2004-02-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
6 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 #define S390_TDEP /* for special macros in tm-s390.h */
26 #include <defs.h>
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "target.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "tm.h"
37 #include "../bfd/bfd.h"
38 #include "floatformat.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "dis-asm.h"
43
44
45
46 /* Number of bytes of storage in the actual machine representation
47 for register N. */
48 static int
49 s390_register_raw_size (int reg_nr)
50 {
51 if (S390_FP0_REGNUM <= reg_nr
52 && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
53 return S390_FPR_SIZE;
54 else
55 return 4;
56 }
57
58 static int
59 s390x_register_raw_size (int reg_nr)
60 {
61 return (reg_nr == S390_FPC_REGNUM)
62 || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
63 }
64
65 static int
66 s390_cannot_fetch_register (int regno)
67 {
68 return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
69 (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
70 }
71
72 static int
73 s390_register_byte (int reg_nr)
74 {
75 if (reg_nr <= S390_GP_LAST_REGNUM)
76 return reg_nr * S390_GPR_SIZE;
77 if (reg_nr <= S390_LAST_ACR)
78 return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
79 if (reg_nr <= S390_LAST_CR)
80 return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
81 if (reg_nr == S390_FPC_REGNUM)
82 return S390_FPC_OFFSET;
83 else
84 return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
85 }
86
87 #define S390_MAX_INSTR_SIZE (6)
88 #define S390_SYSCALL_OPCODE (0x0a)
89 #define S390_SYSCALL_SIZE (2)
90 #define S390_SIGCONTEXT_SREGS_OFFSET (8)
91 #define S390X_SIGCONTEXT_SREGS_OFFSET (8)
92 #define S390_SIGREGS_FP0_OFFSET (144)
93 #define S390X_SIGREGS_FP0_OFFSET (216)
94 #define S390_UC_MCONTEXT_OFFSET (256)
95 #define S390X_UC_MCONTEXT_OFFSET (344)
96 #define S390_STACK_FRAME_OVERHEAD 16*DEPRECATED_REGISTER_SIZE+32
97 #define S390_STACK_PARAMETER_ALIGNMENT DEPRECATED_REGISTER_SIZE
98 #define S390_NUM_FP_PARAMETER_REGISTERS (GDB_TARGET_IS_ESAME ? 4:2)
99 #define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
100 #define s390_NR_sigreturn 119
101 #define s390_NR_rt_sigreturn 173
102
103
104
105 struct frame_extra_info
106 {
107 int initialised;
108 int good_prologue;
109 CORE_ADDR function_start;
110 CORE_ADDR skip_prologue_function_start;
111 CORE_ADDR saved_pc_valid;
112 CORE_ADDR saved_pc;
113 CORE_ADDR sig_fixed_saved_pc_valid;
114 CORE_ADDR sig_fixed_saved_pc;
115 CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
116 CORE_ADDR stack_bought_valid;
117 CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
118 CORE_ADDR sigcontext;
119 };
120
121
122 static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
123
124 static int
125 s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
126 {
127 int instrlen;
128
129 static int s390_instrlen[] = {
130 2,
131 4,
132 4,
133 6
134 };
135 if (target_read_memory (at, &instr[0], 2))
136 return -1;
137 instrlen = s390_instrlen[instr[0] >> 6];
138 if (instrlen > 2)
139 {
140 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
141 return -1;
142 }
143 return instrlen;
144 }
145
146 static void
147 s390_memset_extra_info (struct frame_extra_info *fextra_info)
148 {
149 memset (fextra_info, 0, sizeof (struct frame_extra_info));
150 }
151
152
153
154 static const char *
155 s390_register_name (int reg_nr)
156 {
157 static char *register_names[] = {
158 "pswm", "pswa",
159 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
162 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
163 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
164 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
165 "fpc",
166 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
167 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
168 };
169
170 if (reg_nr <= S390_LAST_REGNUM)
171 return register_names[reg_nr];
172 else
173 return NULL;
174 }
175
176
177
178
179 static int
180 s390_stab_reg_to_regnum (int regno)
181 {
182 return regno >= 64 ? S390_PSWM_REGNUM - 64 :
183 regno >= 48 ? S390_FIRST_ACR - 48 :
184 regno >= 32 ? S390_FIRST_CR - 32 :
185 regno <= 15 ? (regno + 2) :
186 S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
187 (((regno - 16) & 4) >> 2);
188 }
189
190
191 /* Prologue analysis. */
192
193 /* When we analyze a prologue, we're really doing 'abstract
194 interpretation' or 'pseudo-evaluation': running the function's code
195 in simulation, but using conservative approximations of the values
196 it would have when it actually runs. For example, if our function
197 starts with the instruction:
198
199 ahi r1, 42 # add halfword immediate 42 to r1
200
201 we don't know exactly what value will be in r1 after executing this
202 instruction, but we do know it'll be 42 greater than its original
203 value.
204
205 If we then see an instruction like:
206
207 ahi r1, 22 # add halfword immediate 22 to r1
208
209 we still don't know what r1's value is, but again, we can say it is
210 now 64 greater than its original value.
211
212 If the next instruction were:
213
214 lr r2, r1 # set r2 to r1's value
215
216 then we can say that r2's value is now the original value of r1
217 plus 64. And so on.
218
219 Of course, this can only go so far before it gets unreasonable. If
220 we wanted to be able to say anything about the value of r1 after
221 the instruction:
222
223 xr r1, r3 # exclusive-or r1 and r3, place result in r1
224
225 then things would get pretty complex. But remember, we're just
226 doing a conservative approximation; if exclusive-or instructions
227 aren't relevant to prologues, we can just say r1's value is now
228 'unknown'. We can ignore things that are too complex, if that loss
229 of information is acceptable for our application.
230
231 Once you've reached an instruction that you don't know how to
232 simulate, you stop. Now you examine the state of the registers and
233 stack slots you've kept track of. For example:
234
235 - To see how large your stack frame is, just check the value of sp;
236 if it's the original value of sp minus a constant, then that
237 constant is the stack frame's size. If the sp's value has been
238 marked as 'unknown', then that means the prologue has done
239 something too complex for us to track, and we don't know the
240 frame size.
