s/BIG_ENDIAN/BFD_ENDIAN_BIG/
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "bfd/libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "bfd/libcoff.h" /* for xcoff_data */
41
42 #include "elf-bfd.h"
43
44 #include "solib-svr4.h"
45 #include "ppc-tdep.h"
46
47 /* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54 #define SIG_FRAME_PC_OFFSET 96
55 #define SIG_FRAME_LR_OFFSET 108
56 #define SIG_FRAME_FP_OFFSET 284
57
58 /* To be used by skip_prologue. */
59
60 struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int alloca_reg; /* alloca register number (frame ptr) */
68 char frameless; /* true if frameless functions. */
69 char nosavedpc; /* true if pc not saved. */
70 int gpr_offset; /* offset of saved gprs from prev sp */
71 int fpr_offset; /* offset of saved fprs from prev sp */
72 int lr_offset; /* offset of saved lr */
73 int cr_offset; /* offset of saved cr */
74 };
75
76 /* Description of a single register. */
77
78 struct reg
79 {
80 char *name; /* name of register */
81 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
82 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
83 unsigned char fpr; /* whether register is floating-point */
84 };
85
86 /* Return the current architecture's gdbarch_tdep structure. */
87
88 #define TDEP gdbarch_tdep (current_gdbarch)
89
90 /* Breakpoint shadows for the single step instructions will be kept here. */
91
92 static struct sstep_breaks
93 {
94 /* Address, or 0 if this is not in use. */
95 CORE_ADDR address;
96 /* Shadow contents. */
97 char data[4];
98 }
99 stepBreaks[2];
100
101 /* Hook for determining the TOC address when calling functions in the
102 inferior under AIX. The initialization code in rs6000-nat.c sets
103 this hook to point to find_toc_address. */
104
105 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
106
107 /* Hook to set the current architecture when starting a child process.
108 rs6000-nat.c sets this. */
109
110 void (*rs6000_set_host_arch_hook) (int) = NULL;
111
112 /* Static function prototypes */
113
114 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
115 CORE_ADDR safety);
116 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
117 struct rs6000_framedata *);
118 static void frame_get_saved_regs (struct frame_info * fi,
119 struct rs6000_framedata * fdatap);
120 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
121
122 /* Read a LEN-byte address from debugged memory address MEMADDR. */
123
124 static CORE_ADDR
125 read_memory_addr (CORE_ADDR memaddr, int len)
126 {
127 return read_memory_unsigned_integer (memaddr, len);
128 }
129
130 static CORE_ADDR
131 rs6000_skip_prologue (CORE_ADDR pc)
132 {
133 struct rs6000_framedata frame;
134 pc = skip_prologue (pc, 0, &frame);
135 return pc;
136 }
137
138
139 /* Fill in fi->saved_regs */
140
141 struct frame_extra_info
142 {
143 /* Functions calling alloca() change the value of the stack
144 pointer. We need to use initial stack pointer (which is saved in
145 r31 by gcc) in such cases. If a compiler emits traceback table,
146 then we should use the alloca register specified in traceback
147 table. FIXME. */
148 CORE_ADDR initial_sp; /* initial stack pointer. */
149 };
150
151 void
152 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
153 {
154 fi->extra_info = (struct frame_extra_info *)
155 frame_obstack_alloc (sizeof (struct frame_extra_info));
156 fi->extra_info->initial_sp = 0;
157 if (fi->next != (CORE_ADDR) 0
158 && fi->pc < TEXT_SEGMENT_BASE)
159 /* We're in get_prev_frame */
160 /* and this is a special signal frame. */
161 /* (fi->pc will be some low address in the kernel, */
162 /* to which the signal handler returns). */
163 fi->signal_handler_caller = 1;
164 }
165
166 /* Put here the code to store, into a struct frame_saved_regs,
167 the addresses of the saved registers of frame described by FRAME_INFO.
168 This includes special registers such as pc and fp saved in special
169 ways in the stack frame. sp is even more special:
170 the address we return for it IS the sp for the next frame. */
171
172 /* In this implementation for RS/6000, we do *not* save sp. I am
173 not sure if it will be needed. The following function takes care of gpr's
174 and fpr's only. */
175
176 void
177 rs6000_frame_init_saved_regs (struct frame_info *fi)
178 {
179 frame_get_saved_regs (fi, NULL);
180 }
181
182 static CORE_ADDR
183 rs6000_frame_args_address (struct frame_info *fi)
184 {
185 if (fi->extra_info->initial_sp != 0)
186 return fi->extra_info->initial_sp;
187 else
188 return frame_initial_stack_address (fi);
189 }
190
191 /* Immediately after a function call, return the saved pc.
192 Can't go through the frames for this because on some machines
193 the new frame is not set up until the new function executes
194 some instructions. */
195
196 static CORE_ADDR
197 rs6000_saved_pc_after_call (struct frame_info *fi)
198 {
199 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
200 }
201
202 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
203
204 static CORE_ADDR
205 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
206 {
207 CORE_ADDR dest;
208 int immediate;
209 int absolute;
210 int ext_op;
211
212 absolute = (int) ((instr >> 1) & 1);
213
214 switch (opcode)
215 {
216 case 18:
217 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
218 if (absolute)
219 dest = immediate;
220 else
221 dest = pc + immediate;
222 break;
223
224 case 16:
225 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
226 if (absolute)
227 dest = immediate;
228 else
229 dest = pc + immediate;
230 break;
231
232 case 19:
233 ext_op = (instr >> 1) & 0x3ff;
234
235 if (ext_op == 16) /* br conditional register */
236 {
237 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
238
239 /* If we are about to return from a signal handler, dest is
240 something like 0x3c90. The current frame is a signal handler
241 caller frame, upon completion of the sigreturn system call
242 execution will return to the saved PC in the frame. */
243 if (dest < TEXT_SEGMENT_BASE)
244 {
245 struct frame_info *fi;
246
247 fi = get_current_frame ();
248 if (fi != NULL)
249 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
250 TDEP->wordsize);
251 }
252 }
253
254 else if (ext_op == 528) /* br cond to count reg */
255 {
256 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
257
258 /* If we are about to execute a system call, dest is something
259 like 0x22fc or 0x3b00. Upon completion the system call
260 will return to the address in the link register. */
261 if (dest < TEXT_SEGMENT_BASE)
262 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
263 }
264 else
265 return -1;
266 break;
267
268 default:
269 return -1;
270 }
271 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
272 }
273
274
275 /* Sequence of bytes for breakpoint instruction. */
276
277 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
278 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
279
280 static unsigned char *
281 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
282 {
283 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
284 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
285 *bp_size = 4;
286 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
287 return big_breakpoint;
288 else
289 return little_breakpoint;
290 }
291
292
293 /* AIX does not support PT_STEP. Simulate it. */
294
295 void
296 rs6000_software_single_step (enum target_signal signal,
297 int insert_breakpoints_p)
298 {
299 #define INSNLEN(OPCODE) 4
300
301 static char le_breakp[] = LITTLE_BREAKPOINT;
302 static char be_breakp[] = BIG_BREAKPOINT;
303 char *breakp = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? be_breakp : le_breakp;
304 int ii, insn;
305 CORE_ADDR loc;
306 CORE_ADDR breaks[2];
307 int opcode;
308
309 if (insert_breakpoints_p)
310 {
311
312 loc = read_pc ();
313
314 insn = read_memory_integer (loc, 4);
315
316 breaks[0] = loc + INSNLEN (insn);
317 opcode = insn >> 26;
318 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
319
320 /* Don't put two breakpoints on the same address. */
321 if (breaks[1] == breaks[0])
322 breaks[1] = -1;
323
324 stepBreaks[1].address = 0;
325
326 for (ii = 0; ii < 2; ++ii)
327 {
328
329 /* ignore invalid breakpoint. */
330 if (breaks[ii] == -1)
331 continue;
332
333 read_memory (breaks[ii], stepBreaks[ii].data, 4);
334
335 write_memory (breaks[ii], breakp, 4);
336 stepBreaks[ii].address = breaks[ii];
337 }
338
339 }
340 else
341 {
342
343 /* remove step breakpoints. */
344 for (ii = 0; ii < 2; ++ii)
345 if (stepBreaks[ii].address != 0)
346 write_memory
347 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
348
349 }
350 errno = 0; /* FIXME, don't ignore errors! */
351 /* What errors? {read,write}_memory call error(). */
352 }
353
354
355 /* return pc value after skipping a function prologue and also return
356 information about a function frame.
357
358 in struct rs6000_framedata fdata:
359 - frameless is TRUE, if function does not have a frame.
360 - nosavedpc is TRUE, if function does not save %pc value in its frame.
361 - offset is the initial size of this stack frame --- the amount by
362 which we decrement the sp to allocate the frame.
363 - saved_gpr is the number of the first saved gpr.
364 - saved_fpr is the number of the first saved fpr.
365 - alloca_reg is the number of the register used for alloca() handling.
366 Otherwise -1.
367 - gpr_offset is the offset of the first saved gpr from the previous frame.
368 - fpr_offset is the offset of the first saved fpr from the previous frame.
