S390: Migrate watch areas from list to VEC type
[deliverable/binutils-gdb.git] / gdb / s390-linux-nat.c
1 /* S390 native-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3
4 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
5 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "regcache.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "linux-nat.h"
27 #include "auxv.h"
28 #include "gregset.h"
29 #include "regset.h"
30 #include "nat/linux-ptrace.h"
31
32 #include "s390-linux-tdep.h"
33 #include "elf/common.h"
34
35 #include <asm/ptrace.h>
36 #include "nat/gdb_ptrace.h"
37 #include <asm/types.h>
38 #include <sys/procfs.h>
39 #include <sys/ucontext.h>
40 #include <elf.h>
41
42 /* Per-thread arch-specific data. */
43
44 struct arch_lwp_info
45 {
46 /* Non-zero if the thread's PER info must be re-written. */
47 int per_info_changed;
48 };
49
50 static int have_regset_last_break = 0;
51 static int have_regset_system_call = 0;
52 static int have_regset_tdb = 0;
53 static int have_regset_vxrs = 0;
54
55 /* Register map for 32-bit executables running under a 64-bit
56 kernel. */
57
58 #ifdef __s390x__
59 static const struct regcache_map_entry s390_64_regmap_gregset[] =
60 {
61 /* Skip PSWM and PSWA, since they must be handled specially. */
62 { 2, REGCACHE_MAP_SKIP, 8 },
63 { 1, S390_R0_UPPER_REGNUM, 4 }, { 1, S390_R0_REGNUM, 4 },
64 { 1, S390_R1_UPPER_REGNUM, 4 }, { 1, S390_R1_REGNUM, 4 },
65 { 1, S390_R2_UPPER_REGNUM, 4 }, { 1, S390_R2_REGNUM, 4 },
66 { 1, S390_R3_UPPER_REGNUM, 4 }, { 1, S390_R3_REGNUM, 4 },
67 { 1, S390_R4_UPPER_REGNUM, 4 }, { 1, S390_R4_REGNUM, 4 },
68 { 1, S390_R5_UPPER_REGNUM, 4 }, { 1, S390_R5_REGNUM, 4 },
69 { 1, S390_R6_UPPER_REGNUM, 4 }, { 1, S390_R6_REGNUM, 4 },
70 { 1, S390_R7_UPPER_REGNUM, 4 }, { 1, S390_R7_REGNUM, 4 },
71 { 1, S390_R8_UPPER_REGNUM, 4 }, { 1, S390_R8_REGNUM, 4 },
72 { 1, S390_R9_UPPER_REGNUM, 4 }, { 1, S390_R9_REGNUM, 4 },
73 { 1, S390_R10_UPPER_REGNUM, 4 }, { 1, S390_R10_REGNUM, 4 },
74 { 1, S390_R11_UPPER_REGNUM, 4 }, { 1, S390_R11_REGNUM, 4 },
75 { 1, S390_R12_UPPER_REGNUM, 4 }, { 1, S390_R12_REGNUM, 4 },
76 { 1, S390_R13_UPPER_REGNUM, 4 }, { 1, S390_R13_REGNUM, 4 },
77 { 1, S390_R14_UPPER_REGNUM, 4 }, { 1, S390_R14_REGNUM, 4 },
78 { 1, S390_R15_UPPER_REGNUM, 4 }, { 1, S390_R15_REGNUM, 4 },
79 { 16, S390_A0_REGNUM, 4 },
80 { 1, REGCACHE_MAP_SKIP, 4 }, { 1, S390_ORIG_R2_REGNUM, 4 },
81 { 0 }
82 };
83
84 static const struct regset s390_64_gregset =
85 {
86 s390_64_regmap_gregset,
87 regcache_supply_regset,
88 regcache_collect_regset
89 };
90
91 #define S390_PSWM_OFFSET 0
92 #define S390_PSWA_OFFSET 8
93 #endif
94
95 /* Fill GDB's register array with the general-purpose register values
96 in *REGP.