241
242 - To see whether we've saved the SP in the current frame's back
243 chain slot, we just check whether the current value of the back
244 chain stack slot is the original value of the sp.
245
246 Sure, this takes some work. But prologue analyzers aren't
247 quick-and-simple pattern patching to recognize a few fixed prologue
248 forms any more; they're big, hairy functions. Along with inferior
249 function calls, prologue analysis accounts for a substantial
250 portion of the time needed to stabilize a GDB port. So I think
251 it's worthwhile to look for an approach that will be easier to
252 understand and maintain. In the approach used here:
253
254 - It's easier to see that the analyzer is correct: you just see
255 whether the analyzer properly (albiet conservatively) simulates
256 the effect of each instruction.
257
258 - It's easier to extend the analyzer: you can add support for new
259 instructions, and know that you haven't broken anything that
260 wasn't already broken before.
261
262 - It's orthogonal: to gather new information, you don't need to
263 complicate the code for each instruction. As long as your domain
264 of conservative values is already detailed enough to tell you
265 what you need, then all the existing instruction simulations are
266 already gathering the right data for you.
267
268 A 'struct prologue_value' is a conservative approximation of the
269 real value the register or stack slot will have. */
270
271 struct prologue_value {
272
273 /* What sort of value is this? This determines the interpretation
274 of subsequent fields. */
275 enum {
276
277 /* We don't know anything about the value. This is also used for
278 values we could have kept track of, when doing so would have
279 been too complex and we don't want to bother. The bottom of
280 our lattice. */
281 pv_unknown,
282
283 /* A known constant. K is its value. */
284 pv_constant,
285
286 /* The value that register REG originally had *UPON ENTRY TO THE
287 FUNCTION*, plus K. If K is zero, this means, obviously, just
288 the value REG had upon entry to the function. REG is a GDB
289 register number. Before we start interpreting, we initialize
290 every register R to { pv_register, R, 0 }. */
291 pv_register,
292
293 } kind;
294
295 /* The meanings of the following fields depend on 'kind'; see the
296 comments for the specific 'kind' values. */
297 int reg;
298 CORE_ADDR k;
299 };
300
301
302 /* Set V to be unknown. */
303 static void
304 pv_set_to_unknown (struct prologue_value *v)
305 {
306 v->kind = pv_unknown;
307 }
308
309
310 /* Set V to the constant K. */
311 static void
312 pv_set_to_constant (struct prologue_value *v, CORE_ADDR k)
313 {
314 v->kind = pv_constant;
315 v->k = k;
316 }
317
318
319 /* Set V to the original value of register REG, plus K. */
320 static void
321 pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k)
322 {
323 v->kind = pv_register;
324 v->reg = reg;
325 v->k = k;
326 }
327
328
329 /* If one of *A and *B is a constant, and the other isn't, swap the
330 pointers as necessary to ensure that *B points to the constant.
331 This can reduce the number of cases we need to analyze in the
332 functions below. */
333 static void
334 pv_constant_last (struct prologue_value **a,
335 struct prologue_value **b)
336 {
337 if ((*a)->kind == pv_constant
338 && (*b)->kind != pv_constant)
339 {
340 struct prologue_value *temp = *a;
341 *a = *b;
342 *b = temp;
343 }
344 }
345
346
347 /* Set SUM to the sum of A and B. SUM, A, and B may point to the same
348 'struct prologue_value' object. */
349 static void
350 pv_add (struct prologue_value *sum,
351 struct prologue_value *a,
352 struct prologue_value *b)
353 {
354 pv_constant_last (&a, &b);
355
356 /* We can handle adding constants to registers, and other constants. */
357 if (b->kind == pv_constant
358 && (a->kind == pv_register
359 || a->kind == pv_constant))
360 {
361 sum->kind = a->kind;
362 sum->reg = a->reg; /* not meaningful if a is pv_constant, but
363 harmless */
364 sum->k = a->k + b->k;
365 }
366
367 /* Anything else we don't know how to add. We don't have a
368 representation for, say, the sum of two registers, or a multiple
369 of a register's value (adding a register to itself). */
370 else
371 sum->kind = pv_unknown;
372 }
373
374
375 /* Add the constant K to V. */
376 static void
377 pv_add_constant (struct prologue_value *v, CORE_ADDR k)
378 {
379 struct prologue_value pv_k;
380
381 /* Rather than thinking of all the cases we can and can't handle,
382 we'll just let pv_add take care of that for us. */
383 pv_set_to_constant (&pv_k, k);
384 pv_add (v, v, &pv_k);
385 }
386
387
388 /* Subtract B from A, and put the result in DIFF.
389
390 This isn't quite the same as negating B and adding it to A, since
391 we don't have a representation for the negation of anything but a
392 constant. For example, we can't negate { pv_register, R1, 10 },
393 but we do know that { pv_register, R1, 10 } minus { pv_register,
394 R1, 5 } is { pv_constant, <ignored>, 5 }.
395
396 This means, for example, that we can subtract two stack addresses;
397 they're both relative to the original SP. Since the frame pointer
398 is set based on the SP, its value will be the original SP plus some
399 constant (probably zero), so we can use its value just fine. */
400 static void
401 pv_subtract (struct prologue_value *diff,
402 struct prologue_value *a,
403 struct prologue_value *b)
404 {
405 pv_constant_last (&a, &b);
406
407 /* We can subtract a constant from another constant, or from a
408 register. */
409 if (b->kind == pv_constant
410 && (a->kind == pv_register
411 || a->kind == pv_constant))
412 {
413 diff->kind = a->kind;
414 diff->reg = a->reg; /* not always meaningful, but harmless */
415 diff->k = a->k - b->k;
416 }
417
418 /* We can subtract a register from itself, yielding a constant. */
419 else if (a->kind == pv_register
420 && b->kind == pv_register
421 && a->reg == b->reg)
422 {
423 diff->kind = pv_constant;
424 diff->k = a->k - b->k;
425 }
426
427 /* We don't know how to subtract anything else. */
428 else
429 diff->kind = pv_unknown;
430 }
431
432
433 /* Set AND to the logical and of A and B. */
434 static void
435 pv_logical_and (struct prologue_value *and,
436 struct prologue_value *a,
437 struct prologue_value *b)
438 {
439 pv_constant_last (&a, &b);
440
441 /* We can 'and' two constants. */
442 if (a->kind == pv_constant
443 && b->kind == pv_constant)
444 {
445 and->kind = pv_constant;
446 and->k = a->k & b->k;
447 }
448
449 /* We can 'and' anything with the constant zero. */
450 else if (b->kind == pv_constant
451 && b->k == 0)
452 {
453 and->kind = pv_constant;
454 and->k = 0;
455 }
456
457 /* We can 'and' anything with ~0. */
458 else if (b->kind == pv_constant
459 && b->k == ~ (CORE_ADDR) 0)
460 *and = *a;
461
462 /* We can 'and' a register with itself. */
463 else if (a->kind == pv_register
464 && b->kind == pv_register
465 && a->reg == b->reg
466 && a->k == b->k)
467 *and = *a;
468
469 /* Otherwise, we don't know. */
470 else
471 pv_set_to_unknown (and);
472 }
473
474
475 /* Return non-zero iff A and B are identical expressions.