369 - lr_offset is the offset of the saved lr
370 - cr_offset is the offset of the saved cr
371 */
372
373 #define SIGNED_SHORT(x) \
374 ((sizeof (short) == 2) \
375 ? ((int)(short)(x)) \
376 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
377
378 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
379
380 /* Limit the number of skipped non-prologue instructions, as the examining
381 of the prologue is expensive. */
382 static int max_skip_non_prologue_insns = 10;
383
384 /* Given PC representing the starting address of a function, and
385 LIM_PC which is the (sloppy) limit to which to scan when looking
386 for a prologue, attempt to further refine this limit by using
387 the line data in the symbol table. If successful, a better guess
388 on where the prologue ends is returned, otherwise the previous
389 value of lim_pc is returned. */
390 static CORE_ADDR
391 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
392 {
393 struct symtab_and_line prologue_sal;
394
395 prologue_sal = find_pc_line (pc, 0);
396 if (prologue_sal.line != 0)
397 {
398 int i;
399 CORE_ADDR addr = prologue_sal.end;
400
401 /* Handle the case in which compiler's optimizer/scheduler
402 has moved instructions into the prologue. We scan ahead
403 in the function looking for address ranges whose corresponding
404 line number is less than or equal to the first one that we
405 found for the function. (It can be less than when the
406 scheduler puts a body instruction before the first prologue
407 instruction.) */
408 for (i = 2 * max_skip_non_prologue_insns;
409 i > 0 && (lim_pc == 0 || addr < lim_pc);
410 i--)
411 {
412 struct symtab_and_line sal;
413
414 sal = find_pc_line (addr, 0);
415 if (sal.line == 0)
416 break;
417 if (sal.line <= prologue_sal.line
418 && sal.symtab == prologue_sal.symtab)
419 {
420 prologue_sal = sal;
421 }
422 addr = sal.end;
423 }
424
425 if (lim_pc == 0 || prologue_sal.end < lim_pc)
426 lim_pc = prologue_sal.end;
427 }
428 return lim_pc;
429 }
430
431
432 static CORE_ADDR
433 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
434 {
435 CORE_ADDR orig_pc = pc;
436 CORE_ADDR last_prologue_pc = pc;
437 char buf[4];
438 unsigned long op;
439 long offset = 0;
440 int lr_reg = -1;
441 int cr_reg = -1;
442 int reg;
443 int framep = 0;
444 int minimal_toc_loaded = 0;
445 int prev_insn_was_prologue_insn = 1;
446 int num_skip_non_prologue_insns = 0;
447
448 /* Attempt to find the end of the prologue when no limit is specified.
449 Note that refine_prologue_limit() has been written so that it may
450 be used to "refine" the limits of non-zero PC values too, but this
451 is only safe if we 1) trust the line information provided by the
452 compiler and 2) iterate enough to actually find the end of the
453 prologue.
454
455 It may become a good idea at some point (for both performance and
456 accuracy) to unconditionally call refine_prologue_limit(). But,
457 until we can make a clear determination that this is beneficial,
458 we'll play it safe and only use it to obtain a limit when none
459 has been specified. */
460 if (lim_pc == 0)
461 lim_pc = refine_prologue_limit (pc, lim_pc);
462
463 memset (fdata, 0, sizeof (struct rs6000_framedata));
464 fdata->saved_gpr = -1;
465 fdata->saved_fpr = -1;
466 fdata->alloca_reg = -1;
467 fdata->frameless = 1;
468 fdata->nosavedpc = 1;
469
470 for (;; pc += 4)
471 {
472 /* Sometimes it isn't clear if an instruction is a prologue
473 instruction or not. When we encounter one of these ambiguous
474 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
475 Otherwise, we'll assume that it really is a prologue instruction. */
476 if (prev_insn_was_prologue_insn)
477 last_prologue_pc = pc;
478
479 /* Stop scanning if we've hit the limit. */
480 if (lim_pc != 0 && pc >= lim_pc)
481 break;
482
483 prev_insn_was_prologue_insn = 1;
484
485 /* Fetch the instruction and convert it to an integer. */
486 if (target_read_memory (pc, buf, 4))
487 break;
488 op = extract_signed_integer (buf, 4);
489
490 if ((op & 0xfc1fffff) == 0x7c0802a6)
491 { /* mflr Rx */
492 lr_reg = (op & 0x03e00000) | 0x90010000;
493 continue;
494
495 }
496 else if ((op & 0xfc1fffff) == 0x7c000026)
497 { /* mfcr Rx */
498 cr_reg = (op & 0x03e00000) | 0x90010000;
499 continue;
500
501 }
502 else if ((op & 0xfc1f0000) == 0xd8010000)
503 { /* stfd Rx,NUM(r1) */
504 reg = GET_SRC_REG (op);
505 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
506 {
507 fdata->saved_fpr = reg;
508 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
509 }
510 continue;
511
512 }
513 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
514 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
515 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
516 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
517 {
518
519 reg = GET_SRC_REG (op);
520 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
521 {
522 fdata->saved_gpr = reg;
523 if ((op & 0xfc1f0003) == 0xf8010000)
524 op = (op >> 1) << 1;
525 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
526 }
527 continue;
528
529 }
530 else if ((op & 0xffff0000) == 0x60000000)
531 {
532 /* nop */
533 /* Allow nops in the prologue, but do not consider them to
534 be part of the prologue unless followed by other prologue
535 instructions. */
536 prev_insn_was_prologue_insn = 0;
537 continue;
538
539 }
540 else if ((op & 0xffff0000) == 0x3c000000)
541 { /* addis 0,0,NUM, used
542 for >= 32k frames */
543 fdata->offset = (op & 0x0000ffff) << 16;
544 fdata->frameless = 0;
545 continue;
546
547 }
548 else if ((op & 0xffff0000) == 0x60000000)
549 { /* ori 0,0,NUM, 2nd ha
550 lf of >= 32k frames */
551 fdata->offset |= (op & 0x0000ffff);
552 fdata->frameless = 0;
553 continue;
554
555 }
556 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
557 { /* st Rx,NUM(r1)
558 where Rx == lr */
559 fdata->lr_offset = SIGNED_SHORT (op) + offset;
560 fdata->nosavedpc = 0;
561 lr_reg = 0;
562 continue;
563
564 }
565 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
566 { /* st Rx,NUM(r1)
567 where Rx == cr */
568 fdata->cr_offset = SIGNED_SHORT (op) + offset;
569 cr_reg = 0;
570 continue;
571
572 }
573 else if (op == 0x48000005)
574 { /* bl .+4 used in
575 -mrelocatable */
576 continue;
577
578 }
579 else if (op == 0x48000004)
580 { /* b .+4 (xlc) */
581 break;
582
583 }
584 else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
585 in V.4 -mrelocatable */
586 op == 0x7fc0f214) && /* add r30,r0,r30, used
587 in V.4 -mrelocatable */
588 lr_reg == 0x901e0000)
589 {
590 continue;
591
592 }
593 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
594 in V.4 -mminimal-toc */
595 (op & 0xffff0000) == 0x3bde0000)
596 { /* addi 30,30,foo@l */
597 continue;
598
599 }
600 else if ((op & 0xfc000001) == 0x48000001)
601 { /* bl foo,
602 to save fprs??? */
603
604 fdata->frameless = 0;
605 /* Don't skip over the subroutine call if it is not within the first
606 three instructions of the prologue. */
607 if ((pc - orig_pc) > 8)
608 break;
609
610 op = read_memory_integer (pc + 4, 4);
611
612 /* At this point, make sure this is not a trampoline function
613 (a function that simply calls another functions, and nothing else).
614 If the next is not a nop, this branch was part of the function
615 prologue. */
616
617 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
618 break; /* don't skip over
619 this branch */
620 continue;
621
622 /* update stack pointer */
623 }
624 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
625 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
626 {
627 fdata->frameless = 0;
628 if ((op & 0xffff0003) == 0xf8210001)
629 op = (op >> 1) << 1;
630 fdata->offset = SIGNED_SHORT (op);
631 offset = fdata->offset;
632 continue;
633
634 }
635 else if (op == 0x7c21016e)
636 { /* stwux 1,1,0 */
637 fdata->frameless = 0;
638 offset = fdata->offset;
639 continue;
640
641 /* Load up minimal toc pointer */
642 }
643 else if ((op >> 22) == 0x20f
644 && !minimal_toc_loaded)
645 { /* l r31,... or l r30,... */
646 minimal_toc_loaded = 1;
647 continue;
648
649 /* move parameters from argument registers to local variable
650 registers */
651 }
652 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
653 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
654 (((op >> 21) & 31) <= 10) &&
655 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
656 {
657 continue;
658
659 /* store parameters in stack */
660 }
661 else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
662 (op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
663 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
664 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
665 {
666 continue;
667
668 /* store parameters in stack via frame pointer */
669 }
670 else if (framep &&
671 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
672 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
673 (op & 0xfc1f0000) == 0xfc1f0000))
674 { /* frsp, fp?,NUM(r1) */
675 continue;
676
677 /* Set up frame pointer */
678 }
679 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
680 || op == 0x7c3f0b78)
681 { /* mr r31, r1 */
682 fdata->frameless = 0;
683 framep = 1;
684 fdata->alloca_reg = 31;
685 continue;
686
687 /* Another way to set up the frame pointer. */
688 }
689 else if ((op & 0xfc1fffff) == 0x38010000)
690 { /* addi rX, r1, 0x0 */
691 fdata->frameless = 0;
692 framep = 1;
693 fdata->alloca_reg = (op & ~0x38010000) >> 21;
694 continue;
695
696 }
697 else
698 {
699 /* Not a recognized prologue instruction.
