the addresses of the saved registers of frame described by FRAME_INFO.
183 This includes special registers such as pc and fp saved in special
184 ways in the stack frame. sp is even more special:
185 the address we return for it IS the sp for the next frame. */
186
187 /* In this implementation for RS/6000, we do *not* save sp. I am
188 not sure if it will be needed. The following function takes care of gpr's
189 and fpr's only. */
190
191 void
192 rs6000_frame_init_saved_regs (struct frame_info *fi)
193 {
194 frame_get_saved_regs (fi, NULL);
195 }
196
197 static CORE_ADDR
198 rs6000_frame_args_address (struct frame_info *fi)
199 {
200 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
201 if (extra_info->initial_sp != 0)
202 return extra_info->initial_sp;
203 else
204 return frame_initial_stack_address (fi);
205 }
206
207 /* Immediately after a function call, return the saved pc.
208 Can't go through the frames for this because on some machines
209 the new frame is not set up until the new function executes
210 some instructions. */
211
212 static CORE_ADDR
213 rs6000_saved_pc_after_call (struct frame_info *fi)
214 {
215 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
216 }
217
218 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
219
220 static CORE_ADDR
221 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
222 {
223 CORE_ADDR dest;
224 int immediate;
225 int absolute;
226 int ext_op;
227
228 absolute = (int) ((instr >> 1) & 1);
229
230 switch (opcode)
231 {
232 case 18:
233 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
234 if (absolute)
235 dest = immediate;
236 else
237 dest = pc + immediate;
238 break;
239
240 case 16:
241 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
242 if (absolute)
243 dest = immediate;
244 else
245 dest = pc + immediate;
246 break;
247
248 case 19:
249 ext_op = (instr >> 1) & 0x3ff;
250
251 if (ext_op == 16) /* br conditional register */
252 {
253 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
254
255 /* If we are about to return from a signal handler, dest is
256 something like 0x3c90. The current frame is a signal handler
257 caller frame, upon completion of the sigreturn system call
258 execution will return to the saved PC in the frame. */
259 if (dest < TEXT_SEGMENT_BASE)
260 {
261 struct frame_info *fi;
262
263 fi = get_current_frame ();
264 if (fi != NULL)
265 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
266 gdbarch_tdep (current_gdbarch)->wordsize);
267 }
268 }
269
270 else if (ext_op == 528) /* br cond to count reg */
271 {
272 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
273
274 /* If we are about to execute a system call, dest is something
275 like 0x22fc or 0x3b00. Upon completion the system call
276 will return to the address in the link register. */
277 if (dest < TEXT_SEGMENT_BASE)
278 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
279 }
280 else
281 return -1;
282 break;
283
284 default:
285 return -1;
286 }
287 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
288 }
289
290
291 /* Sequence of bytes for breakpoint instruction. */
292
293 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
294 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
295
296 const static unsigned char *
297 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
298 {
299 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
300 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
301 *bp_size = 4;
302 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
303 return big_breakpoint;
304 else
305 return little_breakpoint;
306 }
307
308
309 /* AIX does not support PT_STEP. Simulate it. */
310
311 void
312 rs6000_software_single_step (enum target_signal signal,
313 int insert_breakpoints_p)
314 {
315 CORE_ADDR dummy;
316 int breakp_sz;
317 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
318 int ii, insn;
319 CORE_ADDR loc;
320 CORE_ADDR breaks[2];
321 int opcode;
322
323 if (insert_breakpoints_p)
324 {
325
326 loc = read_pc ();
327
328 insn = read_memory_integer (loc, 4);
329
330 breaks[0] = loc + breakp_sz;
331 opcode = insn >> 26;
332 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
333
334 /* Don't put two breakpoints on the same address. */
335 if (breaks[1] == breaks[0])
336 breaks[1] = -1;
337
338 stepBreaks[1].address = 0;
339
340 for (ii = 0; ii < 2; ++ii)
341 {
342
343 /* ignore invalid breakpoint. */
344 if (breaks[ii] == -1)
345 continue;
346 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
347 stepBreaks[ii].address = breaks[ii];
348 }
349
350 }
351 else
352 {
353
354 /* remove step breakpoints. */
355 for (ii = 0; ii < 2; ++ii)
356 if (stepBreaks[ii].address != 0)
357 target_remove_breakpoint (stepBreaks[ii].address,
358 stepBreaks[ii].data);
359 }
360 errno = 0; /* FIXME, don't ignore errors! */
361 /* What errors? {read,write}_memory call error(). */
362 }
363
364
365 /* return pc value after skipping a function prologue and also return
366 information about a function frame.
367
368 in struct rs6000_framedata fdata:
369 - frameless is TRUE, if function does not have a frame.
370 - nosavedpc is TRUE, if function does not save %pc value in its frame.
371 - offset is the initial size of this stack frame --- the amount by
372 which we decrement the sp to allocate the frame.
373 - saved_gpr is the number of the first saved gpr.
374 - saved_fpr is the number of the first saved fpr.
375 - saved_vr is the number of the first saved vr.
376 - saved_ev is the number of the first saved ev.
377 - alloca_reg is the number of the register used for alloca() handling.
378 Otherwise -1.
379 - gpr_offset is the offset of the first saved gpr from the previous frame.
380 - fpr_offset is the offset of the first saved fpr from the previous frame.
381 - vr_offset is the offset of the first saved vr from the previous frame.
382 - ev_offset is the offset of the first saved ev from the previous frame.
383 - lr_offset is the offset of the saved lr
384 - cr_offset is the offset of the saved cr
385 - vrsave_offset is the offset of the saved vrsave register
386 */
387
388 #define SIGNED_SHORT(x) \
389 ((sizeof (short) == 2) \
390 ? ((int)(short)(x)) \
391 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
392
393 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
394
395 /* Limit the number of skipped non-prologue instructions, as the examining
396 of the prologue is expensive. */
397 static int max_skip_non_prologue_insns = 10;
398
399 /* Given PC representing the starting address of a function, and
400 LIM_PC which is the (sloppy) limit to which to scan when looking
401 for a prologue, attempt to further refine this limit by using
402 the line data in the symbol table. If successful, a better guess
403 on where the prologue ends is returned, otherwise the previous
404 value of lim_pc is returned. */
405 static CORE_ADDR
406 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
407 {
408 struct symtab_and_line prologue_sal;
409
410 prologue_sal = find_pc_line (pc, 0);
411 if (prologue_sal.line != 0)
412 {
413 int i;
414 CORE_ADDR addr = prologue_sal.end;
415
416 /* Handle the case in which compiler's optimizer/scheduler
417 has moved instructions into the prologue. We scan ahead
418 in the function looking for address ranges whose corresponding
419 line number is less than or equal to the first one that we
420 found for the function. (It can be less than when the
421 scheduler puts a body instruction before the first prologue
422 instruction.) */
423 for (i = 2 * max_skip_non_prologue_insns;
424 i > 0 && (lim_pc == 0 || addr < lim_pc);
425 i--)
426 {
427 struct symtab_and_line sal;
428
429 sal = find_pc_line (addr, 0);
430 if (sal.line == 0)
431 break;
432 if (sal.line <= prologue_sal.line
433 && sal.symtab == prologue_sal.symtab)
434 {
435 prologue_sal = sal;
436 }
437 addr = sal.end;
438 }
439
440 if (lim_pc == 0 || prologue_sal.end < lim_pc)
441 lim_pc = prologue_sal.end;
442 }
443 return lim_pc;
444 }
445
446
447 static CORE_ADDR
448 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
449 {
450 CORE_ADDR orig_pc = pc;
451 CORE_ADDR last_prologue_pc = pc;
452 CORE_ADDR li_found_pc = 0;
453 char buf[4];
454 unsigned long op;
455 long offset = 0;
456 long vr_saved_offset = 0;
457 int lr_reg = -1;
458 int cr_reg = -1;
459 int vr_reg = -1;
460 int ev_reg = -1;
461 long ev_offset = 0;
462 int vrsave_reg = -1;
463 int reg;
464 int framep = 0;
465 int minimal_toc_loaded = 0;
466 int prev_insn_was_prologue_insn = 1;
467 int num_skip_non_prologue_insns = 0;
468 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
469 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
470
471 /* Attempt to find the end of the prologue when no limit is specified.
472 Note that refine_prologue_limit() has been written so that it may
473 be used to "refine" the limits of non-zero PC values too, but this
474 is only safe if we 1) trust the line information provided by the
475 compiler and 2) iterate enough to actually find the end of the
476 prologue.
