* s390-tdep.c (s390_function_arg_pass_by_reference): Handle
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
7 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "target.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "trad-frame.h"
36 #include "frame-base.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "value.h"
42 #include "gdb_assert.h"
43 #include "dis-asm.h"
44 #include "solib-svr4.h"
45 #include "prologue-value.h"
46 #include "linux-tdep.h"
47 #include "s390-tdep.h"
48
49 #include "features/s390-linux32.c"
50 #include "features/s390-linux64.c"
51 #include "features/s390x-linux64.c"
52
53
54 /* The tdep structure. */
55
56 struct gdbarch_tdep
57 {
58 /* ABI version. */
59 enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
60
61 /* Pseudo register numbers. */
62 int gpr_full_regnum;
63 int pc_regnum;
64 int cc_regnum;
65
66 /* Core file register sets. */
67 const struct regset *gregset;
68 int sizeof_gregset;
69
70 const struct regset *fpregset;
71 int sizeof_fpregset;
72 };
73
74
75 /* ABI call-saved register information. */
76
77 static int
78 s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
79 {
80 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
81
82 switch (tdep->abi)
83 {
84 case ABI_LINUX_S390:
85 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
86 || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
87 || regnum == S390_A0_REGNUM)
88 return 1;
89
90 break;
91
92 case ABI_LINUX_ZSERIES:
93 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
94 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
95 || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
96 return 1;
97
98 break;
99 }
100
101 return 0;
102 }
103
104
105 /* DWARF Register Mapping. */
106
107 static int s390_dwarf_regmap[] =
108 {
109 /* General Purpose Registers. */
110 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
111 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
112 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
113 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
114
115 /* Floating Point Registers. */
116 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
117 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
118 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
119 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
120
121 /* Control Registers (not mapped). */
122 -1, -1, -1, -1, -1, -1, -1, -1,
123 -1, -1, -1, -1, -1, -1, -1, -1,
124
125 /* Access Registers. */
126 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
127 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
128 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
129 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
130
131 /* Program Status Word. */
132 S390_PSWM_REGNUM,
133 S390_PSWA_REGNUM,
134
135 /* GPR Lower Half Access. */
136 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
137 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
138 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
139 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
140 };
141
142 /* Convert DWARF register number REG to the appropriate register
143 number used by GDB. */
144 static int
145 s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 /* In a 32-on-64 debug scenario, debug info refers to the full 64-bit
150 GPRs. Note that call frame information still refers to the 32-bit
151 lower halves, because s390_adjust_frame_regnum uses register numbers
152 66 .. 81 to access GPRs. */
153 if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
154 return tdep->gpr_full_regnum + reg;
155
156 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
157 return s390_dwarf_regmap[reg];
158
159 warning (_("Unmapped DWARF Register #%d encountered."), reg);
160 return -1;
161 }
162
163 /* Translate a .eh_frame register to DWARF register, or adjust a
164 .debug_frame register. */
165 static int
166 s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
167 {
168 /* See s390_dwarf_reg_to_regnum for comments. */
169 return (num >= 0 && num < 16)? num + 66 : num;
170 }
171
172
173 /* Pseudo registers. */
174
175 static const char *
176 s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
177 {
178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
179
180 if (regnum == tdep->pc_regnum)
181 return "pc";
182
183 if (regnum == tdep->cc_regnum)
184 return "cc";
185
186 if (tdep->gpr_full_regnum != -1
187 && regnum >= tdep->gpr_full_regnum
188 && regnum < tdep->gpr_full_regnum + 16)
189 {
190 static const char *full_name[] = {
191 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
192 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
193 };
194 return full_name[regnum - tdep->gpr_full_regnum];
195 }
196
197 internal_error (__FILE__, __LINE__, _("invalid regnum"));
198 }
199
200 static struct type *
201 s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204
205 if (regnum == tdep->pc_regnum)
206 return builtin_type (gdbarch)->builtin_func_ptr;
207
208 if (regnum == tdep->cc_regnum)
209 return builtin_type (gdbarch)->builtin_int;
210
211 if (tdep->gpr_full_regnum != -1
212 && regnum >= tdep->gpr_full_regnum
213 && regnum < tdep->gpr_full_regnum + 16)
214 return builtin_type (gdbarch)->builtin_uint64;
215
216 internal_error (__FILE__, __LINE__, _("invalid regnum"));
217 }
218
219 static enum register_status
220 s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
221 int regnum, gdb_byte *buf)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
225 int regsize = register_size (gdbarch, regnum);
226 ULONGEST val;
227
228 if (regnum == tdep->pc_regnum)
229 {
230 enum register_status status;
231
232 status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
233 if (status == REG_VALID)
234 {
235 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
236 val &= 0x7fffffff;
237 store_unsigned_integer (buf, regsize, byte_order, val);
238 }
239 return status;
240 }
241
242 if (regnum == tdep->cc_regnum)
243 {
244 enum register_status status;
245
246 status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
247 if (status == REG_VALID)
248 {
249 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
250 val = (val >> 12) & 3;
251 else
252 val = (val >> 44) & 3;
253 store_unsigned_integer (buf, regsize, byte_order, val);
254 }
255 return status;
256 }
257
258 if (tdep->gpr_full_regnum != -1
259 && regnum >= tdep->gpr_full_regnum
260 && regnum < tdep->gpr_full_regnum + 16)
261 {
262 enum register_status status;
263 ULONGEST val_upper;
264
265 regnum -= tdep->gpr_full_regnum;
266
267 status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
268 if (status == REG_VALID)
269 status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
270 &val_upper);
271 if (status == REG_VALID)
272 {
273 val |= val_upper << 32;
274 store_unsigned_integer (buf, regsize, byte_order, val);
275 }
276 return status;
277 }
278
279 internal_error (__FILE__, __LINE__, _("invalid regnum"));
280 }
281
282 static void
283 s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
284 int regnum, const gdb_byte *buf)
285 {
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
288 int regsize = register_size (gdbarch, regnum);
289 ULONGEST val, psw;
290
291 if (regnum == tdep->pc_regnum)
292 {
293 val = extract_unsigned_integer (buf, regsize, byte_order);
294 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
295 {
296 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
297 val = (psw & 0x80000000) | (val & 0x7fffffff);
298 }
299 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
300 return;
301 }
302
303 if (regnum == tdep->cc_regnum)
304 {
305 val = extract_unsigned_integer (buf, regsize, byte_order);
306 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
307 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
308 val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
309 else
310 val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
311 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
312 return;
313 }
314
315 if (tdep->gpr_full_regnum != -1
316 && regnum >= tdep->gpr_full_regnum
317 && regnum < tdep->gpr_full_regnum + 16)
318 {
319 regnum -= tdep->gpr_full_regnum;
320 val = extract_unsigned_integer (buf, regsize, byte_order);
321 regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
322 val & 0xffffffff);
323 regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
324 val >> 32);
325 return;
326 }
327
328 internal_error (__FILE__, __LINE__, _("invalid regnum"));
329 }
330
331 /* 'float' values are stored in the upper half of floating-point
332 registers, even though we are otherwise a big-endian platform. */
333
334 static struct value *
335 s390_value_from_register (struct type *type, int regnum,
336 struct frame_info *frame)
337 {
338 struct value *value = default_value_from_register (type, regnum, frame);
339 int len = TYPE_LENGTH (check_typedef (type));
340
341 if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
342 set_value_offset (value, 0);
343
344 return value;
345 }
346
347 /* Register groups. */
348
349 static int
350 s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