476
477 This is not the same as asking if the two values are equal; the
478 result of such a comparison would have to be a pv_boolean, and
479 asking whether two 'unknown' values were equal would give you
480 pv_maybe. Same for comparing, say, { pv_register, R1, 0 } and {
481 pv_register, R2, 0}. Instead, this is asking whether the two
482 representations are the same. */
483 static int
484 pv_is_identical (struct prologue_value *a,
485 struct prologue_value *b)
486 {
487 if (a->kind != b->kind)
488 return 0;
489
490 switch (a->kind)
491 {
492 case pv_unknown:
493 return 1;
494 case pv_constant:
495 return (a->k == b->k);
496 case pv_register:
497 return (a->reg == b->reg && a->k == b->k);
498 default:
499 gdb_assert (0);
500 }
501 }
502
503
504 /* Return non-zero if A is the original value of register number R
505 plus K, zero otherwise. */
506 static int
507 pv_is_register (struct prologue_value *a, int r, CORE_ADDR k)
508 {
509 return (a->kind == pv_register
510 && a->reg == r
511 && a->k == k);
512 }
513
514
515 /* A prologue-value-esque boolean type, including "maybe", when we
516 can't figure out whether something is true or not. */
517 enum pv_boolean {
518 pv_maybe,
519 pv_definite_yes,
520 pv_definite_no,
521 };
522
523
524 /* Decide whether a reference to SIZE bytes at ADDR refers exactly to
525 an element of an array. The array starts at ARRAY_ADDR, and has
526 ARRAY_LEN values of ELT_SIZE bytes each. If ADDR definitely does
527 refer to an array element, set *I to the index of the referenced
528 element in the array, and return pv_definite_yes. If it definitely
529 doesn't, return pv_definite_no. If we can't tell, return pv_maybe.
530
531 If the reference does touch the array, but doesn't fall exactly on
532 an element boundary, or doesn't refer to the whole element, return
533 pv_maybe. */
534 static enum pv_boolean
535 pv_is_array_ref (struct prologue_value *addr,
536 CORE_ADDR size,
537 struct prologue_value *array_addr,
538 CORE_ADDR array_len,
539 CORE_ADDR elt_size,
540 int *i)
541 {
542 struct prologue_value offset;
543
544 /* Note that, since ->k is a CORE_ADDR, and CORE_ADDR is unsigned,
545 if addr is *before* the start of the array, then this isn't going
546 to be negative... */
547 pv_subtract (&offset, addr, array_addr);
548
549 if (offset.kind == pv_constant)
550 {
551 /* This is a rather odd test. We want to know if the SIZE bytes
552 at ADDR don't overlap the array at all, so you'd expect it to
553 be an || expression: "if we're completely before || we're
554 completely after". But with unsigned arithmetic, things are
555 different: since it's a number circle, not a number line, the
556 right values for offset.k are actually one contiguous range. */
557 if (offset.k <= -size
558 && offset.k >= array_len * elt_size)
559 return pv_definite_no;
560 else if (offset.k % elt_size != 0
561 || size != elt_size)
562 return pv_maybe;
563 else
564 {
565 *i = offset.k / elt_size;
566 return pv_definite_yes;
567 }
568 }
569 else
570 return pv_maybe;
571 }
572
573
574
575 /* Decoding S/390 instructions. */
576
577 /* Named opcode values for the S/390 instructions we recognize. Some
578 instructions have their opcode split across two fields; those are the
579 op1_* and op2_* enums. */
580 enum
581 {
582 op1_aghi = 0xa7, op2_aghi = 0xb,
583 op1_ahi = 0xa7, op2_ahi = 0xa,
584 op_ar = 0x1a,
585 op_basr = 0x0d,
586 op1_bras = 0xa7, op2_bras = 0x5,
587 op_l = 0x58,
588 op_la = 0x41,
589 op1_larl = 0xc0, op2_larl = 0x0,
590 op_lgr = 0xb904,
591 op1_lghi = 0xa7, op2_lghi = 0x9,
592 op1_lhi = 0xa7, op2_lhi = 0x8,
593 op_lr = 0x18,
594 op_nr = 0x14,
595 op_ngr = 0xb980,
596 op_s = 0x5b,
597 op_st = 0x50,
598 op_std = 0x60,
599 op1_stg = 0xe3, op2_stg = 0x24,
600 op_stm = 0x90,
601 op1_stmg = 0xeb, op2_stmg = 0x24,
602 op_svc = 0x0a,
603 };
604
605
606 /* The functions below are for recognizing and decoding S/390
607 instructions of various formats. Each of them checks whether INSN
608 is an instruction of the given format, with the specified opcodes.
609 If it is, it sets the remaining arguments to the values of the
610 instruction's fields, and returns a non-zero value; otherwise, it
611 returns zero.