700 Handle optimizer code motions into the prologue by continuing
701 the search if we have no valid frame yet or if the return
702 address is not yet saved in the frame. */
703 if (fdata->frameless == 0
704 && (lr_reg == -1 || fdata->nosavedpc == 0))
705 break;
706
707 if (op == 0x4e800020 /* blr */
708 || op == 0x4e800420) /* bctr */
709 /* Do not scan past epilogue in frameless functions or
710 trampolines. */
711 break;
712 if ((op & 0xf4000000) == 0x40000000) /* bxx */
713 /* Never skip branches. */
714 break;
715
716 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
717 /* Do not scan too many insns, scanning insns is expensive with
718 remote targets. */
719 break;
720
721 /* Continue scanning. */
722 prev_insn_was_prologue_insn = 0;
723 continue;
724 }
725 }
726
727 #if 0
728 /* I have problems with skipping over __main() that I need to address
729 * sometime. Previously, I used to use misc_function_vector which
730 * didn't work as well as I wanted to be. -MGO */
731
732 /* If the first thing after skipping a prolog is a branch to a function,
733 this might be a call to an initializer in main(), introduced by gcc2.
734 We'd like to skip over it as well. Fortunately, xlc does some extra
735 work before calling a function right after a prologue, thus we can
736 single out such gcc2 behaviour. */
737
738
739 if ((op & 0xfc000001) == 0x48000001)
740 { /* bl foo, an initializer function? */
741 op = read_memory_integer (pc + 4, 4);
742
743 if (op == 0x4def7b82)
744 { /* cror 0xf, 0xf, 0xf (nop) */
745
746 /* check and see if we are in main. If so, skip over this initializer
747 function as well. */
748
749 tmp = find_pc_misc_function (pc);
750 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
751 return pc + 8;
752 }
753 }
754 #endif /* 0 */
755
756 fdata->offset = -fdata->offset;
757 return last_prologue_pc;
758 }
759
760
761 /*************************************************************************
762 Support for creating pushing a dummy frame into the stack, and popping
763 frames, etc.
764 *************************************************************************/
765
766
767 /* Pop the innermost frame, go back to the caller. */
768
769 static void
770 rs6000_pop_frame (void)
771 {
772 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
773 struct rs6000_framedata fdata;
774 struct frame_info *frame = get_current_frame ();
775 int ii, wordsize;
776
777 pc = read_pc ();
778 sp = FRAME_FP (frame);
779
780 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
781 {
782 generic_pop_dummy_frame ();
783 flush_cached_frames ();
784 return;
785 }
786
787 /* Make sure that all registers are valid. */
788 read_register_bytes (0, NULL, REGISTER_BYTES);
789
790 /* figure out previous %pc value. If the function is frameless, it is
791 still in the link register, otherwise walk the frames and retrieve the
792 saved %pc value in the previous frame. */
793
794 addr = get_pc_function_start (frame->pc);
795 (void) skip_prologue (addr, frame->pc, &fdata);
796
797 wordsize = TDEP->wordsize;
798 if (fdata.frameless)
799 prev_sp = sp;
800 else
801 prev_sp = read_memory_addr (sp, wordsize);
802 if (fdata.lr_offset == 0)
803 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
804 else
805 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
806
807 /* reset %pc value. */
808 write_register (PC_REGNUM, lr);
809
810 /* reset register values if any was saved earlier. */
811
812 if (fdata.saved_gpr != -1)
813 {
814 addr = prev_sp + fdata.gpr_offset;
815 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
816 {
817 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
818 addr += wordsize;
819 }
820 }
821
822 if (fdata.saved_fpr != -1)
823 {
824 addr = prev_sp + fdata.fpr_offset;
825 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
826 {
827 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
828 addr += 8;
829 }
830 }
831
832 write_register (SP_REGNUM, prev_sp);
833 target_store_registers (-1);
834 flush_cached_frames ();
835 }
836
837 /* Fixup the call sequence of a dummy function, with the real function
838 address. Its arguments will be passed by gdb. */
839
840 static void
841 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
842 int nargs, struct value **args, struct type *type,
843 int gcc_p)
844 {
845 #define TOC_ADDR_OFFSET 20
846 #define TARGET_ADDR_OFFSET 28
847
848 int ii;
849 CORE_ADDR target_addr;
850
851 if (rs6000_find_toc_address_hook != NULL)
852 {
853 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
854 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
855 tocvalue);
856 }
857 }
858
859 /* Pass the arguments in either registers, or in the stack. In RS/6000,
860 the first eight words of the argument list (that might be less than
861 eight parameters if some parameters occupy more than one word) are
862 passed in r3..r10 registers. float and double parameters are
863 passed in fpr's, in addition to that. Rest of the parameters if any
864 are passed in user stack. There might be cases in which half of the
865 parameter is copied into registers, the other half is pushed into
866 stack.
867
868 Stack must be aligned on 64-bit boundaries when synthesizing
869 function calls.
870
871 If the function is returning a structure, then the return address is passed
872 in r3, then the first 7 words of the parameters can be passed in registers,
873 starting from r4. */
874
875 static CORE_ADDR
876 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
877 int struct_return, CORE_ADDR struct_addr)
878 {
879 int ii;
880 int len = 0;
881 int argno; /* current argument number */
882 int argbytes; /* current argument byte */
883 char tmp_buffer[50];
884 int f_argno = 0; /* current floating point argno */
885 int wordsize = TDEP->wordsize;
886
887 struct value *arg = 0;
888 struct type *type;
889
890 CORE_ADDR saved_sp;
891
892 /* The first eight words of ther arguments are passed in registers. Copy
893 them appropriately.
894
895 If the function is returning a `struct', then the first word (which
896 will be passed in r3) is used for struct return address. In that
897 case we should advance one word and start from r4 register to copy
898 parameters. */
899
900 ii = struct_return ? 1 : 0;
901
902 /*
903 effectively indirect call... gcc does...
904
905 return_val example( float, int);
906
907 eabi:
908 float in fp0, int in r3
909 offset of stack on overflow 8/16
910 for varargs, must go by type.
911 power open:
912 float in r3&r4, int in r5
913 offset of stack on overflow different
914 both:
915 return in r3 or f0. If no float, must study how gcc emulates floats;
916 pay attention to arg promotion.
917 User may have to cast\args to handle promotion correctly
918 since gdb won't know if prototype supplied or not.
919 */
920
921 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
922 {
923 int reg_size = REGISTER_RAW_SIZE (ii + 3);
924
925 arg = args[argno];
926 type = check_typedef (VALUE_TYPE (arg));
927 len = TYPE_LENGTH (type);
928
929 if (TYPE_CODE (type) == TYPE_CODE_FLT)
930 {
931
932 /* floating point arguments are passed in fpr's, as well as gpr's.
