2003-09-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 frame_read_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
989 return pc + 8;
990 }
991 }
992 #endif /* 0 */
993
994 fdata->offset = -fdata->offset;
995 return last_prologue_pc;
996 }
997
998
999 /*************************************************************************
1000 Support for creating pushing a dummy frame into the stack, and popping
1001 frames, etc.
1002 *************************************************************************/
1003
1004
1005 /* Pop the innermost frame, go back to the caller. */
1006
1007 static void
1008 rs6000_pop_frame (void)
1009 {
1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
1013 int ii, wordsize;
1014
1015 pc = read_pc ();
1016 sp = get_frame_base (frame);
1017
1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
1021 {
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
1025 }
1026
1027 /* Make sure that all registers are valid. */
1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1029
1030 /* Figure out previous %pc value. If the function is frameless, it is
1031 still in the link register, otherwise walk the frames and retrieve the
1032 saved %pc value in the previous frame. */
1033
1034 addr = get_frame_func (frame);
1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1036
1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
1041 prev_sp = read_memory_addr (sp, wordsize);
1042 if (fdata.lr_offset == 0)
1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1044 else
1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
1050 /* reset register values if any was saved earlier. */
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1058 wordsize);
1059 addr += wordsize;
1060 }
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
1068 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1069 addr += 8;
1070 }
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076 }
1077
1078 /* Fixup the call sequence of a dummy function, with the real function
1079 address. Its arguments will be passed by gdb. */
1080
1081 static void
1082 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1083 int nargs, struct value **args, struct type *type,
1084 int gcc_p)
1085 {
1086 int ii;
1087 CORE_ADDR target_addr;
1088
1089 if (rs6000_find_toc_address_hook != NULL)
1090 {
1091 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1092 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1093 tocvalue);
1094 }
1095 }
1096
1097 /* All the ABI's require 16 byte alignment. */
1098 static CORE_ADDR
1099 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1100 {
1101 return (addr & -16);
1102 }
1103
1104 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1105 the first eight words of the argument list (that might be less than
1106 eight parameters if some parameters occupy more than one word) are
1107 passed in r3..r10 registers. float and double parameters are
1108 passed in fpr's, in addition to that. Rest of the parameters if any
1109 are passed in user stack. There might be cases in which half of the
1110 parameter is copied into registers, the other half is pushed into
1111 stack.
1112
1113 Stack must be aligned on 64-bit boundaries when synthesizing
1114 function calls.
1115
1116 If the function is returning a structure, then the return address is passed
1117 in r3, then the first 7 words of the parameters can be passed in registers,
1118 starting from r4. */
1119
1120 static CORE_ADDR
1121 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1122 struct regcache *regcache, CORE_ADDR bp_addr,
1123 int nargs, struct value **args, CORE_ADDR sp,
1124 int struct_return, CORE_ADDR struct_addr)
1125 {
1126 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1127 int ii;
1128 int len = 0;
1129 int argno; /* current argument number */
1130 int argbytes; /* current argument byte */
1131 char tmp_buffer[50];
1132 int f_argno = 0; /* current floating point argno */
1133 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1134
1135 struct value *arg = 0;
1136 struct type *type;
1137
1138 CORE_ADDR saved_sp;
1139
1140 /* The first eight words of ther arguments are passed in registers.
1141 Copy them appropriately. */
1142 ii = 0;
1143
1144 /* If the function is returning a `struct', then the first word
1145 (which will be passed in r3) is used for struct return address.
1146 In that case we should advance one word and start from r4
1147 register to copy parameters. */
1148 if (struct_return)
1149 {
1150 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1151 struct_addr);
1152 ii++;
1153 }
1154
1155 /*
1156 effectively indirect call... gcc does...
1157
1158 return_val example( float, int);
1159
1160 eabi:
1161 float in fp0, int in r3
1162 offset of stack on overflow 8/16
1163 for varargs, must go by type.
1164 power open:
1165 float in r3&r4, int in r5
1166 offset of stack on overflow different
1167 both:
1168 return in r3 or f0. If no float, must study how gcc emulates floats;
1169 pay attention to arg promotion.
1170 User may have to cast\args to handle promotion correctly
1171 since gdb won't know if prototype supplied or not.
1172 */
1173
1174 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1175 {
1176 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1177
1178 arg = args[argno];
1179 type = check_typedef (VALUE_TYPE (arg));
1180 len = TYPE_LENGTH (type);
1181
1182 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1183 {
1184
1185 /* Floating point arguments are passed in fpr's, as well as gpr's.
1186 There are 13 fpr's reserved for passing parameters. At this point
1187 there is no way we would run out of them. */
1188
1189 if (len > 8)
1190 printf_unfiltered (
1191 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1192
1193 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1194 VALUE_CONTENTS (arg),
1195 len);
1196 ++f_argno;
1197 }
1198
1199 if (len > reg_size)
1200 {
1201
1202 /* Argument takes more than one register. */
1203 while (argbytes < len)
1204 {
1205 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1206 reg_size);
1207 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1208 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1209 (len - argbytes) > reg_size
1210 ? reg_size : len - argbytes);
1211 ++ii, argbytes += reg_size;
1212
1213 if (ii >= 8)
1214 goto ran_out_of_registers_for_arguments;
1215 }
1216 argbytes = 0;
1217 --ii;
1218 }
1219 else
1220 {
1221 /* Argument can fit in one register. No problem. */
1222 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1223 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1224 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1225 VALUE_CONTENTS (arg), len);
1226 }
1227 ++argno;
1228 }
1229
1230 ran_out_of_registers_for_arguments:
1231
1232 saved_sp = read_sp ();
1233
1234 /* Location for 8 parameters are always reserved. */
1235 sp -= wordsize * 8;
1236
1237 /* Another six words for back chain, TOC register, link register, etc. */
1238 sp -= wordsize * 6;
1239
1240 /* Stack pointer must be quadword aligned. */
1241 sp &= -16;
1242
1243 /* If there are more arguments, allocate space for them in
1244 the stack, then push them starting from the ninth one. */
1245
1246 if ((argno < nargs) || argbytes)