612
613 These functions' arguments appear in the order they appear in the
614 instruction, not in the machine-language form. So, opcodes always
615 come first, even though they're sometimes scattered around the
616 instructions. And displacements appear before base and extension
617 registers, as they do in the assembly syntax, not at the end, as
618 they do in the machine language. */
619 static int
620 is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
621 {
622 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
623 {
624 *r1 = (insn[1] >> 4) & 0xf;
625 /* i2 is a 16-bit signed quantity. */
626 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
627 return 1;
628 }
629 else
630 return 0;
631 }
632
633
634 static int
635 is_ril (bfd_byte *insn, int op1, int op2,
636 unsigned int *r1, int *i2)
637 {
638 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
639 {
640 *r1 = (insn[1] >> 4) & 0xf;
641 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
642 no sign extension is necessary, but we don't want to assume
643 that. */
644 *i2 = (((insn[2] << 24)
645 | (insn[3] << 16)
646 | (insn[4] << 8)
647 | (insn[5])) ^ 0x80000000) - 0x80000000;
648 return 1;
649 }
650 else
651 return 0;
652 }
653
654
655 static int
656 is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
657 {
658 if (insn[0] == op)
659 {
660 *r1 = (insn[1] >> 4) & 0xf;
661 *r2 = insn[1] & 0xf;
662 return 1;
663 }
664 else
665 return 0;
666 }
667
668
669 static int
670 is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
671 {
672 if (((insn[0] << 8) | insn[1]) == op)
673 {
674 /* Yes, insn[3]. insn[2] is unused in RRE format. */
675 *r1 = (insn[3] >> 4) & 0xf;
676 *r2 = insn[3] & 0xf;
677 return 1;
678 }
679 else
680 return 0;
681 }
682
683
684 static int
685 is_rs (bfd_byte *insn, int op,
686 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
687 {
688 if (insn[0] == op)
689 {
690 *r1 = (insn[1] >> 4) & 0xf;
691 *r3 = insn[1] & 0xf;
692 *b2 = (insn[2] >> 4) & 0xf;
693 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
694 return 1;
695 }
696 else
697 return 0;
698 }
699
700
701 static int
702 is_rse (bfd_byte *insn, int op1, int op2,
703 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
704 {
705 if (insn[0] == op1
706 /* Yes, insn[5]. insn[4] is unused. */
707 && insn[5] == op2)
708 {
709 *r1 = (insn[1] >> 4) & 0xf;
710 *r3 = insn[1] & 0xf;
711 *b2 = (insn[2] >> 4) & 0xf;
712 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
713 return 1;
714 }
715 else
716 return 0;
717 }
718
719
720 static int
721 is_rx (bfd_byte *insn, int op,
722 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
723 {
724 if (insn[0] == op)
725 {
726 *r1 = (insn[1] >> 4) & 0xf;
727 *x2 = insn[1] & 0xf;
728 *b2 = (insn[2] >> 4) & 0xf;
729 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
730 return 1;
731 }
732 else
733 return 0;
734 }
735
736
737 static int
738 is_rxe (bfd_byte *insn, int op1, int op2,
739 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
740 {
741 if (insn[0] == op1
742 /* Yes, insn[5]. insn[4] is unused. */
743 && insn[5] == op2)
744 {
745 *r1 = (insn[1] >> 4) & 0xf;
746 *x2 = insn[1] & 0xf;
747 *b2 = (insn[2] >> 4) & 0xf;
748 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
749 return 1;
750 }
751 else
752 return 0;
753 }
754
755
756 /* Set ADDR to the effective address for an X-style instruction, like:
757
758 L R1, D2(X2, B2)
759
760 Here, X2 and B2 are registers, and D2 is an unsigned 12-bit
761 constant; the effective address is the sum of all three. If either
762 X2 or B2 are zero, then it doesn't contribute to the sum --- this
763 means that r0 can't be used as either X2 or B2.
764
765 GPR is an array of general register values, indexed by GPR number,
766 not GDB register number. */
767 static void
768 compute_x_addr (struct prologue_value *addr,
769 struct prologue_value *gpr,
770 unsigned int d2, unsigned int x2, unsigned int b2)
771 {
772 /* We can't just add stuff directly in addr; it might alias some of
773 the registers we need to read. */
774 struct prologue_value result;
775
776 pv_set_to_constant (&result, d2);
777 if (x2)
778 pv_add (&result, &result, &gpr[x2]);
779 if (b2)
780 pv_add (&result, &result, &gpr[b2]);
781
782 *addr = result;
783 }
784
785
786 /* The number of GPR and FPR spill slots in an S/390 stack frame. We
787 track general-purpose registers r2 -- r15, and floating-point
788 registers f0, f2, f4, and f6. */
789 #define S390_NUM_SPILL_SLOTS (14 + 4)
790
791
792 /* If the SIZE bytes at ADDR are a stack slot we're actually tracking,
793 return pv_definite_yes and set *STACK to point to the slot. If
794 we're sure that they are not any of our stack slots, then return
795 pv_definite_no. Otherwise, return pv_maybe.
796 - GPR is an array indexed by GPR number giving the current values
797 of the general-purpose registers.
798 - SPILL is an array tracking the spill area of the caller's frame;
799 SPILL[i] is the i'th spill slot. The spill slots are designated
800 for r2 -- r15, and then f0, f2, f4, and f6.
801 - BACK_CHAIN is the value of the back chain slot; it's only valid
802 when the current frame actually has some space for a back chain
803 slot --- that is, when the current value of the stack pointer
804 (according to GPR) is at least S390_STACK_FRAME_OVERHEAD bytes
805 less than its original value. */
806 static enum pv_boolean
807 s390_on_stack (struct prologue_value *addr,
808 CORE_ADDR size,
809 struct prologue_value *gpr,
810 struct prologue_value *spill,
811 struct prologue_value *back_chain,
812 struct prologue_value **stack)
813 {
814 struct prologue_value gpr_spill_addr;
815 struct prologue_value fpr_spill_addr;
816 struct prologue_value back_chain_addr;
817 int i;
818 enum pv_boolean b;
819
820 /* Construct the addresses of the spill arrays and the back chain. */
821 pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * S390_GPR_SIZE);
822 pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * S390_GPR_SIZE);
823 back_chain_addr = gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
824
825 /* We have to check for GPR and FPR references using two separate
826 calls to pv_is_array_ref, since the GPR and FPR spill slots are
827 different sizes. (SPILL is an array, but the thing it tracks
828 isn't really an array.) */
829
830 /* Was it a reference to the GPR spill array? */
831 b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, S390_GPR_SIZE, &i);
832 if (b == pv_definite_yes)
833 {
834 *stack = &spill[i];
835 return pv_definite_yes;
836 }
837 if (b == pv_maybe)
838 return pv_maybe;
839
840 /* Was it a reference to the FPR spill array? */
841 b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, S390_FPR_SIZE, &i);
842 if (b == pv_definite_yes)
843 {
844 *stack = &spill[14 + i];
845 return pv_definite_yes;
846 }
847 if (b == pv_maybe)
848 return pv_maybe;
849
850 /* Was it a reference to the back chain?