933 There are 13 fpr's reserved for passing parameters. At this point
934 there is no way we would run out of them. */
935
936 if (len > 8)
937 printf_unfiltered (
938 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
939
940 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
941 VALUE_CONTENTS (arg),
942 len);
943 ++f_argno;
944 }
945
946 if (len > reg_size)
947 {
948
949 /* Argument takes more than one register. */
950 while (argbytes < len)
951 {
952 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
953 memcpy (&registers[REGISTER_BYTE (ii + 3)],
954 ((char *) VALUE_CONTENTS (arg)) + argbytes,
955 (len - argbytes) > reg_size
956 ? reg_size : len - argbytes);
957 ++ii, argbytes += reg_size;
958
959 if (ii >= 8)
960 goto ran_out_of_registers_for_arguments;
961 }
962 argbytes = 0;
963 --ii;
964 }
965 else
966 { /* Argument can fit in one register. No problem. */
967 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
968 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
969 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
970 VALUE_CONTENTS (arg), len);
971 }
972 ++argno;
973 }
974
975 ran_out_of_registers_for_arguments:
976
977 saved_sp = read_sp ();
978 #ifndef ELF_OBJECT_FORMAT
979 /* location for 8 parameters are always reserved. */
980 sp -= wordsize * 8;
981
982 /* another six words for back chain, TOC register, link register, etc. */
983 sp -= wordsize * 6;
984
985 /* stack pointer must be quadword aligned */
986 sp &= -16;
987 #endif
988
989 /* if there are more arguments, allocate space for them in
990 the stack, then push them starting from the ninth one. */
991
992 if ((argno < nargs) || argbytes)
993 {
994 int space = 0, jj;
995
996 if (argbytes)
997 {
998 space += ((len - argbytes + 3) & -4);
999 jj = argno + 1;
1000 }
1001 else
1002 jj = argno;
1003
1004 for (; jj < nargs; ++jj)
1005 {
1006 struct value *val = args[jj];
1007 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1008 }
1009
1010 /* add location required for the rest of the parameters */
1011 space = (space + 15) & -16;
1012 sp -= space;
1013
1014 /* This is another instance we need to be concerned about securing our
1015 stack space. If we write anything underneath %sp (r1), we might conflict
1016 with the kernel who thinks he is free to use this area. So, update %sp
1017 first before doing anything else. */
1018
1019 write_register (SP_REGNUM, sp);
1020
1021 /* if the last argument copied into the registers didn't fit there
1022 completely, push the rest of it into stack. */
1023
1024 if (argbytes)
1025 {
1026 write_memory (sp + 24 + (ii * 4),
1027 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1028 len - argbytes);
1029 ++argno;
1030 ii += ((len - argbytes + 3) & -4) / 4;
1031 }
1032
1033 /* push the rest of the arguments into stack. */
1034 for (; argno < nargs; ++argno)
1035 {
1036
1037 arg = args[argno];
1038 type = check_typedef (VALUE_TYPE (arg));
1039 len = TYPE_LENGTH (type);
1040
1041
1042 /* float types should be passed in fpr's, as well as in the stack. */
1043 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1044 {
1045
1046 if (len > 8)
1047 printf_unfiltered (
1048 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1049
1050 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1051 VALUE_CONTENTS (arg),
1052 len);
1053 ++f_argno;
1054 }
1055
1056 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1057 ii += ((len + 3) & -4) / 4;
1058 }
1059 }
1060 else
1061 /* Secure stack areas first, before doing anything else. */
1062 write_register (SP_REGNUM, sp);
1063
1064 /* set back chain properly */
1065 store_address (tmp_buffer, 4, saved_sp);
1066 write_memory (sp, tmp_buffer, 4);
1067
1068 target_store_registers (-1);
1069 return sp;
1070 }
1071
1072 /* Function: ppc_push_return_address (pc, sp)
1073 Set up the return address for the inferior function call. */
1074
1075 static CORE_ADDR
1076 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1077 {
1078 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1079 CALL_DUMMY_ADDRESS ());
1080 return sp;
1081 }
1082
1083 /* Extract a function return value of type TYPE from raw register array
1084 REGBUF, and copy that return value into VALBUF in virtual format. */
1085
1086 static void
1087 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1088 {
1089 int offset = 0;
1090
1091 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1092 {
1093
1094 double dd;
1095 float ff;
1096 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1097 We need to truncate the return value into float size (4 byte) if
1098 necessary. */
1099
1100 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1101 memcpy (valbuf,
1102 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1103 TYPE_LENGTH (valtype));
1104 else
1105 { /* float */
1106 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1107 ff = (float) dd;
1108 memcpy (valbuf, &ff, sizeof (float));
1109 }
1110 }
1111 else
1112 {
1113 /* return value is copied starting from r3. */
1114 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1115 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1116 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1117
1118 memcpy (valbuf,
1119 regbuf + REGISTER_BYTE (3) + offset,
1120 TYPE_LENGTH (valtype));
1121 }
1122 }
1123
1124 /* Keep structure return address in this variable.
1125 FIXME: This is a horrid kludge which should not be allowed to continue
1126 living. This only allows a single nested call to a structure-returning
1127 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1128
1129 static CORE_ADDR rs6000_struct_return_address;
1130
1131 /* Return whether handle_inferior_event() should proceed through code
1132 starting at PC in function NAME when stepping.
1133
1134 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1135 handle memory references that are too distant to fit in instructions
1136 generated by the compiler. For example, if 'foo' in the following
1137 instruction:
1138
1139 lwz r9,foo(r2)
1140
1141 is greater than 32767, the linker might replace the lwz with a branch to
1142 somewhere in @FIX1 that does the load in 2 instructions and then branches
1143 back to where execution should continue.
1144
1145 GDB should silently step over @FIX code, just like AIX dbx does.
1146 Unfortunately, the linker uses the "b" instruction for the branches,
1147 meaning that the link register doesn't get set. Therefore, GDB's usual
1148 step_over_function() mechanism won't work.
1149
1150 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1151 in handle_inferior_event() to skip past @FIX code. */
1152
1153 int
1154 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1155 {
1156 return name && !strncmp (name, "@FIX", 4);
1157 }
1158
1159 /* Skip code that the user doesn't want to see when stepping:
1160
1161 1. Indirect function calls use a piece of trampoline code to do context
1162 switching, i.e. to set the new TOC table. Skip such code if we are on
1163 its first instruction (as when we have single-stepped to here).
1164
1165 2. Skip shared library trampoline code (which is different from
1166 indirect function call trampolines).
1167
1168 3. Skip bigtoc fixup code.
1169
1170 Result is desired PC to step until, or NULL if we are not in
1171 code that should be skipped. */
1172
1173 CORE_ADDR
1174 rs6000_skip_trampoline_code (CORE_ADDR pc)
1175 {
1176 register unsigned int ii, op;
1177 int rel;
1178 CORE_ADDR solib_target_pc;
1179 struct minimal_symbol *msymbol;
1180
1181 static unsigned trampoline_code[] =
1182 {
1183 0x800b0000, /* l r0,0x0(r11) */
1184 0x90410014, /* st r2,0x14(r1) */
1185 0x7c0903a6, /* mtctr r0 */
1186 0x804b0004, /* l r2,0x4(r11) */
1187 0x816b0008, /* l r11,0x8(r11) */
1188 0x4e800420, /* bctr */
1189 0x4e800020, /* br */
1190 0
1191 };
1192
1193 /* Check for bigtoc fixup code. */
1194 msymbol = lookup_minimal_symbol_by_pc (pc);
1195 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1196 {
1197 /* Double-check that the third instruction from PC is relative "b". */
1198 op = read_memory_integer (pc + 8, 4);
1199 if ((op & 0xfc000003) == 0x48000000)
1200 {
1201 /* Extract bits 6-29 as a signed 24-bit relative word address and
1202 add it to the containing PC. */
1203 rel = ((int)(op << 6) >> 6);
1204 return pc + 8 + rel;
1205 }
1206 }
1207
1208 /* If pc is in a shared library trampoline, return its target. */
1209 solib_target_pc = find_solib_trampoline_target (pc);
1210 if (solib_target_pc)
1211 return solib_target_pc;
1212
1213 for (ii = 0; trampoline_code[ii]; ++ii)
1214 {
1215 op = read_memory_integer (pc + (ii * 4), 4);
1216 if (op != trampoline_code[ii])
1217 return 0;
1218 }
1219 ii = read_register (11); /* r11 holds destination addr */
1220 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1221 return pc;
1222 }
1223
1224 /* Determines whether the function FI has a frame on the stack or not. */
1225
1226 int
1227 rs6000_frameless_function_invocation (struct frame_info *fi)
1228 {
1229 CORE_ADDR func_start;
1230 struct rs6000_framedata fdata;
1231
1232 /* Don't even think about framelessness except on the innermost frame
1233 or if the function was interrupted by a signal. */
1234 if (fi->next != NULL && !fi->next->signal_handler_caller)
1235 return 0;
1236
1237 func_start = get_pc_function_start (fi->pc);
1238
1239 /* If we failed to find the start of the function, it is a mistake
1240 to inspect the instructions. */
1241
1242 if (!func_start)
1243 {
1244 /* A frame with a zero PC is usually created by dereferencing a NULL
1245 function pointer, normally causing an immediate core dump of the
1246 inferior. Mark function as frameless, as the inferior has no chance
1247 of setting up a stack frame. */
1248 if (fi->pc == 0)
1249 return 1;
1250 else
1251 return 0;
1252 }
1253
1254 (void) skip_prologue (func_start, fi->pc, &fdata);
1255 return fdata.frameless;
1256 }
1257
1258 /* Return the PC saved in a frame */
1259
1260 CORE_ADDR
1261 rs6000_frame_saved_pc (struct frame_info *fi)
1262 {
1263 CORE_ADDR func_start;
1264 struct rs6000_framedata fdata;
1265 int wordsize = TDEP->wordsize;
1266
1267 if (fi->signal_handler_caller)
1268 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1269
1270 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1271 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1272
1273 func_start = get_pc_function_start (fi->pc);
1274
1275 /* If we failed to find the start of the function, it is a mistake
1276 to inspect the instructions. */
1277 if (!func_start)
1278 return 0;
1279
1280 (void) skip_prologue (func_start, fi->pc, &fdata);
1281
1282 if (fdata.lr_offset == 0 && fi->next != NULL)
1283 {
1284 if (fi->next->signal_handler_caller)
1285 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1286 wordsize);
1287 else
1288 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1289 wordsize);
1290 }
1291
1292 if (fdata.lr_offset == 0)
1293 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1294
1295 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1296 }
1297
1298 /* If saved registers of frame FI are not known yet, read and cache them.