477
478 It may become a good idea at some point (for both performance and
479 accuracy) to unconditionally call refine_prologue_limit(). But,
480 until we can make a clear determination that this is beneficial,
481 we'll play it safe and only use it to obtain a limit when none
482 has been specified. */
483 if (lim_pc == 0)
484 lim_pc = refine_prologue_limit (pc, lim_pc);
485
486 memset (fdata, 0, sizeof (struct rs6000_framedata));
487 fdata->saved_gpr = -1;
488 fdata->saved_fpr = -1;
489 fdata->saved_vr = -1;
490 fdata->saved_ev = -1;
491 fdata->alloca_reg = -1;
492 fdata->frameless = 1;
493 fdata->nosavedpc = 1;
494
495 for (;; pc += 4)
496 {
497 /* Sometimes it isn't clear if an instruction is a prologue
498 instruction or not. When we encounter one of these ambiguous
499 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
500 Otherwise, we'll assume that it really is a prologue instruction. */
501 if (prev_insn_was_prologue_insn)
502 last_prologue_pc = pc;
503
504 /* Stop scanning if we've hit the limit. */
505 if (lim_pc != 0 && pc >= lim_pc)
506 break;
507
508 prev_insn_was_prologue_insn = 1;
509
510 /* Fetch the instruction and convert it to an integer. */
511 if (target_read_memory (pc, buf, 4))
512 break;
513 op = extract_signed_integer (buf, 4);
514
515 if ((op & 0xfc1fffff) == 0x7c0802a6)
516 { /* mflr Rx */
517 lr_reg = (op & 0x03e00000) | 0x90010000;
518 continue;
519
520 }
521 else if ((op & 0xfc1fffff) == 0x7c000026)
522 { /* mfcr Rx */
523 cr_reg = (op & 0x03e00000) | 0x90010000;
524 continue;
525
526 }
527 else if ((op & 0xfc1f0000) == 0xd8010000)
528 { /* stfd Rx,NUM(r1) */
529 reg = GET_SRC_REG (op);
530 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
531 {
532 fdata->saved_fpr = reg;
533 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
534 }
535 continue;
536
537 }
538 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
539 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
540 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
541 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
542 {
543
544 reg = GET_SRC_REG (op);
545 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
546 {
547 fdata->saved_gpr = reg;
548 if ((op & 0xfc1f0003) == 0xf8010000)
549 op = (op >> 1) << 1;
550 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
551 }
552 continue;
553
554 }
555 else if ((op & 0xffff0000) == 0x60000000)
556 {
557 /* nop */
558 /* Allow nops in the prologue, but do not consider them to
559 be part of the prologue unless followed by other prologue
560 instructions. */
561 prev_insn_was_prologue_insn = 0;
562 continue;
563
564 }
565 else if ((op & 0xffff0000) == 0x3c000000)
566 { /* addis 0,0,NUM, used
567 for >= 32k frames */
568 fdata->offset = (op & 0x0000ffff) << 16;
569 fdata->frameless = 0;
570 continue;
571
572 }
573 else if ((op & 0xffff0000) == 0x60000000)
574 { /* ori 0,0,NUM, 2nd ha
575 lf of >= 32k frames */
576 fdata->offset |= (op & 0x0000ffff);
577 fdata->frameless = 0;
578 continue;
579
580 }
581 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
582 { /* st Rx,NUM(r1)
583 where Rx == lr */
584 fdata->lr_offset = SIGNED_SHORT (op) + offset;
585 fdata->nosavedpc = 0;
586 lr_reg = 0;
587 continue;
588
589 }
590 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
591 { /* st Rx,NUM(r1)
592 where Rx == cr */
593 fdata->cr_offset = SIGNED_SHORT (op) + offset;
594 cr_reg = 0;
595 continue;
596
597 }
598 else if (op == 0x48000005)
599 { /* bl .+4 used in
600 -mrelocatable */
601 continue;
602
603 }
604 else if (op == 0x48000004)
605 { /* b .+4 (xlc) */
606 break;
607
608 }
609 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
610 in V.4 -mminimal-toc */
611 (op & 0xffff0000) == 0x3bde0000)
612 { /* addi 30,30,foo@l */
613 continue;
614
615 }
616 else if ((op & 0xfc000001) == 0x48000001)
617 { /* bl foo,
618 to save fprs??? */
619
620 fdata->frameless = 0;
621 /* Don't skip over the subroutine call if it is not within
622 the first three instructions of the prologue. */
623 if ((pc - orig_pc) > 8)
624 break;
625
626 op = read_memory_integer (pc + 4, 4);
627
628 /* At this point, make sure this is not a trampoline
629 function (a function that simply calls another functions,
630 and nothing else). If the next is not a nop, this branch
631 was part of the function prologue. */
632
633 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
634 break; /* don't skip over
635 this branch */
636 continue;
637
638 /* update stack pointer */
639 }
640 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
641 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
642 {
643 fdata->frameless = 0;
644 if ((op & 0xffff0003) == 0xf8210001)
645 op = (op >> 1) << 1;
646 fdata->offset = SIGNED_SHORT (op);
647 offset = fdata->offset;
648 continue;
649
650 }
651 else if (op == 0x7c21016e)
652 { /* stwux 1,1,0 */
653 fdata->frameless = 0;
654 offset = fdata->offset;
655 continue;
656
657 /* Load up minimal toc pointer */
658 }
659 else if ((op >> 22) == 0x20f
660 && !minimal_toc_loaded)
661 { /* l r31,... or l r30,... */
662 minimal_toc_loaded = 1;
663 continue;
664
665 /* move parameters from argument registers to local variable
666 registers */
667 }
668 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
669 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
670 (((op >> 21) & 31) <= 10) &&
671 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
672 {
673 continue;
674
675 /* store parameters in stack */
676 }
677 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
678 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
679 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
680 {
681 continue;
682
683 /* store parameters in stack via frame pointer */
684 }
685 else if (framep &&
686 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
687 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
688 (op & 0xfc1f0000) == 0xfc1f0000))
689 { /* frsp, fp?,NUM(r1) */
690 continue;
691
692 /* Set up frame pointer */
693 }
694 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
695 || op == 0x7c3f0b78)
696 { /* mr r31, r1 */
697 fdata->frameless = 0;
698 framep = 1;
699 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
700 continue;
701
702 /* Another way to set up the frame pointer. */
703 }
704 else if ((op & 0xfc1fffff) == 0x38010000)
705 { /* addi rX, r1, 0x0 */
706 fdata->frameless = 0;
707 framep = 1;
708 fdata->alloca_reg = (tdep->ppc_gp0_regnum
709 + ((op & ~0x38010000) >> 21));
710 continue;
711 }
712 /* AltiVec related instructions. */
713 /* Store the vrsave register (spr 256) in another register for
714 later manipulation, or load a register into the vrsave
715 register. 2 instructions are used: mfvrsave and
716 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
717 and mtspr SPR256, Rn. */
718 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
719 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
720 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
721 {
722 vrsave_reg = GET_SRC_REG (op);
723 continue;
724 }
725 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
726 {
727 continue;
728 }
729 /* Store the register where vrsave was saved to onto the stack:
730 rS is the register where vrsave was stored in a previous
731 instruction. */
732 /* 100100 sssss 00001 dddddddd dddddddd */
733 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
734 {
735 if (vrsave_reg == GET_SRC_REG (op))
736 {
737 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
738 vrsave_reg = -1;
739 }
740 continue;
741 }
742 /* Compute the new value of vrsave, by modifying the register
743 where vrsave was saved to. */
744 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
745 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
746 {
747 continue;
748 }
749 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
750 in a pair of insns to save the vector registers on the
751 stack. */
752 /* 001110 00000 00000 iiii iiii iiii iiii */
753 /* 001110 01110 00000 iiii iiii iiii iiii */
754 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
755 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
756 {
757 li_found_pc = pc;
758 vr_saved_offset = SIGNED_SHORT (op);
759 }
760 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
761 /* 011111 sssss 11111 00000 00111001110 */
762 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
763 {
764 if (pc == (li_found_pc + 4))
765 {
766 vr_reg = GET_SRC_REG (op);
767 /* If this is the first vector reg to be saved, or if
768 it has a lower number than others previously seen,
769 reupdate the frame info. */
770 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
771 {
772 fdata->saved_vr = vr_reg;
773 fdata->vr_offset = vr_saved_offset + offset;
774 }
775 vr_saved_offset = -1;
776 vr_reg = -1;
777 li_found_pc = 0;
778 }
779 }
780 /* End AltiVec related instructions. */
781
782 /* Start BookE related instructions. */
783 /* Store gen register S at (r31+uimm).
784 Any register less than r13 is volatile, so we don't care. */
785 /* 000100 sssss 11111 iiiii 01100100001 */
786 else if (arch_info->mach == bfd_mach_ppc_e500
787 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
788 {
789 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
790 {
791 unsigned int imm;
792 ev_reg = GET_SRC_REG (op);
793 imm = (op >> 11) & 0x1f;
794 ev_offset = imm * 8;
795 /* If this is the first vector reg to be saved, or if
796 it has a lower number than others previously seen,
797 reupdate the frame info. */
798 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
799 {
800 fdata->saved_ev = ev_reg;
801 fdata->ev_offset = ev_offset + offset;
802 }
803 }
804 continue;
805 }
806 /* Store gen register rS at (r1+rB). */
807 /* 000100 sssss 00001 bbbbb 01100100000 */
808 else if (arch_info->mach == bfd_mach_ppc_e500
809 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
810 {
811 if (pc == (li_found_pc + 4))
812 {
813 ev_reg = GET_SRC_REG (op);
814 /* If this is the first vector reg to be saved, or if
815 it has a lower number than others previously seen,
816 reupdate the frame info. */
817 /* We know the contents of rB from the previous instruction. */
818 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
819 {
820 fdata->saved_ev = ev_reg;
821 fdata->ev_offset = vr_saved_offset + offset;
822 }
823 vr_saved_offset = -1;
824 ev_reg = -1;
825 li_found_pc = 0;
826 }
827 continue;
828 }
829 /* Store gen register r31 at (rA+uimm). */
830 /* 000100 11111 aaaaa iiiii 01100100001 */
831 else if (arch_info->mach == bfd_mach_ppc_e500
832 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
833 {
834 /* Wwe know that the source register is 31 already, but
835 it can't hurt to compute it. */
836 ev_reg = GET_SRC_REG (op);
837 ev_offset = ((op >> 11) & 0x1f) * 8;
838 /* If this is the first vector reg to be saved, or if
839 it has a lower number than others previously seen,
840 reupdate the frame info. */
841 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
842 {
843 fdata->saved_ev = ev_reg;
844 fdata->ev_offset = ev_offset + offset;
845 }
846
847 continue;
848 }
849 /* Store gen register S at (r31+r0).
850 Store param on stack when offset from SP bigger than 4 bytes. */
851 /* 000100 sssss 11111 00000 01100100000 */
852 else if (arch_info->mach == bfd_mach_ppc_e500
853 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
854 {
855 if (pc == (li_found_pc + 4))
856 {
857 if ((op & 0x03e00000) >= 0x01a00000)
858 {
859 ev_reg = GET_SRC_REG (op);
860 /* If this is the first vector reg to be saved, or if
861 it has a lower number than others previously seen,
862 reupdate the frame info. */
863 /* We know the contents of r0 from the previous
864 instruction. */
865 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
866 {
867 fdata->saved_ev = ev_reg;
868 fdata->ev_offset = vr_saved_offset + offset;
869 }
870 ev_reg = -1;
871 }
872 vr_saved_offset = -1;
873 li_found_pc = 0;
874 continue;
875 }
876 }
877 /* End BookE related instructions. */
878
879 else
880 {
881 /* Not a recognized prologue instruction.