97
98 When debugging a 32-bit executable running under a 64-bit kernel,
99 we have to fix up the 64-bit registers we get from the kernel to
100 make them look like 32-bit registers. */
101
102 void
103 supply_gregset (struct regcache *regcache, const gregset_t *regp)
104 {
105 #ifdef __s390x__
106 struct gdbarch *gdbarch = get_regcache_arch (regcache);
107 if (gdbarch_ptr_bit (gdbarch) == 32)
108 {
109 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
110 ULONGEST pswm, pswa;
111 gdb_byte buf[4];
112
113 regcache_supply_regset (&s390_64_gregset, regcache, -1,
114 regp, sizeof (gregset_t));
115 pswm = extract_unsigned_integer ((const gdb_byte *) regp
116 + S390_PSWM_OFFSET, 8, byte_order);
117 pswa = extract_unsigned_integer ((const gdb_byte *) regp
118 + S390_PSWA_OFFSET, 8, byte_order);
119 store_unsigned_integer (buf, 4, byte_order, (pswm >> 32) | 0x80000);
120 regcache_raw_supply (regcache, S390_PSWM_REGNUM, buf);
121 store_unsigned_integer (buf, 4, byte_order,
122 (pswa & 0x7fffffff) | (pswm & 0x80000000));
123 regcache_raw_supply (regcache, S390_PSWA_REGNUM, buf);
124 return;
125 }
126 #endif
127
128 regcache_supply_regset (&s390_gregset, regcache, -1, regp,
129 sizeof (gregset_t));
130 }
131
132 /* Fill register REGNO (if it is a general-purpose register) in
133 *REGP with the value in GDB's register array. If REGNO is -1,
134 do this for all registers. */
135
136 void
137 fill_gregset (const struct regcache *regcache, gregset_t *regp, int regno)
138 {
139 #ifdef __s390x__
140 struct gdbarch *gdbarch = get_regcache_arch (regcache);
141 if (gdbarch_ptr_bit (gdbarch) == 32)
142 {
143 regcache_collect_regset (&s390_64_gregset, regcache, regno,
144 regp, sizeof (gregset_t));
145
146 if (regno == -1
147 || regno == S390_PSWM_REGNUM || regno == S390_PSWA_REGNUM)
148 {
149 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
150 ULONGEST pswa, pswm;
151 gdb_byte buf[4];
152 gdb_byte *pswm_p = (gdb_byte *) regp + S390_PSWM_OFFSET;
153 gdb_byte *pswa_p = (gdb_byte *) regp + S390_PSWA_OFFSET;
154
155 pswm = extract_unsigned_integer (pswm_p, 8, byte_order);
156
157 if (regno == -1 || regno == S390_PSWM_REGNUM)
158 {
159 pswm &= 0x80000000;
160 regcache_raw_collect (regcache, S390_PSWM_REGNUM, buf);
161 pswm |= (extract_unsigned_integer (buf, 4, byte_order)
162 & 0xfff7ffff) << 32;
163 }
164
165 if (regno == -1 || regno == S390_PSWA_REGNUM)
166 {
167 regcache_raw_collect (regcache, S390_PSWA_REGNUM, buf);
168 pswa = extract_unsigned_integer (buf, 4, byte_order);
169 pswm ^= (pswm ^ pswa) & 0x80000000;
170 pswa &= 0x7fffffff;
171 store_unsigned_integer (pswa_p, 8, byte_order, pswa);
172 }
173
174 store_unsigned_integer (pswm_p, 8, byte_order, pswm);
175 }
176 return;
177 }
178 #endif
179
180 regcache_collect_regset (&s390_gregset, regcache, regno, regp,
181 sizeof (gregset_t));
182 }
183
184 /* Fill GDB's register array with the floating-point register values
185 in *REGP. */
186 void
187 supply_fpregset (struct regcache *regcache, const fpregset_t *regp)
188 {
189 regcache_supply_regset (&s390_fpregset, regcache, -1, regp,
190 sizeof (fpregset_t));
191 }
192
193 /* Fill register REGNO (if it is a general-purpose register) in
194 *REGP with the value in GDB's register array. If REGNO is -1,
195 do this for all registers. */
196 void
197 fill_fpregset (const struct regcache *regcache, fpregset_t *regp, int regno)
198 {
199 regcache_collect_regset (&s390_fpregset, regcache, regno, regp,
200 sizeof (fpregset_t));
201 }
202
203 /* Find the TID for the current inferior thread to use with ptrace. */
204 static int
205 s390_inferior_tid (void)
206 {
207 /* GNU/Linux LWP ID's are process ID's. */
208 int tid = ptid_get_lwp (inferior_ptid);
209 if (tid == 0)
210 tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */
211
212 return tid;
213 }
214
215 /* Fetch all general-purpose registers from process/thread TID and
216 store their values in GDB's register cache. */
217 static void
218 fetch_regs (struct regcache *regcache, int tid)
219 {
220 gregset_t regs;
221 ptrace_area parea;
222
223 parea.len = sizeof (regs);
224 parea.process_addr = (addr_t) &regs;
225 parea.kernel_addr = offsetof (struct user_regs_struct, psw);
226 if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
227 perror_with_name (_("Couldn't get registers"));
228
229 supply_gregset (regcache, (const gregset_t *) &regs);
230 }
231
232 /* Store all valid general-purpose registers in GDB's register cache
233 into the process/thread specified by TID. */
234 static void
235 store_regs (const struct regcache *regcache, int tid, int regnum)
236 {
237 gregset_t regs;
238 ptrace_area parea;
239
240 parea.len = sizeof (regs);
241 parea.process_addr = (addr_t) &regs;
242 parea.kernel_addr = offsetof (struct user_regs_struct, psw);
243 if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
244 perror_with_name (_("Couldn't get registers"));
245
246 fill_gregset (regcache, &regs, regnum);
247
248 if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
249 perror_with_name (_("Couldn't write registers"));
250 }
251
252 /* Fetch all floating-point registers from process/thread TID and store
253 their values in GDB's register cache. */
254 static void
255 fetch_fpregs (struct regcache *regcache, int tid)
256 {
257 fpregset_t fpregs;
258 ptrace_area parea;
259
260 parea.len = sizeof (fpregs);
261 parea.process_addr = (addr_t) &fpregs;
262 parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
263 if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
264 perror_with_name (_("Couldn't get floating point status"));
265
266 supply_fpregset (regcache, (const fpregset_t *) &fpregs);
267 }
268
269 /* Store all valid floating-point registers in GDB's register cache
270 into the process/thread specified by TID. */
271 static void
272 store_fpregs (const struct regcache *regcache, int tid, int regnum)
273 {
274 fpregset_t fpregs;
275 ptrace_area parea;
276
277 parea.len = sizeof (fpregs);
278 parea.process_addr = (addr_t) &fpregs;
279 parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
280 if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
281 perror_with_name (_("Couldn't get floating point status"));
282
283 fill_fpregset (regcache, &fpregs, regnum);
284
285 if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
286 perror_with_name (_("Couldn't write floating point status"));
287 }
288
289 /* Fetch all registers in the kernel's register set whose number is
290 REGSET_ID, whose size is REGSIZE, and whose layout is described by
291 REGSET, from process/thread TID and store their values in GDB's
292 register cache. */
293 static void
294 fetch_regset (struct regcache *regcache, int tid,
295 int regset_id, int regsize, const struct regset *regset)
296 {
297 void *buf = alloca (regsize);
298 struct iovec iov;
299
300 iov.iov_base = buf;
301 iov.iov_len = regsize;
302
303 if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
304 {
305 if (errno == ENODATA)
306 regcache_supply_regset (regset, regcache, -1, NULL, regsize);
307 else
308 perror_with_name (_("Couldn't get register set"));
309 }
310 else
311 regcache_supply_regset (regset, regcache, -1, buf, regsize);
312 }
313
314 /* Store all registers in the kernel's register set whose number is
315 REGSET_ID, whose size is REGSIZE, and whose layout is described by
316 REGSET, from GDB's register cache back to process/thread TID. */
317 static void
318 store_regset (struct regcache *regcache, int tid,
319 int regset_id, int regsize, const struct regset *regset)