851 This isn't quite right. We ought to check whether we have
852 actually allocated any new frame at all. */
853 b = pv_is_array_ref (addr, size, &back_chain_addr, 1, S390_GPR_SIZE, &i);
854 if (b == pv_definite_yes)
855 {
856 *stack = back_chain;
857 return pv_definite_yes;
858 }
859 if (b == pv_maybe)
860 return pv_maybe;
861
862 /* All the above queries returned definite 'no's. */
863 return pv_definite_no;
864 }
865
866
867 /* Do a SIZE-byte store of VALUE to ADDR. GPR, SPILL, and BACK_CHAIN,
868 and the return value are as described for s390_on_stack, above.
869 Note that, when this returns pv_maybe, we have to assume that all
870 of our memory now contains unknown values. */
871 static enum pv_boolean
872 s390_store (struct prologue_value *addr,
873 CORE_ADDR size,
874 struct prologue_value *value,
875 struct prologue_value *gpr,
876 struct prologue_value *spill,
877 struct prologue_value *back_chain)
878 {
879 struct prologue_value *stack;
880 enum pv_boolean on_stack
881 = s390_on_stack (addr, size, gpr, spill, back_chain, &stack);
882
883 if (on_stack == pv_definite_yes)
884 *stack = *value;
885
886 return on_stack;
887 }
888
889
890 /* The current frame looks like a signal delivery frame: the first
891 instruction is an 'svc' opcode. If the next frame is a signal
892 handler's frame, set FI's saved register map to point into the
893 signal context structure. */
894 static void
895 s390_get_signal_frame_info (struct frame_info *fi)
896 {
897 struct frame_info *next_frame = get_next_frame (fi);
898
899 if (next_frame
900 && get_frame_extra_info (next_frame)
901 && get_frame_extra_info (next_frame)->sigcontext)
902 {
903 /* We're definitely backtracing from a signal handler. */
904 CORE_ADDR *saved_regs = deprecated_get_frame_saved_regs (fi);
905 CORE_ADDR save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext
906 + DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM));
907 int reg;
908
909 for (reg = 0; reg < S390_NUM_GPRS; reg++)
910 {
911 saved_regs[S390_GP0_REGNUM + reg] = save_reg_addr;
912 save_reg_addr += S390_GPR_SIZE;
913 }
914
915 save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext
916 + (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
917 S390_SIGREGS_FP0_OFFSET));
918 for (reg = 0; reg < S390_NUM_FPRS; reg++)
919 {
920 saved_regs[S390_FP0_REGNUM + reg] = save_reg_addr;
921 save_reg_addr += S390_FPR_SIZE;
922 }
923 }
924 }
925
926
927 static int
928 s390_get_frame_info (CORE_ADDR start_pc,
929 struct frame_extra_info *fextra_info,
930 struct frame_info *fi,
931 int init_extra_info)
932 {
933 /* Our return value:
934 zero if we were able to read all the instructions we wanted, or
935 -1 if we got an error trying to read memory. */
936 int result = 0;
937
938 /* The current PC for our abstract interpretation. */
939 CORE_ADDR pc;
940
941 /* The address of the next instruction after that. */
942 CORE_ADDR next_pc;
943
944 /* The general-purpose registers. */
945 struct prologue_value gpr[S390_NUM_GPRS];
946
947 /* The floating-point registers. */
948 struct prologue_value fpr[S390_NUM_FPRS];
949
950 /* The register spill stack slots in the caller's frame ---
951 general-purpose registers r2 through r15, and floating-point
952 registers. spill[i] is where gpr i+2 gets spilled;
953 spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled. */
954 struct prologue_value spill[S390_NUM_SPILL_SLOTS];
955
956 /* The value of the back chain slot. This is only valid if the stack
957 pointer is known to be less than its original value --- that is,
958 if we have indeed allocated space on the stack. */
959 struct prologue_value back_chain;
960
961 /* The address of the instruction after the last one that changed
962 the SP, FP, or back chain. */
963 CORE_ADDR after_last_frame_setup_insn = start_pc;
964
965 /* Set up everything's initial value. */
966 {
967 int i;
968
969 for (i = 0; i < S390_NUM_GPRS; i++)
970 pv_set_to_register (&gpr[i], S390_GP0_REGNUM + i, 0);
971
972 for (i = 0; i < S390_NUM_FPRS; i++)
973 pv_set_to_register (&fpr[i], S390_FP0_REGNUM + i, 0);
974
975 for (i = 0; i < S390_NUM_SPILL_SLOTS; i++)
976 pv_set_to_unknown (&spill[i]);
977
978 pv_set_to_unknown (&back_chain);
979 }
980
981 /* Start interpreting instructions, until we hit something we don't
982 know how to interpret. (Ideally, we should stop at the frame's
983 real current PC, but at the moment, our callers don't give us
984 that info.) */
985 for (pc = start_pc; ; pc = next_pc)
986 {
987 bfd_byte insn[S390_MAX_INSTR_SIZE];
988 int insn_len = s390_readinstruction (insn, pc);
989
990 /* Fields for various kinds of instructions. */
991 unsigned int b2, r1, r2, d2, x2, r3;
992 int i2;
993
994 /* The values of SP, FP, and back chain before this instruction,
995 for detecting instructions that change them. */
996 struct prologue_value pre_insn_sp, pre_insn_fp, pre_insn_back_chain;
997
998 /* If we got an error trying to read the instruction, report it. */
999 if (insn_len < 0)
1000 {
1001 result = -1;
1002 break;
1003 }
1004
1005 next_pc = pc + insn_len;
1006
1007 pre_insn_sp = gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
1008 pre_insn_fp = gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
1009 pre_insn_back_chain = back_chain;
1010
1011 /* A special case, first --- only recognized as the very first
1012 instruction of the function, for signal delivery frames:
1013 SVC i --- system call */
1014 if (pc == start_pc
1015 && is_rr (insn, op_svc, &r1, &r2))
1016 {
1017 if (fi)
1018 s390_get_signal_frame_info (fi);
1019 break;
1020 }
1021