1299 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1300 in which case the framedata are read. */
1301
1302 static void
1303 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1304 {
1305 CORE_ADDR frame_addr;
1306 struct rs6000_framedata work_fdata;
1307 int wordsize = TDEP->wordsize;
1308
1309 if (fi->saved_regs)
1310 return;
1311
1312 if (fdatap == NULL)
1313 {
1314 fdatap = &work_fdata;
1315 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1316 }
1317
1318 frame_saved_regs_zalloc (fi);
1319
1320 /* If there were any saved registers, figure out parent's stack
1321 pointer. */
1322 /* The following is true only if the frame doesn't have a call to
1323 alloca(), FIXME. */
1324
1325 if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
1326 && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
1327 frame_addr = 0;
1328 else if (fi->prev && fi->prev->frame)
1329 frame_addr = fi->prev->frame;
1330 else
1331 frame_addr = read_memory_addr (fi->frame, wordsize);
1332
1333 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1334 All fpr's from saved_fpr to fp31 are saved. */
1335
1336 if (fdatap->saved_fpr >= 0)
1337 {
1338 int i;
1339 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1340 for (i = fdatap->saved_fpr; i < 32; i++)
1341 {
1342 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1343 fpr_addr += 8;
1344 }
1345 }
1346
1347 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1348 All gpr's from saved_gpr to gpr31 are saved. */
1349
1350 if (fdatap->saved_gpr >= 0)
1351 {
1352 int i;
1353 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1354 for (i = fdatap->saved_gpr; i < 32; i++)
1355 {
1356 fi->saved_regs[i] = gpr_addr;
1357 gpr_addr += wordsize;
1358 }
1359 }
1360
1361 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1362 the CR. */
1363 if (fdatap->cr_offset != 0)
1364 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
1365 frame_addr + fdatap->cr_offset;
1366
1367 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1368 the LR. */
1369 if (fdatap->lr_offset != 0)
1370 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
1371 frame_addr + fdatap->lr_offset;
1372 }
1373
1374 /* Return the address of a frame. This is the inital %sp value when the frame
1375 was first allocated. For functions calling alloca(), it might be saved in
1376 an alloca register. */
1377
1378 static CORE_ADDR
1379 frame_initial_stack_address (struct frame_info *fi)
1380 {
1381 CORE_ADDR tmpaddr;
1382 struct rs6000_framedata fdata;
1383 struct frame_info *callee_fi;
1384
1385 /* if the initial stack pointer (frame address) of this frame is known,
1386 just return it. */
1387
1388 if (fi->extra_info->initial_sp)
1389 return fi->extra_info->initial_sp;
1390
1391 /* find out if this function is using an alloca register.. */
1392
1393 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1394
1395 /* if saved registers of this frame are not known yet, read and cache them. */
1396
1397 if (!fi->saved_regs)
1398 frame_get_saved_regs (fi, &fdata);
1399
1400 /* If no alloca register used, then fi->frame is the value of the %sp for
1401 this frame, and it is good enough. */
1402
1403 if (fdata.alloca_reg < 0)
1404 {
1405 fi->extra_info->initial_sp = fi->frame;
1406 return fi->extra_info->initial_sp;
1407 }
1408
1409 /* This function has an alloca register. If this is the top-most frame
1410 (with the lowest address), the value in alloca register is good. */
1411
1412 if (!fi->next)
1413 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1414
1415 /* Otherwise, this is a caller frame. Callee has usually already saved
1416 registers, but there are exceptions (such as when the callee
1417 has no parameters). Find the address in which caller's alloca
1418 register is saved. */
1419
1420 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1421 {
1422
1423 if (!callee_fi->saved_regs)
1424 frame_get_saved_regs (callee_fi, NULL);
1425
1426 /* this is the address in which alloca register is saved. */
1427
1428 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1429 if (tmpaddr)
1430 {
1431 fi->extra_info->initial_sp =
1432 read_memory_addr (tmpaddr, TDEP->wordsize);
1433 return fi->extra_info->initial_sp;
1434 }
1435
1436 /* Go look into deeper levels of the frame chain to see if any one of
1437 the callees has saved alloca register. */
1438 }
1439
1440 /* If alloca register was not saved, by the callee (or any of its callees)
1441 then the value in the register is still good. */
1442
1443 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1444 return fi->extra_info->initial_sp;
1445 }
1446
1447 /* Describe the pointer in each stack frame to the previous stack frame
1448 (its caller). */
1449
1450 /* FRAME_CHAIN takes a frame's nominal address
1451 and produces the frame's chain-pointer. */
1452
1453 /* In the case of the RS/6000, the frame's nominal address
1454 is the address of a 4-byte word containing the calling frame's address. */
1455
1456 CORE_ADDR
1457 rs6000_frame_chain (struct frame_info *thisframe)
1458 {
1459 CORE_ADDR fp, fpp, lr;
1460 int wordsize = TDEP->wordsize;
1461
1462 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1463 return thisframe->frame; /* dummy frame same as caller's frame */
1464
1465 if (inside_entry_file (thisframe->pc) ||
1466 thisframe->pc == entry_point_address ())
1467 return 0;
1468
1469 if (thisframe->signal_handler_caller)
1470 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1471 wordsize);
1472 else if (thisframe->next != NULL
1473 && thisframe->next->signal_handler_caller
1474 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1475 /* A frameless function interrupted by a signal did not change the
1476 frame pointer. */
1477 fp = FRAME_FP (thisframe);
1478 else
1479 fp = read_memory_addr ((thisframe)->frame, wordsize);
1480
1481 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1482 if (lr == entry_point_address ())
1483 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1484 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1485 return fpp;
1486
1487 return fp;
1488 }
1489
1490 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1491 isn't available with that word size, return 0. */
1492
1493 static int
1494 regsize (const struct reg *reg, int wordsize)
1495 {
1496 return wordsize == 8 ? reg->sz64 : reg->sz32;
1497 }
1498
1499 /* Return the name of register number N, or null if no such register exists
1500 in the current architecture. */
1501
1502 static char *
1503 rs6000_register_name (int n)
1504 {
1505 struct gdbarch_tdep *tdep = TDEP;
1506 const struct reg *reg = tdep->regs + n;
1507
1508 if (!regsize (reg, tdep->wordsize))
1509 return NULL;
1510 return reg->name;
1511 }
1512
1513 /* Index within `registers' of the first byte of the space for
1514 register N. */
1515
1516 static int
1517 rs6000_register_byte (int n)
1518 {
1519 return TDEP->regoff[n];
1520 }
1521
1522 /* Return the number of bytes of storage in the actual machine representation
1523 for register N if that register is available, else return 0. */
1524
1525 static int
1526 rs6000_register_raw_size (int n)
1527 {
1528 struct gdbarch_tdep *tdep = TDEP;
1529 const struct reg *reg = tdep->regs + n;
1530 return regsize (reg, tdep->wordsize);
1531 }
1532
1533 /* Return the GDB type object for the "standard" data type
1534 of data in register N. */
1535
1536 static struct type *
1537 rs6000_register_virtual_type (int n)
1538 {
1539 struct gdbarch_tdep *tdep = TDEP;
1540 const struct reg *reg = tdep->regs + n;
1541
1542 if (reg->fpr)
1543 return builtin_type_double;
1544 else
1545 {
1546 int size = regsize (reg, tdep->wordsize);
1547 switch (size)
1548 {
1549 case 8:
1550 return builtin_type_int64;
1551 break;
1552 case 16:
1553 return builtin_type_int128;
1554 break;
1555 default:
1556 return builtin_type_int32;
1557 break;
1558 }
1559 }
1560 }
1561
1562 /* For the PowerPC, it appears that the debug info marks float parameters as
1563 floats regardless of whether the function is prototyped, but the actual
1564 values are always passed in as doubles. Tell gdb to always assume that
1565 floats are passed as doubles and then converted in the callee. */
1566
1567 static int
1568 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1569 {
1570 return 1;
1571 }
1572
1573 /* Return whether register N requires conversion when moving from raw format
1574 to virtual format.