882 Handle optimizer code motions into the prologue by continuing
883 the search if we have no valid frame yet or if the return
884 address is not yet saved in the frame. */
885 if (fdata->frameless == 0
886 && (lr_reg == -1 || fdata->nosavedpc == 0))
887 break;
888
889 if (op == 0x4e800020 /* blr */
890 || op == 0x4e800420) /* bctr */
891 /* Do not scan past epilogue in frameless functions or
892 trampolines. */
893 break;
894 if ((op & 0xf4000000) == 0x40000000) /* bxx */
895 /* Never skip branches. */
896 break;
897
898 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
899 /* Do not scan too many insns, scanning insns is expensive with
900 remote targets. */
901 break;
902
903 /* Continue scanning. */
904 prev_insn_was_prologue_insn = 0;
905 continue;
906 }
907 }
908
909 #if 0
910 /* I have problems with skipping over __main() that I need to address
911 * sometime. Previously, I used to use misc_function_vector which
912 * didn't work as well as I wanted to be. -MGO */
913
914 /* If the first thing after skipping a prolog is a branch to a function,
915 this might be a call to an initializer in main(), introduced by gcc2.
916 We'd like to skip over it as well. Fortunately, xlc does some extra
917 work before calling a function right after a prologue, thus we can
918 single out such gcc2 behaviour. */
919
920
921 if ((op & 0xfc000001) == 0x48000001)
922 { /* bl foo, an initializer function? */
923 op = read_memory_integer (pc + 4, 4);
924
925 if (op == 0x4def7b82)
926 { /* cror 0xf, 0xf, 0xf (nop) */
927
928 /* Check and see if we are in main. If so, skip over this
929 initializer function as well. */
930
931 tmp = find_pc_misc_function (pc);
932 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
933 return pc + 8;
934 }
935 }
936 #endif /* 0 */
937
938 fdata->offset = -fdata->offset;
939 return last_prologue_pc;
940 }
941
942
943 /*************************************************************************
944 Support for creating pushing a dummy frame into the stack, and popping
945 frames, etc.
946 *************************************************************************/
947
948
949 /* Pop the innermost frame, go back to the caller. */
950
951 static void
952 rs6000_pop_frame (void)
953 {
954 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
955 struct rs6000_framedata fdata;
956 struct frame_info *frame = get_current_frame ();
957 int ii, wordsize;
958
959 pc = read_pc ();
960 sp = get_frame_base (frame);
961
962 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
963 get_frame_base (frame),
964 get_frame_base (frame)))
965 {
966 generic_pop_dummy_frame ();
967 flush_cached_frames ();
968 return;
969 }
970
971 /* Make sure that all registers are valid. */
972 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
973
974 /* Figure out previous %pc value. If the function is frameless, it is
975 still in the link register, otherwise walk the frames and retrieve the
976 saved %pc value in the previous frame. */
977
978 addr = get_pc_function_start (get_frame_pc (frame));
979 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
980
981 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
982 if (fdata.frameless)
983 prev_sp = sp;
984 else
985 prev_sp = read_memory_addr (sp, wordsize);
986 if (fdata.lr_offset == 0)
987 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
988 else
989 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
990
991 /* reset %pc value. */
992 write_register (PC_REGNUM, lr);
993
994 /* reset register values if any was saved earlier. */
995
996 if (fdata.saved_gpr != -1)
997 {
998 addr = prev_sp + fdata.gpr_offset;
999 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1000 {
1001 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1002 wordsize);
1003 addr += wordsize;
1004 }
1005 }
1006
1007 if (fdata.saved_fpr != -1)
1008 {
1009 addr = prev_sp + fdata.fpr_offset;
1010 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1011 {
1012 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1013 addr += 8;
1014 }
1015 }
1016
1017 write_register (SP_REGNUM, prev_sp);
1018 target_store_registers (-1);
1019 flush_cached_frames ();
1020 }
1021
1022 /* Fixup the call sequence of a dummy function, with the real function
1023 address. Its arguments will be passed by gdb. */
1024
1025 static void
1026 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1027 int nargs, struct value **args, struct type *type,
1028 int gcc_p)
1029 {
1030 int ii;
1031 CORE_ADDR target_addr;
1032
1033 if (rs6000_find_toc_address_hook != NULL)
1034 {
1035 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1036 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1037 tocvalue);
1038 }
1039 }
1040
1041 /* All the ABI's require 16 byte alignment. */
1042 static CORE_ADDR
1043 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1044 {
1045 return (addr & -16);
1046 }
1047
1048 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1049 the first eight words of the argument list (that might be less than
1050 eight parameters if some parameters occupy more than one word) are
1051 passed in r3..r10 registers. float and double parameters are
1052 passed in fpr's, in addition to that. Rest of the parameters if any
1053 are passed in user stack. There might be cases in which half of the
1054 parameter is copied into registers, the other half is pushed into
1055 stack.
1056
1057 Stack must be aligned on 64-bit boundaries when synthesizing
1058 function calls.
1059
1060 If the function is returning a structure, then the return address is passed
1061 in r3, then the first 7 words of the parameters can be passed in registers,
1062 starting from r4. */
1063
1064 static CORE_ADDR
1065 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1066 int struct_return, CORE_ADDR struct_addr)
1067 {
1068 int ii;
1069 int len = 0;
1070 int argno; /* current argument number */
1071 int argbytes; /* current argument byte */
1072 char tmp_buffer[50];
1073 int f_argno = 0; /* current floating point argno */
1074 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1075
1076 struct value *arg = 0;
1077 struct type *type;
1078
1079 CORE_ADDR saved_sp;
1080
1081 /* The first eight words of ther arguments are passed in registers.
1082 Copy them appropriately.
1083
1084 If the function is returning a `struct', then the first word (which
1085 will be passed in r3) is used for struct return address. In that
1086 case we should advance one word and start from r4 register to copy
1087 parameters. */
1088
1089 ii = struct_return ? 1 : 0;
1090
1091 /*
1092 effectively indirect call... gcc does...
1093
1094 return_val example( float, int);
1095
1096 eabi:
1097 float in fp0, int in r3
1098 offset of stack on overflow 8/16
1099 for varargs, must go by type.
1100 power open:
1101 float in r3&r4, int in r5
1102 offset of stack on overflow different
1103 both:
1104 return in r3 or f0. If no float, must study how gcc emulates floats;
1105 pay attention to arg promotion.
1106 User may have to cast\args to handle promotion correctly
1107 since gdb won't know if prototype supplied or not.
1108 */
1109
1110 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1111 {
1112 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1113
1114 arg = args[argno];
1115 type = check_typedef (VALUE_TYPE (arg));
1116 len = TYPE_LENGTH (type);
1117
1118 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1119 {
1120
1121 /* Floating point arguments are passed in fpr's, as well as gpr's.
1122 There are 13 fpr's reserved for passing parameters. At this point
1123 there is no way we would run out of them. */
1124
1125 if (len > 8)
1126 printf_unfiltered (
1127 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1128
1129 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1130 VALUE_CONTENTS (arg),
1131 len);
1132 ++f_argno;
1133 }
1134
1135 if (len > reg_size)
1136 {
1137
1138 /* Argument takes more than one register. */
1139 while (argbytes < len)
1140 {
1141 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1142 reg_size);
1143 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1144 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1145 (len - argbytes) > reg_size
1146 ? reg_size : len - argbytes);
1147 ++ii, argbytes += reg_size;
1148
1149 if (ii >= 8)
1150 goto ran_out_of_registers_for_arguments;
1151 }
1152 argbytes = 0;
1153 --ii;
1154 }
1155 else
1156 {
1157 /* Argument can fit in one register. No problem. */
1158 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1159 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1160 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1161 VALUE_CONTENTS (arg), len);
1162 }
1163 ++argno;
1164 }
1165
1166 ran_out_of_registers_for_arguments:
1167
1168 saved_sp = read_sp ();
1169
1170 /* Location for 8 parameters are always reserved. */
1171 sp -= wordsize * 8;
1172
1173 /* Another six words for back chain, TOC register, link register, etc. */
1174 sp -= wordsize * 6;
1175
1176 /* Stack pointer must be quadword aligned. */
1177 sp &= -16;
1178
1179 /* If there are more arguments, allocate space for them in
1180 the stack, then push them starting from the ninth one. */
1181
1182 if ((argno < nargs) || argbytes)
1183 {
1184 int space = 0, jj;
1185
1186 if (argbytes)
1187 {
1188 space += ((len - argbytes + 3) & -4);
1189 jj = argno + 1;
1190 }
1191 else
1192 jj = argno;
1193
1194 for (; jj < nargs; ++jj)
1195 {
1196 struct value *val = args[jj];
1197 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1198 }
1199
1200 /* Add location required for the rest of the parameters. */
1201 space = (space + 15) & -16;
1202 sp -= space;
1203
1204 /* This is another instance we need to be concerned about
1205 securing our stack space. If we write anything underneath %sp
1206 (r1), we might conflict with the kernel who thinks he is free
1207 to use this area. So, update %sp first before doing anything
1208 else. */
1209
1210 write_register (SP_REGNUM, sp);
1211
1212 /* If the last argument copied into the registers didn't fit there
1213 completely, push the rest of it into stack. */
1214
1215 if (argbytes)
1216 {
1217 write_memory (sp + 24 + (ii * 4),
1218 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1219 len - argbytes);
1220 ++argno;
1221 ii += ((len - argbytes + 3) & -4) / 4;
1222 }
1223
1224 /* Push the rest of the arguments into stack. */
1225 for (; argno < nargs; ++argno)
1226 {
1227
1228 arg = args[argno];
1229 type = check_typedef (VALUE_TYPE (arg));
1230 len = TYPE_LENGTH (type);
1231