320 {
321 void *buf = alloca (regsize);
322 struct iovec iov;
323
324 iov.iov_base = buf;
325 iov.iov_len = regsize;
326
327 if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
328 perror_with_name (_("Couldn't get register set"));
329
330 regcache_collect_regset (regset, regcache, -1, buf, regsize);
331
332 if (ptrace (PTRACE_SETREGSET, tid, (long) regset_id, (long) &iov) < 0)
333 perror_with_name (_("Couldn't set register set"));
334 }
335
336 /* Check whether the kernel provides a register set with number REGSET
337 of size REGSIZE for process/thread TID. */
338 static int
339 check_regset (int tid, int regset, int regsize)
340 {
341 void *buf = alloca (regsize);
342 struct iovec iov;
343
344 iov.iov_base = buf;
345 iov.iov_len = regsize;
346
347 if (ptrace (PTRACE_GETREGSET, tid, (long) regset, (long) &iov) >= 0
348 || errno == ENODATA)
349 return 1;
350 return 0;
351 }
352
353 /* Fetch register REGNUM from the child process. If REGNUM is -1, do
354 this for all registers. */
355 static void
356 s390_linux_fetch_inferior_registers (struct target_ops *ops,
357 struct regcache *regcache, int regnum)
358 {
359 int tid = s390_inferior_tid ();
360
361 if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
362 fetch_regs (regcache, tid);
363
364 if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
365 fetch_fpregs (regcache, tid);
366
367 if (have_regset_last_break)
368 if (regnum == -1 || regnum == S390_LAST_BREAK_REGNUM)
369 fetch_regset (regcache, tid, NT_S390_LAST_BREAK, 8,
370 (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32
371 ? &s390_last_break_regset : &s390x_last_break_regset));
372
373 if (have_regset_system_call)
374 if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
375 fetch_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
376 &s390_system_call_regset);
377
378 if (have_regset_tdb)
379 if (regnum == -1 || S390_IS_TDBREGSET_REGNUM (regnum))
380 fetch_regset (regcache, tid, NT_S390_TDB, s390_sizeof_tdbregset,
381 &s390_tdb_regset);
382
383 if (have_regset_vxrs)
384 {
385 if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
386 && regnum <= S390_V15_LOWER_REGNUM))
387 fetch_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
388 &s390_vxrs_low_regset);
389 if (regnum == -1 || (regnum >= S390_V16_REGNUM
390 && regnum <= S390_V31_REGNUM))
391 fetch_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
392 &s390_vxrs_high_regset);
393 }
394 }
395
396 /* Store register REGNUM back into the child process. If REGNUM is
397 -1, do this for all registers. */
398 static void
399 s390_linux_store_inferior_registers (struct target_ops *ops,
400 struct regcache *regcache, int regnum)
401 {
402 int tid = s390_inferior_tid ();
403
404 if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
405 store_regs (regcache, tid, regnum);
406
407 if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
408 store_fpregs (regcache, tid, regnum);
409
410 /* S390_LAST_BREAK_REGNUM is read-only. */
411
412 if (have_regset_system_call)
413 if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
414 store_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
415 &s390_system_call_regset);
416
417 if (have_regset_vxrs)
418 {
419 if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
420 && regnum <= S390_V15_LOWER_REGNUM))
421 store_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
422 &s390_vxrs_low_regset);
423 if (regnum == -1 || (regnum >= S390_V16_REGNUM
424 && regnum <= S390_V31_REGNUM))
425 store_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
426 &s390_vxrs_high_regset);
427 }
428 }
429
430
431 /* Hardware-assisted watchpoint handling. */
432
433 /* We maintain a list of all currently active watchpoints in order
434 to properly handle watchpoint removal.