351 struct reggroup *group)
352 {
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
355 /* PC and CC pseudo registers need to be saved/restored in order to
356 push or pop frames. */
357 if (group == save_reggroup || group == restore_reggroup)
358 return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
359
360 return default_register_reggroup_p (gdbarch, regnum, group);
361 }
362
363
364 /* Core file register sets. */
365
366 int s390_regmap_gregset[S390_NUM_REGS] =
367 {
368 /* Program Status Word. */
369 0x00, 0x04,
370 /* General Purpose Registers. */
371 0x08, 0x0c, 0x10, 0x14,
372 0x18, 0x1c, 0x20, 0x24,
373 0x28, 0x2c, 0x30, 0x34,
374 0x38, 0x3c, 0x40, 0x44,
375 /* Access Registers. */
376 0x48, 0x4c, 0x50, 0x54,
377 0x58, 0x5c, 0x60, 0x64,
378 0x68, 0x6c, 0x70, 0x74,
379 0x78, 0x7c, 0x80, 0x84,
380 /* Floating Point Control Word. */
381 -1,
382 /* Floating Point Registers. */
383 -1, -1, -1, -1, -1, -1, -1, -1,
384 -1, -1, -1, -1, -1, -1, -1, -1,
385 /* GPR Uppper Halves. */
386 -1, -1, -1, -1, -1, -1, -1, -1,
387 -1, -1, -1, -1, -1, -1, -1, -1,
388 };
389
390 int s390x_regmap_gregset[S390_NUM_REGS] =
391 {
392 /* Program Status Word. */
393 0x00, 0x08,
394 /* General Purpose Registers. */
395 0x10, 0x18, 0x20, 0x28,
396 0x30, 0x38, 0x40, 0x48,
397 0x50, 0x58, 0x60, 0x68,
398 0x70, 0x78, 0x80, 0x88,
399 /* Access Registers. */
400 0x90, 0x94, 0x98, 0x9c,
401 0xa0, 0xa4, 0xa8, 0xac,
402 0xb0, 0xb4, 0xb8, 0xbc,
403 0xc0, 0xc4, 0xc8, 0xcc,
404 /* Floating Point Control Word. */
405 -1,
406 /* Floating Point Registers. */
407 -1, -1, -1, -1, -1, -1, -1, -1,
408 -1, -1, -1, -1, -1, -1, -1, -1,
409 /* GPR Uppper Halves. */
410 0x10, 0x18, 0x20, 0x28,
411 0x30, 0x38, 0x40, 0x48,
412 0x50, 0x58, 0x60, 0x68,
413 0x70, 0x78, 0x80, 0x88,
414 };
415
416 int s390_regmap_fpregset[S390_NUM_REGS] =
417 {
418 /* Program Status Word. */
419 -1, -1,
420 /* General Purpose Registers. */
421 -1, -1, -1, -1, -1, -1, -1, -1,
422 -1, -1, -1, -1, -1, -1, -1, -1,
423 /* Access Registers. */
424 -1, -1, -1, -1, -1, -1, -1, -1,
425 -1, -1, -1, -1, -1, -1, -1, -1,
426 /* Floating Point Control Word. */
427 0x00,
428 /* Floating Point Registers. */
429 0x08, 0x10, 0x18, 0x20,
430 0x28, 0x30, 0x38, 0x40,
431 0x48, 0x50, 0x58, 0x60,
432 0x68, 0x70, 0x78, 0x80,
433 /* GPR Uppper Halves. */
434 -1, -1, -1, -1, -1, -1, -1, -1,
435 -1, -1, -1, -1, -1, -1, -1, -1,
436 };
437
438 int s390_regmap_upper[S390_NUM_REGS] =
439 {
440 /* Program Status Word. */
441 -1, -1,
442 /* General Purpose Registers. */
443 -1, -1, -1, -1, -1, -1, -1, -1,
444 -1, -1, -1, -1, -1, -1, -1, -1,
445 /* Access Registers. */
446 -1, -1, -1, -1, -1, -1, -1, -1,
447 -1, -1, -1, -1, -1, -1, -1, -1,
448 /* Floating Point Control Word. */
449 -1,
450 /* Floating Point Registers. */
451 -1, -1, -1, -1, -1, -1, -1, -1,
452 -1, -1, -1, -1, -1, -1, -1, -1,
453 /* GPR Uppper Halves. */
454 0x00, 0x04, 0x08, 0x0c,
455 0x10, 0x14, 0x18, 0x1c,
456 0x20, 0x24, 0x28, 0x2c,
457 0x30, 0x34, 0x38, 0x3c,
458 };
459
460 /* Supply register REGNUM from the register set REGSET to register cache
461 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
462 static void
463 s390_supply_regset (const struct regset *regset, struct regcache *regcache,
464 int regnum, const void *regs, size_t len)
465 {
466 const int *offset = regset->descr;
467 int i;
468
469 for (i = 0; i < S390_NUM_REGS; i++)
470 {
471 if ((regnum == i || regnum == -1) && offset[i] != -1)
472 regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
473 }
474 }
475
476 /* Collect register REGNUM from the register cache REGCACHE and store
477 it in the buffer specified by REGS and LEN as described by the
478 general-purpose register set REGSET. If REGNUM is -1, do this for
479 all registers in REGSET. */
480 static void
481 s390_collect_regset (const struct regset *regset,
482 const struct regcache *regcache,
483 int regnum, void *regs, size_t len)
484 {
485 const int *offset = regset->descr;
486 int i;
487
488 for (i = 0; i < S390_NUM_REGS; i++)
489 {
490 if ((regnum == i || regnum == -1) && offset[i] != -1)
491 regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
492 }
493 }
494
495 static const struct regset s390_gregset = {
496 s390_regmap_gregset,
497 s390_supply_regset,
498 s390_collect_regset
499 };
500
501 static const struct regset s390x_gregset = {
502 s390x_regmap_gregset,
503 s390_supply_regset,
504 s390_collect_regset
505 };
506
507 static const struct regset s390_fpregset = {
508 s390_regmap_fpregset,
509 s390_supply_regset,
510 s390_collect_regset
511 };
512
513 static const struct regset s390_upper_regset = {
514 s390_regmap_upper,
515 s390_supply_regset,
516 s390_collect_regset
517 };
518
519 static struct core_regset_section s390_upper_regset_sections[] =
520 {
521 { ".reg", s390_sizeof_gregset, "general-purpose" },
522 { ".reg2", s390_sizeof_fpregset, "floating-point" },
523 { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
524 { NULL, 0}
525 };
526
527 /* Return the appropriate register set for the core section identified
528 by SECT_NAME and SECT_SIZE. */
529 static const struct regset *
530 s390_regset_from_core_section (struct gdbarch *gdbarch,
531 const char *sect_name, size_t sect_size)
532 {
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534
535 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
536 return tdep->gregset;
537
538 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
539 return tdep->fpregset;
540
541 if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4)
542 return &s390_upper_regset;
543
544 return NULL;
545 }
546
547 static const struct target_desc *
548 s390_core_read_description (struct gdbarch *gdbarch,
549 struct target_ops *target, bfd *abfd)
550 {
551 asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs");
552 asection *section = bfd_get_section_by_name (abfd, ".reg");
553 if (!section)
554 return NULL;
555
556 switch (bfd_section_size (abfd, section))
557 {
558 case s390_sizeof_gregset:
559 return high_gprs? tdesc_s390_linux64 : tdesc_s390_linux32;
560
561 case s390x_sizeof_gregset:
562 return tdesc_s390x_linux64;
563
564 default:
565 return NULL;
566 }
567 }
568
569
570 /* Decoding S/390 instructions. */
571
572 /* Named opcode values for the S/390 instructions we recognize. Some
573 instructions have their opcode split across two fields; those are the
574 op1_* and op2_* enums. */
575 enum
576 {
577 op1_lhi = 0xa7, op2_lhi = 0x08,
578 op1_lghi = 0xa7, op2_lghi = 0x09,
579 op1_lgfi = 0xc0, op2_lgfi = 0x01,
580 op_lr = 0x18,
581 op_lgr = 0xb904,
582 op_l = 0x58,
583 op1_ly = 0xe3, op2_ly = 0x58,
584 op1_lg = 0xe3, op2_lg = 0x04,
585 op_lm = 0x98,
586 op1_lmy = 0xeb, op2_lmy = 0x98,
587 op1_lmg = 0xeb, op2_lmg = 0x04,
588 op_st = 0x50,
589 op1_sty = 0xe3, op2_sty = 0x50,
590 op1_stg = 0xe3, op2_stg = 0x24,
591 op_std = 0x60,
592 op_stm = 0x90,
593 op1_stmy = 0xeb, op2_stmy = 0x90,
594 op1_stmg = 0xeb, op2_stmg = 0x24,
595 op1_aghi = 0xa7, op2_aghi = 0x0b,
596 op1_ahi = 0xa7, op2_ahi = 0x0a,
597 op1_agfi = 0xc2, op2_agfi = 0x08,
598 op1_afi = 0xc2, op2_afi = 0x09,
599 op1_algfi= 0xc2, op2_algfi= 0x0a,
600 op1_alfi = 0xc2, op2_alfi = 0x0b,
601 op_ar = 0x1a,
602 op_agr = 0xb908,
603 op_a = 0x5a,
604 op1_ay = 0xe3, op2_ay = 0x5a,
605 op1_ag = 0xe3, op2_ag = 0x08,
606 op1_slgfi= 0xc2, op2_slgfi= 0x04,
607 op1_slfi = 0xc2, op2_slfi = 0x05,
608 op_sr = 0x1b,
609 op_sgr = 0xb909,
610 op_s = 0x5b,
611 op1_sy = 0xe3, op2_sy = 0x5b,
612 op1_sg = 0xe3, op2_sg = 0x09,
613 op_nr = 0x14,
614 op_ngr = 0xb980,
615 op_la = 0x41,
616 op1_lay = 0xe3, op2_lay = 0x71,
617 op1_larl = 0xc0, op2_larl = 0x00,
618 op_basr = 0x0d,
619 op_bas = 0x4d,
620 op_bcr = 0x07,
621 op_bc = 0x0d,
622 op_bctr = 0x06,
623 op_bctgr = 0xb946,
624 op_bct = 0x46,
625 op1_bctg = 0xe3, op2_bctg = 0x46,
626 op_bxh = 0x86,
627 op1_bxhg = 0xeb, op2_bxhg = 0x44,
628 op_bxle = 0x87,
629 op1_bxleg= 0xeb, op2_bxleg= 0x45,
630 op1_bras = 0xa7, op2_bras = 0x05,
631 op1_brasl= 0xc0, op2_brasl= 0x05,
632 op1_brc = 0xa7, op2_brc = 0x04,
633 op1_brcl = 0xc0, op2_brcl = 0x04,
634 op1_brct = 0xa7, op2_brct = 0x06,
635 op1_brctg= 0xa7, op2_brctg= 0x07,
636 op_brxh = 0x84,
637 op1_brxhg= 0xec, op2_brxhg= 0x44,
638 op_brxle = 0x85,
639 op1_brxlg= 0xec, op2_brxlg= 0x45,
640 };
641
642
643 /* Read a single instruction from address AT. */
644
645 #define S390_MAX_INSTR_SIZE 6
646 static int
647 s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
648 {
649 static int s390_instrlen[] = { 2, 4, 4, 6 };
650 int instrlen;
651
652 if (target_read_memory (at, &instr[0], 2))
653 return -1;
654 instrlen = s390_instrlen[instr[0] >> 6];
655 if (instrlen > 2)
656 {
657 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
658 return -1;
659 }
660 return instrlen;
661 }
662
663
664 /* The functions below are for recognizing and decoding S/390
665 instructions of various formats. Each of them checks whether INSN
666 is an instruction of the given format, with the specified opcodes.
667 If it is, it sets the remaining arguments to the values of the
668 instruction's fields, and returns a non-zero value; otherwise, it
669 returns zero.