1232
1233 /* Float types should be passed in fpr's, as well as in the
1234 stack. */
1235 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1236 {
1237
1238 if (len > 8)
1239 printf_unfiltered (
1240 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1241
1242 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1243 VALUE_CONTENTS (arg),
1244 len);
1245 ++f_argno;
1246 }
1247
1248 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1249 ii += ((len + 3) & -4) / 4;
1250 }
1251 }
1252 else
1253 /* Secure stack areas first, before doing anything else. */
1254 write_register (SP_REGNUM, sp);
1255
1256 /* set back chain properly */
1257 store_address (tmp_buffer, 4, saved_sp);
1258 write_memory (sp, tmp_buffer, 4);
1259
1260 target_store_registers (-1);
1261 return sp;
1262 }
1263
1264 /* Function: ppc_push_return_address (pc, sp)
1265 Set up the return address for the inferior function call. */
1266
1267 static CORE_ADDR
1268 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1269 {
1270 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1271 CALL_DUMMY_ADDRESS ());
1272 return sp;
1273 }
1274
1275 /* Extract a function return value of type TYPE from raw register array
1276 REGBUF, and copy that return value into VALBUF in virtual format. */
1277 static void
1278 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1279 {
1280 int offset = 0;
1281 int vallen = TYPE_LENGTH (valtype);
1282 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1283
1284 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1285 && vallen == 8
1286 && TYPE_VECTOR (valtype))
1287 {
1288 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1289 }
1290 else
1291 {
1292 /* Return value is copied starting from r3. Note that r3 for us
1293 is a pseudo register. */
1294 int offset = 0;
1295 int return_regnum = tdep->ppc_gp0_regnum + 3;
1296 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1297 int reg_part_size;
1298 char *val_buffer;
1299 int copied = 0;
1300 int i = 0;
1301
1302 /* Compute where we will start storing the value from. */
1303 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1304 {
1305 if (vallen <= reg_size)
1306 offset = reg_size - vallen;
1307 else
1308 offset = reg_size + (reg_size - vallen);
1309 }
1310
1311 /* How big does the local buffer need to be? */
1312 if (vallen <= reg_size)
1313 val_buffer = alloca (reg_size);
1314 else
1315 val_buffer = alloca (vallen);
1316
1317 /* Read all we need into our private buffer. We copy it in
1318 chunks that are as long as one register, never shorter, even
1319 if the value is smaller than the register. */
1320 while (copied < vallen)
1321 {
1322 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1323 /* It is a pseudo/cooked register. */
1324 regcache_cooked_read (regbuf, return_regnum + i,
1325 val_buffer + copied);
1326 copied += reg_part_size;
1327 i++;
1328 }
1329 /* Put the stuff in the return buffer. */
1330 memcpy (valbuf, val_buffer + offset, vallen);
1331 }
1332 }
1333
1334 static void
1335 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1336 {
1337 int offset = 0;
1338 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1339
1340 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1341 {
1342
1343 double dd;
1344 float ff;
1345 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1346 We need to truncate the return value into float size (4 byte) if
1347 necessary. */
1348
1349 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1350 memcpy (valbuf,
1351 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1352 TYPE_LENGTH (valtype));
1353 else
1354 { /* float */
1355 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1356 ff = (float) dd;
1357 memcpy (valbuf, &ff, sizeof (float));
1358 }
1359 }
1360 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1361 && TYPE_LENGTH (valtype) == 16
1362 && TYPE_VECTOR (valtype))
1363 {
1364 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1365 TYPE_LENGTH (valtype));
1366 }
1367 else
1368 {
1369 /* return value is copied starting from r3. */
1370 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1371 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1372 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1373
1374 memcpy (valbuf,
1375 regbuf + REGISTER_BYTE (3) + offset,
1376 TYPE_LENGTH (valtype));
1377 }
1378 }
1379
1380 /* Return whether handle_inferior_event() should proceed through code
1381 starting at PC in function NAME when stepping.
1382
1383 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1384 handle memory references that are too distant to fit in instructions
1385 generated by the compiler. For example, if 'foo' in the following
1386 instruction:
1387
1388 lwz r9,foo(r2)
1389
1390 is greater than 32767, the linker might replace the lwz with a branch to
1391 somewhere in @FIX1 that does the load in 2 instructions and then branches
1392 back to where execution should continue.
1393
1394 GDB should silently step over @FIX code, just like AIX dbx does.
1395 Unfortunately, the linker uses the "b" instruction for the branches,
1396 meaning that the link register doesn't get set. Therefore, GDB's usual
1397 step_over_function() mechanism won't work.
1398
1399 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1400 in handle_inferior_event() to skip past @FIX code. */
1401
1402 int
1403 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1404 {
1405 return name && !strncmp (name, "@FIX", 4);
1406 }
1407
1408 /* Skip code that the user doesn't want to see when stepping:
1409
1410 1. Indirect function calls use a piece of trampoline code to do context
1411 switching, i.e. to set the new TOC table. Skip such code if we are on
1412 its first instruction (as when we have single-stepped to here).
1413
1414 2. Skip shared library trampoline code (which is different from
1415 indirect function call trampolines).
1416
1417 3. Skip bigtoc fixup code.
1418
1419 Result is desired PC to step until, or NULL if we are not in
1420 code that should be skipped. */
1421
1422 CORE_ADDR
1423 rs6000_skip_trampoline_code (CORE_ADDR pc)
1424 {
1425 register unsigned int ii, op;
1426 int rel;
1427 CORE_ADDR solib_target_pc;
1428 struct minimal_symbol *msymbol;
1429
1430 static unsigned trampoline_code[] =
1431 {
1432 0x800b0000, /* l r0,0x0(r11) */
1433 0x90410014, /* st r2,0x14(r1) */
1434 0x7c0903a6, /* mtctr r0 */
1435 0x804b0004, /* l r2,0x4(r11) */
1436 0x816b0008, /* l r11,0x8(r11) */
1437 0x4e800420, /* bctr */
1438 0x4e800020, /* br */
1439 0
1440 };
1441
1442 /* Check for bigtoc fixup code. */
1443 msymbol = lookup_minimal_symbol_by_pc (pc);
1444 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1445 {
1446 /* Double-check that the third instruction from PC is relative "b". */
1447 op = read_memory_integer (pc + 8, 4);
1448 if ((op & 0xfc000003) == 0x48000000)
1449 {
1450 /* Extract bits 6-29 as a signed 24-bit relative word address and
1451 add it to the containing PC. */
1452 rel = ((int)(op << 6) >> 6);
1453 return pc + 8 + rel;
1454 }
1455 }
1456
1457 /* If pc is in a shared library trampoline, return its target. */
1458 solib_target_pc = find_solib_trampoline_target (pc);
1459 if (solib_target_pc)
1460 return solib_target_pc;
1461
1462 for (ii = 0; trampoline_code[ii]; ++ii)
1463 {
1464 op = read_memory_integer (pc + (ii * 4), 4);
1465 if (op != trampoline_code[ii])
1466 return 0;
1467 }
1468 ii = read_register (11); /* r11 holds destination addr */
1469 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1470 return pc;
1471 }
1472
1473 /* Determines whether the function FI has a frame on the stack or not. */
1474
1475 int
1476 rs6000_frameless_function_invocation (struct frame_info *fi)
1477 {
1478 CORE_ADDR func_start;
1479 struct rs6000_framedata fdata;
1480
1481 /* Don't even think about framelessness except on the innermost frame
1482 or if the function was interrupted by a signal. */
1483 if (get_next_frame (fi) != NULL
1484 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1485 return 0;
1486
1487 func_start = get_pc_function_start (get_frame_pc (fi));
1488
1489 /* If we failed to find the start of the function, it is a mistake
1490 to inspect the instructions. */
1491
1492 if (!func_start)
1493 {
1494 /* A frame with a zero PC is usually created by dereferencing a NULL
1495 function pointer, normally causing an immediate core dump of the
1496 inferior. Mark function as frameless, as the inferior has no chance
1497 of setting up a stack frame. */
1498 if (get_frame_pc (fi) == 0)
1499 return 1;
1500 else
1501 return 0;
1502 }
1503
1504 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1505 return fdata.frameless;
1506 }
1507
1508 /* Return the PC saved in a frame. */
1509
1510 CORE_ADDR
1511 rs6000_frame_saved_pc (struct frame_info *fi)
1512 {
1513 CORE_ADDR func_start;
1514 struct rs6000_framedata fdata;
1515 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1516 int wordsize = tdep->wordsize;
1517
1518 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1519 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1520 wordsize);
1521
1522 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1523 get_frame_base (fi),
1524 get_frame_base (fi)))
1525 return deprecated_read_register_dummy (get_frame_pc (fi),
1526 get_frame_base (fi), PC_REGNUM);
1527
1528 func_start = get_pc_function_start (get_frame_pc (fi));
1529
1530 /* If we failed to find the start of the function, it is a mistake
1531 to inspect the instructions. */
1532 if (!func_start)
1533 return 0;
1534
1535 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1536
1537 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1538 {
1539 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1540 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1541 + SIG_FRAME_LR_OFFSET),
1542 wordsize);
1543 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1544 /* The link register wasn't saved by this frame and the next
1545 (inner, newer) frame is a dummy. Get the link register
1546 value by unwinding it from that [dummy] frame. */
1547 {
1548 ULONGEST lr;
1549 frame_unwind_unsigned_register (get_next_frame (fi),
1550 tdep->ppc_lr_regnum, &lr);
1551 return lr;
1552 }
1553 else
1554 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1555 wordsize);
1556 }
1557
1558 if (fdata.lr_offset == 0)
1559 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1560
1561 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1562 }
1563
1564 /* If saved registers of frame FI are not known yet, read and cache them.