1575
1576 The register format for RS/6000 floating point registers is always
1577 double, we need a conversion if the memory format is float. */
1578
1579 static int
1580 rs6000_register_convertible (int n)
1581 {
1582 const struct reg *reg = TDEP->regs + n;
1583 return reg->fpr;
1584 }
1585
1586 /* Convert data from raw format for register N in buffer FROM
1587 to virtual format with type TYPE in buffer TO. */
1588
1589 static void
1590 rs6000_register_convert_to_virtual (int n, struct type *type,
1591 char *from, char *to)
1592 {
1593 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1594 {
1595 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1596 store_floating (to, TYPE_LENGTH (type), val);
1597 }
1598 else
1599 memcpy (to, from, REGISTER_RAW_SIZE (n));
1600 }
1601
1602 /* Convert data from virtual format with type TYPE in buffer FROM
1603 to raw format for register N in buffer TO. */
1604
1605 static void
1606 rs6000_register_convert_to_raw (struct type *type, int n,
1607 char *from, char *to)
1608 {
1609 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1610 {
1611 double val = extract_floating (from, TYPE_LENGTH (type));
1612 store_floating (to, REGISTER_RAW_SIZE (n), val);
1613 }
1614 else
1615 memcpy (to, from, REGISTER_RAW_SIZE (n));
1616 }
1617
1618 int
1619 altivec_register_p (int regno)
1620 {
1621 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1622 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1623 return 0;
1624 else
1625 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1626 }
1627
1628 static void
1629 rs6000_do_altivec_registers (int regnum)
1630 {
1631 int i;
1632 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1633 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1634 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1635
1636 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1637 {
1638 /* If we want just one reg, check that this is the one we want. */
1639 if (regnum != -1 && i != regnum)
1640 continue;
1641
1642 /* If the register name is empty, it is undefined for this
1643 processor, so don't display anything. */
1644 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1645 continue;
1646
1647 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1648 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1649
1650 /* Get the data in raw format. */
1651 if (read_relative_register_raw_bytes (i, raw_buffer))
1652 {
1653 printf_filtered ("*value not available*\n");
1654 continue;
1655 }
1656
1657 /* Convert raw data to virtual format if necessary. */
1658 if (REGISTER_CONVERTIBLE (i))
1659 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1660 raw_buffer, virtual_buffer);
1661 else
1662 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1663
1664 /* Print as integer in hex only. */
1665 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1666 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1667 printf_filtered ("\n");
1668 }
1669 }
1670
1671 static void
1672 rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1673 {
1674 int regnum, numregs;
1675 register char *end;
1676
1677 if (!target_has_registers)
1678 error ("The program has no registers now.");
1679 if (selected_frame == NULL)
1680 error ("No selected frame.");
1681
1682 if (!addr_exp)
1683 {
1684 rs6000_do_altivec_registers (-1);
1685 return;
1686 }
1687
1688 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1689 do
1690 {
1691 if (addr_exp[0] == '$')
1692 addr_exp++;
1693 end = addr_exp;
1694 while (*end != '\0' && *end != ' ' && *end != '\t')
1695 ++end;
1696
1697 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1698 if (regnum < 0)
1699 {
1700 regnum = numregs;
1701 if (*addr_exp >= '0' && *addr_exp <= '9')
1702 regnum = atoi (addr_exp); /* Take a number */
1703 if (regnum >= numregs) /* Bad name, or bad number */
1704 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1705 }
1706
1707 rs6000_do_altivec_registers (regnum);
1708
1709 addr_exp = end;
1710 while (*addr_exp == ' ' || *addr_exp == '\t')
1711 ++addr_exp;
1712 }
1713 while (*addr_exp != '\0');
1714 }
1715
1716 static void
1717 rs6000_do_registers_info (int regnum, int fpregs)
1718 {
1719 register int i;
1720 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1721 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1722 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1723
1724 for (i = 0; i < numregs; i++)
1725 {
1726 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1727 if (regnum == -1)
1728 {
1729 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1730 || (altivec_register_p (i) && !fpregs))
1731 continue;
1732 }
1733 else
1734 {
1735 if (i != regnum)
1736 continue;
1737 }
1738
1739 /* If the register name is empty, it is undefined for this
1740 processor, so don't display anything. */
1741 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1742 continue;
1743
1744 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1745 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1746
1747 /* Get the data in raw format. */
1748 if (read_relative_register_raw_bytes (i, raw_buffer))
1749 {
1750 printf_filtered ("*value not available*\n");
1751 continue;
1752 }
1753
1754 /* Convert raw data to virtual format if necessary. */
1755 if (REGISTER_CONVERTIBLE (i))
1756 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1757 raw_buffer, virtual_buffer);
1758 else
1759 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1760
1761 /* If virtual format is floating, print it that way, and in raw hex. */
1762 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1763 {
1764 register int j;
1765
1766 #ifdef INVALID_FLOAT
1767 if (INVALID_FLOAT (virtual_buffer, REGISTER_VIRTUAL_SIZE (i)))
1768 printf_filtered ("<invalid float>");
1769 else
1770 #endif
1771 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1772 gdb_stdout, 0, 1, 0, Val_pretty_default);
1773
1774 printf_filtered ("\t(raw 0x");
1775 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1776 {
1777 register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
1778 : REGISTER_RAW_SIZE (i) - 1 - j;
1779 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1780 }
1781 printf_filtered (")");
1782 }
1783 else
1784 {
1785 /* Print as integer in hex and in decimal. */
1786 if (!altivec_register_p (i))
1787 {
1788 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1789 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1790 printf_filtered ("\t");
1791 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1792 gdb_stdout, 0, 1, 0, Val_pretty_default);
1793 }
1794 else
1795 /* Print as integer in hex only. */
1796 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1797 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1798 }
1799 printf_filtered ("\n");
1800 }
1801 }
1802
1803 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1804 REGNUM. */
1805 static int
1806 rs6000_stab_reg_to_regnum (int num)
1807 {
1808 int regnum;
1809 switch (num)
1810 {
1811 case 64:
1812 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1813 break;
1814 case 65:
1815 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1816 break;
1817 case 66:
1818 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1819 break;
1820 case 76:
1821 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1822 break;
1823 default:
1824 regnum = num;
1825 break;
1826 }
1827 return regnum;
1828 }
1829
1830 /* Store the address of the place in which to copy the structure the
1831 subroutine will return. This is called from call_function.
1832
1833 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1834 In function return, callee is not responsible of returning this address
1835 back. Since gdb needs to find it, we will store in a designated variable
1836 `rs6000_struct_return_address'. */
1837
1838 static void
1839 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1840 {
1841 write_register (3, addr);
1842 rs6000_struct_return_address = addr;
1843 }
1844
1845 /* Write into appropriate registers a function return value
1846 of type TYPE, given in virtual format. */
1847
1848 static void
1849 rs6000_store_return_value (struct type *type, char *valbuf)
1850 {
1851 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1852
1853 /* Floating point values are returned starting from FPR1 and up.
1854 Say a double_double_double type could be returned in
1855 FPR1/FPR2/FPR3 triple. */
1856
1857 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1858 TYPE_LENGTH (type));
1859 else
1860 /* Everything else is returned in GPR3 and up. */
1861 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1862 valbuf, TYPE_LENGTH (type));
1863 }
1864
1865 /* Extract from an array REGBUF containing the (raw) register state
1866 the address in which a function should return its structure value,
1867 as a CORE_ADDR (or an expression that can be used as one). */
1868
1869 static CORE_ADDR
1870 rs6000_extract_struct_value_address (char *regbuf)
1871 {
1872 return rs6000_struct_return_address;
1873 }
1874
1875 /* Return whether PC is in a dummy function call.
1876
1877 FIXME: This just checks for the end of the stack, which is broken
1878 for things like stepping through gcc nested function stubs. */
1879
1880 static int
1881 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1882 {
1883 return sp < pc && pc < fp;
1884 }
1885
1886 /* Hook called when a new child process is started. */
1887
1888 void
1889 rs6000_create_inferior (int pid)
1890 {
1891 if (rs6000_set_host_arch_hook)
1892 rs6000_set_host_arch_hook (pid);
1893 }
1894 \f
1895 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1896
1897 Usually a function pointer's representation is simply the address
1898 of the function. On the RS/6000 however, a function pointer is
1899 represented by a pointer to a TOC entry. This TOC entry contains
1900 three words, the first word is the address of the function, the
1901 second word is the TOC pointer (r2), and the third word is the
1902 static chain value. Throughout GDB it is currently assumed that a
1903 function pointer contains the address of the function, which is not
1904 easy to fix. In addition, the conversion of a function address to
1905 a function pointer would require allocation of a TOC entry in the
1906 inferior's memory space, with all its drawbacks. To be able to
1907 call C++ virtual methods in the inferior (which are called via
1908 function pointers), find_function_addr uses this function to get the
1909 function address from a function pointer. */
1910
1911 /* Return real function address if ADDR (a function pointer) is in the data
1912 space and is therefore a special function pointer. */
1913
1914 CORE_ADDR
1915 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1916 {
1917 struct obj_section *s;
1918
1919 s = find_pc_section (addr);
1920 if (s && s->the_bfd_section->flags & SEC_CODE)
1921 return addr;
1922
1923 /* ADDR is in the data space, so it's a special function pointer. */
1924 return read_memory_addr (addr, TDEP->wordsize);
1925 }
1926 \f
1927
1928 /* Handling the various POWER/PowerPC variants. */
1929
1930
1931 /* The arrays here called registers_MUMBLE hold information about available
1932 registers.