670
671 These functions' arguments appear in the order they appear in the
672 instruction, not in the machine-language form. So, opcodes always
673 come first, even though they're sometimes scattered around the
674 instructions. And displacements appear before base and extension
675 registers, as they do in the assembly syntax, not at the end, as
676 they do in the machine language. */
677 static int
678 is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
679 {
680 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
681 {
682 *r1 = (insn[1] >> 4) & 0xf;
683 /* i2 is a 16-bit signed quantity. */
684 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
685 return 1;
686 }
687 else
688 return 0;
689 }
690
691
692 static int
693 is_ril (bfd_byte *insn, int op1, int op2,
694 unsigned int *r1, int *i2)
695 {
696 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
697 {
698 *r1 = (insn[1] >> 4) & 0xf;
699 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
700 no sign extension is necessary, but we don't want to assume
701 that. */
702 *i2 = (((insn[2] << 24)
703 | (insn[3] << 16)
704 | (insn[4] << 8)
705 | (insn[5])) ^ 0x80000000) - 0x80000000;
706 return 1;
707 }
708 else
709 return 0;
710 }
711
712
713 static int
714 is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
715 {
716 if (insn[0] == op)
717 {
718 *r1 = (insn[1] >> 4) & 0xf;
719 *r2 = insn[1] & 0xf;
720 return 1;
721 }
722 else
723 return 0;
724 }
725
726
727 static int
728 is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
729 {
730 if (((insn[0] << 8) | insn[1]) == op)
731 {
732 /* Yes, insn[3]. insn[2] is unused in RRE format. */
733 *r1 = (insn[3] >> 4) & 0xf;
734 *r2 = insn[3] & 0xf;
735 return 1;
736 }
737 else
738 return 0;
739 }
740
741
742 static int
743 is_rs (bfd_byte *insn, int op,
744 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
745 {
746 if (insn[0] == op)
747 {
748 *r1 = (insn[1] >> 4) & 0xf;
749 *r3 = insn[1] & 0xf;
750 *b2 = (insn[2] >> 4) & 0xf;
751 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
752 return 1;
753 }
754 else
755 return 0;
756 }
757
758
759 static int
760 is_rsy (bfd_byte *insn, int op1, int op2,
761 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
762 {
763 if (insn[0] == op1
764 && insn[5] == op2)
765 {
766 *r1 = (insn[1] >> 4) & 0xf;
767 *r3 = insn[1] & 0xf;
768 *b2 = (insn[2] >> 4) & 0xf;
769 /* The 'long displacement' is a 20-bit signed integer. */
770 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
771 ^ 0x80000) - 0x80000;
772 return 1;
773 }
774 else
775 return 0;
776 }
777
778
779 static int
780 is_rsi (bfd_byte *insn, int op,
781 unsigned int *r1, unsigned int *r3, int *i2)
782 {
783 if (insn[0] == op)
784 {
785 *r1 = (insn[1] >> 4) & 0xf;
786 *r3 = insn[1] & 0xf;
787 /* i2 is a 16-bit signed quantity. */
788 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
789 return 1;
790 }
791 else
792 return 0;
793 }
794
795
796 static int
797 is_rie (bfd_byte *insn, int op1, int op2,
798 unsigned int *r1, unsigned int *r3, int *i2)
799 {
800 if (insn[0] == op1
801 && insn[5] == op2)
802 {
803 *r1 = (insn[1] >> 4) & 0xf;
804 *r3 = insn[1] & 0xf;
805 /* i2 is a 16-bit signed quantity. */
806 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
807 return 1;
808 }
809 else
810 return 0;
811 }
812
813
814 static int
815 is_rx (bfd_byte *insn, int op,
816 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
817 {
818 if (insn[0] == op)
819 {
820 *r1 = (insn[1] >> 4) & 0xf;
821 *x2 = insn[1] & 0xf;
822 *b2 = (insn[2] >> 4) & 0xf;
823 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
824 return 1;
825 }
826 else
827 return 0;
828 }
829
830
831 static int
832 is_rxy (bfd_byte *insn, int op1, int op2,
833 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
834 {
835 if (insn[0] == op1
836 && insn[5] == op2)
837 {
838 *r1 = (insn[1] >> 4) & 0xf;
839 *x2 = insn[1] & 0xf;
840 *b2 = (insn[2] >> 4) & 0xf;
841 /* The 'long displacement' is a 20-bit signed integer. */
842 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
843 ^ 0x80000) - 0x80000;
844 return 1;
845 }
846 else
847 return 0;
848 }
849
850
851 /* Prologue analysis. */
852
853 #define S390_NUM_GPRS 16
854 #define S390_NUM_FPRS 16
855
856 struct s390_prologue_data {
857
858 /* The stack. */
859 struct pv_area *stack;
860
861 /* The size and byte-order of a GPR or FPR. */
862 int gpr_size;
863 int fpr_size;
864 enum bfd_endian byte_order;
865
866 /* The general-purpose registers. */
867 pv_t gpr[S390_NUM_GPRS];
868
869 /* The floating-point registers. */
870 pv_t fpr[S390_NUM_FPRS];
871
872 /* The offset relative to the CFA where the incoming GPR N was saved
873 by the function prologue. 0 if not saved or unknown. */
874 int gpr_slot[S390_NUM_GPRS];
875
876 /* Likewise for FPRs. */
877 int fpr_slot[S390_NUM_FPRS];
878
879 /* Nonzero if the backchain was saved. This is assumed to be the
880 case when the incoming SP is saved at the current SP location. */
881 int back_chain_saved_p;
882 };
883
884 /* Return the effective address for an X-style instruction, like:
885
886 L R1, D2(X2, B2)
887
888 Here, X2 and B2 are registers, and D2 is a signed 20-bit
889 constant; the effective address is the sum of all three. If either
890 X2 or B2 are zero, then it doesn't contribute to the sum --- this
891 means that r0 can't be used as either X2 or B2. */
892 static pv_t
893 s390_addr (struct s390_prologue_data *data,
894 int d2, unsigned int x2, unsigned int b2)
895 {
896 pv_t result;
897
898 result = pv_constant (d2);
899 if (x2)
900 result = pv_add (result, data->gpr[x2]);
901 if (b2)
902 result = pv_add (result, data->gpr[b2]);
903
904 return result;
905 }
906
907 /* Do a SIZE-byte store of VALUE to D2(X2,B2). */
908 static void
909 s390_store (struct s390_prologue_data *data,
910 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
911 pv_t value)
912 {
913 pv_t addr = s390_addr (data, d2, x2, b2);
914 pv_t offset;
915
916 /* Check whether we are storing the backchain. */
917 offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
918
919 if (pv_is_constant (offset) && offset.k == 0)
920 if (size == data->gpr_size
921 && pv_is_register_k (value, S390_SP_REGNUM, 0))
922 {
923 data->back_chain_saved_p = 1;
924 return;
925 }
926
927
928 /* Check whether we are storing a register into the stack. */
929 if (!pv_area_store_would_trash (data->stack, addr))
930 pv_area_store (data->stack, addr, size, value);
931
932
933 /* Note: If this is some store we cannot identify, you might think we
934 should forget our cached values, as any of those might have been hit.
935
936 However, we make the assumption that the register save areas are only
937 ever stored to once in any given function, and we do recognize these
938 stores. Thus every store we cannot recognize does not hit our data. */
939 }
940
941 /* Do a SIZE-byte load from D2(X2,B2). */
942 static pv_t
943 s390_load (struct s390_prologue_data *data,
944 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
945
946 {
947 pv_t addr = s390_addr (data, d2, x2, b2);
948 pv_t offset;
949
950 /* If it's a load from an in-line constant pool, then we can
951 simulate that, under the assumption that the code isn't
952 going to change between the time the processor actually
953 executed it creating the current frame, and the time when
954 we're analyzing the code to unwind past that frame. */
955 if (pv_is_constant (addr))
956 {
957 struct target_section *secp;
958 secp = target_section_by_addr (&current_target, addr.k);
959 if (secp != NULL
960 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
961 & SEC_READONLY))
962 return pv_constant (read_memory_integer (addr.k, size,
963 data->byte_order));
964 }
965
966 /* Check whether we are accessing one of our save slots. */
967 return pv_area_fetch (data->stack, addr, size);
968 }
969
970 /* Function for finding saved registers in a 'struct pv_area'; we pass
971 this to pv_area_scan.
972
973 If VALUE is a saved register, ADDR says it was saved at a constant
974 offset from the frame base, and SIZE indicates that the whole
975 register was saved, record its offset in the reg_offset table in
976 PROLOGUE_UNTYPED. */
977 static void
978 s390_check_for_saved (void *data_untyped, pv_t addr,
979 CORE_ADDR size, pv_t value)
980 {
981 struct s390_prologue_data *data = data_untyped;
982 int i, offset;
983
984 if (!pv_is_register (addr, S390_SP_REGNUM))
985 return;
986
987 offset = 16 * data->gpr_size + 32 - addr.k;
988
989 /* If we are storing the original value of a register, we want to
990 record the CFA offset. If the same register is stored multiple
991 times, the stack slot with the highest address counts. */
992
993 for (i = 0; i < S390_NUM_GPRS; i++)
994 if (size == data->gpr_size
995 && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
996 if (data->gpr_slot[i] == 0
997 || data->gpr_slot[i] > offset)
998 {
999 data->gpr_slot[i] = offset;
1000 return;
1001 }
1002
1003 for (i = 0; i < S390_NUM_FPRS; i++)
1004 if (size == data->fpr_size
1005 && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
1006 if (data->fpr_slot[i] == 0
1007 || data->fpr_slot[i] > offset)
1008 {
1009 data->fpr_slot[i] = offset;
1010 return;
1011 }
1012 }
1013
1014 /* Analyze the prologue of the function starting at START_PC,
1015 continuing at most until CURRENT_PC. Initialize DATA to
1016 hold all information we find out about the state of the registers
1017 and stack slots. Return the address of the instruction after
1018 the last one that changed the SP, FP, or back chain; or zero
1019 on error. */
1020 static CORE_ADDR
1021 s390_analyze_prologue (struct gdbarch *gdbarch,
1022 CORE_ADDR start_pc,
1023 CORE_ADDR current_pc,
1024 struct s390_prologue_data *data)
1025 {
1026 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1027
1028 /* Our return value:
1029 The address of the instruction after the last one that changed
1030 the SP, FP, or back chain; zero if we got an error trying to
1031 read memory. */
1032 CORE_ADDR result = start_pc;
1033
1034 /* The current PC for our abstract interpretation. */
1035 CORE_ADDR pc;
1036
1037 /* The address of the next instruction after that. */
1038 CORE_ADDR next_pc;
1039
1040 /* Set up everything's initial value. */
1041 {
1042 int i;
1043
1044 data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1045
1046 /* For the purpose of prologue tracking, we consider the GPR size to
1047 be equal to the ABI word size, even if it is actually larger
1048 (i.e. when running a 32-bit binary under a 64-bit kernel). */
1049 data->gpr_size = word_size;
1050 data->fpr_size = 8;
1051 data->byte_order = gdbarch_byte_order (gdbarch);
1052
1053 for (i = 0; i < S390_NUM_GPRS; i++)
1054 data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
1055
1056 for (i = 0; i < S390_NUM_FPRS; i++)
1057 data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
1058
1059 for (i = 0; i < S390_NUM_GPRS; i++)
1060 data->gpr_slot[i] = 0;
1061
1062 for (i = 0; i < S390_NUM_FPRS; i++)
1063 data->fpr_slot[i] = 0;
1064
1065 data->back_chain_saved_p = 0;
1066 }
1067
1068 /* Start interpreting instructions, until we hit the frame's
1069 current PC or the first branch instruction. */
1070 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
1071 {
1072 bfd_byte insn[S390_MAX_INSTR_SIZE];
1073 int insn_len = s390_readinstruction (insn, pc);
1074
1075 bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
1076 bfd_byte *insn32 = word_size == 4 ? insn : dummy;
1077 bfd_byte *insn64 = word_size == 8 ? insn : dummy;
1078
1079 /* Fields for various kinds of instructions. */
1080 unsigned int b2, r1, r2, x2, r3;
1081 int i2, d2;
1082
1083 /* The values of SP and FP before this instruction,
1084 for detecting instructions that change them. */
1085 pv_t pre_insn_sp, pre_insn_fp;
1086 /* Likewise for the flag whether the back chain was saved. */
1087 int pre_insn_back_chain_saved_p;
1088
1089 /* If we got an error trying to read the instruction, report it. */
1090 if (insn_len < 0)
1091 {
1092 result = 0;
1093 break;
1094 }
1095
1096 next_pc = pc + insn_len;
1097
1098 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1099 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1100 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
1101
1102
1103 /* LHI r1, i2 --- load halfword immediate. */
1104 /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
1105 /* LGFI r1, i2 --- load fullword immediate. */
1106 if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
1107 || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
1108 || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
1109 data->gpr[r1] = pv_constant (i2);
1110
1111 /* LR r1, r2 --- load from register. */
1112 /* LGR r1, r2 --- load from register (64-bit version). */
1113 else if (is_rr (insn32, op_lr, &r1, &r2)
1114 || is_rre (insn64, op_lgr, &r1, &r2))
1115 data->gpr[r1] = data->gpr[r2];
1116
1117 /* L r1, d2(x2, b2) --- load. */
1118 /* LY r1, d2(x2, b2) --- load (long-displacement version). */
1119 /* LG r1, d2(x2, b2) --- load (64-bit version). */
1120 else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
1121 || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
1122 || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
1123 data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
1124
1125 /* ST r1, d2(x2, b2) --- store. */
1126 /* STY r1, d2(x2, b2) --- store (long-displacement version). */
1127 /* STG r1, d2(x2, b2) --- store (64-bit version). */
1128 else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
1129 || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
1130 || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1131 s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
1132
1133 /* STD r1, d2(x2,b2) --- store floating-point register. */
1134 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
1135 s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
1136
1137 /* STM r1, r3, d2(b2) --- store multiple. */
1138 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
1139 version). */
1140 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
1141 else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
1142 || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
1143 || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
1144 {
1145 for (; r1 <= r3; r1++, d2 += data->gpr_size)
1146 s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
1147 }
1148
1149 /* AHI r1, i2 --- add halfword immediate. */
1150 /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
1151 /* AFI r1, i2 --- add fullword immediate. */
1152 /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
1153 else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
1154 || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
1155 || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
1156 || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
1157 data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
1158
1159 /* ALFI r1, i2 --- add logical immediate. */
1160 /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
1161 else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
1162 || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
1163 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1164 (CORE_ADDR)i2 & 0xffffffff);
1165
1166 /* AR r1, r2 -- add register. */
1167 /* AGR r1, r2 -- add register (64-bit version). */
1168 else if (is_rr (insn32, op_ar, &r1, &r2)
1169 || is_rre (insn64, op_agr, &r1, &r2))
1170 data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
1171
1172 /* A r1, d2(x2, b2) -- add. */
1173 /* AY r1, d2(x2, b2) -- add (long-displacement version). */
1174 /* AG r1, d2(x2, b2) -- add (64-bit version). */
1175 else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
1176 || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
1177 || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
1178 data->gpr[r1] = pv_add (data->gpr[r1],
1179 s390_load (data, d2, x2, b2, data->gpr_size));
1180
1181 /* SLFI r1, i2 --- subtract logical immediate. */
1182 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
1183 else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
1184 || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
1185 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1186 -((CORE_ADDR)i2 & 0xffffffff));
1187
1188 /* SR r1, r2 -- subtract register. */
1189 /* SGR r1, r2 -- subtract register (64-bit version). */
1190 else if (is_rr (insn32, op_sr, &r1, &r2)
1191 || is_rre (insn64, op_sgr, &r1, &r2))
1192 data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
1193
1194 /* S r1, d2(x2, b2) -- subtract. */
1195 /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
1196 /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
1197 else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
1198 || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
1199 || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1200 data->gpr[r1] = pv_subtract (data->gpr[r1],
1201 s390_load (data, d2, x2, b2, data->gpr_size));
1202
1203 /* LA r1, d2(x2, b2) --- load address. */
1204 /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
1205 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
1206 || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1207 data->gpr[r1] = s390_addr (data, d2, x2, b2);
1208
1209 /* LARL r1, i2 --- load address relative long. */
1210 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1211 data->gpr[r1] = pv_constant (pc + i2 * 2);
1212
1213 /* BASR r1, 0 --- branch and save.