1565 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1566 in which case the framedata are read. */
1567
1568 static void
1569 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1570 {
1571 CORE_ADDR frame_addr;
1572 struct rs6000_framedata work_fdata;
1573 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1574 int wordsize = tdep->wordsize;
1575
1576 if (get_frame_saved_regs (fi))
1577 return;
1578
1579 if (fdatap == NULL)
1580 {
1581 fdatap = &work_fdata;
1582 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1583 get_frame_pc (fi), fdatap);
1584 }
1585
1586 frame_saved_regs_zalloc (fi);
1587
1588 /* If there were any saved registers, figure out parent's stack
1589 pointer. */
1590 /* The following is true only if the frame doesn't have a call to
1591 alloca(), FIXME. */
1592
1593 if (fdatap->saved_fpr == 0
1594 && fdatap->saved_gpr == 0
1595 && fdatap->saved_vr == 0
1596 && fdatap->saved_ev == 0
1597 && fdatap->lr_offset == 0
1598 && fdatap->cr_offset == 0
1599 && fdatap->vr_offset == 0
1600 && fdatap->ev_offset == 0)
1601 frame_addr = 0;
1602 else
1603 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1604 address of the current frame. Things might be easier if the
1605 ->frame pointed to the outer-most address of the frame. In the
1606 mean time, the address of the prev frame is used as the base
1607 address of this frame. */
1608 frame_addr = FRAME_CHAIN (fi);
1609
1610 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1611 All fpr's from saved_fpr to fp31 are saved. */
1612
1613 if (fdatap->saved_fpr >= 0)
1614 {
1615 int i;
1616 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1617 for (i = fdatap->saved_fpr; i < 32; i++)
1618 {
1619 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1620 fpr_addr += 8;
1621 }
1622 }
1623
1624 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1625 All gpr's from saved_gpr to gpr31 are saved. */
1626
1627 if (fdatap->saved_gpr >= 0)
1628 {
1629 int i;
1630 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1631 for (i = fdatap->saved_gpr; i < 32; i++)
1632 {
1633 get_frame_saved_regs (fi)[i] = gpr_addr;
1634 gpr_addr += wordsize;
1635 }
1636 }
1637
1638 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1639 All vr's from saved_vr to vr31 are saved. */
1640 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1641 {
1642 if (fdatap->saved_vr >= 0)
1643 {
1644 int i;
1645 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1646 for (i = fdatap->saved_vr; i < 32; i++)
1647 {
1648 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1649 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1650 }
1651 }
1652 }
1653
1654 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1655 All vr's from saved_ev to ev31 are saved. ????? */
1656 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1657 {
1658 if (fdatap->saved_ev >= 0)
1659 {
1660 int i;
1661 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1662 for (i = fdatap->saved_ev; i < 32; i++)
1663 {
1664 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1665 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1666 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1667 }
1668 }
1669 }
1670
1671 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1672 the CR. */
1673 if (fdatap->cr_offset != 0)
1674 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1675
1676 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1677 the LR. */
1678 if (fdatap->lr_offset != 0)
1679 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1680
1681 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1682 the VRSAVE. */
1683 if (fdatap->vrsave_offset != 0)
1684 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1685 }
1686
1687 /* Return the address of a frame. This is the inital %sp value when the frame
1688 was first allocated. For functions calling alloca(), it might be saved in
1689 an alloca register. */
1690
1691 static CORE_ADDR
1692 frame_initial_stack_address (struct frame_info *fi)
1693 {
1694 CORE_ADDR tmpaddr;
1695 struct rs6000_framedata fdata;
1696 struct frame_info *callee_fi;
1697
1698 /* If the initial stack pointer (frame address) of this frame is known,
1699 just return it. */
1700
1701 if (get_frame_extra_info (fi)->initial_sp)
1702 return get_frame_extra_info (fi)->initial_sp;
1703
1704 /* Find out if this function is using an alloca register. */
1705
1706 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1707 get_frame_pc (fi), &fdata);
1708
1709 /* If saved registers of this frame are not known yet, read and
1710 cache them. */
1711
1712 if (!get_frame_saved_regs (fi))
1713 frame_get_saved_regs (fi, &fdata);
1714
1715 /* If no alloca register used, then fi->frame is the value of the %sp for
1716 this frame, and it is good enough. */
1717
1718 if (fdata.alloca_reg < 0)
1719 {
1720 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1721 return get_frame_extra_info (fi)->initial_sp;
1722 }
1723
1724 /* There is an alloca register, use its value, in the current frame,
1725 as the initial stack pointer. */
1726 {
1727 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1728 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1729 {
1730 get_frame_extra_info (fi)->initial_sp
1731 = extract_unsigned_integer (tmpbuf,
1732 REGISTER_RAW_SIZE (fdata.alloca_reg));
1733 }
1734 else
1735 /* NOTE: cagney/2002-04-17: At present the only time
1736 frame_register_read will fail is when the register isn't
1737 available. If that does happen, use the frame. */
1738 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1739 }
1740 return get_frame_extra_info (fi)->initial_sp;
1741 }
1742
1743 /* Describe the pointer in each stack frame to the previous stack frame
1744 (its caller). */
1745
1746 /* FRAME_CHAIN takes a frame's nominal address
1747 and produces the frame's chain-pointer. */
1748
1749 /* In the case of the RS/6000, the frame's nominal address
1750 is the address of a 4-byte word containing the calling frame's address. */
1751
1752 CORE_ADDR
1753 rs6000_frame_chain (struct frame_info *thisframe)
1754 {
1755 CORE_ADDR fp, fpp, lr;
1756 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1757
1758 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1759 get_frame_base (thisframe),
1760 get_frame_base (thisframe)))
1761 /* A dummy frame always correctly chains back to the previous
1762 frame. */
1763 return read_memory_addr (get_frame_base (thisframe), wordsize);
1764
1765 if (inside_entry_file (get_frame_pc (thisframe))
1766 || get_frame_pc (thisframe) == entry_point_address ())
1767 return 0;
1768
1769 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1770 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1771 wordsize);
1772 else if (get_next_frame (thisframe) != NULL
1773 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1774 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1775 /* A frameless function interrupted by a signal did not change the
1776 frame pointer. */
1777 fp = get_frame_base (thisframe);
1778 else
1779 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1780 return fp;
1781 }
1782
1783 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1784 isn't available with that word size, return 0. */
1785
1786 static int
1787 regsize (const struct reg *reg, int wordsize)
1788 {
1789 return wordsize == 8 ? reg->sz64 : reg->sz32;
1790 }
1791
1792 /* Return the name of register number N, or null if no such register exists
1793 in the current architecture. */
1794
1795 static const char *
1796 rs6000_register_name (int n)
1797 {
1798 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1799 const struct reg *reg = tdep->regs + n;
1800
1801 if (!regsize (reg, tdep->wordsize))
1802 return NULL;
1803 return reg->name;
1804 }
1805
1806 /* Index within `registers' of the first byte of the space for
1807 register N. */
1808
1809 static int
1810 rs6000_register_byte (int n)
1811 {
1812 return gdbarch_tdep (current_gdbarch)->regoff[n];
1813 }
1814
1815 /* Return the number of bytes of storage in the actual machine representation
1816 for register N if that register is available, else return 0. */
1817
1818 static int
1819 rs6000_register_raw_size (int n)
1820 {
1821 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1822 const struct reg *reg = tdep->regs + n;
1823 return regsize (reg, tdep->wordsize);
1824 }
1825
1826 /* Return the GDB type object for the "standard" data type
1827 of data in register N. */
1828
1829 static struct type *
1830 rs6000_register_virtual_type (int n)
1831 {
1832 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1833 const struct reg *reg = tdep->regs + n;
1834
1835 if (reg->fpr)
1836 return builtin_type_double;
1837 else
1838 {
1839 int size = regsize (reg, tdep->wordsize);
1840 switch (size)
1841 {
1842 case 8:
1843 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1844 return builtin_type_vec64;
1845 else
1846 return builtin_type_int64;
1847 break;
1848 case 16:
1849 return builtin_type_vec128;
1850 break;
1851 default:
1852 return builtin_type_int32;
1853 break;
1854 }
1855 }
1856 }
1857
1858 /* For the PowerPC, it appears that the debug info marks float parameters as
1859 floats regardless of whether the function is prototyped, but the actual
1860 values are always passed in as doubles. Tell gdb to always assume that
1861 floats are passed as doubles and then converted in the callee. */
1862
1863 static int
1864 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1865 {
1866 return 1;
1867 }
1868
1869 /* Return whether register N requires conversion when moving from raw format
1870 to virtual format.