1247 {
1248 int space = 0, jj;
1249
1250 if (argbytes)
1251 {
1252 space += ((len - argbytes + 3) & -4);
1253 jj = argno + 1;
1254 }
1255 else
1256 jj = argno;
1257
1258 for (; jj < nargs; ++jj)
1259 {
1260 struct value *val = args[jj];
1261 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1262 }
1263
1264 /* Add location required for the rest of the parameters. */
1265 space = (space + 15) & -16;
1266 sp -= space;
1267
1268 /* This is another instance we need to be concerned about
1269 securing our stack space. If we write anything underneath %sp
1270 (r1), we might conflict with the kernel who thinks he is free
1271 to use this area. So, update %sp first before doing anything
1272 else. */
1273
1274 write_register (SP_REGNUM, sp);
1275
1276 /* If the last argument copied into the registers didn't fit there
1277 completely, push the rest of it into stack. */
1278
1279 if (argbytes)
1280 {
1281 write_memory (sp + 24 + (ii * 4),
1282 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1283 len - argbytes);
1284 ++argno;
1285 ii += ((len - argbytes + 3) & -4) / 4;
1286 }
1287
1288 /* Push the rest of the arguments into stack. */
1289 for (; argno < nargs; ++argno)
1290 {
1291
1292 arg = args[argno];
1293 type = check_typedef (VALUE_TYPE (arg));
1294 len = TYPE_LENGTH (type);
1295
1296
1297 /* Float types should be passed in fpr's, as well as in the
1298 stack. */
1299 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1300 {
1301
1302 if (len > 8)
1303 printf_unfiltered (
1304 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1305
1306 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1307 VALUE_CONTENTS (arg),
1308 len);
1309 ++f_argno;
1310 }
1311
1312 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1313 ii += ((len + 3) & -4) / 4;
1314 }
1315 }
1316 else
1317 /* Secure stack areas first, before doing anything else. */
1318 write_register (SP_REGNUM, sp);
1319
1320 /* set back chain properly */
1321 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1322 write_memory (sp, tmp_buffer, 4);
1323
1324 target_store_registers (-1);
1325 return sp;
1326 }
1327
1328 /* Function: ppc_push_return_address (pc, sp)
1329 Set up the return address for the inferior function call. */
1330
1331 static CORE_ADDR
1332 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1333 {
1334 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1335 entry_point_address ());
1336 return sp;
1337 }
1338
1339 /* Extract a function return value of type TYPE from raw register array
1340 REGBUF, and copy that return value into VALBUF in virtual format. */
1341 static void
1342 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1343 {
1344 int offset = 0;
1345 int vallen = TYPE_LENGTH (valtype);
1346 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1347
1348 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1349 && vallen == 8
1350 && TYPE_VECTOR (valtype))
1351 {
1352 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1353 }
1354 else
1355 {
1356 /* Return value is copied starting from r3. Note that r3 for us
1357 is a pseudo register. */
1358 int offset = 0;
1359 int return_regnum = tdep->ppc_gp0_regnum + 3;
1360 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1361 int reg_part_size;
1362 char *val_buffer;
1363 int copied = 0;
1364 int i = 0;
1365
1366 /* Compute where we will start storing the value from. */
1367 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1368 {
1369 if (vallen <= reg_size)
1370 offset = reg_size - vallen;
1371 else
1372 offset = reg_size + (reg_size - vallen);
1373 }
1374
1375 /* How big does the local buffer need to be? */
1376 if (vallen <= reg_size)
1377 val_buffer = alloca (reg_size);
1378 else
1379 val_buffer = alloca (vallen);
1380
1381 /* Read all we need into our private buffer. We copy it in
1382 chunks that are as long as one register, never shorter, even
1383 if the value is smaller than the register. */
1384 while (copied < vallen)
1385 {
1386 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1387 /* It is a pseudo/cooked register. */
1388 regcache_cooked_read (regbuf, return_regnum + i,
1389 val_buffer + copied);
1390 copied += reg_part_size;
1391 i++;
1392 }
1393 /* Put the stuff in the return buffer. */
1394 memcpy (valbuf, val_buffer + offset, vallen);
1395 }
1396 }
1397
1398 static void
1399 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1400 {
1401 int offset = 0;
1402 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1403
1404 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1405 {
1406
1407 double dd;
1408 float ff;
1409 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1410 We need to truncate the return value into float size (4 byte) if
1411 necessary. */
1412
1413 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1414 memcpy (valbuf,
1415 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1416 TYPE_LENGTH (valtype));
1417 else
1418 { /* float */
1419 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1420 ff = (float) dd;
1421 memcpy (valbuf, &ff, sizeof (float));
1422 }
1423 }
1424 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1425 && TYPE_LENGTH (valtype) == 16
1426 && TYPE_VECTOR (valtype))
1427 {
1428 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1429 TYPE_LENGTH (valtype));
1430 }
1431 else
1432 {
1433 /* return value is copied starting from r3. */
1434 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1435 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1436 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1437
1438 memcpy (valbuf,
1439 regbuf + REGISTER_BYTE (3) + offset,
1440 TYPE_LENGTH (valtype));
1441 }
1442 }
1443
1444 /* Return whether handle_inferior_event() should proceed through code
1445 starting at PC in function NAME when stepping.
1446
1447 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1448 handle memory references that are too distant to fit in instructions
1449 generated by the compiler. For example, if 'foo' in the following
1450 instruction:
1451
1452 lwz r9,foo(r2)
1453
1454 is greater than 32767, the linker might replace the lwz with a branch to
1455 somewhere in @FIX1 that does the load in 2 instructions and then branches
1456 back to where execution should continue.
1457
1458 GDB should silently step over @FIX code, just like AIX dbx does.
1459 Unfortunately, the linker uses the "b" instruction for the branches,
1460 meaning that the link register doesn't get set. Therefore, GDB's usual
1461 step_over_function() mechanism won't work.
1462
1463 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1464 in handle_inferior_event() to skip past @FIX code. */
1465
1466 int
1467 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1468 {
1469 return name && !strncmp (name, "@FIX", 4);
1470 }
1471
1472 /* Skip code that the user doesn't want to see when stepping:
1473
1474 1. Indirect function calls use a piece of trampoline code to do context
1475 switching, i.e. to set the new TOC table. Skip such code if we are on
1476 its first instruction (as when we have single-stepped to here).
1477
1478 2. Skip shared library trampoline code (which is different from
1479 indirect function call trampolines).
1480
1481 3. Skip bigtoc fixup code.