1214 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1215 else if (is_rr (insn, op_basr, &r1, &r2)
1216 && r2 == 0)
1217 data->gpr[r1] = pv_constant (next_pc);
1218
1219 /* BRAS r1, i2 --- branch relative and save. */
1220 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1221 {
1222 data->gpr[r1] = pv_constant (next_pc);
1223 next_pc = pc + i2 * 2;
1224
1225 /* We'd better not interpret any backward branches. We'll
1226 never terminate. */
1227 if (next_pc <= pc)
1228 break;
1229 }
1230
1231 /* Terminate search when hitting any other branch instruction. */
1232 else if (is_rr (insn, op_basr, &r1, &r2)
1233 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1234 || is_rr (insn, op_bcr, &r1, &r2)
1235 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1236 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1237 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1238 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1239 break;
1240
1241 else
1242 /* An instruction we don't know how to simulate. The only
1243 safe thing to do would be to set every value we're tracking
1244 to 'unknown'. Instead, we'll be optimistic: we assume that
1245 we *can* interpret every instruction that the compiler uses
1246 to manipulate any of the data we're interested in here --
1247 then we can just ignore anything else. */
1248 ;
1249
1250 /* Record the address after the last instruction that changed
1251 the FP, SP, or backlink. Ignore instructions that changed
1252 them back to their original values --- those are probably
1253 restore instructions. (The back chain is never restored,
1254 just popped.) */
1255 {
1256 pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1257 pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1258
1259 if ((! pv_is_identical (pre_insn_sp, sp)
1260 && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
1261 && sp.kind != pvk_unknown)
1262 || (! pv_is_identical (pre_insn_fp, fp)
1263 && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
1264 && fp.kind != pvk_unknown)
1265 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
1266 result = next_pc;
1267 }
1268 }
1269
1270 /* Record where all the registers were saved. */
1271 pv_area_scan (data->stack, s390_check_for_saved, data);
1272
1273 free_pv_area (data->stack);
1274 data->stack = NULL;
1275
1276 return result;
1277 }
1278
1279 /* Advance PC across any function entry prologue instructions to reach
1280 some "real" code. */
1281 static CORE_ADDR
1282 s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1283 {
1284 struct s390_prologue_data data;
1285 CORE_ADDR skip_pc;
1286 skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
1287 return skip_pc ? skip_pc : pc;
1288 }
1289
1290 /* Return true if we are in the functin's epilogue, i.e. after the
1291 instruction that destroyed the function's stack frame. */
1292 static int
1293 s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1294 {
1295 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1296
1297 /* In frameless functions, there's not frame to destroy and thus
1298 we don't care about the epilogue.
1299
1300 In functions with frame, the epilogue sequence is a pair of
1301 a LM-type instruction that restores (amongst others) the
1302 return register %r14 and the stack pointer %r15, followed
1303 by a branch 'br %r14' --or equivalent-- that effects the
1304 actual return.
1305
1306 In that situation, this function needs to return 'true' in
1307 exactly one case: when pc points to that branch instruction.
1308
1309 Thus we try to disassemble the one instructions immediately
1310 preceding pc and check whether it is an LM-type instruction
1311 modifying the stack pointer.
1312
1313 Note that disassembling backwards is not reliable, so there
1314 is a slight chance of false positives here ... */
1315
1316 bfd_byte insn[6];
1317 unsigned int r1, r3, b2;
1318 int d2;
1319
1320 if (word_size == 4
1321 && !target_read_memory (pc - 4, insn, 4)
1322 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1323 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1324 return 1;
1325
1326 if (word_size == 4
1327 && !target_read_memory (pc - 6, insn, 6)
1328 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1329 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1330 return 1;
1331
1332 if (word_size == 8
1333 && !target_read_memory (pc - 6, insn, 6)
1334 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
1335 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1336 return 1;
1337
1338 return 0;
1339 }
1340
1341 /* Displaced stepping. */
1342
1343 /* Fix up the state of registers and memory after having single-stepped
1344 a displaced instruction. */
1345 static void
1346 s390_displaced_step_fixup (struct gdbarch *gdbarch,
1347 struct displaced_step_closure *closure,
1348 CORE_ADDR from, CORE_ADDR to,
1349 struct regcache *regs)
1350 {
1351 /* Since we use simple_displaced_step_copy_insn, our closure is a
1352 copy of the instruction. */
1353 gdb_byte *insn = (gdb_byte *) closure;
1354 static int s390_instrlen[] = { 2, 4, 4, 6 };
1355 int insnlen = s390_instrlen[insn[0] >> 6];
1356
1357 /* Fields for various kinds of instructions. */
1358 unsigned int b2, r1, r2, x2, r3;
1359 int i2, d2;
1360
1361 /* Get current PC and addressing mode bit. */
1362 CORE_ADDR pc = regcache_read_pc (regs);
1363 ULONGEST amode = 0;
1364
1365 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
1366 {
1367 regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
1368 amode &= 0x80000000;
1369 }
1370
1371 if (debug_displaced)
1372 fprintf_unfiltered (gdb_stdlog,
1373 "displaced: (s390) fixup (%s, %s) pc %s amode 0x%x\n",
1374 paddress (gdbarch, from), paddress (gdbarch, to),
1375 paddress (gdbarch, pc), (int) amode);
1376
1377 /* Handle absolute branch and save instructions. */
1378 if (is_rr (insn, op_basr, &r1, &r2)
1379 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
1380 {
1381 /* Recompute saved return address in R1. */
1382 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1383 amode | (from + insnlen));
1384 }
1385
1386 /* Handle absolute branch instructions. */
1387 else if (is_rr (insn, op_bcr, &r1, &r2)
1388 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1389 || is_rr (insn, op_bctr, &r1, &r2)
1390 || is_rre (insn, op_bctgr, &r1, &r2)
1391 || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
1392 || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
1393 || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
1394 || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
1395 || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
1396 || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
1397 {
1398 /* Update PC iff branch was *not* taken. */
1399 if (pc == to + insnlen)
1400 regcache_write_pc (regs, from + insnlen);
1401 }
1402
1403 /* Handle PC-relative branch and save instructions. */
1404 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
1405 || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
1406 {
1407 /* Update PC. */
1408 regcache_write_pc (regs, pc - to + from);
1409 /* Recompute saved return address in R1. */
1410 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1411 amode | (from + insnlen));
1412 }
1413
1414 /* Handle PC-relative branch instructions. */
1415 else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1416 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1417 || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
1418 || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
1419 || is_rsi (insn, op_brxh, &r1, &r3, &i2)
1420 || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
1421 || is_rsi (insn, op_brxle, &r1, &r3, &i2)
1422 || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
1423 {
1424 /* Update PC. */
1425 regcache_write_pc (regs, pc - to + from);
1426 }
1427
1428 /* Handle LOAD ADDRESS RELATIVE LONG. */
1429 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1430 {
1431 /* Recompute output address in R1. */
1432 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1433 amode | (from + insnlen + i2*2));
1434 }
1435
1436 /* If we executed a breakpoint instruction, point PC right back at it. */
1437 else if (insn[0] == 0x0 && insn[1] == 0x1)
1438 regcache_write_pc (regs, from);
1439
1440 /* For any other insn, PC points right after the original instruction. */
1441 else
1442 regcache_write_pc (regs, from + insnlen);
1443 }
1444
1445 /* Normal stack frames. */
1446
1447 struct s390_unwind_cache {
1448
1449 CORE_ADDR func;
1450 CORE_ADDR frame_base;
1451 CORE_ADDR local_base;
1452
1453 struct trad_frame_saved_reg *saved_regs;
1454 };
1455
1456 static int
1457 s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
1458 struct s390_unwind_cache *info)
1459 {
1460 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1462 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1463 struct s390_prologue_data data;
1464 pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1465 pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1466 int i;
1467 CORE_ADDR cfa;
1468 CORE_ADDR func;
1469 CORE_ADDR result;
1470 ULONGEST reg;
1471 CORE_ADDR prev_sp;
1472 int frame_pointer;
1473 int size;
1474 struct frame_info *next_frame;
1475
1476 /* Try to find the function start address. If we can't find it, we don't
1477 bother searching for it -- with modern compilers this would be mostly
1478 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1479 or else a valid backchain ... */
1480 func = get_frame_func (this_frame);
1481 if (!func)
1482 return 0;
1483
1484 /* Try to analyze the prologue. */
1485 result = s390_analyze_prologue (gdbarch, func,
1486 get_frame_pc (this_frame), &data);
1487 if (!result)
1488 return 0;
1489
1490 /* If this was successful, we should have found the instruction that
1491 sets the stack pointer register to the previous value of the stack
1492 pointer minus the frame size. */
1493 if (!pv_is_register (*sp, S390_SP_REGNUM))
1494 return 0;
1495
1496 /* A frame size of zero at this point can mean either a real
1497 frameless function, or else a failure to find the prologue.