1871
1872 The register format for RS/6000 floating point registers is always
1873 double, we need a conversion if the memory format is float. */
1874
1875 static int
1876 rs6000_register_convertible (int n)
1877 {
1878 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1879 return reg->fpr;
1880 }
1881
1882 /* Convert data from raw format for register N in buffer FROM
1883 to virtual format with type TYPE in buffer TO. */
1884
1885 static void
1886 rs6000_register_convert_to_virtual (int n, struct type *type,
1887 char *from, char *to)
1888 {
1889 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1890 {
1891 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1892 store_floating (to, TYPE_LENGTH (type), val);
1893 }
1894 else
1895 memcpy (to, from, REGISTER_RAW_SIZE (n));
1896 }
1897
1898 /* Convert data from virtual format with type TYPE in buffer FROM
1899 to raw format for register N in buffer TO. */
1900
1901 static void
1902 rs6000_register_convert_to_raw (struct type *type, int n,
1903 char *from, char *to)
1904 {
1905 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1906 {
1907 double val = extract_floating (from, TYPE_LENGTH (type));
1908 store_floating (to, REGISTER_RAW_SIZE (n), val);
1909 }
1910 else
1911 memcpy (to, from, REGISTER_RAW_SIZE (n));
1912 }
1913
1914 static void
1915 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1916 int reg_nr, void *buffer)
1917 {
1918 int base_regnum;
1919 int offset = 0;
1920 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1921 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1922
1923 if (reg_nr >= tdep->ppc_gp0_regnum
1924 && reg_nr <= tdep->ppc_gplast_regnum)
1925 {
1926 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1927
1928 /* Build the value in the provided buffer. */
1929 /* Read the raw register of which this one is the lower portion. */
1930 regcache_raw_read (regcache, base_regnum, temp_buffer);
1931 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1932 offset = 4;
1933 memcpy ((char *) buffer, temp_buffer + offset, 4);
1934 }
1935 }
1936
1937 static void
1938 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1939 int reg_nr, const void *buffer)
1940 {
1941 int base_regnum;
1942 int offset = 0;
1943 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1945
1946 if (reg_nr >= tdep->ppc_gp0_regnum
1947 && reg_nr <= tdep->ppc_gplast_regnum)
1948 {
1949 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1950 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1951 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1952 offset = 4;
1953
1954 /* Let's read the value of the base register into a temporary
1955 buffer, so that overwriting the last four bytes with the new
1956 value of the pseudo will leave the upper 4 bytes unchanged. */
1957 regcache_raw_read (regcache, base_regnum, temp_buffer);
1958
1959 /* Write as an 8 byte quantity. */
1960 memcpy (temp_buffer + offset, (char *) buffer, 4);
1961 regcache_raw_write (regcache, base_regnum, temp_buffer);
1962 }
1963 }
1964
1965 /* Convert a dwarf2 register number to a gdb REGNUM. */
1966 static int
1967 e500_dwarf2_reg_to_regnum (int num)
1968 {
1969 int regnum;
1970 if (0 <= num && num <= 31)
1971 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1972 else
1973 return num;
1974 }
1975
1976 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1977 REGNUM. */
1978 static int
1979 rs6000_stab_reg_to_regnum (int num)
1980 {
1981 int regnum;
1982 switch (num)
1983 {
1984 case 64:
1985 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1986 break;
1987 case 65:
1988 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1989 break;
1990 case 66:
1991 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1992 break;
1993 case 76:
1994 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1995 break;
1996 default:
1997 regnum = num;
1998 break;
1999 }
2000 return regnum;
2001 }
2002
2003 /* Store the address of the place in which to copy the structure the
2004 subroutine will return. */
2005
2006 static void
2007 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2008 {
2009 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2010 write_register (tdep->ppc_gp0_regnum + 3, addr);
2011 }
2012
2013 /* Write into appropriate registers a function return value
2014 of type TYPE, given in virtual format. */
2015 static void
2016 e500_store_return_value (struct type *type, char *valbuf)
2017 {
2018 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2019
2020 /* Everything is returned in GPR3 and up. */
2021 int copied = 0;
2022 int i = 0;
2023 int len = TYPE_LENGTH (type);
2024 while (copied < len)
2025 {
2026 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2027 int reg_size = REGISTER_RAW_SIZE (regnum);
2028 char *reg_val_buf = alloca (reg_size);
2029
2030 memcpy (reg_val_buf, valbuf + copied, reg_size);
2031 copied += reg_size;
2032 deprecated_write_register_gen (regnum, reg_val_buf);
2033 i++;
2034 }
2035 }
2036
2037 static void
2038 rs6000_store_return_value (struct type *type, char *valbuf)
2039 {
2040 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2041
2042 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2043
2044 /* Floating point values are returned starting from FPR1 and up.
2045 Say a double_double_double type could be returned in
2046 FPR1/FPR2/FPR3 triple. */
2047
2048 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2049 TYPE_LENGTH (type));
2050 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2051 {
2052 if (TYPE_LENGTH (type) == 16
2053 && TYPE_VECTOR (type))
2054 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2055 valbuf, TYPE_LENGTH (type));
2056 }
2057 else
2058 /* Everything else is returned in GPR3 and up. */
2059 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2060 valbuf, TYPE_LENGTH (type));
2061 }
2062
2063 /* Extract from an array REGBUF containing the (raw) register state
2064 the address in which a function should return its structure value,
2065 as a CORE_ADDR (or an expression that can be used as one). */
2066
2067 static CORE_ADDR
2068 rs6000_extract_struct_value_address (struct regcache *regcache)
2069 {
2070 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2071 function call GDB knows the address of the struct return value
2072 and hence, should not need to call this function. Unfortunately,
2073 the current hand_function_call() code only saves the most recent
2074 struct address leading to occasional calls. The code should
2075 instead maintain a stack of such addresses (in the dummy frame
2076 object). */
2077 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2078 really got no idea where the return value is being stored. While
2079 r3, on function entry, contained the address it will have since
2080 been reused (scratch) and hence wouldn't be valid */
2081 return 0;
2082 }
2083
2084 /* Return whether PC is in a dummy function call.
2085
2086 FIXME: This just checks for the end of the stack, which is broken
2087 for things like stepping through gcc nested function stubs. */
2088
2089 static int
2090 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2091 {
2092 return sp < pc && pc < fp;
2093 }
2094
2095 /* Hook called when a new child process is started. */
2096
2097 void
2098 rs6000_create_inferior (int pid)
2099 {
2100 if (rs6000_set_host_arch_hook)
2101 rs6000_set_host_arch_hook (pid);
2102 }
2103 \f
2104 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2105
2106 Usually a function pointer's representation is simply the address
2107 of the function. On the RS/6000 however, a function pointer is
2108 represented by a pointer to a TOC entry. This TOC entry contains
2109 three words, the first word is the address of the function, the
2110 second word is the TOC pointer (r2), and the third word is the
2111 static chain value. Throughout GDB it is currently assumed that a
2112 function pointer contains the address of the function, which is not
2113 easy to fix. In addition, the conversion of a function address to
2114 a function pointer would require allocation of a TOC entry in the
2115 inferior's memory space, with all its drawbacks. To be able to
2116 call C++ virtual methods in the inferior (which are called via
2117 function pointers), find_function_addr uses this function to get the
2118 function address from a function pointer. */
2119
2120 /* Return real function address if ADDR (a function pointer) is in the data
2121 space and is therefore a special function pointer. */
2122
2123 CORE_ADDR
2124 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2125 {
2126 struct obj_section *s;
2127
2128 s = find_pc_section (addr);
2129 if (s && s->the_bfd_section->flags & SEC_CODE)
2130 return addr;
2131
2132 /* ADDR is in the data space, so it's a special function pointer. */
2133 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2134 }
2135 \f
2136
2137 /* Handling the various POWER/PowerPC variants. */
2138
2139
2140 /* The arrays here called registers_MUMBLE hold information about available
2141 registers.
2142
2143 For each family of PPC variants, I've tried to isolate out the
2144 common registers and put them up front, so that as long as you get
2145 the general family right, GDB will correctly identify the registers
2146 common to that family. The common register sets are:
2147
2148 For the 60x family: hid0 hid1 iabr dabr pir
2149
2150 For the 505 and 860 family: eie eid nri
2151
2152 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2153 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2154 pbu1 pbl2 pbu2
2155
2156 Most of these register groups aren't anything formal. I arrived at
2157 them by looking at the registers that occurred in more than one
2158 processor.
2159
2160 Note: kevinb/2002-04-30: Support for the fpscr register was added
2161 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2162 for Power. For PowerPC, slot 70 was unused and was already in the
2163 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2164 slot 70 was being used for "mq", so the next available slot (71)
2165 was chosen. It would have been nice to be able to make the
2166 register numbers the same across processor cores, but this wasn't
2167 possible without either 1) renumbering some registers for some
2168 processors or 2) assigning fpscr to a really high slot that's
2169 larger than any current register number. Doing (1) is bad because
2170 existing stubs would break. Doing (2) is undesirable because it
2171 would introduce a really large gap between fpscr and the rest of
2172 the registers for most processors. */
2173
2174 /* Convenience macros for populating register arrays. */
2175
2176 /* Within another macro, convert S to a string. */
2177
2178 #define STR(s) #s
2179
2180 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2181 and 64 bits on 64-bit systems. */
2182 #define R(name) { STR(name), 4, 8, 0, 0 }
2183
2184 /* Return a struct reg defining register NAME that's 32 bits on all
2185 systems. */
2186 #define R4(name) { STR(name), 4, 4, 0, 0 }
2187
2188 /* Return a struct reg defining register NAME that's 64 bits on all
2189 systems. */
2190 #define R8(name) { STR(name), 8, 8, 0, 0 }
2191
2192 /* Return a struct reg defining register NAME that's 128 bits on all
2193 systems. */
2194 #define R16(name) { STR(name), 16, 16, 0, 0 }
2195
2196 /* Return a struct reg defining floating-point register NAME. */
2197 #define F(name) { STR(name), 8, 8, 1, 0 }
2198
2199 /* Return a struct reg defining a pseudo register NAME. */
2200 #define P(name) { STR(name), 4, 8, 0, 1}
2201
2202 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2203 systems and that doesn't exist on 64-bit systems. */
2204 #define R32(name) { STR(name), 4, 0, 0, 0 }
2205
2206 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2207 systems and that doesn't exist on 32-bit systems. */
2208 #define R64(name) { STR(name), 0, 8, 0, 0 }
2209
2210 /* Return a struct reg placeholder for a register that doesn't exist. */
2211 #define R0 { 0, 0, 0, 0, 0 }
2212
2213 /* UISA registers common across all architectures, including POWER. */
2214
2215 #define COMMON_UISA_REGS \
2216 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2217 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2218 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2219 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2220 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2221 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2222 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2223 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2224 /* 64 */ R(pc), R(ps)
2225
2226 #define COMMON_UISA_NOFP_REGS \
2227 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2228 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2229 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2230 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2231 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2232 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2233 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2234 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2235 /* 64 */ R(pc), R(ps)
2236
2237 /* UISA-level SPRs for PowerPC. */
2238 #define PPC_UISA_SPRS \
2239 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2240
2241 /* UISA-level SPRs for PowerPC without floating point support. */
2242 #define PPC_UISA_NOFP_SPRS \
2243 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2244
2245 /* Segment registers, for PowerPC. */
2246 #define PPC_SEGMENT_REGS \