1482
1483 Result is desired PC to step until, or NULL if we are not in
1484 code that should be skipped. */
1485
1486 CORE_ADDR
1487 rs6000_skip_trampoline_code (CORE_ADDR pc)
1488 {
1489 register unsigned int ii, op;
1490 int rel;
1491 CORE_ADDR solib_target_pc;
1492 struct minimal_symbol *msymbol;
1493
1494 static unsigned trampoline_code[] =
1495 {
1496 0x800b0000, /* l r0,0x0(r11) */
1497 0x90410014, /* st r2,0x14(r1) */
1498 0x7c0903a6, /* mtctr r0 */
1499 0x804b0004, /* l r2,0x4(r11) */
1500 0x816b0008, /* l r11,0x8(r11) */
1501 0x4e800420, /* bctr */
1502 0x4e800020, /* br */
1503 0
1504 };
1505
1506 /* Check for bigtoc fixup code. */
1507 msymbol = lookup_minimal_symbol_by_pc (pc);
1508 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1509 {
1510 /* Double-check that the third instruction from PC is relative "b". */
1511 op = read_memory_integer (pc + 8, 4);
1512 if ((op & 0xfc000003) == 0x48000000)
1513 {
1514 /* Extract bits 6-29 as a signed 24-bit relative word address and
1515 add it to the containing PC. */
1516 rel = ((int)(op << 6) >> 6);
1517 return pc + 8 + rel;
1518 }
1519 }
1520
1521 /* If pc is in a shared library trampoline, return its target. */
1522 solib_target_pc = find_solib_trampoline_target (pc);
1523 if (solib_target_pc)
1524 return solib_target_pc;
1525
1526 for (ii = 0; trampoline_code[ii]; ++ii)
1527 {
1528 op = read_memory_integer (pc + (ii * 4), 4);
1529 if (op != trampoline_code[ii])
1530 return 0;
1531 }
1532 ii = read_register (11); /* r11 holds destination addr */
1533 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1534 return pc;
1535 }
1536
1537 /* Determines whether the function FI has a frame on the stack or not. */
1538
1539 int
1540 rs6000_frameless_function_invocation (struct frame_info *fi)
1541 {
1542 CORE_ADDR func_start;
1543 struct rs6000_framedata fdata;
1544
1545 /* Don't even think about framelessness except on the innermost frame
1546 or if the function was interrupted by a signal. */
1547 if (get_next_frame (fi) != NULL
1548 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1549 return 0;
1550
1551 func_start = get_frame_func (fi);
1552
1553 /* If we failed to find the start of the function, it is a mistake
1554 to inspect the instructions. */
1555
1556 if (!func_start)
1557 {
1558 /* A frame with a zero PC is usually created by dereferencing a NULL
1559 function pointer, normally causing an immediate core dump of the
1560 inferior. Mark function as frameless, as the inferior has no chance
1561 of setting up a stack frame. */
1562 if (get_frame_pc (fi) == 0)
1563 return 1;
1564 else
1565 return 0;
1566 }
1567
1568 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1569 return fdata.frameless;
1570 }
1571
1572 /* Return the PC saved in a frame. */
1573
1574 CORE_ADDR
1575 rs6000_frame_saved_pc (struct frame_info *fi)
1576 {
1577 CORE_ADDR func_start;
1578 struct rs6000_framedata fdata;
1579 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1580 int wordsize = tdep->wordsize;
1581
1582 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1583 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1584 wordsize);
1585
1586 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1587 get_frame_base (fi),
1588 get_frame_base (fi)))
1589 return deprecated_read_register_dummy (get_frame_pc (fi),
1590 get_frame_base (fi), PC_REGNUM);
1591
1592 func_start = get_frame_func (fi);
1593
1594 /* If we failed to find the start of the function, it is a mistake
1595 to inspect the instructions. */
1596 if (!func_start)
1597 return 0;
1598
1599 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1600
1601 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1602 {
1603 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1604 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1605 + SIG_FRAME_LR_OFFSET),
1606 wordsize);
1607 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1608 /* The link register wasn't saved by this frame and the next
1609 (inner, newer) frame is a dummy. Get the link register
1610 value by unwinding it from that [dummy] frame. */
1611 {
1612 ULONGEST lr;
1613 frame_unwind_unsigned_register (get_next_frame (fi),
1614 tdep->ppc_lr_regnum, &lr);
1615 return lr;
1616 }
1617 else
1618 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1619 + tdep->lr_frame_offset,
1620 wordsize);
1621 }
1622
1623 if (fdata.lr_offset == 0)
1624 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1625
1626 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1627 wordsize);
1628 }
1629
1630 /* If saved registers of frame FI are not known yet, read and cache them.
1631 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1632 in which case the framedata are read. */
1633
1634 static void
1635 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1636 {
1637 CORE_ADDR frame_addr;
1638 struct rs6000_framedata work_fdata;
1639 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1640 int wordsize = tdep->wordsize;
1641
1642 if (get_frame_saved_regs (fi))
1643 return;
1644
1645 if (fdatap == NULL)
1646 {
1647 fdatap = &work_fdata;
1648 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1649 }
1650
1651 frame_saved_regs_zalloc (fi);
1652
1653 /* If there were any saved registers, figure out parent's stack
1654 pointer. */
1655 /* The following is true only if the frame doesn't have a call to
1656 alloca(), FIXME. */
1657
1658 if (fdatap->saved_fpr == 0
1659 && fdatap->saved_gpr == 0
1660 && fdatap->saved_vr == 0
1661 && fdatap->saved_ev == 0
1662 && fdatap->lr_offset == 0
1663 && fdatap->cr_offset == 0
1664 && fdatap->vr_offset == 0
1665 && fdatap->ev_offset == 0)
1666 frame_addr = 0;
1667 else
1668 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1669 address of the current frame. Things might be easier if the
1670 ->frame pointed to the outer-most address of the frame. In the
1671 mean time, the address of the prev frame is used as the base
1672 address of this frame. */
1673 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1674
1675 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1676 All fpr's from saved_fpr to fp31 are saved. */
1677
1678 if (fdatap->saved_fpr >= 0)
1679 {
1680 int i;
1681 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1682 for (i = fdatap->saved_fpr; i < 32; i++)
1683 {
1684 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1685 fpr_addr += 8;
1686 }
1687 }
1688
1689 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1690 All gpr's from saved_gpr to gpr31 are saved. */
1691
1692 if (fdatap->saved_gpr >= 0)
1693 {
1694 int i;
1695 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1696 for (i = fdatap->saved_gpr; i < 32; i++)
1697 {
1698 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1699 gpr_addr += wordsize;
1700 }
1701 }
1702
1703 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1704 All vr's from saved_vr to vr31 are saved. */
1705 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1706 {
1707 if (fdatap->saved_vr >= 0)
1708 {
1709 int i;
1710 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1711 for (i = fdatap->saved_vr; i < 32; i++)
1712 {
1713 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1714 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1715 }
1716 }
1717 }
1718
1719 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1720 All vr's from saved_ev to ev31 are saved. ????? */
1721 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1722 {
1723 if (fdatap->saved_ev >= 0)
1724 {
1725 int i;
1726 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1727 for (i = fdatap->saved_ev; i < 32; i++)
1728 {
1729 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1730 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1731 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1732 }
1733 }
1734 }
1735
1736 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1737 the CR. */
1738 if (fdatap->cr_offset != 0)
1739 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1740
1741 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1742 the LR. */
1743 if (fdatap->lr_offset != 0)
1744 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1745
1746 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1747 the VRSAVE. */
1748 if (fdatap->vrsave_offset != 0)
1749 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1750 }
1751
1752 /* Return the address of a frame. This is the inital %sp value when the frame
1753 was first allocated. For functions calling alloca(), it might be saved in
1754 an alloca register. */
1755
1756 static CORE_ADDR
1757 frame_initial_stack_address (struct frame_info *fi)
1758 {
1759 CORE_ADDR tmpaddr;
1760 struct rs6000_framedata fdata;
1761 struct frame_info *callee_fi;
1762
1763 /* If the initial stack pointer (frame address) of this frame is known,
1764 just return it. */
1765
1766 if (get_frame_extra_info (fi)->initial_sp)
1767 return get_frame_extra_info (fi)->initial_sp;
1768
1769 /* Find out if this function is using an alloca register. */
1770
1771 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1772
1773 /* If saved registers of this frame are not known yet, read and
1774 cache them. */
1775
1776 if (!get_frame_saved_regs (fi))
1777 frame_get_saved_regs (fi, &fdata);
1778
1779 /* If no alloca register used, then fi->frame is the value of the %sp for
1780 this frame, and it is good enough. */
1781
1782 if (fdata.alloca_reg < 0)
1783 {