1498 Perform some sanity checks to verify we really have a
1499 frameless function. */
1500 if (sp->k == 0)
1501 {
1502 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1503 size zero. This is only possible if the next frame is a sentinel
1504 frame, a dummy frame, or a signal trampoline frame. */
1505 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1506 needed, instead the code should simpliy rely on its
1507 analysis. */
1508 next_frame = get_next_frame (this_frame);
1509 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1510 next_frame = get_next_frame (next_frame);
1511 if (next_frame
1512 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
1513 return 0;
1514
1515 /* If we really have a frameless function, %r14 must be valid
1516 -- in particular, it must point to a different function. */
1517 reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
1518 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1519 if (get_pc_function_start (reg) == func)
1520 {
1521 /* However, there is one case where it *is* valid for %r14
1522 to point to the same function -- if this is a recursive
1523 call, and we have stopped in the prologue *before* the
1524 stack frame was allocated.
1525
1526 Recognize this case by looking ahead a bit ... */
1527
1528 struct s390_prologue_data data2;
1529 pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1530
1531 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
1532 && pv_is_register (*sp, S390_SP_REGNUM)
1533 && sp->k != 0))
1534 return 0;
1535 }
1536 }
1537
1538
1539 /* OK, we've found valid prologue data. */
1540 size = -sp->k;
1541
1542 /* If the frame pointer originally also holds the same value
1543 as the stack pointer, we're probably using it. If it holds
1544 some other value -- even a constant offset -- it is most
1545 likely used as temp register. */
1546 if (pv_is_identical (*sp, *fp))
1547 frame_pointer = S390_FRAME_REGNUM;
1548 else
1549 frame_pointer = S390_SP_REGNUM;
1550
1551 /* If we've detected a function with stack frame, we'll still have to
1552 treat it as frameless if we're currently within the function epilog
1553 code at a point where the frame pointer has already been restored.
1554 This can only happen in an innermost frame. */
1555 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1556 instead the code should simpliy rely on its analysis. */
1557 next_frame = get_next_frame (this_frame);
1558 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1559 next_frame = get_next_frame (next_frame);
1560 if (size > 0
1561 && (next_frame == NULL
1562 || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
1563 {
1564 /* See the comment in s390_in_function_epilogue_p on why this is
1565 not completely reliable ... */
1566 if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
1567 {
1568 memset (&data, 0, sizeof (data));
1569 size = 0;
1570 frame_pointer = S390_SP_REGNUM;
1571 }
1572 }
1573
1574 /* Once we know the frame register and the frame size, we can unwind
1575 the current value of the frame register from the next frame, and
1576 add back the frame size to arrive that the previous frame's
1577 stack pointer value. */
1578 prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
1579 cfa = prev_sp + 16*word_size + 32;
1580
1581 /* Set up ABI call-saved/call-clobbered registers. */
1582 for (i = 0; i < S390_NUM_REGS; i++)
1583 if (!s390_register_call_saved (gdbarch, i))
1584 trad_frame_set_unknown (info->saved_regs, i);
1585
1586 /* CC is always call-clobbered. */
1587 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
1588
1589 /* Record the addresses of all register spill slots the prologue parser
1590 has recognized. Consider only registers defined as call-saved by the
1591 ABI; for call-clobbered registers the parser may have recognized
1592 spurious stores. */
1593
1594 for (i = 0; i < 16; i++)
1595 if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
1596 && data.gpr_slot[i] != 0)
1597 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
1598
1599 for (i = 0; i < 16; i++)
1600 if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
1601 && data.fpr_slot[i] != 0)
1602 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
1603
1604 /* Function return will set PC to %r14. */
1605 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_RETADDR_REGNUM];
1606
1607 /* In frameless functions, we unwind simply by moving the return
1608 address to the PC. However, if we actually stored to the
1609 save area, use that -- we might only think the function frameless
1610 because we're in the middle of the prologue ... */
1611 if (size == 0
1612 && !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
1613 {
1614 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
1615 }
1616
1617 /* Another sanity check: unless this is a frameless function,
1618 we should have found spill slots for SP and PC.
1619 If not, we cannot unwind further -- this happens e.g. in
1620 libc's thread_start routine. */
1621 if (size > 0)
1622 {
1623 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
1624 || !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
1625 prev_sp = -1;
1626 }
1627
1628 /* We use the current value of the frame register as local_base,
1629 and the top of the register save area as frame_base. */
1630 if (prev_sp != -1)
1631 {
1632 info->frame_base = prev_sp + 16*word_size + 32;
1633 info->local_base = prev_sp - size;
1634 }
1635
1636 info->func = func;
1637 return 1;
1638 }
1639
1640 static void
1641 s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
1642 struct s390_unwind_cache *info)
1643 {
1644 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1645 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1646 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1647 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1648 CORE_ADDR backchain;
1649 ULONGEST reg;
1650 LONGEST sp;
1651 int i;
1652
1653 /* Set up ABI call-saved/call-clobbered registers. */
1654 for (i = 0; i < S390_NUM_REGS; i++)
1655 if (!s390_register_call_saved (gdbarch, i))
1656 trad_frame_set_unknown (info->saved_regs, i);
1657
1658 /* CC is always call-clobbered. */
1659 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
1660
1661 /* Get the backchain. */
1662 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1663 backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
1664
1665 /* A zero backchain terminates the frame chain. As additional
1666 sanity check, let's verify that the spill slot for SP in the
1667 save area pointed to by the backchain in fact links back to
1668 the save area. */
1669 if (backchain != 0
1670 && safe_read_memory_integer (backchain + 15*word_size,
1671 word_size, byte_order, &sp)
1672 && (CORE_ADDR)sp == backchain)
1673 {
1674 /* We don't know which registers were saved, but it will have
1675 to be at least %r14 and %r15. This will allow us to continue
1676 unwinding, but other prev-frame registers may be incorrect ... */
1677 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1678 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1679
1680 /* Function return will set PC to %r14. */
1681 info->saved_regs[tdep->pc_regnum]
1682 = info->saved_regs[S390_RETADDR_REGNUM];
1683
1684 /* We use the current value of the frame register as local_base,
1685 and the top of the register save area as frame_base. */
1686 info->frame_base = backchain + 16*word_size + 32;
1687 info->local_base = reg;
1688 }
1689
1690 info->func = get_frame_pc (this_frame);
1691 }
1692
1693 static struct s390_unwind_cache *
1694 s390_frame_unwind_cache (struct frame_info *this_frame,
1695 void **this_prologue_cache)
1696 {
1697 struct s390_unwind_cache *info;
1698 if (*this_prologue_cache)
1699 return *this_prologue_cache;
1700
1701 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1702 *this_prologue_cache = info;
1703 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1704 info->func = -1;
1705 info->frame_base = -1;
1706 info->local_base = -1;
1707
1708 /* Try to use prologue analysis to fill the unwind cache.
1709 If this fails, fall back to reading the stack backchain. */
1710 if (!s390_prologue_frame_unwind_cache (this_frame, info))
1711 s390_backchain_frame_unwind_cache (this_frame, info);
1712
1713 return info;
1714 }
1715
1716 static void
1717 s390_frame_this_id (struct frame_info *this_frame,
1718 void **this_prologue_cache,
1719 struct frame_id *this_id)
1720 {
1721 struct s390_unwind_cache *info
1722 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1723
1724 if (info->frame_base == -1)
1725 return;
1726
1727 *this_id = frame_id_build (info->frame_base, info->func);
1728 }
1729
1730 static struct value *
1731 s390_frame_prev_register (struct frame_info *this_frame,
1732 void **this_prologue_cache, int regnum)
1733 {
1734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1735 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1736 struct s390_unwind_cache *info
1737 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
1738
1739 /* Unwind full GPRs to show at least the lower halves (as the
1740 upper halves are undefined). */
1741 if (tdep->gpr_full_regnum != -1
1742 && regnum >= tdep->gpr_full_regnum
1743 && regnum < tdep->gpr_full_regnum + 16)
1744 {
1745 int reg = regnum - tdep->gpr_full_regnum + S390_R0_REGNUM;
1746 struct value *val, *newval;
1747
1748 val = trad_frame_get_prev_register (this_frame, info->saved_regs, reg);
1749 newval = value_cast (register_type (gdbarch, regnum), val);
1750 if (value_optimized_out (val))
1751 set_value_optimized_out (newval, 1);
1752
1753 return newval;
1754 }
1755
1756 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1757 }
1758
1759 static const struct frame_unwind s390_frame_unwind = {
1760 NORMAL_FRAME,
1761 default_frame_unwind_stop_reason,
1762 s390_frame_this_id,
1763 s390_frame_prev_register,
1764 NULL,
1765 default_frame_sniffer
1766 };
1767
1768
1769 /* Code stubs and their stack frames. For things like PLTs and NULL
1770 function calls (where there is no true frame and the return address
1771 is in the RETADDR register). */
1772
1773 struct s390_stub_unwind_cache
1774 {
1775 CORE_ADDR frame_base;
1776 struct trad_frame_saved_reg *saved_regs;
1777 };
1778
1779 static struct s390_stub_unwind_cache *
1780 s390_stub_frame_unwind_cache (struct frame_info *this_frame,
1781 void **this_prologue_cache)
1782 {
1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1784 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1785 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1786 struct s390_stub_unwind_cache *info;
1787 ULONGEST reg;
1788
1789 if (*this_prologue_cache)
1790 return *this_prologue_cache;
1791
1792 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
1793 *this_prologue_cache = info;
1794 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1795
1796 /* The return address is in register %r14. */
1797 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
1798
1799 /* Retrieve stack pointer and determine our frame base. */
1800 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1801 info->frame_base = reg + 16*word_size + 32;
1802
1803 return info;
1804 }
1805
1806 static void
1807 s390_stub_frame_this_id (struct frame_info *this_frame,
1808 void **this_prologue_cache,
1809 struct frame_id *this_id)
1810 {
1811 struct s390_stub_unwind_cache *info
1812 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1813 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
1814 }
1815
1816 static struct value *
1817 s390_stub_frame_prev_register (struct frame_info *this_frame,
1818 void **this_prologue_cache, int regnum)
1819 {
1820 struct s390_stub_unwind_cache *info
1821 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1822 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1823 }
1824
1825 static int
1826 s390_stub_frame_sniffer (const struct frame_unwind *self,
1827 struct frame_info *this_frame,
1828 void **this_prologue_cache)
1829 {
1830 CORE_ADDR addr_in_block;
1831 bfd_byte insn[S390_MAX_INSTR_SIZE];
1832