1022 /* AHI r1, i2 --- add halfword immediate */
1023 else if (is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
1024 pv_add_constant (&gpr[r1], i2);
1025
1026
1027 /* AGHI r1, i2 --- add halfword immediate (64-bit version) */
1028 else if (GDB_TARGET_IS_ESAME
1029 && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
1030 pv_add_constant (&gpr[r1], i2);
1031
1032 /* AR r1, r2 -- add register */
1033 else if (is_rr (insn, op_ar, &r1, &r2))
1034 pv_add (&gpr[r1], &gpr[r1], &gpr[r2]);
1035
1036 /* BASR r1, 0 --- branch and save
1037 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1038 else if (is_rr (insn, op_basr, &r1, &r2)
1039 && r2 == 0)
1040 pv_set_to_constant (&gpr[r1], next_pc);
1041
1042 /* BRAS r1, i2 --- branch relative and save */
1043 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1044 {
1045 pv_set_to_constant (&gpr[r1], next_pc);
1046 next_pc = pc + i2 * 2;
1047
1048 /* We'd better not interpret any backward branches. We'll
1049 never terminate. */
1050 if (next_pc <= pc)
1051 break;
1052 }
1053
1054 /* L r1, d2(x2, b2) --- load */
1055 else if (is_rx (insn, op_l, &r1, &d2, &x2, &b2))
1056 {
1057 struct prologue_value addr;
1058 struct prologue_value *stack;
1059
1060 compute_x_addr (&addr, gpr, d2, x2, b2);
1061
1062 /* If it's a load from an in-line constant pool, then we can
1063 simulate that, under the assumption that the code isn't
1064 going to change between the time the processor actually
1065 executed it creating the current frame, and the time when
1066 we're analyzing the code to unwind past that frame. */
1067 if (addr.kind == pv_constant
1068 && start_pc <= addr.k
1069 && addr.k < next_pc)
1070 pv_set_to_constant (&gpr[r1],
1071 read_memory_integer (addr.k, 4));
1072
1073 /* If it's definitely a reference to something on the stack,
1074 we can do that. */
1075 else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack)
1076 == pv_definite_yes)
1077 gpr[r1] = *stack;
1078
1079 /* Otherwise, we don't know the value. */
1080 else
1081 pv_set_to_unknown (&gpr[r1]);
1082 }
1083
1084 /* LA r1, d2(x2, b2) --- load address */
1085 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
1086 compute_x_addr (&gpr[r1], gpr, d2, x2, b2);
1087
1088 /* LARL r1, i2 --- load address relative long */
1089 else if (GDB_TARGET_IS_ESAME
1090 && is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1091 pv_set_to_constant (&gpr[r1], pc + i2 * 2);
1092
1093 /* LGR r1, r2 --- load from register */
1094 else if (GDB_TARGET_IS_ESAME
1095 && is_rre (insn, op_lgr, &r1, &r2))
1096 gpr[r1] = gpr[r2];
1097
1098 /* LHI r1, i2 --- load halfword immediate */
1099 else if (is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
1100 pv_set_to_constant (&gpr[r1], i2);
1101
1102 /* LGHI r1, i2 --- load halfword immediate --- 64-bit version */
1103 else if (is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
1104 pv_set_to_constant (&gpr[r1], i2);
1105
1106 /* LR r1, r2 --- load from register */
1107 else if (is_rr (insn, op_lr, &r1, &r2))
1108 gpr[r1] = gpr[r2];
1109
1110 /* NGR r1, r2 --- logical and --- 64-bit version */
1111 else if (GDB_TARGET_IS_ESAME
1112 && is_rre (insn, op_ngr, &r1, &r2))
1113 pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
1114
1115 /* NR r1, r2 --- logical and */
1116 else if (is_rr (insn, op_nr, &r1, &r2))
1117 pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
1118
1119 /* NGR r1, r2 --- logical and --- 64-bit version */
1120 else if (GDB_TARGET_IS_ESAME
1121 && is_rre (insn, op_ngr, &r1, &r2))
1122 pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
1123
1124 /* NR r1, r2 --- logical and */
1125 else if (is_rr (insn, op_nr, &r1, &r2))
1126 pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
1127
1128 /* S r1, d2(x2, b2) --- subtract from memory */
1129 else if (is_rx (insn, op_s, &r1, &d2, &x2, &b2))
1130 {
1131 struct prologue_value addr;
1132 struct prologue_value value;
1133 struct prologue_value *stack;
1134
1135 compute_x_addr (&addr, gpr, d2, x2, b2);
1136
1137 /* If it's a load from an in-line constant pool, then we can
1138 simulate that, under the assumption that the code isn't
1139 going to change between the time the processor actually
1140 executed it and the time when we're analyzing it. */
1141 if (addr.kind == pv_constant
1142 && start_pc <= addr.k
1143 && addr.k < pc)
1144 pv_set_to_constant (&value, read_memory_integer (addr.k, 4));
1145
1146 /* If it's definitely a reference to something on the stack,
1147 we could do that. */
1148 else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack)
1149 == pv_definite_yes)
1150 value = *stack;
1151
1152 /* Otherwise, we don't know the value. */
1153 else
1154 pv_set_to_unknown (&value);
1155
1156 pv_subtract (&gpr[r1], &gpr[r1], &value);
1157 }
1158
1159 /* ST r1, d2(x2, b2) --- store */
1160 else if (is_rx (insn, op_st, &r1, &d2, &x2, &b2))
1161 {
1162 struct prologue_value addr;
1163
1164 compute_x_addr (&addr, gpr, d2, x2, b2);
1165
1166 /* The below really should be '4', not 'S390_GPR_SIZE'; this
1167 instruction always stores 32 bits, regardless of the full
1168 size of the GPR. */
1169 if (s390_store (&addr, 4, &gpr[r1], gpr, spill, &back_chain)
1170 == pv_maybe)
1171 /* If we can't be sure that it's *not* a store to
1172 something we're tracing, then we would have to mark all
1173 our memory as unknown --- after all, it *could* be a
1174 store to any of them --- so we might as well just stop
1175 interpreting. */
1176 break;
1177 }
1178
1179 /* STD r1, d2(x2,b2) --- store floating-point register */
1180 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