435
436 The only thing we actually need is the total address space area
437 spanned by the watchpoints. */
438
439 typedef struct watch_area
440 {
441 CORE_ADDR lo_addr;
442 CORE_ADDR hi_addr;
443 } s390_watch_area;
444
445 DEF_VEC_O (s390_watch_area);
446
447 VEC_s390_watch_area *watch_areas = NULL;
448
449 static int
450 s390_stopped_by_watchpoint (struct target_ops *ops)
451 {
452 per_lowcore_bits per_lowcore;
453 ptrace_area parea;
454 int result;
455
456 /* Speed up common case. */
457 if (VEC_empty (s390_watch_area, watch_areas))
458 return 0;
459
460 parea.len = sizeof (per_lowcore);
461 parea.process_addr = (addr_t) & per_lowcore;
462 parea.kernel_addr = offsetof (struct user_regs_struct, per_info.lowcore);
463 if (ptrace (PTRACE_PEEKUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
464 perror_with_name (_("Couldn't retrieve watchpoint status"));
465
466 result = (per_lowcore.perc_storage_alteration == 1
467 && per_lowcore.perc_store_real_address == 0);
468
469 if (result)
470 {
471 /* Do not report this watchpoint again. */
472 memset (&per_lowcore, 0, sizeof (per_lowcore));
473 if (ptrace (PTRACE_POKEUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
474 perror_with_name (_("Couldn't clear watchpoint status"));
475 }
476
477 return result;
478 }
479
480 /* Each time before resuming a thread, update its PER info. */
481
482 static void
483 s390_prepare_to_resume (struct lwp_info *lp)
484 {
485 int tid;
486
487 per_struct per_info;
488 ptrace_area parea;
489
490 CORE_ADDR watch_lo_addr = (CORE_ADDR)-1, watch_hi_addr = 0;
491 unsigned ix;
492 s390_watch_area *area;
493 struct arch_lwp_info *lp_priv = lwp_arch_private_info (lp);
494
495 if (lp_priv == NULL || !lp_priv->per_info_changed)
496 return;
497
498 lp_priv->per_info_changed = 0;
499
500 tid = ptid_get_lwp (ptid_of_lwp (lp));
501 if (tid == 0)
502 tid = ptid_get_pid (ptid_of_lwp (lp));
503
504 parea.len = sizeof (per_info);
505 parea.process_addr = (addr_t) & per_info;
506 parea.kernel_addr = offsetof (struct user_regs_struct, per_info);
507 if (ptrace (PTRACE_PEEKUSR_AREA, tid, &parea, 0) < 0)
508 perror_with_name (_("Couldn't retrieve watchpoint status"));
509
510 if (!VEC_empty (s390_watch_area, watch_areas))
511 {
512 for (ix = 0;
513 VEC_iterate (s390_watch_area, watch_areas, ix, area);
514 ix++)
515 {
516 watch_lo_addr = min (watch_lo_addr, area->lo_addr);
517 watch_hi_addr = max (watch_hi_addr, area->hi_addr);
518 }
519
520 per_info.control_regs.bits.em_storage_alteration = 1;
521 per_info.control_regs.bits.storage_alt_space_ctl = 1;
522 }
523 else
524 {
525 per_info.control_regs.bits.em_storage_alteration = 0;
526 per_info.control_regs.bits.storage_alt_space_ctl = 0;
527 }
528 per_info.starting_addr = watch_lo_addr;
529 per_info.ending_addr = watch_hi_addr;
530
531 if (ptrace (PTRACE_POKEUSR_AREA, tid, &parea, 0) < 0)
532 perror_with_name (_("Couldn't modify watchpoint status"));
533 }
534
535 /* Mark the PER info as changed, so the next resume will update it. */
536
537 static void
538 s390_mark_per_info_changed (struct lwp_info *lp)
539 {
540 if (lwp_arch_private_info (lp) == NULL)
541 lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
542