1933
1934 For each family of PPC variants, I've tried to isolate out the
1935 common registers and put them up front, so that as long as you get
1936 the general family right, GDB will correctly identify the registers
1937 common to that family. The common register sets are:
1938
1939 For the 60x family: hid0 hid1 iabr dabr pir
1940
1941 For the 505 and 860 family: eie eid nri
1942
1943 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
1944 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1945 pbu1 pbl2 pbu2
1946
1947 Most of these register groups aren't anything formal. I arrived at
1948 them by looking at the registers that occurred in more than one
1949 processor. */
1950
1951 /* Convenience macros for populating register arrays. */
1952
1953 /* Within another macro, convert S to a string. */
1954
1955 #define STR(s) #s
1956
1957 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1958 and 64 bits on 64-bit systems. */
1959 #define R(name) { STR(name), 4, 8, 0 }
1960
1961 /* Return a struct reg defining register NAME that's 32 bits on all
1962 systems. */
1963 #define R4(name) { STR(name), 4, 4, 0 }
1964
1965 /* Return a struct reg defining register NAME that's 64 bits on all
1966 systems. */
1967 #define R8(name) { STR(name), 8, 8, 0 }
1968
1969 /* Return a struct reg defining register NAME that's 128 bits on all
1970 systems. */
1971 #define R16(name) { STR(name), 16, 16, 0 }
1972
1973 /* Return a struct reg defining floating-point register NAME. */
1974 #define F(name) { STR(name), 8, 8, 1 }
1975
1976 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
1977 systems and that doesn't exist on 64-bit systems. */
1978 #define R32(name) { STR(name), 4, 0, 0 }
1979
1980 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
1981 systems and that doesn't exist on 32-bit systems. */
1982 #define R64(name) { STR(name), 0, 8, 0 }
1983
1984 /* Return a struct reg placeholder for a register that doesn't exist. */
1985 #define R0 { 0, 0, 0, 0 }
1986
1987 /* UISA registers common across all architectures, including POWER. */
1988
1989 #define COMMON_UISA_REGS \
1990 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1991 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1992 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1993 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1994 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1995 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1996 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1997 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1998 /* 64 */ R(pc), R(ps)
1999
2000 /* UISA-level SPRs for PowerPC. */
2001 #define PPC_UISA_SPRS \
2002 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2003
2004 /* Segment registers, for PowerPC. */
2005 #define PPC_SEGMENT_REGS \
2006 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2007 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2008 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2009 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2010
2011 /* OEA SPRs for PowerPC. */
2012 #define PPC_OEA_SPRS \
2013 /* 87 */ R4(pvr), \
2014 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2015 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2016 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2017 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2018 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2019 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2020 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2021 /* 116 */ R4(dec), R(dabr), R4(ear)
2022
2023 /* AltiVec registers */
2024 #define PPC_ALTIVEC_REGS \
2025 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2026 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2027 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2028 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2029 /*151*/R4(vscr), R4(vrsave)
2030
2031 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2032 user-level SPR's. */
2033 static const struct reg registers_power[] =
2034 {
2035 COMMON_UISA_REGS,
2036 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
2037 };
2038
2039 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2040 view of the PowerPC. */
2041 static const struct reg registers_powerpc[] =
2042 {
2043 COMMON_UISA_REGS,
2044 PPC_UISA_SPRS,
2045 PPC_ALTIVEC_REGS
2046 };
2047
2048 /* IBM PowerPC 403. */
2049 static const struct reg registers_403[] =
2050 {
2051 COMMON_UISA_REGS,
2052 PPC_UISA_SPRS,
2053 PPC_SEGMENT_REGS,
2054 PPC_OEA_SPRS,
2055 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2056 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2057 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2058 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2059 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2060 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2061 };
2062
2063 /* IBM PowerPC 403GC. */
2064 static const struct reg registers_403GC[] =
2065 {
2066 COMMON_UISA_REGS,
2067 PPC_UISA_SPRS,
2068 PPC_SEGMENT_REGS,
2069 PPC_OEA_SPRS,
2070 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2071 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2072 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2073 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2074 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2075 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2076 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2077 /* 147 */ R(tbhu), R(tblu)
2078 };
2079
2080 /* Motorola PowerPC 505. */
2081 static const struct reg registers_505[] =
2082 {
2083 COMMON_UISA_REGS,
2084 PPC_UISA_SPRS,
2085 PPC_SEGMENT_REGS,
2086 PPC_OEA_SPRS,
2087 /* 119 */ R(eie), R(eid), R(nri)
2088 };
2089
2090 /* Motorola PowerPC 860 or 850. */
2091 static const struct reg registers_860[] =
2092 {
2093 COMMON_UISA_REGS,
2094 PPC_UISA_SPRS,
2095 PPC_SEGMENT_REGS,
2096 PPC_OEA_SPRS,
2097 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2098 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2099 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2100 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2101 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2102 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2103 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2104 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2105 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2106 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2107 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2108 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2109 };
2110
2111 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2112 for reading and writing RTCU and RTCL. However, how one reads and writes a
2113 register is the stub's problem. */
2114 static const struct reg registers_601[] =
2115 {
2116 COMMON_UISA_REGS,
2117 PPC_UISA_SPRS,
2118 PPC_SEGMENT_REGS,
2119 PPC_OEA_SPRS,
2120 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2121 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2122 };
2123
2124 /* Motorola PowerPC 602. */
2125 static const struct reg registers_602[] =
2126 {
2127 COMMON_UISA_REGS,
2128 PPC_UISA_SPRS,
2129 PPC_SEGMENT_REGS,
2130 PPC_OEA_SPRS,
2131 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2132 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2133 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2134 };
2135
2136 /* Motorola/IBM PowerPC 603 or 603e. */
2137 static const struct reg registers_603[] =
2138 {
2139 COMMON_UISA_REGS,
2140 PPC_UISA_SPRS,
2141 PPC_SEGMENT_REGS,
2142 PPC_OEA_SPRS,
2143 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2144 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2145 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2146 };
2147
2148 /* Motorola PowerPC 604 or 604e. */
2149 static const struct reg registers_604[] =
2150 {
2151 COMMON_UISA_REGS,
2152 PPC_UISA_SPRS,
2153 PPC_SEGMENT_REGS,
2154 PPC_OEA_SPRS,
2155 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2156 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2157 /* 127 */ R(sia), R(sda)
2158 };
2159
2160 /* Motorola/IBM PowerPC 750 or 740. */
2161 static const struct reg registers_750[] =
2162 {
2163 COMMON_UISA_REGS,
2164 PPC_UISA_SPRS,
2165 PPC_SEGMENT_REGS,
2166 PPC_OEA_SPRS,
2167 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2168 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2169 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2170 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2171 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2172 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2173 };
2174
2175
2176 /* Motorola PowerPC 7400. */
2177 static const struct reg registers_7400[] =
2178 {
2179 /* gpr0-gpr31, fpr0-fpr31 */
2180 COMMON_UISA_REGS,
2181 /* ctr, xre, lr, cr */
2182 PPC_UISA_SPRS,
2183 /* sr0-sr15 */
2184 PPC_SEGMENT_REGS,
2185 PPC_OEA_SPRS,
2186 /* vr0-vr31, vrsave, vscr */
2187 PPC_ALTIVEC_REGS
2188 /* FIXME? Add more registers? */
2189 };
2190
2191 /* Information about a particular processor variant. */
2192
2193 struct variant
2194 {
2195 /* Name of this variant. */
2196 char *name;
2197
2198 /* English description of the variant. */
2199 char *description;
2200
2201 /* bfd_arch_info.arch corresponding to variant. */
2202 enum bfd_architecture arch;
2203
2204 /* bfd_arch_info.mach corresponding to variant. */
2205 unsigned long mach;
2206
2207 /* Table of register names; registers[R] is the name of the register
2208 number R. */
2209 int nregs;
2210 const struct reg *regs;
2211 };
2212
2213 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2214
2215
2216 /* Information in this table comes from the following web sites:
2217 IBM: http://www.chips.ibm.com:80/products/embedded/
2218 Motorola: http://www.mot.com/SPS/PowerPC/
2219
2220 I'm sure I've got some of the variant descriptions not quite right.
2221 Please report any inaccuracies you find to GDB's maintainer.
2222
2223 If you add entries to this table, please be sure to allow the new
2224 value as an argument to the --with-cpu flag, in configure.in. */
2225
2226 static const struct variant variants[] =
2227 {
2228 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2229 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2230 {"power", "POWER user-level", bfd_arch_rs6000,
2231 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2232 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2233 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2234 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2235 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2236 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2237 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2238 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2239 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2240 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2241 604, num_registers (registers_604), registers_604},
2242 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2243 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2244 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2245 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2246 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2247 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2248 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2249 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
2250 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2251 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
2252
2253 /* FIXME: I haven't checked the register sets of the following. */
2254 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2255 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2256 {"a35", "PowerPC A35", bfd_arch_powerpc,
2257 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2258 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2259 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2260 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2261 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2262 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2263 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2264
2265 {0, 0, 0, 0}
2266 };
2267
2268 #undef num_registers
2269
2270 /* Look up the variant named NAME in the `variants' table. Return a
2271 pointer to the struct variant, or null if we couldn't find it. */
2272
2273 static const struct variant *
2274 find_variant_by_name (char *name)
2275 {
2276 const struct variant *v;
2277
2278 for (v = variants; v->name; v++)
2279 if (!strcmp (name, v->name))
2280 return v;
2281
2282 return NULL;
2283 }
2284
2285 /* Return the variant corresponding to architecture ARCH and machine number
2286 MACH. If no such variant exists, return null. */
2287
2288 static const struct variant *
2289 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2290 {
2291 const struct variant *v;
2292
2293 for (v = variants; v->name; v++)
2294 if (arch == v->arch && mach == v->mach)
2295 return v;
2296
2297 return NULL;
2298 }
2299
2300
2301
2302 \f
2303 static void
2304 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2305 {
2306 int *os_ident_ptr = obj;
2307 const char *name;
2308 unsigned int sectsize;
2309
2310 name = bfd_get_section_name (abfd, sect);
2311 sectsize = bfd_section_size (abfd, sect);
2312 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2313 {
2314 unsigned int name_length, data_length, note_type;
2315 char *note = alloca (sectsize);
2316
2317 bfd_get_section_contents (abfd, sect, note,
2318 (file_ptr) 0, (bfd_size_type) sectsize);
2319
2320 name_length = bfd_h_get_32 (abfd, note);
2321 data_length = bfd_h_get_32 (abfd, note + 4);
2322 note_type = bfd_h_get_32 (abfd, note + 8);
2323
2324 if (name_length == 4 && data_length == 16 && note_type == 1
2325 && strcmp (note + 12, "GNU") == 0)
2326 {
2327 int os_number = bfd_h_get_32 (abfd, note + 16);
2328
2329 /* The case numbers are from abi-tags in glibc */
2330 switch (os_number)
2331 {
2332 case 0 :
2333 *os_ident_ptr = ELFOSABI_LINUX;
2334 break;
2335 case 1 :
2336 *os_ident_ptr = ELFOSABI_HURD;
2337 break;
2338 case 2 :
2339 *os_ident_ptr = ELFOSABI_SOLARIS;
2340 break;
2341 default :
2342 internal_error (__FILE__, __LINE__,
2343 "process_note_abi_sections: unknown OS number %d",
2344 os_number);
2345 break;
2346 }
2347 }
2348 }
2349 }
2350
2351 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2352 executables. If it's not an ELF executable or if the OS/ABI couldn't
2353 be determined, simply return -1. */
2354
2355 static int
2356 get_elfosabi (bfd *abfd)
2357 {
2358 int elfosabi = -1;
2359
2360 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2361 {
2362 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2363
2364 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2365 that we're on a SYSV system. However, GNU/Linux uses a note section
2366 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2367 have to check the note sections too. */
2368 if (elfosabi == 0)
2369 {
2370 bfd_map_over_sections (abfd,
2371 process_note_abi_tag_sections,
2372 &elfosabi);
2373 }
2374 }
2375
2376 return elfosabi;
2377 }
2378
2379 \f
2380
2381 /* Initialize the current architecture based on INFO. If possible, re-use an
2382 architecture from ARCHES, which is a list of architectures already created
2383 during this debugging session.