1181 {
1182 struct prologue_value addr;
1183
1184 compute_x_addr (&addr, gpr, d2, x2, b2);
1185
1186 if (s390_store (&addr, 8, &fpr[r1], gpr, spill, &back_chain)
1187 == pv_maybe)
1188 /* If we can't be sure that it's *not* a store to
1189 something we're tracing, then we would have to mark all
1190 our memory as unknown --- after all, it *could* be a
1191 store to any of them --- so we might as well just stop
1192 interpreting. */
1193 break;
1194 }
1195
1196 /* STG r1, d2(x2, b2) --- 64-bit store */
1197 else if (GDB_TARGET_IS_ESAME
1198 && is_rxe (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1199 {
1200 struct prologue_value addr;
1201
1202 compute_x_addr (&addr, gpr, d2, x2, b2);
1203
1204 /* The below really should be '8', not 'S390_GPR_SIZE'; this
1205 instruction always stores 64 bits, regardless of the full
1206 size of the GPR. */
1207 if (s390_store (&addr, 8, &gpr[r1], gpr, spill, &back_chain)
1208 == pv_maybe)
1209 /* If we can't be sure that it's *not* a store to
1210 something we're tracing, then we would have to mark all
1211 our memory as unknown --- after all, it *could* be a
1212 store to any of them --- so we might as well just stop
1213 interpreting. */
1214 break;
1215 }
1216
1217 /* STM r1, r3, d2(b2) --- store multiple */
1218 else if (is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
1219 {
1220 int regnum;
1221 int offset;
1222 struct prologue_value addr;
1223
1224 for (regnum = r1, offset = 0;
1225 regnum <= r3;
1226 regnum++, offset += 4)
1227 {
1228 compute_x_addr (&addr, gpr, d2 + offset, 0, b2);
1229
1230 if (s390_store (&addr, 4, &gpr[regnum], gpr, spill, &back_chain)
1231 == pv_maybe)
1232 /* If we can't be sure that it's *not* a store to
1233 something we're tracing, then we would have to mark all
1234 our memory as unknown --- after all, it *could* be a
1235 store to any of them --- so we might as well just stop
1236 interpreting. */
1237 break;
1238 }
1239
1240 /* If we left the loop early, we should stop interpreting
1241 altogether. */
1242 if (regnum <= r3)
1243 break;
1244 }
1245
1246 /* STMG r1, r3, d2(b2) --- store multiple, 64-bit */
1247 else if (GDB_TARGET_IS_ESAME
1248 && is_rse (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
1249 {
1250 int regnum;
1251 int offset;
1252 struct prologue_value addr;
1253
1254 for (regnum = r1, offset = 0;
1255 regnum <= r3;
1256 regnum++, offset += 8)
1257 {
1258 compute_x_addr (&addr, gpr, d2 + offset, 0, b2);
1259
1260 if (s390_store (&addr, 8, &gpr[regnum], gpr, spill, &back_chain)
1261 == pv_maybe)
1262 /* If we can't be sure that it's *not* a store to
1263 something we're tracing, then we would have to mark all
1264 our memory as unknown --- after all, it *could* be a
1265 store to any of them --- so we might as well just stop
1266 interpreting. */
1267 break;
1268 }
1269
1270 /* If we left the loop early, we should stop interpreting
1271 altogether. */
1272 if (regnum <= r3)
1273 break;
1274 }
1275
1276 else
1277 /* An instruction we don't know how to simulate. The only
1278 safe thing to do would be to set every value we're tracking
1279 to 'unknown'. Instead, we'll be optimistic: we just stop
1280 interpreting, and assume that the machine state we've got
1281 now is good enough for unwinding the stack. */
1282 break;
1283
1284 /* Record the address after the last instruction that changed
1285 the FP, SP, or backlink. Ignore instructions that changed
1286 them back to their original values --- those are probably
1287 restore instructions. (The back chain is never restored,
1288 just popped.) */
1289 {
1290 struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
1291 struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
1292
1293 if ((! pv_is_identical (&pre_insn_sp, sp)
1294 && ! pv_is_register (sp, S390_SP_REGNUM, 0))
1295 || (! pv_is_identical (&pre_insn_fp, fp)
1296 && ! pv_is_register (fp, S390_FRAME_REGNUM, 0))
1297 || ! pv_is_identical (&pre_insn_back_chain, &back_chain))
1298 after_last_frame_setup_insn = next_pc;
1299 }
1300 }
1301
1302 /* Okay, now gpr[], fpr[], spill[], and back_chain reflect the state
1303 of the machine as of the first instruction we couldn't interpret
1304 (hopefully the first non-prologue instruction). */
1305 {
1306 /* The size of the frame, or (CORE_ADDR) -1 if we couldn't figure
1307 that out. */
1308 CORE_ADDR frame_size = -1;
1309
1310 /* The value the SP had upon entry to the function, or
1311 (CORE_ADDR) -1 if we can't figure that out. */
1312 CORE_ADDR original_sp = -1;
1313
1314 /* Are we using S390_FRAME_REGNUM as a frame pointer register? */
1315 int using_frame_pointer = 0;
1316
1317 /* If S390_FRAME_REGNUM is some constant offset from the SP, then
1318 that strongly suggests that we're going to use that as our
1319 frame pointer register, not the SP. */
1320 {
1321 struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
1322
1323 if (fp->kind == pv_register
1324 && fp->reg == S390_SP_REGNUM)
1325 using_frame_pointer = 1;
1326 }
1327
1328 /* If we were given a frame_info structure, we may be able to use
1329 the frame's base address to figure out the actual value of the
1330 original SP. */
1331 if (fi && get_frame_base (fi))
1332 {
1333 int frame_base_regno;
1334 struct prologue_value *frame_base;
1335
1336 /* The meaning of the frame base depends on whether the
1337 function uses a frame pointer register other than the SP or
1338 not (see s390_read_fp):
1339 - If the function does use a frame pointer register other
1340 than the SP, then the frame base is that register's
1341 value.