1784 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1785 return get_frame_extra_info (fi)->initial_sp;
1786 }
1787
1788 /* There is an alloca register, use its value, in the current frame,
1789 as the initial stack pointer. */
1790 {
1791 char tmpbuf[MAX_REGISTER_SIZE];
1792 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1793 {
1794 get_frame_extra_info (fi)->initial_sp
1795 = extract_unsigned_integer (tmpbuf,
1796 REGISTER_RAW_SIZE (fdata.alloca_reg));
1797 }
1798 else
1799 /* NOTE: cagney/2002-04-17: At present the only time
1800 frame_register_read will fail is when the register isn't
1801 available. If that does happen, use the frame. */
1802 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1803 }
1804 return get_frame_extra_info (fi)->initial_sp;
1805 }
1806
1807 /* Describe the pointer in each stack frame to the previous stack frame
1808 (its caller). */
1809
1810 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1811 the frame's chain-pointer. */
1812
1813 /* In the case of the RS/6000, the frame's nominal address
1814 is the address of a 4-byte word containing the calling frame's address. */
1815
1816 CORE_ADDR
1817 rs6000_frame_chain (struct frame_info *thisframe)
1818 {
1819 CORE_ADDR fp, fpp, lr;
1820 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1821
1822 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1823 get_frame_base (thisframe),
1824 get_frame_base (thisframe)))
1825 /* A dummy frame always correctly chains back to the previous
1826 frame. */
1827 return read_memory_addr (get_frame_base (thisframe), wordsize);
1828
1829 if (inside_entry_file (get_frame_pc (thisframe))
1830 || get_frame_pc (thisframe) == entry_point_address ())
1831 return 0;
1832
1833 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1834 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1835 wordsize);
1836 else if (get_next_frame (thisframe) != NULL
1837 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1838 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1839 /* A frameless function interrupted by a signal did not change the
1840 frame pointer. */
1841 fp = get_frame_base (thisframe);
1842 else
1843 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1844 return fp;
1845 }
1846
1847 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1848 isn't available with that word size, return 0. */
1849
1850 static int
1851 regsize (const struct reg *reg, int wordsize)
1852 {
1853 return wordsize == 8 ? reg->sz64 : reg->sz32;
1854 }
1855
1856 /* Return the name of register number N, or null if no such register exists
1857 in the current architecture. */
1858
1859 static const char *
1860 rs6000_register_name (int n)
1861 {
1862 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1863 const struct reg *reg = tdep->regs + n;
1864
1865 if (!regsize (reg, tdep->wordsize))
1866 return NULL;
1867 return reg->name;
1868 }
1869
1870 /* Index within `registers' of the first byte of the space for
1871 register N. */
1872
1873 static int
1874 rs6000_register_byte (int n)
1875 {
1876 return gdbarch_tdep (current_gdbarch)->regoff[n];
1877 }
1878
1879 /* Return the number of bytes of storage in the actual machine representation
1880 for register N if that register is available, else return 0. */
1881
1882 static int
1883 rs6000_register_raw_size (int n)
1884 {
1885 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1886 const struct reg *reg = tdep->regs + n;
1887 return regsize (reg, tdep->wordsize);
1888 }
1889
1890 /* Return the GDB type object for the "standard" data type
1891 of data in register N. */
1892
1893 static struct type *
1894 rs6000_register_virtual_type (int n)
1895 {
1896 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1897 const struct reg *reg = tdep->regs + n;
1898
1899 if (reg->fpr)
1900 return builtin_type_double;
1901 else
1902 {
1903 int size = regsize (reg, tdep->wordsize);
1904 switch (size)
1905 {
1906 case 0:
1907 return builtin_type_int0;
1908 case 4:
1909 return builtin_type_int32;
1910 case 8:
1911 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1912 return builtin_type_vec64;
1913 else
1914 return builtin_type_int64;
1915 break;
1916 case 16:
1917 return builtin_type_vec128;
1918 break;
1919 default:
1920 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1921 n, size);
1922 }
1923 }
1924 }
1925
1926 /* Return whether register N requires conversion when moving from raw format
1927 to virtual format.
1928
1929 The register format for RS/6000 floating point registers is always
1930 double, we need a conversion if the memory format is float. */
1931
1932 static int
1933 rs6000_register_convertible (int n)
1934 {
1935 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1936 return reg->fpr;
1937 }
1938
1939 /* Convert data from raw format for register N in buffer FROM
1940 to virtual format with type TYPE in buffer TO. */
1941
1942 static void
1943 rs6000_register_convert_to_virtual (int n, struct type *type,
1944 char *from, char *to)
1945 {
1946 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1947 {
1948 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1949 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1950 }
1951 else
1952 memcpy (to, from, REGISTER_RAW_SIZE (n));
1953 }
1954
1955 /* Convert data from virtual format with type TYPE in buffer FROM
1956 to raw format for register N in buffer TO. */
1957
1958 static void
1959 rs6000_register_convert_to_raw (struct type *type, int n,
1960 const char *from, char *to)
1961 {
1962 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1963 {
1964 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1965 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
1966 }
1967 else
1968 memcpy (to, from, REGISTER_RAW_SIZE (n));
1969 }
1970
1971 static void
1972 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1973 int reg_nr, void *buffer)
1974 {
1975 int base_regnum;
1976 int offset = 0;
1977 char temp_buffer[MAX_REGISTER_SIZE];
1978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1979
1980 if (reg_nr >= tdep->ppc_gp0_regnum
1981 && reg_nr <= tdep->ppc_gplast_regnum)
1982 {
1983 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1984
1985 /* Build the value in the provided buffer. */
1986 /* Read the raw register of which this one is the lower portion. */
1987 regcache_raw_read (regcache, base_regnum, temp_buffer);
1988 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1989 offset = 4;
1990 memcpy ((char *) buffer, temp_buffer + offset, 4);
1991 }
1992 }
1993
1994 static void
1995 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1996 int reg_nr, const void *buffer)
1997 {
1998 int base_regnum;
1999 int offset = 0;
2000 char temp_buffer[MAX_REGISTER_SIZE];
2001 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2002
2003 if (reg_nr >= tdep->ppc_gp0_regnum
2004 && reg_nr <= tdep->ppc_gplast_regnum)
2005 {
2006 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
2007 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
2008 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2009 offset = 4;
2010
2011 /* Let's read the value of the base register into a temporary
2012 buffer, so that overwriting the last four bytes with the new
2013 value of the pseudo will leave the upper 4 bytes unchanged. */
2014 regcache_raw_read (regcache, base_regnum, temp_buffer);
2015
2016 /* Write as an 8 byte quantity. */
2017 memcpy (temp_buffer + offset, (char *) buffer, 4);
2018 regcache_raw_write (regcache, base_regnum, temp_buffer);
2019 }
2020 }
2021
2022 /* Convert a dwarf2 register number to a gdb REGNUM. */
2023 static int
2024 e500_dwarf2_reg_to_regnum (int num)
2025 {
2026 int regnum;
2027 if (0 <= num && num <= 31)
2028 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2029 else
2030 return num;
2031 }
2032
2033 /* Convert a dbx stab register number (from `r' declaration) to a gdb
2034 REGNUM. */
2035 static int
2036 rs6000_stab_reg_to_regnum (int num)
2037 {
2038 int regnum;
2039 switch (num)
2040 {
2041 case 64:
2042 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2043 break;
2044 case 65:
2045 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2046 break;
2047 case 66:
2048 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2049 break;
2050 case 76:
2051 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2052 break;
2053 default:
2054 regnum = num;
2055 break;
2056 }
2057 return regnum;
2058 }
2059
2060 /* Write into appropriate registers a function return value
2061 of type TYPE, given in virtual format. */
2062 static void
2063 e500_store_return_value (struct type *type, char *valbuf)
2064 {
2065 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2066
2067 /* Everything is returned in GPR3 and up. */
2068 int copied = 0;
2069 int i = 0;
2070 int len = TYPE_LENGTH (type);
2071 while (copied < len)
2072 {
2073 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2074 int reg_size = REGISTER_RAW_SIZE (regnum);
2075 char *reg_val_buf = alloca (reg_size);
2076
2077 memcpy (reg_val_buf, valbuf + copied, reg_size);
2078 copied += reg_size;
2079 deprecated_write_register_gen (regnum, reg_val_buf);
2080 i++;
2081 }
2082 }
2083
2084 static void
2085 rs6000_store_return_value (struct type *type, char *valbuf)
2086 {
2087 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2088
2089 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2090
2091 /* Floating point values are returned starting from FPR1 and up.