1833 /* If the current PC points to non-readable memory, we assume we
1834 have trapped due to an invalid function pointer call. We handle
1835 the non-existing current function like a PLT stub. */
1836 addr_in_block = get_frame_address_in_block (this_frame);
1837 if (in_plt_section (addr_in_block, NULL)
1838 || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
1839 return 1;
1840 return 0;
1841 }
1842
1843 static const struct frame_unwind s390_stub_frame_unwind = {
1844 NORMAL_FRAME,
1845 default_frame_unwind_stop_reason,
1846 s390_stub_frame_this_id,
1847 s390_stub_frame_prev_register,
1848 NULL,
1849 s390_stub_frame_sniffer
1850 };
1851
1852
1853 /* Signal trampoline stack frames. */
1854
1855 struct s390_sigtramp_unwind_cache {
1856 CORE_ADDR frame_base;
1857 struct trad_frame_saved_reg *saved_regs;
1858 };
1859
1860 static struct s390_sigtramp_unwind_cache *
1861 s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
1862 void **this_prologue_cache)
1863 {
1864 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1865 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1866 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1868 struct s390_sigtramp_unwind_cache *info;
1869 ULONGEST this_sp, prev_sp;
1870 CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
1871 ULONGEST pswm;
1872 int i;
1873
1874 if (*this_prologue_cache)
1875 return *this_prologue_cache;
1876
1877 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
1878 *this_prologue_cache = info;
1879 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1880
1881 this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1882 next_ra = get_frame_pc (this_frame);
1883 next_cfa = this_sp + 16*word_size + 32;
1884
1885 /* New-style RT frame:
1886 retcode + alignment (8 bytes)
1887 siginfo (128 bytes)
1888 ucontext (contains sigregs at offset 5 words). */
1889 if (next_ra == next_cfa)
1890 {
1891 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
1892 /* sigregs are followed by uc_sigmask (8 bytes), then by the
1893 upper GPR halves if present. */
1894 sigreg_high_off = 8;
1895 }
1896
1897 /* Old-style RT frame and all non-RT frames:
1898 old signal mask (8 bytes)
1899 pointer to sigregs. */
1900 else
1901 {
1902 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
1903 word_size, byte_order);
1904 /* sigregs are followed by signo (4 bytes), then by the
1905 upper GPR halves if present. */
1906 sigreg_high_off = 4;
1907 }
1908
1909 /* The sigregs structure looks like this:
1910 long psw_mask;
1911 long psw_addr;
1912 long gprs[16];
1913 int acrs[16];
1914 int fpc;
1915 int __pad;
1916 double fprs[16]; */
1917
1918 /* PSW mask and address. */
1919 info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
1920 sigreg_ptr += word_size;
1921 info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
1922 sigreg_ptr += word_size;
1923
1924 /* Point PC to PSWA as well. */
1925 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_PSWA_REGNUM];
1926
1927 /* Extract CC from PSWM. */
1928 pswm = read_memory_unsigned_integer (
1929 info->saved_regs[S390_PSWM_REGNUM].addr,
1930 word_size, byte_order);
1931 trad_frame_set_value (info->saved_regs, tdep->cc_regnum,
1932 (pswm >> (8 * word_size - 20)) & 3);
1933
1934 /* Then the GPRs. */
1935 for (i = 0; i < 16; i++)
1936 {
1937 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
1938 sigreg_ptr += word_size;
1939 }
1940
1941 /* Then the ACRs. */
1942 for (i = 0; i < 16; i++)
1943 {
1944 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
1945 sigreg_ptr += 4;
1946 }
1947
1948 /* The floating-point control word. */
1949 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
1950 sigreg_ptr += 8;
1951
1952 /* And finally the FPRs. */
1953 for (i = 0; i < 16; i++)
1954 {
1955 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
1956 sigreg_ptr += 8;
1957 }
1958
1959 /* If we have them, the GPR upper halves are appended at the end. */
1960 sigreg_ptr += sigreg_high_off;
1961 if (tdep->gpr_full_regnum != -1)
1962 for (i = 0; i < 16; i++)
1963 {
1964 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
1965 sigreg_ptr += 4;
1966 }
1967
1968 /* Provide read-only copies of the full registers. */
1969 if (tdep->gpr_full_regnum != -1)
1970 for (i = 0; i < 16; i++)
1971 {
1972 ULONGEST low, high;
1973 low = read_memory_unsigned_integer (
1974 info->saved_regs[S390_R0_REGNUM + i].addr,
1975 4, byte_order);
1976 high = read_memory_unsigned_integer (
1977 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr,
1978 4, byte_order);
1979
1980 trad_frame_set_value (info->saved_regs, tdep->gpr_full_regnum + i,
1981 (high << 32) | low);
1982 }
1983
1984 /* Restore the previous frame's SP. */
1985 prev_sp = read_memory_unsigned_integer (
1986 info->saved_regs[S390_SP_REGNUM].addr,
1987 word_size, byte_order);
1988
1989 /* Determine our frame base. */
1990 info->frame_base = prev_sp + 16*word_size + 32;
1991
1992 return info;
1993 }
1994
1995 static void
1996 s390_sigtramp_frame_this_id (struct frame_info *this_frame,
1997 void **this_prologue_cache,
1998 struct frame_id *this_id)
1999 {
2000 struct s390_sigtramp_unwind_cache *info
2001 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2002 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
2003 }
2004
2005 static struct value *
2006 s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
2007 void **this_prologue_cache, int regnum)
2008 {
2009 struct s390_sigtramp_unwind_cache *info
2010 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2011 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2012 }
2013
2014 static int
2015 s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
2016 struct frame_info *this_frame,
2017 void **this_prologue_cache)
2018 {
2019 CORE_ADDR pc = get_frame_pc (this_frame);
2020 bfd_byte sigreturn[2];
2021
2022 if (target_read_memory (pc, sigreturn, 2))
2023 return 0;
2024
2025 if (sigreturn[0] != 0x0a /* svc */)
2026 return 0;
2027
2028 if (sigreturn[1] != 119 /* sigreturn */
2029 && sigreturn[1] != 173 /* rt_sigreturn */)
2030 return 0;
2031
2032 return 1;
2033 }
2034
2035 static const struct frame_unwind s390_sigtramp_frame_unwind = {
2036 SIGTRAMP_FRAME,
2037 default_frame_unwind_stop_reason,
2038 s390_sigtramp_frame_this_id,
2039 s390_sigtramp_frame_prev_register,
2040 NULL,
2041 s390_sigtramp_frame_sniffer
2042 };
2043
2044
2045 /* Frame base handling. */
2046
2047 static CORE_ADDR
2048 s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
2049 {
2050 struct s390_unwind_cache *info
2051 = s390_frame_unwind_cache (this_frame, this_cache);
2052 return info->frame_base;
2053 }
2054
2055 static CORE_ADDR
2056 s390_local_base_address (struct frame_info *this_frame, void **this_cache)
2057 {
2058 struct s390_unwind_cache *info
2059 = s390_frame_unwind_cache (this_frame, this_cache);
2060 return info->local_base;
2061 }
2062
2063 static const struct frame_base s390_frame_base = {
2064 &s390_frame_unwind,
2065 s390_frame_base_address,
2066 s390_local_base_address,
2067 s390_local_base_address
2068 };
2069
2070 static CORE_ADDR
2071 s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2072 {
2073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2074 ULONGEST pc;
2075 pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
2076 return gdbarch_addr_bits_remove (gdbarch, pc);
2077 }
2078
2079 static CORE_ADDR
2080 s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2081 {
2082 ULONGEST sp;
2083 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2084 return gdbarch_addr_bits_remove (gdbarch, sp);
2085 }
2086
2087
2088 /* DWARF-2 frame support. */
2089
2090 static struct value *
2091 s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
2092 int regnum)
2093 {
2094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2095 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2096 int reg = regnum - tdep->gpr_full_regnum;
2097 struct value *val, *newval;
2098
2099 val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
2100 newval = value_cast (register_type (gdbarch, regnum), val);
2101 if (value_optimized_out (val))
2102 set_value_optimized_out (newval, 1);
2103
2104 return newval;
2105 }
2106
2107 static void
2108 s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2109 struct dwarf2_frame_state_reg *reg,
2110 struct frame_info *this_frame)
2111 {
2112 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2113
2114 /* Fixed registers are call-saved or call-clobbered
2115 depending on the ABI in use. */
2116 if (regnum >= 0 && regnum < S390_NUM_REGS)
2117 {
2118 if (s390_register_call_saved (gdbarch, regnum))
2119 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2120 else
2121 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2122 }
2123
2124 /* The CC pseudo register is call-clobbered. */
2125 else if (regnum == tdep->cc_regnum)
2126 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2127
2128 /* The PC register unwinds to the return address. */
2129 else if (regnum == tdep->pc_regnum)
2130 reg->how = DWARF2_FRAME_REG_RA;
2131
2132 /* We install a special function to unwind full GPRs to show at
2133 least the lower halves (as the upper halves are undefined). */
2134 else if (tdep->gpr_full_regnum != -1
2135 && regnum >= tdep->gpr_full_regnum
2136 && regnum < tdep->gpr_full_regnum + 16)
2137 {
2138 reg->how = DWARF2_FRAME_REG_FN;
2139 reg->loc.fn = s390_dwarf2_prev_register;
2140 }
2141 }
2142
2143
2144 /* Dummy function calls. */
2145
2146 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
2147 "Integer-like" types are those that should be passed the way
2148 integers are: integers, enums, ranges, characters, and booleans. */
2149 static int
2150 is_integer_like (struct type *type)
2151 {
2152 enum type_code code = TYPE_CODE (type);
2153
2154 return (code == TYPE_CODE_INT
2155 || code == TYPE_CODE_ENUM
2156 || code == TYPE_CODE_RANGE
2157 || code == TYPE_CODE_CHAR
2158 || code == TYPE_CODE_BOOL);
2159 }
2160
2161 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2162 "Pointer-like" types are those that should be passed the way
2163 pointers are: pointers and references. */
2164 static int
2165 is_pointer_like (struct type *type)
2166 {
2167 enum type_code code = TYPE_CODE (type);
2168
2169 return (code == TYPE_CODE_PTR
2170 || code == TYPE_CODE_REF);
2171 }
2172
2173
2174 /* Return non-zero if TYPE is a `float singleton' or `double
2175 singleton', zero otherwise.
2176
2177 A `T singleton' is a struct type with one member, whose type is
2178 either T or a `T singleton'. So, the following are all float
2179 singletons:
2180
2181 struct { float x };
2182 struct { struct { float x; } x; };
2183 struct { struct { struct { float x; } x; } x; };
2184
2185 ... and so on.
2186
2187 All such structures are passed as if they were floats or doubles,
2188 as the (revised) ABI says. */
2189 static int
2190 is_float_singleton (struct type *type)
2191 {
2192 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2193 {
2194 struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
2195 CHECK_TYPEDEF (singleton_type);
2196
2197 return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
2198 || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
2199 || is_float_singleton (singleton_type));
2200 }
2201
2202 return 0;
2203 }
2204
2205
2206 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
2207 "Struct-like" types are those that should be passed as structs are:
2208 structs and unions.
2209
2210 As an odd quirk, not mentioned in the ABI, GCC passes float and
2211 double singletons as if they were a plain float, double, etc. (The
2212 corresponding union types are handled normally.) So we exclude
2213 those types here. *shrug* */
2214 static int
2215 is_struct_like (struct type *type)
2216 {
2217 enum type_code code = TYPE_CODE (type);
2218
2219 return (code == TYPE_CODE_UNION
2220 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2221 }
2222
2223
2224 /* Return non-zero if TYPE is a float-like type, zero otherwise.
2225 "Float-like" types are those that should be passed as
2226 floating-point values are.