2384
2385 Called e.g. at program startup, when reading a core file, and when reading
2386 a binary file. */
2387
2388 static struct gdbarch *
2389 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2390 {
2391 struct gdbarch *gdbarch;
2392 struct gdbarch_tdep *tdep;
2393 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2394 struct reg *regs;
2395 const struct variant *v;
2396 enum bfd_architecture arch;
2397 unsigned long mach;
2398 bfd abfd;
2399 int osabi, sysv_abi;
2400
2401 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2402 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2403
2404 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2405 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2406
2407 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2408
2409 osabi = get_elfosabi (info.abfd);
2410
2411 /* Check word size. If INFO is from a binary file, infer it from
2412 that, else choose a likely default. */
2413 if (from_xcoff_exec)
2414 {
2415 if (xcoff_data (info.abfd)->xcoff64)
2416 wordsize = 8;
2417 else
2418 wordsize = 4;
2419 }
2420 else if (from_elf_exec)
2421 {
2422 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2423 wordsize = 8;
2424 else
2425 wordsize = 4;
2426 }
2427 else
2428 {
2429 wordsize = 4;
2430 }
2431
2432 /* Find a candidate among extant architectures. */
2433 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2434 arches != NULL;
2435 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2436 {
2437 /* Word size in the various PowerPC bfd_arch_info structs isn't
2438 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2439 separate word size check. */
2440 tdep = gdbarch_tdep (arches->gdbarch);
2441 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2442 return arches->gdbarch;
2443 }
2444
2445 /* None found, create a new architecture from INFO, whose bfd_arch_info
2446 validity depends on the source:
2447 - executable useless
2448 - rs6000_host_arch() good
2449 - core file good
2450 - "set arch" trust blindly
2451 - GDB startup useless but harmless */
2452
2453 if (!from_xcoff_exec)
2454 {
2455 arch = info.bfd_arch_info->arch;
2456 mach = info.bfd_arch_info->mach;
2457 }
2458 else
2459 {
2460 arch = bfd_arch_powerpc;
2461 mach = 0;
2462 bfd_default_set_arch_mach (&abfd, arch, mach);
2463 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2464 }
2465 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2466 tdep->wordsize = wordsize;
2467 tdep->osabi = osabi;
2468 gdbarch = gdbarch_alloc (&info, tdep);
2469 power = arch == bfd_arch_rs6000;
2470
2471 /* Select instruction printer. */
2472 tm_print_insn = arch == power ? print_insn_rs6000 :
2473 info.byte_order == BFD_ENDIAN_BIG ? print_insn_big_powerpc :
2474 print_insn_little_powerpc;
2475
2476 /* Choose variant. */
2477 v = find_variant_by_arch (arch, mach);
2478 if (!v)
2479 v = find_variant_by_name (power ? "power" : "powerpc");
2480 tdep->regs = v->regs;
2481
2482 tdep->ppc_gp0_regnum = 0;
2483 tdep->ppc_gplast_regnum = 31;
2484 tdep->ppc_toc_regnum = 2;
2485 tdep->ppc_ps_regnum = 65;
2486 tdep->ppc_cr_regnum = 66;
2487 tdep->ppc_lr_regnum = 67;
2488 tdep->ppc_ctr_regnum = 68;
2489 tdep->ppc_xer_regnum = 69;
2490 if (v->mach == bfd_mach_ppc_601)
2491 tdep->ppc_mq_regnum = 124;
2492 else
2493 tdep->ppc_mq_regnum = 70;
2494
2495 if (v->arch == bfd_arch_powerpc)
2496 switch (v->mach)
2497 {
2498 case bfd_mach_ppc:
2499 tdep->ppc_vr0_regnum = 71;
2500 tdep->ppc_vrsave_regnum = 104;
2501 break;
2502 case bfd_mach_ppc_7400:
2503 tdep->ppc_vr0_regnum = 119;
2504 tdep->ppc_vrsave_regnum = 153;
2505 break;
2506 default:
2507 tdep->ppc_vr0_regnum = -1;
2508 tdep->ppc_vrsave_regnum = -1;
2509 break;
2510 }
2511
2512 /* Calculate byte offsets in raw register array. */
2513 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2514 for (i = off = 0; i < v->nregs; i++)
2515 {
2516 tdep->regoff[i] = off;
2517 off += regsize (v->regs + i, wordsize);
2518 }
2519
2520 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2521 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2522 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2523 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
2524 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2525 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2526
2527 set_gdbarch_num_regs (gdbarch, v->nregs);
2528 set_gdbarch_sp_regnum (gdbarch, 1);
2529 set_gdbarch_fp_regnum (gdbarch, 1);
2530 set_gdbarch_pc_regnum (gdbarch, 64);
2531 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2532 set_gdbarch_register_size (gdbarch, wordsize);
2533 set_gdbarch_register_bytes (gdbarch, off);
2534 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2535 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2536 set_gdbarch_max_register_raw_size (gdbarch, 8);
2537 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2538 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2539 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2540 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
2541
2542 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2543 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2544 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2545 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2546 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2547 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2548 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2549 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2550 set_gdbarch_char_signed (gdbarch, 0);
2551
2552 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2553 set_gdbarch_call_dummy_length (gdbarch, 0);
2554 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2555 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2556 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2557 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2558 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2559 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2560 set_gdbarch_call_dummy_p (gdbarch, 1);
2561 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2562 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2563 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2564 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2565 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2566 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2567 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2568 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2569
2570 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2571 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2572 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2573 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2574
2575 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2576
2577 if (sysv_abi)
2578 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2579 else
2580 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2581
2582 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2583 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2584 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2585 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
2586
2587 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2588
2589 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2590 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2591 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2592 set_gdbarch_function_start_offset (gdbarch, 0);
2593 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2594
2595 /* Not sure on this. FIXMEmgo */
2596 set_gdbarch_frame_args_skip (gdbarch, 8);
2597
2598 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2599 if (osabi == ELFOSABI_LINUX)
2600 {
2601 set_gdbarch_frameless_function_invocation (gdbarch,
2602 ppc_linux_frameless_function_invocation);
2603 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2604 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2605
2606 set_gdbarch_frame_init_saved_regs (gdbarch,
2607 ppc_linux_frame_init_saved_regs);
2608 set_gdbarch_init_extra_frame_info (gdbarch,
2609 ppc_linux_init_extra_frame_info);
2610
2611 set_gdbarch_memory_remove_breakpoint (gdbarch,
2612 ppc_linux_memory_remove_breakpoint);
2613 set_solib_svr4_fetch_link_map_offsets
2614 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
2615 }
2616 else
2617 {
2618 set_gdbarch_frameless_function_invocation (gdbarch,
2619 rs6000_frameless_function_invocation);
2620 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2621 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2622
2623 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2624 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2625
2626 /* Handle RS/6000 function pointers. */
2627 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2628 rs6000_convert_from_func_ptr_addr);
2629 }
2630 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2631 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2632 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2633
2634 /* We can't tell how many args there are
2635 now that the C compiler delays popping them. */
2636 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2637
2638 return gdbarch;
2639 }
2640
2641 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2642
2643 static void
2644 rs6000_info_powerpc_command (char *args, int from_tty)
2645 {
2646 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2647 }
2648
2649 /* Initialization code. */
2650
2651 void
2652 _initialize_rs6000_tdep (void)
2653 {
2654 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2655 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2656
2657 /* Add root prefix command for "info powerpc" commands */
2658 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2659 "Various POWERPC info specific commands.",
2660 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2661
2662 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2663 "Display the contents of the AltiVec registers.",
2664 &info_powerpc_cmdlist);
2665
2666 }
This page took 0.086603 seconds and 5 git commands to generate.