2092 Say a double_double_double type could be returned in
2093 FPR1/FPR2/FPR3 triple. */
2094
2095 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2096 TYPE_LENGTH (type));
2097 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2098 {
2099 if (TYPE_LENGTH (type) == 16
2100 && TYPE_VECTOR (type))
2101 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2102 valbuf, TYPE_LENGTH (type));
2103 }
2104 else
2105 /* Everything else is returned in GPR3 and up. */
2106 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2107 valbuf, TYPE_LENGTH (type));
2108 }
2109
2110 /* Extract from an array REGBUF containing the (raw) register state
2111 the address in which a function should return its structure value,
2112 as a CORE_ADDR (or an expression that can be used as one). */
2113
2114 static CORE_ADDR
2115 rs6000_extract_struct_value_address (struct regcache *regcache)
2116 {
2117 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2118 function call GDB knows the address of the struct return value
2119 and hence, should not need to call this function. Unfortunately,
2120 the current call_function_by_hand() code only saves the most
2121 recent struct address leading to occasional calls. The code
2122 should instead maintain a stack of such addresses (in the dummy
2123 frame object). */
2124 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2125 really got no idea where the return value is being stored. While
2126 r3, on function entry, contained the address it will have since
2127 been reused (scratch) and hence wouldn't be valid */
2128 return 0;
2129 }
2130
2131 /* Return whether PC is in a dummy function call.
2132
2133 FIXME: This just checks for the end of the stack, which is broken
2134 for things like stepping through gcc nested function stubs. */
2135
2136 static int
2137 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2138 {
2139 return sp < pc && pc < fp;
2140 }
2141
2142 /* Hook called when a new child process is started. */
2143
2144 void
2145 rs6000_create_inferior (int pid)
2146 {
2147 if (rs6000_set_host_arch_hook)
2148 rs6000_set_host_arch_hook (pid);
2149 }
2150 \f
2151 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2152
2153 Usually a function pointer's representation is simply the address
2154 of the function. On the RS/6000 however, a function pointer is
2155 represented by a pointer to a TOC entry. This TOC entry contains
2156 three words, the first word is the address of the function, the
2157 second word is the TOC pointer (r2), and the third word is the
2158 static chain value. Throughout GDB it is currently assumed that a
2159 function pointer contains the address of the function, which is not
2160 easy to fix. In addition, the conversion of a function address to
2161 a function pointer would require allocation of a TOC entry in the
2162 inferior's memory space, with all its drawbacks. To be able to
2163 call C++ virtual methods in the inferior (which are called via
2164 function pointers), find_function_addr uses this function to get the
2165 function address from a function pointer. */
2166
2167 /* Return real function address if ADDR (a function pointer) is in the data
2168 space and is therefore a special function pointer. */
2169
2170 static CORE_ADDR
2171 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2172 {
2173 struct obj_section *s;
2174
2175 s = find_pc_section (addr);
2176 if (s && s->the_bfd_section->flags & SEC_CODE)
2177 return addr;
2178
2179 /* ADDR is in the data space, so it's a special function pointer. */
2180 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2181 }
2182 \f
2183
2184 /* Handling the various POWER/PowerPC variants. */
2185
2186
2187 /* The arrays here called registers_MUMBLE hold information about available
2188 registers.
2189
2190 For each family of PPC variants, I've tried to isolate out the
2191 common registers and put them up front, so that as long as you get
2192 the general family right, GDB will correctly identify the registers
2193 common to that family. The common register sets are:
2194
2195 For the 60x family: hid0 hid1 iabr dabr pir
2196
2197 For the 505 and 860 family: eie eid nri
2198
2199 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2200 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2201 pbu1 pbl2 pbu2
2202
2203 Most of these register groups aren't anything formal. I arrived at
2204 them by looking at the registers that occurred in more than one
2205 processor.
2206
2207 Note: kevinb/2002-04-30: Support for the fpscr register was added
2208 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2209 for Power. For PowerPC, slot 70 was unused and was already in the
2210 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2211 slot 70 was being used for "mq", so the next available slot (71)
2212 was chosen. It would have been nice to be able to make the
2213 register numbers the same across processor cores, but this wasn't
2214 possible without either 1) renumbering some registers for some
2215 processors or 2) assigning fpscr to a really high slot that's
2216 larger than any current register number. Doing (1) is bad because
2217 existing stubs would break. Doing (2) is undesirable because it
2218 would introduce a really large gap between fpscr and the rest of
2219 the registers for most processors. */
2220
2221 /* Convenience macros for populating register arrays. */
2222
2223 /* Within another macro, convert S to a string. */
2224
2225 #define STR(s) #s
2226
2227 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2228 and 64 bits on 64-bit systems. */
2229 #define R(name) { STR(name), 4, 8, 0, 0 }
2230
2231 /* Return a struct reg defining register NAME that's 32 bits on all
2232 systems. */
2233 #define R4(name) { STR(name), 4, 4, 0, 0 }
2234
2235 /* Return a struct reg defining register NAME that's 64 bits on all
2236 systems. */
2237 #define R8(name) { STR(name), 8, 8, 0, 0 }
2238
2239 /* Return a struct reg defining register NAME that's 128 bits on all
2240 systems. */
2241 #define R16(name) { STR(name), 16, 16, 0, 0 }
2242
2243 /* Return a struct reg defining floating-point register NAME. */
2244 #define F(name) { STR(name), 8, 8, 1, 0 }
2245
2246 /* Return a struct reg defining a pseudo register NAME. */
2247 #define P(name) { STR(name), 4, 8, 0, 1}
2248
2249 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2250 systems and that doesn't exist on 64-bit systems. */
2251 #define R32(name) { STR(name), 4, 0, 0, 0 }
2252
2253 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2254 systems and that doesn't exist on 32-bit systems. */
2255 #define R64(name) { STR(name), 0, 8, 0, 0 }
2256
2257 /* Return a struct reg placeholder for a register that doesn't exist. */
2258 #define R0 { 0, 0, 0, 0, 0 }
2259
2260 /* UISA registers common across all architectures, including POWER. */
2261
2262 #define COMMON_UISA_REGS \
2263 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2264 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2265 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2266 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2267 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2268 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2269 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2270 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2271 /* 64 */ R(pc), R(ps)
2272
2273 #define COMMON_UISA_NOFP_REGS \
2274 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2275 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2276 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2277 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2278 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2279 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2280 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2281 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2282 /* 64 */ R(pc), R(ps)
2283
2284 /* UISA-level SPRs for PowerPC. */
2285 #define PPC_UISA_SPRS \
2286 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2287
2288 /* UISA-level SPRs for PowerPC without floating point support. */
2289 #define PPC_UISA_NOFP_SPRS \
2290 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2291
2292 /* Segment registers, for PowerPC. */
2293 #define PPC_SEGMENT_REGS \
2294 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2295 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2296 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2297 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2298
2299 /* OEA SPRs for PowerPC. */
2300 #define PPC_OEA_SPRS \
2301 /* 87 */ R4(pvr), \