543 lwp_arch_private_info (lp)->per_info_changed = 1;
544 }
545
546 /* When attaching to a new thread, mark its PER info as changed. */
547
548 static void
549 s390_new_thread (struct lwp_info *lp)
550 {
551 s390_mark_per_info_changed (lp);
552 }
553
554 /* Iterator callback for s390_refresh_per_info. */
555
556 static int
557 s390_refresh_per_info_cb (struct lwp_info *lp, void *arg)
558 {
559 s390_mark_per_info_changed (lp);
560
561 if (!lwp_is_stopped (lp))
562 linux_stop_lwp (lp);
563 return 0;
564 }
565
566 /* Make sure that threads are stopped and mark PER info as changed. */
567
568 static int
569 s390_refresh_per_info (void)
570 {
571 ptid_t pid_ptid = pid_to_ptid (ptid_get_pid (current_lwp_ptid ()));
572
573 iterate_over_lwps (pid_ptid, s390_refresh_per_info_cb, NULL);
574 return 0;
575 }
576
577 static int
578 s390_insert_watchpoint (struct target_ops *self,
579 CORE_ADDR addr, int len, enum target_hw_bp_type type,
580 struct expression *cond)
581 {
582 s390_watch_area area;
583
584 area.lo_addr = addr;
585 area.hi_addr = addr + len - 1;
586 VEC_safe_push (s390_watch_area, watch_areas, &area);
587
588 return s390_refresh_per_info ();
589 }
590
591 static int
592 s390_remove_watchpoint (struct target_ops *self,
593 CORE_ADDR addr, int len, enum target_hw_bp_type type,
594 struct expression *cond)
595 {
596 unsigned ix;
597 s390_watch_area *area;
598
599 for (ix = 0;
600 VEC_iterate (s390_watch_area, watch_areas, ix, area);
601 ix++)
602 {
603 if (area->lo_addr == addr && area->hi_addr == addr + len - 1)
604 {
605 VEC_unordered_remove (s390_watch_area, watch_areas, ix);
606 return s390_refresh_per_info ();
607 }
608 }
609
610 fprintf_unfiltered (gdb_stderr,
611 "Attempt to remove nonexistent watchpoint.\n");
612 return -1;
613 }
614
615 static int
616 s390_can_use_hw_breakpoint (struct target_ops *self,
617 enum bptype type, int cnt, int othertype)
618 {
619 return type == bp_hardware_watchpoint;
620 }
621
622 static int
623 s390_region_ok_for_hw_watchpoint (struct target_ops *self,
624 CORE_ADDR addr, int cnt)
625 {
626 return 1;
627 }
628
629 static int
630 s390_target_wordsize (void)
631 {
632 int wordsize = 4;
633
634 /* Check for 64-bit inferior process. This is the case when the host is
635 64-bit, and in addition bit 32 of the PSW mask is set. */
636 #ifdef __s390x__
637 long pswm;
638
639 errno = 0;
640 pswm = (long) ptrace (PTRACE_PEEKUSER, s390_inferior_tid (), PT_PSWMASK, 0);
641 if (errno == 0 && (pswm & 0x100000000ul) != 0)
642 wordsize = 8;
643 #endif
644
645 return wordsize;
646 }
647
648 static int
649 s390_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
650 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
651 {
652 int sizeof_auxv_field = s390_target_wordsize ();
653 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
654 gdb_byte *ptr = *readptr;
655
656 if (endptr == ptr)
657 return 0;
658
659 if (endptr - ptr < sizeof_auxv_field * 2)
660 return -1;
661
662 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
663 ptr += sizeof_auxv_field;
664 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
665 ptr += sizeof_auxv_field;
666
667 *readptr = ptr;
668 return 1;
669 }
670
671 static const struct target_desc *