2227
2228 You'd think this would just be floats, doubles, long doubles, etc.
2229 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2230 double singletons as if they were a plain float, double, etc. (The
2231 corresponding union types are handled normally.) So we include
2232 those types here. *shrug* */
2233 static int
2234 is_float_like (struct type *type)
2235 {
2236 return (TYPE_CODE (type) == TYPE_CODE_FLT
2237 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2238 || is_float_singleton (type));
2239 }
2240
2241
2242 static int
2243 is_power_of_two (unsigned int n)
2244 {
2245 return ((n & (n - 1)) == 0);
2246 }
2247
2248 /* Return non-zero if TYPE should be passed as a pointer to a copy,
2249 zero otherwise. */
2250 static int
2251 s390_function_arg_pass_by_reference (struct type *type)
2252 {
2253 unsigned length = TYPE_LENGTH (type);
2254 if (length > 8)
2255 return 1;
2256
2257 return (is_struct_like (type) && !is_power_of_two (TYPE_LENGTH (type)))
2258 || TYPE_CODE (type) == TYPE_CODE_COMPLEX
2259 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type));
2260 }
2261
2262 /* Return non-zero if TYPE should be passed in a float register
2263 if possible. */
2264 static int
2265 s390_function_arg_float (struct type *type)
2266 {
2267 unsigned length = TYPE_LENGTH (type);
2268 if (length > 8)
2269 return 0;
2270
2271 return is_float_like (type);
2272 }
2273
2274 /* Return non-zero if TYPE should be passed in an integer register
2275 (or a pair of integer registers) if possible. */
2276 static int
2277 s390_function_arg_integer (struct type *type)
2278 {
2279 unsigned length = TYPE_LENGTH (type);
2280 if (length > 8)
2281 return 0;
2282
2283 return is_integer_like (type)
2284 || is_pointer_like (type)
2285 || (is_struct_like (type) && is_power_of_two (length));
2286 }
2287
2288 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2289 word as required for the ABI. */
2290 static LONGEST
2291 extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
2292 {
2293 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2294 struct type *type = check_typedef (value_type (arg));
2295
2296 /* Even structs get passed in the least significant bits of the
2297 register / memory word. It's not really right to extract them as
2298 an integer, but it does take care of the extension. */
2299 if (TYPE_UNSIGNED (type))
2300 return extract_unsigned_integer (value_contents (arg),
2301 TYPE_LENGTH (type), byte_order);
2302 else
2303 return extract_signed_integer (value_contents (arg),
2304 TYPE_LENGTH (type), byte_order);
2305 }
2306
2307
2308 /* Return the alignment required by TYPE. */
2309 static int
2310 alignment_of (struct type *type)
2311 {
2312 int alignment;
2313
2314 if (is_integer_like (type)
2315 || is_pointer_like (type)
2316 || TYPE_CODE (type) == TYPE_CODE_FLT
2317 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2318 alignment = TYPE_LENGTH (type);
2319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2320 || TYPE_CODE (type) == TYPE_CODE_UNION)
2321 {
2322 int i;
2323
2324 alignment = 1;
2325 for (i = 0; i < TYPE_NFIELDS (type); i++)
2326 {
2327 int field_alignment
2328 = alignment_of (check_typedef (TYPE_FIELD_TYPE (type, i)));
2329
2330 if (field_alignment > alignment)
2331 alignment = field_alignment;
2332 }
2333 }
2334 else
2335 alignment = 1;
2336
2337 /* Check that everything we ever return is a power of two. Lots of
2338 code doesn't want to deal with aligning things to arbitrary
2339 boundaries. */
2340 gdb_assert ((alignment & (alignment - 1)) == 0);
2341
2342 return alignment;
2343 }
2344
2345
2346 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
2347 place to be passed to a function, as specified by the "GNU/Linux
2348 for S/390 ELF Application Binary Interface Supplement".
2349
2350 SP is the current stack pointer. We must put arguments, links,
2351 padding, etc. whereever they belong, and return the new stack
2352 pointer value.
2353
2354 If STRUCT_RETURN is non-zero, then the function we're calling is
2355 going to return a structure by value; STRUCT_ADDR is the address of
2356 a block we've allocated for it on the stack.
2357
2358 Our caller has taken care of any type promotions needed to satisfy
2359 prototypes or the old K&R argument-passing rules. */
2360 static CORE_ADDR
2361 s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2362 struct regcache *regcache, CORE_ADDR bp_addr,
2363 int nargs, struct value **args, CORE_ADDR sp,
2364 int struct_return, CORE_ADDR struct_addr)
2365 {
2366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2367 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2368 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2369 int i;
2370
2371 /* If the i'th argument is passed as a reference to a copy, then
2372 copy_addr[i] is the address of the copy we made. */
2373 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
2374
2375 /* Reserve space for the reference-to-copy area. */
2376 for (i = 0; i < nargs; i++)
2377 {
2378 struct value *arg = args[i];
2379 struct type *type = check_typedef (value_type (arg));
2380 unsigned length = TYPE_LENGTH (type);
2381
2382 if (s390_function_arg_pass_by_reference (type))
2383 {
2384 sp -= length;
2385 sp = align_down (sp, alignment_of (type));
2386 copy_addr[i] = sp;
2387 }
2388 }
2389
2390 /* Reserve space for the parameter area. As a conservative
2391 simplification, we assume that everything will be passed on the
2392 stack. Since every argument larger than 8 bytes will be
2393 passed by reference, we use this simple upper bound. */
2394 sp -= nargs * 8;
2395
2396 /* After all that, make sure it's still aligned on an eight-byte
2397 boundary. */
2398 sp = align_down (sp, 8);
2399
2400 /* Allocate the standard frame areas: the register save area, the
2401 word reserved for the compiler (which seems kind of meaningless),
2402 and the back chain pointer. */
2403 sp -= 16*word_size + 32;
2404
2405 /* Now we have the final SP value. Make sure we didn't underflow;
2406 on 31-bit, this would result in addresses with the high bit set,
2407 which causes confusion elsewhere. Note that if we error out
2408 here, stack and registers remain untouched. */
2409 if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
2410 error (_("Stack overflow"));
2411
2412
2413 /* Finally, place the actual parameters, working from SP towards
2414 higher addresses. The code above is supposed to reserve enough
2415 space for this. */
2416 {
2417 int fr = 0;
2418 int gr = 2;
2419 CORE_ADDR starg = sp + 16*word_size + 32;
2420
2421 /* A struct is returned using general register 2. */
2422 if (struct_return)
2423 {
2424 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2425 struct_addr);
2426 gr++;
2427 }
2428
2429 for (i = 0; i < nargs; i++)
2430 {
2431 struct value *arg = args[i];
2432 struct type *type = check_typedef (value_type (arg));
2433 unsigned length = TYPE_LENGTH (type);
2434
2435 if (s390_function_arg_pass_by_reference (type))
2436 {
2437 /* Actually copy the argument contents to the stack slot
2438 that was reserved above. */
2439 write_memory (copy_addr[i], value_contents (arg), length);
2440
2441 if (gr <= 6)
2442 {
2443 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2444 copy_addr[i]);
2445 gr++;
2446 }
2447 else
2448 {
2449 write_memory_unsigned_integer (starg, word_size, byte_order,
2450 copy_addr[i]);
2451 starg += word_size;
2452 }
2453 }
2454 else if (s390_function_arg_float (type))
2455 {
2456 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
2457 the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
2458 if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2459 {
2460 /* When we store a single-precision value in an FP register,
2461 it occupies the leftmost bits. */
2462 regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
2463 0, length, value_contents (arg));
2464 fr += 2;
2465 }
2466 else
2467 {
2468 /* When we store a single-precision value in a stack slot,
2469 it occupies the rightmost bits. */
2470 starg = align_up (starg + length, word_size);
2471 write_memory (starg - length, value_contents (arg), length);
2472 }
2473 }
2474 else if (s390_function_arg_integer (type) && length <= word_size)
2475 {
2476 if (gr <= 6)
2477 {
2478 /* Integer arguments are always extended to word size. */
2479 regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
2480 extend_simple_arg (gdbarch,
2481 arg));
2482 gr++;
2483 }
2484 else
2485 {
2486 /* Integer arguments are always extended to word size. */
2487 write_memory_signed_integer (starg, word_size, byte_order,
2488 extend_simple_arg (gdbarch, arg));
2489 starg += word_size;
2490 }
2491 }
2492 else if (s390_function_arg_integer (type) && length == 2*word_size)
2493 {
2494 if (gr <= 5)
2495 {
2496 regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
2497 value_contents (arg));
2498 regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
2499 value_contents (arg) + word_size);
2500 gr += 2;
2501 }
2502 else
2503 {
2504 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2505 in it, then don't go back and use it again later. */
2506 gr = 7;
2507
2508 write_memory (starg, value_contents (arg), length);
2509 starg += length;
2510 }
2511 }
2512 else
2513 internal_error (__FILE__, __LINE__, _("unknown argument type"));
2514 }
2515 }
2516
2517 /* Store return address. */
2518 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2519
2520 /* Store updated stack pointer. */
2521 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
2522
2523 /* We need to return the 'stack part' of the frame ID,
2524 which is actually the top of the register save area. */
2525 return sp + 16*word_size + 32;
2526 }
2527
2528 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
2529 dummy frame. The frame ID's base needs to match the TOS value
2530 returned by push_dummy_call, and the PC match the dummy frame's
2531 breakpoint. */
2532 static struct frame_id
2533 s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2534 {
2535 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2536 CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2537 sp = gdbarch_addr_bits_remove (gdbarch, sp);
2538
2539 return frame_id_build (sp + 16*word_size + 32,
2540 get_frame_pc (this_frame));
2541 }
2542
2543 static CORE_ADDR
2544 s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2545 {
2546 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2547 always be aligned on an eight-byte boundary. */
2548 return (addr & -8);
2549 }
2550
2551
2552 /* Function return value access. */
2553
2554 static enum return_value_convention
2555 s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
2556 {
2557 int length = TYPE_LENGTH (type);
2558 if (length > 8)
2559 return RETURN_VALUE_STRUCT_CONVENTION;
2560
2561 switch (TYPE_CODE (type))
2562 {
2563 case TYPE_CODE_STRUCT:
2564 case TYPE_CODE_UNION:
2565 case TYPE_CODE_ARRAY:
2566 case TYPE_CODE_COMPLEX:
2567 return RETURN_VALUE_STRUCT_CONVENTION;
2568
2569 default:
2570 return RETURN_VALUE_REGISTER_CONVENTION;
2571 }
2572 }
2573
2574 static enum return_value_convention
2575 s390_return_value (struct gdbarch *gdbarch, struct type *func_type,
2576 struct type *type, struct regcache *regcache,
2577 gdb_byte *out, const gdb_byte *in)
2578 {
2579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2580 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2581 enum return_value_convention rvc;
2582 int length;
2583
2584 type = check_typedef (type);
2585 rvc = s390_return_value_convention (gdbarch, type);
2586 length = TYPE_LENGTH (type);
2587
2588 if (in)
2589 {
2590 switch (rvc)
2591 {
2592 case RETURN_VALUE_REGISTER_CONVENTION:
2593 if (TYPE_CODE (type) == TYPE_CODE_FLT
2594 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2595 {
2596 /* When we store a single-precision value in an FP register,
2597 it occupies the leftmost bits. */
2598 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2599 0, length, in);
2600 }
2601 else if (length <= word_size)
2602 {
2603 /* Integer arguments are always extended to word size. */
2604 if (TYPE_UNSIGNED (type))
2605 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
2606 extract_unsigned_integer (in, length, byte_order));
2607 else
2608 regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
2609 extract_signed_integer (in, length, byte_order));
2610 }
2611 else if (length == 2*word_size)
2612 {
2613 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
2614 regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