2302 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2303 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2304 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2305 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2306 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2307 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2308 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2309 /* 116 */ R4(dec), R(dabr), R4(ear)
2310
2311 /* AltiVec registers. */
2312 #define PPC_ALTIVEC_REGS \
2313 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2314 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2315 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2316 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2317 /*151*/R4(vscr), R4(vrsave)
2318
2319 /* Vectors of hi-lo general purpose registers. */
2320 #define PPC_EV_REGS \
2321 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2322 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2323 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2324 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2325
2326 /* Lower half of the EV registers. */
2327 #define PPC_GPRS_PSEUDO_REGS \
2328 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2329 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2330 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2331 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2332
2333 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2334 user-level SPR's. */
2335 static const struct reg registers_power[] =
2336 {
2337 COMMON_UISA_REGS,
2338 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2339 /* 71 */ R4(fpscr)
2340 };
2341
2342 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2343 view of the PowerPC. */
2344 static const struct reg registers_powerpc[] =
2345 {
2346 COMMON_UISA_REGS,
2347 PPC_UISA_SPRS,
2348 PPC_ALTIVEC_REGS
2349 };
2350
2351 /* PowerPC UISA - a PPC processor as viewed by user-level
2352 code, but without floating point registers. */
2353 static const struct reg registers_powerpc_nofp[] =
2354 {
2355 COMMON_UISA_NOFP_REGS,
2356 PPC_UISA_SPRS
2357 };
2358
2359 /* IBM PowerPC 403. */
2360 static const struct reg registers_403[] =
2361 {
2362 COMMON_UISA_REGS,
2363 PPC_UISA_SPRS,
2364 PPC_SEGMENT_REGS,
2365 PPC_OEA_SPRS,
2366 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2367 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2368 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2369 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2370 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2371 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2372 };
2373
2374 /* IBM PowerPC 403GC. */
2375 static const struct reg registers_403GC[] =
2376 {
2377 COMMON_UISA_REGS,
2378 PPC_UISA_SPRS,
2379 PPC_SEGMENT_REGS,
2380 PPC_OEA_SPRS,
2381 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2382 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2383 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2384 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2385 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2386 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2387 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2388 /* 147 */ R(tbhu), R(tblu)
2389 };
2390
2391 /* Motorola PowerPC 505. */
2392 static const struct reg registers_505[] =
2393 {
2394 COMMON_UISA_REGS,
2395 PPC_UISA_SPRS,
2396 PPC_SEGMENT_REGS,
2397 PPC_OEA_SPRS,
2398 /* 119 */ R(eie), R(eid), R(nri)
2399 };
2400
2401 /* Motorola PowerPC 860 or 850. */
2402 static const struct reg registers_860[] =
2403 {
2404 COMMON_UISA_REGS,
2405 PPC_UISA_SPRS,
2406 PPC_SEGMENT_REGS,
2407 PPC_OEA_SPRS,
2408 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2409 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2410 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2411 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2412 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2413 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2414 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2415 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2416 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2417 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2418 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2419 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2420 };
2421
2422 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2423 for reading and writing RTCU and RTCL. However, how one reads and writes a
2424 register is the stub's problem. */
2425 static const struct reg registers_601[] =
2426 {
2427 COMMON_UISA_REGS,
2428 PPC_UISA_SPRS,
2429 PPC_SEGMENT_REGS,
2430 PPC_OEA_SPRS,
2431 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2432 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2433 };
2434
2435 /* Motorola PowerPC 602. */
2436 static const struct reg registers_602[] =
2437 {
2438 COMMON_UISA_REGS,
2439 PPC_UISA_SPRS,
2440 PPC_SEGMENT_REGS,
2441 PPC_OEA_SPRS,
2442 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2443 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2444 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2445 };
2446
2447 /* Motorola/IBM PowerPC 603 or 603e. */
2448 static const struct reg registers_603[] =
2449 {
2450 COMMON_UISA_REGS,
2451 PPC_UISA_SPRS,
2452 PPC_SEGMENT_REGS,
2453 PPC_OEA_SPRS,
2454 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2455 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2456 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2457 };
2458
2459 /* Motorola PowerPC 604 or 604e. */
2460 static const struct reg registers_604[] =
2461 {
2462 COMMON_UISA_REGS,
2463 PPC_UISA_SPRS,
2464 PPC_SEGMENT_REGS,
2465 PPC_OEA_SPRS,
2466 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2467 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2468 /* 127 */ R(sia), R(sda)
2469 };
2470
2471 /* Motorola/IBM PowerPC 750 or 740. */
2472 static const struct reg registers_750[] =
2473 {
2474 COMMON_UISA_REGS,
2475 PPC_UISA_SPRS,
2476 PPC_SEGMENT_REGS,
2477 PPC_OEA_SPRS,
2478 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2479 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2480 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2481 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2482 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2483 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2484 };
2485
2486
2487 /* Motorola PowerPC 7400. */
2488 static const struct reg registers_7400[] =
2489 {
2490 /* gpr0-gpr31, fpr0-fpr31 */
2491 COMMON_UISA_REGS,
2492 /* ctr, xre, lr, cr */
2493 PPC_UISA_SPRS,
2494 /* sr0-sr15 */
2495 PPC_SEGMENT_REGS,
2496 PPC_OEA_SPRS,
2497 /* vr0-vr31, vrsave, vscr */
2498 PPC_ALTIVEC_REGS
2499 /* FIXME? Add more registers? */
2500 };
2501
2502 /* Motorola e500. */
2503 static const struct reg registers_e500[] =
2504 {
2505 R(pc), R(ps),
2506 /* cr, lr, ctr, xer, "" */
2507 PPC_UISA_NOFP_SPRS,
2508 /* 7...38 */
2509 PPC_EV_REGS,
2510 R8(acc), R(spefscr),
2511 /* NOTE: Add new registers here the end of the raw register
2512 list and just before the first pseudo register. */
2513 /* 39...70 */
2514 PPC_GPRS_PSEUDO_REGS
2515 };
2516
2517 /* Information about a particular processor variant. */
2518
2519 struct variant
2520 {
2521 /* Name of this variant. */
2522 char *name;
2523
2524 /* English description of the variant. */
2525 char *description;
2526
2527 /* bfd_arch_info.arch corresponding to variant. */
2528 enum bfd_architecture arch;
2529
2530 /* bfd_arch_info.mach corresponding to variant. */
2531 unsigned long mach;
2532
2533 /* Number of real registers. */
2534 int nregs;
2535
2536 /* Number of pseudo registers. */
2537 int npregs;
2538
2539 /* Number of total registers (the sum of nregs and npregs). */
2540 int num_tot_regs;
2541
2542 /* Table of register names; registers[R] is the name of the register
2543 number R. */
2544 const struct reg *regs;
2545 };
2546
2547 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2548
2549 static int
2550 num_registers (const struct reg *reg_list, int num_tot_regs)
2551 {
2552 int i;
2553 int nregs = 0;
2554
2555 for (i = 0; i < num_tot_regs; i++)
2556 if (!reg_list[i].pseudo)
2557 nregs++;
2558
2559 return nregs;
2560 }
2561
2562 static int
2563 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2564 {
2565 int i;
2566 int npregs = 0;
2567
2568 for (i = 0; i < num_tot_regs; i++)
2569 if (reg_list[i].pseudo)
2570 npregs ++;
2571
2572 return npregs;
2573 }
2574
2575 /* Information in this table comes from the following web sites:
2576 IBM: http://www.chips.ibm.com:80/products/embedded/
2577 Motorola: http://www.mot.com/SPS/PowerPC/
2578
2579 I'm sure I've got some of the variant descriptions not quite right.
2580 Please report any inaccuracies you find to GDB's maintainer.
2581
2582 If you add entries to this table, please be sure to allow the new
2583 value as an argument to the --with-cpu flag, in configure.in. */
2584
2585 static struct variant variants[] =
2586 {
2587
2588 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2589 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2590 registers_powerpc},
2591 {"power", "POWER user-level", bfd_arch_rs6000,
2592 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2593 registers_power},
2594 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2595 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2596 registers_403},
2597 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2598 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2599 registers_601},
2600 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2601 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2602 registers_602},
2603 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2604 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2605 registers_603},
2606 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2607 604, -1, -1, tot_num_registers (registers_604),
2608 registers_604},
2609 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2610 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2611 registers_403GC},
2612 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2613 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2614 registers_505},
2615 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2616 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2617 registers_860},
2618 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2619 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2620 registers_750},
2621 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2622 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2623 registers_7400},
2624 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2625 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2626 registers_e500},
2627
2628 /* 64-bit */
2629 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2630 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2631 registers_powerpc},
2632 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2633 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2634 registers_powerpc},
2635 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2636 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2637 registers_powerpc},
2638 {"a35", "PowerPC A35", bfd_arch_powerpc,
2639 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2640 registers_powerpc},
2641 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2642 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2643 registers_powerpc},
2644 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2645 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2646 registers_powerpc},
2647
2648 /* FIXME: I haven't checked the register sets of the following. */
2649 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2650 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2651 registers_power},
2652 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2653 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2654 registers_power},
2655 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2656 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2657 registers_power},
2658
2659 {0, 0, 0, 0, 0, 0, 0, 0}
2660 };
2661
2662 /* Initialize the number of registers and pseudo registers in each variant. */
2663
2664 static void
2665 init_variants (void)
2666 {
2667 struct variant *v;
2668
2669 for (v = variants; v->name; v++)
2670 {
2671 if (v->nregs == -1)
2672 v->nregs = num_registers (v->regs, v->num_tot_regs);
2673 if (v->npregs == -1)
2674 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2675 }
2676 }
2677
2678 /* Return the variant corresponding to architecture ARCH and machine number
2679 MACH. If no such variant exists, return null. */
2680
2681 static const struct variant *
2682 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2683 {
2684 const struct variant *v;
2685
2686 for (v = variants; v->name; v++)
2687 if (arch == v->arch && mach == v->mach)
2688 return v;
2689
2690 return NULL;
2691 }
2692
2693 static int
2694 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2695 {
2696 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2697 return print_insn_big_powerpc (memaddr, info);
2698 else
2699 return print_insn_little_powerpc (memaddr, info);
2700 }
2701 \f
2702 /* Initialize the current architecture based on INFO. If possible, re-use an
2703 architecture from ARCHES, which is a list of architectures already created
2704 during this debugging session.
2705
2706 Called e.g. at program startup, when reading a core file, and when reading
2707 a binary file. */
2708
2709 static struct gdbarch *
2710 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2711 {
2712 struct gdbarch *gdbarch;
2713 struct gdbarch_tdep *tdep;
2714 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2715 struct reg *regs;
2716 const struct variant *v;
2717 enum bfd_architecture arch;
2718 unsigned long mach;
2719 bfd abfd;
2720 int sysv_abi;
2721 asection *sect;
2722
2723 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2724 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2725
2726 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2727 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2728
2729 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2730
2731 /* Check word size. If INFO is from a binary file, infer it from
2732 that, else choose a likely default. */
2733 if (from_xcoff_exec)
2734 {
2735 if (bfd_xcoff_is_xcoff64 (info.abfd))
2736 wordsize = 8;
2737 else
2738 wordsize = 4;
2739 }
2740 else if (from_elf_exec)
2741 {
2742 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2743 wordsize = 8;
2744 else
2745 wordsize = 4;
2746 }
2747 else
2748 {
2749 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2750 wordsize = info.bfd_arch_info->bits_per_word /
2751 info.bfd_arch_info->bits_per_byte;
2752 else
2753 wordsize = 4;
2754 }
2755
2756 /* Find a candidate among extant architectures. */
2757 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2758 arches != NULL;
2759 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2760 {
2761 /* Word size in the various PowerPC bfd_arch_info structs isn't
2762 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2763 separate word size check. */
2764 tdep = gdbarch_tdep (arches->gdbarch);
2765 if (tdep && tdep->wordsize == wordsize)
2766 return arches->gdbarch;
2767 }
2768
2769 /* None found, create a new architecture from INFO, whose bfd_arch_info
2770 validity depends on the source:
2771 - executable useless
2772 - rs6000_host_arch() good
2773 - core file good
2774 - "set arch" trust blindly
2775 - GDB startup useless but harmless */
2776
2777 if (!from_xcoff_exec)
2778 {
2779 arch = info.bfd_arch_info->arch;
2780 mach = info.bfd_arch_info->mach;
2781 }
2782 else
2783 {
2784 arch = bfd_arch_powerpc;
2785 bfd_default_set_arch_mach (&abfd, arch, 0);
2786 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2787 mach = info.bfd_arch_info->mach;
2788 }
2789 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2790 tdep->wordsize = wordsize;
2791
2792 /* For e500 executables, the apuinfo section is of help here. Such
2793 section contains the identifier and revision number of each
2794 Application-specific Processing Unit that is present on the
2795 chip. The content of the section is determined by the assembler
2796 which looks at each instruction and determines which unit (and
2797 which version of it) can execute it. In our case we just look for
2798 the existance of the section. */
2799
2800 if (info.abfd)
2801 {
2802 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2803 if (sect)
2804 {
2805 arch = info.bfd_arch_info->arch;
2806 mach = bfd_mach_ppc_e500;
2807 bfd_default_set_arch_mach (&abfd, arch, mach);
2808 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2809 }
2810 }
2811
2812 gdbarch = gdbarch_alloc (&info, tdep);
2813 power = arch == bfd_arch_rs6000;
2814
2815 /* Initialize the number of real and pseudo registers in each variant. */