2247 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2248 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2249 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2250 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2251
2252 /* OEA SPRs for PowerPC. */
2253 #define PPC_OEA_SPRS \
2254 /* 87 */ R4(pvr), \
2255 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2256 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2257 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2258 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2259 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2260 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2261 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2262 /* 116 */ R4(dec), R(dabr), R4(ear)
2263
2264 /* AltiVec registers. */
2265 #define PPC_ALTIVEC_REGS \
2266 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2267 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2268 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2269 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2270 /*151*/R4(vscr), R4(vrsave)
2271
2272 /* Vectors of hi-lo general purpose registers. */
2273 #define PPC_EV_REGS \
2274 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2275 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2276 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2277 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2278
2279 /* Lower half of the EV registers. */
2280 #define PPC_GPRS_PSEUDO_REGS \
2281 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2282 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2283 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2284 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2285
2286 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2287 user-level SPR's. */
2288 static const struct reg registers_power[] =
2289 {
2290 COMMON_UISA_REGS,
2291 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2292 /* 71 */ R4(fpscr)
2293 };
2294
2295 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2296 view of the PowerPC. */
2297 static const struct reg registers_powerpc[] =
2298 {
2299 COMMON_UISA_REGS,
2300 PPC_UISA_SPRS,
2301 PPC_ALTIVEC_REGS
2302 };
2303
2304 /* PowerPC UISA - a PPC processor as viewed by user-level
2305 code, but without floating point registers. */
2306 static const struct reg registers_powerpc_nofp[] =
2307 {
2308 COMMON_UISA_NOFP_REGS,
2309 PPC_UISA_SPRS
2310 };
2311
2312 /* IBM PowerPC 403. */
2313 static const struct reg registers_403[] =
2314 {
2315 COMMON_UISA_REGS,
2316 PPC_UISA_SPRS,
2317 PPC_SEGMENT_REGS,
2318 PPC_OEA_SPRS,
2319 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2320 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2321 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2322 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2323 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2324 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2325 };
2326
2327 /* IBM PowerPC 403GC. */
2328 static const struct reg registers_403GC[] =
2329 {
2330 COMMON_UISA_REGS,
2331 PPC_UISA_SPRS,
2332 PPC_SEGMENT_REGS,
2333 PPC_OEA_SPRS,
2334 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2335 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2336 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2337 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2338 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2339 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2340 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2341 /* 147 */ R(tbhu), R(tblu)
2342 };
2343
2344 /* Motorola PowerPC 505. */
2345 static const struct reg registers_505[] =
2346 {
2347 COMMON_UISA_REGS,
2348 PPC_UISA_SPRS,
2349 PPC_SEGMENT_REGS,
2350 PPC_OEA_SPRS,
2351 /* 119 */ R(eie), R(eid), R(nri)
2352 };
2353
2354 /* Motorola PowerPC 860 or 850. */
2355 static const struct reg registers_860[] =
2356 {
2357 COMMON_UISA_REGS,
2358 PPC_UISA_SPRS,
2359 PPC_SEGMENT_REGS,
2360 PPC_OEA_SPRS,
2361 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2362 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2363 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2364 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2365 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2366 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2367 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2368 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2369 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2370 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2371 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2372 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2373 };
2374
2375 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2376 for reading and writing RTCU and RTCL. However, how one reads and writes a
2377 register is the stub's problem. */
2378 static const struct reg registers_601[] =
2379 {
2380 COMMON_UISA_REGS,
2381 PPC_UISA_SPRS,
2382 PPC_SEGMENT_REGS,
2383 PPC_OEA_SPRS,
2384 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2385 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2386 };
2387
2388 /* Motorola PowerPC 602. */
2389 static const struct reg registers_602[] =
2390 {
2391 COMMON_UISA_REGS,
2392 PPC_UISA_SPRS,
2393 PPC_SEGMENT_REGS,
2394 PPC_OEA_SPRS,
2395 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2396 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2397 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2398 };
2399
2400 /* Motorola/IBM PowerPC 603 or 603e. */
2401 static const struct reg registers_603[] =
2402 {
2403 COMMON_UISA_REGS,
2404 PPC_UISA_SPRS,
2405 PPC_SEGMENT_REGS,
2406 PPC_OEA_SPRS,
2407 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2408 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2409 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2410 };
2411
2412 /* Motorola PowerPC 604 or 604e. */
2413 static const struct reg registers_604[] =
2414 {
2415 COMMON_UISA_REGS,
2416 PPC_UISA_SPRS,
2417 PPC_SEGMENT_REGS,
2418 PPC_OEA_SPRS,
2419 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2420 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2421 /* 127 */ R(sia), R(sda)
2422 };
2423
2424 /* Motorola/IBM PowerPC 750 or 740. */
2425 static const struct reg registers_750[] =
2426 {
2427 COMMON_UISA_REGS,
2428 PPC_UISA_SPRS,
2429 PPC_SEGMENT_REGS,
2430 PPC_OEA_SPRS,
2431 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2432 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2433 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2434 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2435 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2436 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2437 };
2438
2439
2440 /* Motorola PowerPC 7400. */
2441 static const struct reg registers_7400[] =
2442 {
2443 /* gpr0-gpr31, fpr0-fpr31 */
2444 COMMON_UISA_REGS,
2445 /* ctr, xre, lr, cr */
2446 PPC_UISA_SPRS,
2447 /* sr0-sr15 */
2448 PPC_SEGMENT_REGS,
2449 PPC_OEA_SPRS,
2450 /* vr0-vr31, vrsave, vscr */
2451 PPC_ALTIVEC_REGS
2452 /* FIXME? Add more registers? */
2453 };
2454
2455 /* Motorola e500. */
2456 static const struct reg registers_e500[] =
2457 {
2458 R(pc), R(ps),
2459 /* cr, lr, ctr, xer, "" */
2460 PPC_UISA_NOFP_SPRS,
2461 /* 7...38 */
2462 PPC_EV_REGS,
2463 /* 39...70 */
2464 PPC_GPRS_PSEUDO_REGS
2465 };
2466
2467 /* Information about a particular processor variant. */
2468
2469 struct variant
2470 {
2471 /* Name of this variant. */
2472 char *name;
2473
2474 /* English description of the variant. */
2475 char *description;
2476
2477 /* bfd_arch_info.arch corresponding to variant. */
2478 enum bfd_architecture arch;
2479
2480 /* bfd_arch_info.mach corresponding to variant. */
2481 unsigned long mach;
2482
2483 /* Number of real registers. */
2484 int nregs;
2485
2486 /* Number of pseudo registers. */
2487 int npregs;
2488
2489 /* Number of total registers (the sum of nregs and npregs). */
2490 int num_tot_regs;
2491
2492 /* Table of register names; registers[R] is the name of the register
2493 number R. */
2494 const struct reg *regs;
2495 };
2496
2497 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2498
2499 static int
2500 num_registers (const struct reg *reg_list, int num_tot_regs)
2501 {
2502 int i;
2503 int nregs = 0;
2504
2505 for (i = 0; i < num_tot_regs; i++)
2506 if (!reg_list[i].pseudo)
2507 nregs++;
2508
2509 return nregs;
2510 }
2511
2512 static int
2513 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2514 {
2515 int i;
2516 int npregs = 0;
2517
2518 for (i = 0; i < num_tot_regs; i++)
2519 if (reg_list[i].pseudo)
2520 npregs ++;
2521
2522 return npregs;
2523 }
2524
2525 /* Information in this table comes from the following web sites:
2526 IBM: http://www.chips.ibm.com:80/products/embedded/
2527 Motorola: http://www.mot.com/SPS/PowerPC/
2528
2529 I'm sure I've got some of the variant descriptions not quite right.
2530 Please report any inaccuracies you find to GDB's maintainer.
2531
2532 If you add entries to this table, please be sure to allow the new
2533 value as an argument to the --with-cpu flag, in configure.in. */
2534
2535 static struct variant variants[] =
2536 {
2537
2538 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2539 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2540 registers_powerpc},
2541 {"power", "POWER user-level", bfd_arch_rs6000,
2542 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2543 registers_power},
2544 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2545 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2546 registers_403},
2547 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2548 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2549 registers_601},
2550 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2551 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2552 registers_602},
2553 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2554 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2555 registers_603},
2556 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2557 604, -1, -1, tot_num_registers (registers_604),
2558 registers_604},
2559 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2560 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2561 registers_403GC},
2562 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2563 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2564 registers_505},
2565 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2566 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2567 registers_860},
2568 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2569 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2570 registers_750},
2571 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2572 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2573 registers_7400},
2574 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2575 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2576 registers_e500},
2577
2578 /* 64-bit */
2579 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2580 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2581 registers_powerpc},
2582 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2583 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2584 registers_powerpc},
2585 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2586 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2587 registers_powerpc},
2588 {"a35", "PowerPC A35", bfd_arch_powerpc,
2589 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2590 registers_powerpc},
2591 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2592 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2593 registers_powerpc},
2594 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2595 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2596 registers_powerpc},
2597
2598 /* FIXME: I haven't checked the register sets of the following. */
2599 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2600 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2601 registers_power},
2602 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2603 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2604 registers_power},
2605 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2606 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2607 registers_power},
2608
2609 {0, 0, 0, 0, 0, 0, 0, 0}
2610 };
2611
2612 /* Initialize the number of registers and pseudo registers in each variant. */
2613
2614 static void
2615 init_variants (void)
2616 {
2617 struct variant *v;
2618
2619 for (v = variants; v->name; v++)
2620 {
2621 if (v->nregs == -1)
2622 v->nregs = num_registers (v->regs, v->num_tot_regs);
2623 if (v->npregs == -1)
2624 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2625 }
2626 }
2627
2628 /* Return the variant corresponding to architecture ARCH and machine number
2629 MACH. If no such variant exists, return null. */
2630
2631 static const struct variant *
2632 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2633 {
2634 const struct variant *v;
2635
2636 for (v = variants; v->name; v++)
2637 if (arch == v->arch && mach == v->mach)
2638 return v;
2639
2640 return NULL;
2641 }
2642
2643 static int
2644 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2645 {
2646 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2647 return print_insn_big_powerpc (memaddr, info);
2648 else
2649 return print_insn_little_powerpc (memaddr, info);
2650 }
2651 \f
2652 /* Initialize the current architecture based on INFO. If possible, re-use an
2653 architecture from ARCHES, which is a list of architectures already created
2654 during this debugging session.