672 s390_read_description (struct target_ops *ops)
673 {
674 int tid = s390_inferior_tid ();
675
676 have_regset_last_break
677 = check_regset (tid, NT_S390_LAST_BREAK, 8);
678 have_regset_system_call
679 = check_regset (tid, NT_S390_SYSTEM_CALL, 4);
680
681 /* If GDB itself is compiled as 64-bit, we are running on a machine in
682 z/Architecture mode. If the target is running in 64-bit addressing
683 mode, report s390x architecture. If the target is running in 31-bit
684 addressing mode, but the kernel supports using 64-bit registers in
685 that mode, report s390 architecture with 64-bit GPRs. */
686 #ifdef __s390x__
687 {
688 CORE_ADDR hwcap = 0;
689
690 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
691 have_regset_tdb = (hwcap & HWCAP_S390_TE)
692 && check_regset (tid, NT_S390_TDB, s390_sizeof_tdbregset);
693
694 have_regset_vxrs = (hwcap & HWCAP_S390_VX)
695 && check_regset (tid, NT_S390_VXRS_LOW, 16 * 8)
696 && check_regset (tid, NT_S390_VXRS_HIGH, 16 * 16);
697
698 if (s390_target_wordsize () == 8)
699 return (have_regset_vxrs ?
700 (have_regset_tdb ? tdesc_s390x_tevx_linux64 :
701 tdesc_s390x_vx_linux64) :
702 have_regset_tdb ? tdesc_s390x_te_linux64 :
703 have_regset_system_call ? tdesc_s390x_linux64v2 :
704 have_regset_last_break ? tdesc_s390x_linux64v1 :
705 tdesc_s390x_linux64);
706
707 if (hwcap & HWCAP_S390_HIGH_GPRS)
708 return (have_regset_vxrs ?
709 (have_regset_tdb ? tdesc_s390_tevx_linux64 :
710 tdesc_s390_vx_linux64) :
711 have_regset_tdb ? tdesc_s390_te_linux64 :
712 have_regset_system_call ? tdesc_s390_linux64v2 :
713 have_regset_last_break ? tdesc_s390_linux64v1 :
714 tdesc_s390_linux64);
715 }
716 #endif
717
718 /* If GDB itself is compiled as 31-bit, or if we're running a 31-bit inferior
719 on a 64-bit kernel that does not support using 64-bit registers in 31-bit
720 mode, report s390 architecture with 32-bit GPRs. */
721 return (have_regset_system_call? tdesc_s390_linux32v2 :
722 have_regset_last_break? tdesc_s390_linux32v1 :
723 tdesc_s390_linux32);
724 }
725
726 void _initialize_s390_nat (void);
727
728 void
729 _initialize_s390_nat (void)
730 {
731 struct target_ops *t;
732
733 /* Fill in the generic GNU/Linux methods. */
734 t = linux_target ();
735
736 /* Add our register access methods. */
737 t->to_fetch_registers = s390_linux_fetch_inferior_registers;
738 t->to_store_registers = s390_linux_store_inferior_registers;
739
740 /* Add our watchpoint methods. */
741 t->to_can_use_hw_breakpoint = s390_can_use_hw_breakpoint;
742 t->to_region_ok_for_hw_watchpoint = s390_region_ok_for_hw_watchpoint;
743 t->to_have_continuable_watchpoint = 1;
744 t->to_stopped_by_watchpoint = s390_stopped_by_watchpoint;
745 t->to_insert_watchpoint = s390_insert_watchpoint;
746 t->to_remove_watchpoint = s390_remove_watchpoint;
747
748 /* Detect target architecture. */
749 t->to_read_description = s390_read_description;
750 t->to_auxv_parse = s390_auxv_parse;
751
752 /* Register the target. */
753 linux_nat_add_target (t);
754 linux_nat_set_new_thread (t, s390_new_thread);
755 linux_nat_set_prepare_to_resume (t, s390_prepare_to_resume);
756 }
This page took 0.094612 seconds and 4 git commands to generate.