2816 init_variants ();
2817
2818 /* Choose variant. */
2819 v = find_variant_by_arch (arch, mach);
2820 if (!v)
2821 return NULL;
2822
2823 tdep->regs = v->regs;
2824
2825 tdep->ppc_gp0_regnum = 0;
2826 tdep->ppc_gplast_regnum = 31;
2827 tdep->ppc_toc_regnum = 2;
2828 tdep->ppc_ps_regnum = 65;
2829 tdep->ppc_cr_regnum = 66;
2830 tdep->ppc_lr_regnum = 67;
2831 tdep->ppc_ctr_regnum = 68;
2832 tdep->ppc_xer_regnum = 69;
2833 if (v->mach == bfd_mach_ppc_601)
2834 tdep->ppc_mq_regnum = 124;
2835 else if (power)
2836 tdep->ppc_mq_regnum = 70;
2837 else
2838 tdep->ppc_mq_regnum = -1;
2839 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2840
2841 set_gdbarch_pc_regnum (gdbarch, 64);
2842 set_gdbarch_sp_regnum (gdbarch, 1);
2843 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2844 set_gdbarch_deprecated_extract_return_value (gdbarch,
2845 rs6000_extract_return_value);
2846 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2847
2848 if (v->arch == bfd_arch_powerpc)
2849 switch (v->mach)
2850 {
2851 case bfd_mach_ppc:
2852 tdep->ppc_vr0_regnum = 71;
2853 tdep->ppc_vrsave_regnum = 104;
2854 tdep->ppc_ev0_regnum = -1;
2855 tdep->ppc_ev31_regnum = -1;
2856 break;
2857 case bfd_mach_ppc_7400:
2858 tdep->ppc_vr0_regnum = 119;
2859 tdep->ppc_vrsave_regnum = 152;
2860 tdep->ppc_ev0_regnum = -1;
2861 tdep->ppc_ev31_regnum = -1;
2862 break;
2863 case bfd_mach_ppc_e500:
2864 tdep->ppc_gp0_regnum = 41;
2865 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2866 tdep->ppc_toc_regnum = -1;
2867 tdep->ppc_ps_regnum = 1;
2868 tdep->ppc_cr_regnum = 2;
2869 tdep->ppc_lr_regnum = 3;
2870 tdep->ppc_ctr_regnum = 4;
2871 tdep->ppc_xer_regnum = 5;
2872 tdep->ppc_ev0_regnum = 7;
2873 tdep->ppc_ev31_regnum = 38;
2874 set_gdbarch_pc_regnum (gdbarch, 0);
2875 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2876 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2877 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2878 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2879 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2880 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2881 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2882 break;
2883 default:
2884 tdep->ppc_vr0_regnum = -1;
2885 tdep->ppc_vrsave_regnum = -1;
2886 tdep->ppc_ev0_regnum = -1;
2887 tdep->ppc_ev31_regnum = -1;
2888 break;
2889 }
2890
2891 /* Sanity check on registers. */
2892 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2893
2894 /* Set lr_frame_offset. */
2895 if (wordsize == 8)
2896 tdep->lr_frame_offset = 16;
2897 else if (sysv_abi)
2898 tdep->lr_frame_offset = 4;
2899 else
2900 tdep->lr_frame_offset = 8;
2901
2902 /* Calculate byte offsets in raw register array. */
2903 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2904 for (i = off = 0; i < v->num_tot_regs; i++)
2905 {
2906 tdep->regoff[i] = off;
2907 off += regsize (v->regs + i, wordsize);
2908 }
2909
2910 /* Select instruction printer. */
2911 if (arch == power)
2912 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2913 else
2914 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2915
2916 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2917 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
2918
2919 set_gdbarch_num_regs (gdbarch, v->nregs);
2920 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2921 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2922 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2923 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2924 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2925 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2926 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2927
2928 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2929 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2930 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2931 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2932 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2933 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2934 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2935 if (sysv_abi)
2936 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2937 else
2938 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2939 set_gdbarch_char_signed (gdbarch, 0);
2940
2941 set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2942 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2943 if (sysv_abi && wordsize == 8)
2944 /* PPC64 SYSV. */
2945 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2946 else if (!sysv_abi && wordsize == 4)
2947 /* PowerOpen / AIX 32 bit. */
2948 set_gdbarch_frame_red_zone_size (gdbarch, 220);
2949 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2950 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
2951 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2952
2953 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2954 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2955 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2956 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2957 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2958 is correct for the SysV ABI when the wordsize is 8, but I'm also
2959 fairly certain that ppc_sysv_abi_push_arguments() will give even
2960 worse results since it only works for 32-bit code. So, for the moment,
2961 we're better off calling rs6000_push_arguments() since it works for
2962 64-bit code. At some point in the future, this matter needs to be
2963 revisited. */
2964 if (sysv_abi && wordsize == 4)
2965 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2966 else
2967 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2968
2969 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2970 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2971
2972 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2973 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2974 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2975 set_gdbarch_function_start_offset (gdbarch, 0);
2976 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2977
2978 /* Not sure on this. FIXMEmgo */
2979 set_gdbarch_frame_args_skip (gdbarch, 8);
2980
2981 if (sysv_abi)
2982 set_gdbarch_use_struct_convention (gdbarch,
2983 ppc_sysv_abi_use_struct_convention);
2984 else
2985 set_gdbarch_use_struct_convention (gdbarch,
2986 generic_use_struct_convention);
2987
2988 set_gdbarch_frameless_function_invocation (gdbarch,
2989 rs6000_frameless_function_invocation);
2990 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2991 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2992
2993 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2994 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2995
2996 if (!sysv_abi)
2997 {
2998 /* Handle RS/6000 function pointers (which are really function
2999 descriptors). */
3000 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3001 rs6000_convert_from_func_ptr_addr);
3002 }
3003 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
3004 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
3005 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
3006
3007 /* Helpers for function argument information. */
3008 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3009
3010 /* Hook in ABI-specific overrides, if they have been registered. */
3011 gdbarch_init_osabi (info, gdbarch);
3012
3013 return gdbarch;
3014 }
3015
3016 static void
3017 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3018 {
3019 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3020
3021 if (tdep == NULL)
3022 return;
3023
3024 /* FIXME: Dump gdbarch_tdep. */
3025 }
3026
3027 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3028
3029 static void
3030 rs6000_info_powerpc_command (char *args, int from_tty)
3031 {
3032 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3033 }
3034
3035 /* Initialization code. */
3036
3037 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3038
3039 void
3040 _initialize_rs6000_tdep (void)
3041 {
3042 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3043 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3044
3045 /* Add root prefix command for "info powerpc" commands */
3046 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3047 "Various POWERPC info specific commands.",
3048 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3049 }
This page took 0.147455 seconds and 5 git commands to generate.