2615 }
2616 else
2617 internal_error (__FILE__, __LINE__, _("invalid return type"));
2618 break;
2619
2620 case RETURN_VALUE_STRUCT_CONVENTION:
2621 error (_("Cannot set function return value."));
2622 break;
2623 }
2624 }
2625 else if (out)
2626 {
2627 switch (rvc)
2628 {
2629 case RETURN_VALUE_REGISTER_CONVENTION:
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT
2631 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
2632 {
2633 /* When we store a single-precision value in an FP register,
2634 it occupies the leftmost bits. */
2635 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2636 0, length, out);
2637 }
2638 else if (length <= word_size)
2639 {
2640 /* Integer arguments occupy the rightmost bits. */
2641 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2642 word_size - length, length, out);
2643 }
2644 else if (length == 2*word_size)
2645 {
2646 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
2647 regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
2648 }
2649 else
2650 internal_error (__FILE__, __LINE__, _("invalid return type"));
2651 break;
2652
2653 case RETURN_VALUE_STRUCT_CONVENTION:
2654 error (_("Function return value unknown."));
2655 break;
2656 }
2657 }
2658
2659 return rvc;
2660 }
2661
2662
2663 /* Breakpoints. */
2664
2665 static const gdb_byte *
2666 s390_breakpoint_from_pc (struct gdbarch *gdbarch,
2667 CORE_ADDR *pcptr, int *lenptr)
2668 {
2669 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
2670
2671 *lenptr = sizeof (breakpoint);
2672 return breakpoint;
2673 }
2674
2675
2676 /* Address handling. */
2677
2678 static CORE_ADDR
2679 s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2680 {
2681 return addr & 0x7fffffff;
2682 }
2683
2684 static int
2685 s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2686 {
2687 if (byte_size == 4)
2688 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2689 else
2690 return 0;
2691 }
2692
2693 static const char *
2694 s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2695 {
2696 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
2697 return "mode32";
2698 else
2699 return NULL;
2700 }
2701
2702 static int
2703 s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
2704 const char *name,
2705 int *type_flags_ptr)
2706 {
2707 if (strcmp (name, "mode32") == 0)
2708 {
2709 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
2710 return 1;
2711 }
2712 else
2713 return 0;
2714 }
2715
2716 /* Set up gdbarch struct. */
2717
2718 static struct gdbarch *
2719 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2720 {
2721 const struct target_desc *tdesc = info.target_desc;
2722 struct tdesc_arch_data *tdesc_data = NULL;
2723 struct gdbarch *gdbarch;
2724 struct gdbarch_tdep *tdep;
2725 int tdep_abi;
2726 int have_upper = 0;
2727 int first_pseudo_reg, last_pseudo_reg;
2728
2729 /* Default ABI and register size. */
2730 switch (info.bfd_arch_info->mach)
2731 {
2732 case bfd_mach_s390_31:
2733 tdep_abi = ABI_LINUX_S390;
2734 break;
2735
2736 case bfd_mach_s390_64:
2737 tdep_abi = ABI_LINUX_ZSERIES;
2738 break;
2739
2740 default:
2741 return NULL;
2742 }
2743
2744 /* Use default target description if none provided by the target. */
2745 if (!tdesc_has_registers (tdesc))
2746 {
2747 if (tdep_abi == ABI_LINUX_S390)
2748 tdesc = tdesc_s390_linux32;
2749 else
2750 tdesc = tdesc_s390x_linux64;
2751 }
2752
2753 /* Check any target description for validity. */
2754 if (tdesc_has_registers (tdesc))
2755 {
2756 static const char *const gprs[] = {
2757 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2758 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2759 };
2760 static const char *const fprs[] = {
2761 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2762 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
2763 };
2764 static const char *const acrs[] = {
2765 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
2766 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
2767 };
2768 static const char *const gprs_lower[] = {
2769 "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
2770 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
2771 };
2772 static const char *const gprs_upper[] = {
2773 "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
2774 "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
2775 };
2776 const struct tdesc_feature *feature;
2777 int i, valid_p = 1;
2778
2779 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
2780 if (feature == NULL)
2781 return NULL;
2782
2783 tdesc_data = tdesc_data_alloc ();
2784
2785 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2786 S390_PSWM_REGNUM, "pswm");
2787 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2788 S390_PSWA_REGNUM, "pswa");
2789
2790 if (tdesc_unnumbered_register (feature, "r0"))
2791 {
2792 for (i = 0; i < 16; i++)
2793 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2794 S390_R0_REGNUM + i, gprs[i]);
2795 }
2796 else
2797 {
2798 have_upper = 1;
2799
2800 for (i = 0; i < 16; i++)
2801 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2802 S390_R0_REGNUM + i,
2803 gprs_lower[i]);
2804 for (i = 0; i < 16; i++)
2805 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2806 S390_R0_UPPER_REGNUM + i,
2807 gprs_upper[i]);
2808 }
2809
2810 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
2811 if (feature == NULL)
2812 {
2813 tdesc_data_cleanup (tdesc_data);
2814 return NULL;
2815 }
2816
2817 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2818 S390_FPC_REGNUM, "fpc");
2819 for (i = 0; i < 16; i++)
2820 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2821 S390_F0_REGNUM + i, fprs[i]);
2822
2823 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
2824 if (feature == NULL)
2825 {
2826 tdesc_data_cleanup (tdesc_data);
2827 return NULL;
2828 }
2829
2830 for (i = 0; i < 16; i++)
2831 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2832 S390_A0_REGNUM + i, acrs[i]);
2833
2834 if (!valid_p)
2835 {
2836 tdesc_data_cleanup (tdesc_data);
2837 return NULL;
2838 }
2839 }
2840
2841 /* Find a candidate among extant architectures. */
2842 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2843 arches != NULL;
2844 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2845 {
2846 tdep = gdbarch_tdep (arches->gdbarch);
2847 if (!tdep)
2848 continue;
2849 if (tdep->abi != tdep_abi)
2850 continue;
2851 if ((tdep->gpr_full_regnum != -1) != have_upper)
2852 continue;
2853 if (tdesc_data != NULL)
2854 tdesc_data_cleanup (tdesc_data);
2855 return arches->gdbarch;
2856 }
2857
2858 /* Otherwise create a new gdbarch for the specified machine type. */
2859 tdep = XCALLOC (1, struct gdbarch_tdep);
2860 tdep->abi = tdep_abi;
2861 gdbarch = gdbarch_alloc (&info, tdep);
2862
2863 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
2864 set_gdbarch_char_signed (gdbarch, 0);
2865
2866 /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
2867 We can safely let them default to 128-bit, since the debug info
2868 will give the size of type actually used in each case. */
2869 set_gdbarch_long_double_bit (gdbarch, 128);
2870 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2871
2872 /* Amount PC must be decremented by after a breakpoint. This is
2873 often the number of bytes returned by gdbarch_breakpoint_from_pc but not
2874 always. */
2875 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2876 /* Stack grows downward. */
2877 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2878 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2879 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
2880 set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
2881
2882 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
2883 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
2884 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
2885 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2886 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
2887 set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
2888 set_gdbarch_regset_from_core_section (gdbarch,
2889 s390_regset_from_core_section);
2890 set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
2891 if (have_upper)
2892 set_gdbarch_core_regset_sections (gdbarch, s390_upper_regset_sections);
2893 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
2894 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
2895 set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
2896 set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
2897 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2898 s390_pseudo_register_reggroup_p);
2899 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2900
2901 /* Assign pseudo register numbers. */
2902 first_pseudo_reg = gdbarch_num_regs (gdbarch);
2903 last_pseudo_reg = first_pseudo_reg;
2904 tdep->gpr_full_regnum = -1;
2905 if (have_upper)
2906 {
2907 tdep->gpr_full_regnum = last_pseudo_reg;
2908 last_pseudo_reg += 16;
2909 }
2910 tdep->pc_regnum = last_pseudo_reg++;
2911 tdep->cc_regnum = last_pseudo_reg++;
2912 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2913 set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
2914
2915 /* Inferior function calls. */
2916 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
2917 set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
2918 set_gdbarch_frame_align (gdbarch, s390_frame_align);
2919 set_gdbarch_return_value (gdbarch, s390_return_value);
2920
2921 /* Frame handling. */
2922 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
2923 dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
2924 dwarf2_append_unwinders (gdbarch);
2925 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
2926 frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
2927 frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
2928 frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
2929 frame_base_set_default (gdbarch, &s390_frame_base);
2930 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
2931 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
2932
2933 /* Displaced stepping. */
2934 set_gdbarch_displaced_step_copy_insn (gdbarch,
2935 simple_displaced_step_copy_insn);
2936 set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
2937 set_gdbarch_displaced_step_free_closure (gdbarch,
2938 simple_displaced_step_free_closure);
2939 set_gdbarch_displaced_step_location (gdbarch,
2940 displaced_step_at_entry_point);
2941 set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
2942
2943 /* Note that GNU/Linux is the only OS supported on this
2944 platform. */
2945 linux_init_abi (info, gdbarch);
2946
2947 switch (tdep->abi)
2948 {
2949 case ABI_LINUX_S390:
2950 tdep->gregset = &s390_gregset;
2951 tdep->sizeof_gregset = s390_sizeof_gregset;
2952 tdep->fpregset = &s390_fpregset;
2953 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2954
2955 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
2956 set_solib_svr4_fetch_link_map_offsets
2957 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
2958 break;
2959
2960 case ABI_LINUX_ZSERIES:
2961 tdep->gregset = &s390x_gregset;
2962 tdep->sizeof_gregset = s390x_sizeof_gregset;
2963 tdep->fpregset = &s390_fpregset;
2964 tdep->sizeof_fpregset = s390_sizeof_fpregset;
2965
2966 set_gdbarch_long_bit (gdbarch, 64);
2967 set_gdbarch_long_long_bit (gdbarch, 64);
2968 set_gdbarch_ptr_bit (gdbarch, 64);
2969 set_solib_svr4_fetch_link_map_offsets
2970 (gdbarch, svr4_lp64_fetch_link_map_offsets);
2971 set_gdbarch_address_class_type_flags (gdbarch,
2972 s390_address_class_type_flags);
2973 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2974 s390_address_class_type_flags_to_name);
2975 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2976 s390_address_class_name_to_type_flags);
2977 break;
2978 }
2979
2980 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2981
2982 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2983
2984 /* Enable TLS support. */
2985 set_gdbarch_fetch_tls_load_module_address (gdbarch,
2986 svr4_fetch_objfile_link_map);
2987
2988 return gdbarch;
2989 }
2990
2991
2992 extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2993
2994 void
2995 _initialize_s390_tdep (void)
2996 {
2997 /* Hook us into the gdbarch mechanism. */
2998 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
2999
3000 /* Initialize the Linux target descriptions. */
3001 initialize_tdesc_s390_linux32 ();
3002 initialize_tdesc_s390_linux64 ();
3003 initialize_tdesc_s390x_linux64 ();
3004 }
This page took 0.110989 seconds and 5 git commands to generate.