2655
2656 Called e.g. at program startup, when reading a core file, and when reading
2657 a binary file. */
2658
2659 static struct gdbarch *
2660 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2661 {
2662 struct gdbarch *gdbarch;
2663 struct gdbarch_tdep *tdep;
2664 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2665 struct reg *regs;
2666 const struct variant *v;
2667 enum bfd_architecture arch;
2668 unsigned long mach;
2669 bfd abfd;
2670 int sysv_abi;
2671 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2672 asection *sect;
2673
2674 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2675 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2676
2677 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2678 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2679
2680 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2681
2682 if (info.abfd)
2683 osabi = gdbarch_lookup_osabi (info.abfd);
2684
2685 /* Check word size. If INFO is from a binary file, infer it from
2686 that, else choose a likely default. */
2687 if (from_xcoff_exec)
2688 {
2689 if (bfd_xcoff_is_xcoff64 (info.abfd))
2690 wordsize = 8;
2691 else
2692 wordsize = 4;
2693 }
2694 else if (from_elf_exec)
2695 {
2696 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2697 wordsize = 8;
2698 else
2699 wordsize = 4;
2700 }
2701 else
2702 {
2703 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2704 wordsize = info.bfd_arch_info->bits_per_word /
2705 info.bfd_arch_info->bits_per_byte;
2706 else
2707 wordsize = 4;
2708 }
2709
2710 /* Find a candidate among extant architectures. */
2711 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2712 arches != NULL;
2713 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2714 {
2715 /* Word size in the various PowerPC bfd_arch_info structs isn't
2716 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2717 separate word size check. */
2718 tdep = gdbarch_tdep (arches->gdbarch);
2719 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2720 return arches->gdbarch;
2721 }
2722
2723 /* None found, create a new architecture from INFO, whose bfd_arch_info
2724 validity depends on the source:
2725 - executable useless
2726 - rs6000_host_arch() good
2727 - core file good
2728 - "set arch" trust blindly
2729 - GDB startup useless but harmless */
2730
2731 if (!from_xcoff_exec)
2732 {
2733 arch = info.bfd_arch_info->arch;
2734 mach = info.bfd_arch_info->mach;
2735 }
2736 else
2737 {
2738 arch = bfd_arch_powerpc;
2739 mach = 0;
2740 bfd_default_set_arch_mach (&abfd, arch, mach);
2741 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2742 }
2743 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2744 tdep->wordsize = wordsize;
2745 tdep->osabi = osabi;
2746
2747 /* For e500 executables, the apuinfo section is of help here. Such
2748 section contains the identifier and revision number of each
2749 Application-specific Processing Unit that is present on the
2750 chip. The content of the section is determined by the assembler
2751 which looks at each instruction and determines which unit (and
2752 which version of it) can execute it. In our case we just look for
2753 the existance of the section. */
2754
2755 if (info.abfd)
2756 {
2757 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2758 if (sect)
2759 {
2760 arch = info.bfd_arch_info->arch;
2761 mach = bfd_mach_ppc_e500;
2762 bfd_default_set_arch_mach (&abfd, arch, mach);
2763 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2764 }
2765 }
2766
2767 gdbarch = gdbarch_alloc (&info, tdep);
2768 power = arch == bfd_arch_rs6000;
2769
2770 /* Initialize the number of real and pseudo registers in each variant. */
2771 init_variants ();
2772
2773 /* Choose variant. */
2774 v = find_variant_by_arch (arch, mach);
2775 if (!v)
2776 return NULL;
2777
2778 tdep->regs = v->regs;
2779
2780 tdep->ppc_gp0_regnum = 0;
2781 tdep->ppc_gplast_regnum = 31;
2782 tdep->ppc_toc_regnum = 2;
2783 tdep->ppc_ps_regnum = 65;
2784 tdep->ppc_cr_regnum = 66;
2785 tdep->ppc_lr_regnum = 67;
2786 tdep->ppc_ctr_regnum = 68;
2787 tdep->ppc_xer_regnum = 69;
2788 if (v->mach == bfd_mach_ppc_601)
2789 tdep->ppc_mq_regnum = 124;
2790 else if (power)
2791 tdep->ppc_mq_regnum = 70;
2792 else
2793 tdep->ppc_mq_regnum = -1;
2794 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2795
2796 set_gdbarch_pc_regnum (gdbarch, 64);
2797 set_gdbarch_sp_regnum (gdbarch, 1);
2798 set_gdbarch_fp_regnum (gdbarch, 1);
2799 set_gdbarch_deprecated_extract_return_value (gdbarch,
2800 rs6000_extract_return_value);
2801 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2802
2803 if (v->arch == bfd_arch_powerpc)
2804 switch (v->mach)
2805 {
2806 case bfd_mach_ppc:
2807 tdep->ppc_vr0_regnum = 71;
2808 tdep->ppc_vrsave_regnum = 104;
2809 tdep->ppc_ev0_regnum = -1;
2810 tdep->ppc_ev31_regnum = -1;
2811 break;
2812 case bfd_mach_ppc_7400:
2813 tdep->ppc_vr0_regnum = 119;
2814 tdep->ppc_vrsave_regnum = 152;
2815 tdep->ppc_ev0_regnum = -1;
2816 tdep->ppc_ev31_regnum = -1;
2817 break;
2818 case bfd_mach_ppc_e500:
2819 tdep->ppc_gp0_regnum = 39;
2820 tdep->ppc_gplast_regnum = 70;
2821 tdep->ppc_toc_regnum = -1;
2822 tdep->ppc_ps_regnum = 1;
2823 tdep->ppc_cr_regnum = 2;
2824 tdep->ppc_lr_regnum = 3;
2825 tdep->ppc_ctr_regnum = 4;
2826 tdep->ppc_xer_regnum = 5;
2827 tdep->ppc_ev0_regnum = 7;
2828 tdep->ppc_ev31_regnum = 38;
2829 set_gdbarch_pc_regnum (gdbarch, 0);
2830 set_gdbarch_sp_regnum (gdbarch, 40);
2831 set_gdbarch_fp_regnum (gdbarch, 40);
2832 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2833 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2834 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2835 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2836 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2837 break;
2838 default:
2839 tdep->ppc_vr0_regnum = -1;
2840 tdep->ppc_vrsave_regnum = -1;
2841 tdep->ppc_ev0_regnum = -1;
2842 tdep->ppc_ev31_regnum = -1;
2843 break;
2844 }
2845
2846 /* Set lr_frame_offset. */
2847 if (wordsize == 8)
2848 tdep->lr_frame_offset = 16;
2849 else if (sysv_abi)
2850 tdep->lr_frame_offset = 4;
2851 else
2852 tdep->lr_frame_offset = 8;
2853
2854 /* Calculate byte offsets in raw register array. */
2855 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2856 for (i = off = 0; i < v->num_tot_regs; i++)
2857 {
2858 tdep->regoff[i] = off;
2859 off += regsize (v->regs + i, wordsize);
2860 }
2861
2862 /* Select instruction printer. */
2863 if (arch == power)
2864 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2865 else
2866 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2867
2868 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2869 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2870 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2871 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2872 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2873
2874 set_gdbarch_num_regs (gdbarch, v->nregs);
2875 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2876 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2877 set_gdbarch_register_size (gdbarch, wordsize);
2878 set_gdbarch_register_bytes (gdbarch, off);
2879 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2880 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2881 set_gdbarch_max_register_raw_size (gdbarch, 16);
2882 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2883 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2884 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2885
2886 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2887 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2888 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2889 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2890 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2891 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2892 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2893 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2894 set_gdbarch_char_signed (gdbarch, 0);
2895
2896 set_gdbarch_call_dummy_length (gdbarch, 0);
2897 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2898 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2899 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2900 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2901 set_gdbarch_call_dummy_p (gdbarch, 1);
2902 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2903 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2904 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2905 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2906 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2907 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2908 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2909 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2910
2911 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2912 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2913 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2914 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2915 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2916 is correct for the SysV ABI when the wordsize is 8, but I'm also
2917 fairly certain that ppc_sysv_abi_push_arguments() will give even
2918 worse results since it only works for 32-bit code. So, for the moment,
2919 we're better off calling rs6000_push_arguments() since it works for
2920 64-bit code. At some point in the future, this matter needs to be
2921 revisited. */
2922 if (sysv_abi && wordsize == 4)
2923 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2924 else
2925 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2926
2927 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2928 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2929 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2930
2931 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2932 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2933 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2934 set_gdbarch_function_start_offset (gdbarch, 0);
2935 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2936
2937 /* Not sure on this. FIXMEmgo */
2938 set_gdbarch_frame_args_skip (gdbarch, 8);
2939
2940 if (sysv_abi)
2941 set_gdbarch_use_struct_convention (gdbarch,
2942 ppc_sysv_abi_use_struct_convention);
2943 else
2944 set_gdbarch_use_struct_convention (gdbarch,
2945 generic_use_struct_convention);
2946
2947 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2948
2949 set_gdbarch_frameless_function_invocation (gdbarch,
2950 rs6000_frameless_function_invocation);
2951 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2952 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2953
2954 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2955 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2956
2957 if (!sysv_abi)
2958 {
2959 /* Handle RS/6000 function pointers (which are really function
2960 descriptors). */
2961 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2962 rs6000_convert_from_func_ptr_addr);
2963 }
2964 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2965 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2966 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2967
2968 /* We can't tell how many args there are
2969 now that the C compiler delays popping them. */
2970 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2971
2972 /* Hook in ABI-specific overrides, if they have been registered. */
2973 gdbarch_init_osabi (info, gdbarch, osabi);
2974
2975 return gdbarch;
2976 }
2977
2978 static void
2979 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2980 {
2981 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2982
2983 if (tdep == NULL)
2984 return;
2985
2986 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2987 gdbarch_osabi_name (tdep->osabi));
2988 }
2989
2990 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2991
2992 static void
2993 rs6000_info_powerpc_command (char *args, int from_tty)
2994 {
2995 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2996 }
2997
2998 /* Initialization code. */
2999
3000 void
3001 _initialize_rs6000_tdep (void)
3002 {
3003 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3004 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3005
3006 /* Add root prefix command for "info powerpc" commands */
3007 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3008 "Various POWERPC info specific commands.",
3009 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3010 }
This page took 0.089006 seconds and 5 git commands to generate.