1342 - If the function doesn't use a frame pointer, then the
1343 frame base is the SP itself.
1344 We're duplicating some of the logic of s390_fp_regnum here,
1345 but we don't want to call that, because it would just do
1346 exactly the same analysis we've already done above. */
1347 if (using_frame_pointer)
1348 frame_base_regno = S390_FRAME_REGNUM;
1349 else
1350 frame_base_regno = S390_SP_REGNUM;
1351
1352 frame_base = &gpr[frame_base_regno - S390_GP0_REGNUM];
1353
1354 /* We know the frame base address; if the value of whatever
1355 register it came from is a constant offset from the
1356 original SP, then we can reconstruct the original SP just
1357 by subtracting off that constant. */
1358 if (frame_base->kind == pv_register
1359 && frame_base->reg == S390_SP_REGNUM)
1360 original_sp = get_frame_base (fi) - frame_base->k;
1361 }
1362
1363 /* If the analysis said that the current SP value is the original
1364 value less some constant, then that constant is the frame size. */
1365 {
1366 struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
1367
1368 if (sp->kind == pv_register
1369 && sp->reg == S390_SP_REGNUM)
1370 frame_size = -sp->k;
1371 }
1372
1373 /* If we knew other registers' current values, we could check if
1374 the analysis said any of those were related to the original SP
1375 value, too. But for now, we'll just punt. */
1376
1377 /* If the caller passed in an 'extra info' structure, fill in the
1378 parts we can. */
1379 if (fextra_info)
1380 {
1381 if (init_extra_info || ! fextra_info->initialised)
1382 {
1383 s390_memset_extra_info (fextra_info);
1384 fextra_info->function_start = start_pc;
1385 fextra_info->initialised = 1;
1386 }
1387
1388 if (frame_size != -1)
1389 {
1390 fextra_info->stack_bought_valid = 1;
1391 fextra_info->stack_bought = frame_size;
1392 }
1393
1394 /* Assume everything was okay, and indicate otherwise when we
1395 find something amiss. */
1396 fextra_info->good_prologue = 1;
1397
1398 if (using_frame_pointer)
1399 /* Actually, nobody cares about the exact PC, so any
1400 non-zero value will do here. */
1401 fextra_info->frame_pointer_saved_pc = 1;
1402
1403 /* If we weren't able to find the size of the frame, or find
1404 the original sp based on actual current register values,
1405 then we're not going to be able to unwind this frame.
1406
1407 (If we're just doing prologue analysis to set a breakpoint,
1408 then frame_size might be known, but original_sp unknown; if
1409 we're analyzing a real frame which uses alloca, then
1410 original_sp might be known (from the frame pointer
1411 register), but the frame size might be unknown.) */
1412 if (original_sp == -1 && frame_size == -1)
1413 fextra_info->good_prologue = 0;
1414
1415 if (fextra_info->good_prologue)
1416 fextra_info->skip_prologue_function_start
1417 = after_last_frame_setup_insn;
1418 else
1419 /* If the prologue was too complex for us to make sense of,
1420 then perhaps it's better to just not skip anything at
1421 all. */
1422 fextra_info->skip_prologue_function_start = start_pc;
1423 }
1424
1425 /* Indicate where registers were saved on the stack, if:
1426 - the caller seems to want to know,
1427 - the caller provided an actual SP, and
1428 - the analysis gave us enough information to actually figure it
1429 out. */
1430 if (fi
1431 && deprecated_get_frame_saved_regs (fi)
1432 && original_sp != -1)
1433 {
1434 int slot_num;
1435 CORE_ADDR slot_addr;
1436 CORE_ADDR *saved_regs = deprecated_get_frame_saved_regs (fi);
1437
1438 /* Scan the spill array; if a spill slot says it holds the
1439 original value of some register, then record that slot's
1440 address as the place that register was saved.
1441
1442 Just for kicks, note that, even if registers aren't saved
1443 in their officially-sanctioned slots, this will still work
1444 --- we know what really got put where. */
1445
1446 /* First, the slots for r2 -- r15. */
1447 for (slot_num = 0, slot_addr = original_sp + 2 * S390_GPR_SIZE;
1448 slot_num < 14;
1449 slot_num++, slot_addr += S390_GPR_SIZE)
1450 {
1451 struct prologue_value *slot = &spill[slot_num];
1452
1453 if (slot->kind == pv_register
1454 && slot->k == 0)
1455 saved_regs[slot->reg] = slot_addr;
1456 }
1457
1458 /* Then, the slots for f0, f2, f4, and f6. They're a
1459 different size. */
1460 for (slot_num = 14, slot_addr = original_sp + 16 * S390_GPR_SIZE;
1461 slot_num < S390_NUM_SPILL_SLOTS;
1462 slot_num++, slot_addr += S390_FPR_SIZE)
1463 {
1464 struct prologue_value *slot = &spill[slot_num];
1465
1466 if (slot->kind == pv_register
1467 && slot->k == 0)
1468 saved_regs[slot->reg] = slot_addr;
1469 }
1470
1471 /* The stack pointer's element of saved_regs[] is special. */
1472 saved_regs[S390_SP_REGNUM] = original_sp;
1473 }
1474 }
1475
1476 return result;
1477 }
1478
1479
1480 static int
1481 s390_check_function_end (CORE_ADDR pc)
1482 {
1483 bfd_byte instr[S390_MAX_INSTR_SIZE];
1484 int regidx, instrlen;
1485
1486 instrlen = s390_readinstruction (instr, pc);
1487 if (instrlen < 0)
1488 return -1;
1489 /* check for BR */
1490 if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
1491 return 0;
1492 regidx = instr[1] & 0xf;
1493 /* Check for LMG or LG */
1494 instrlen =
1495 s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4));
1496 if (instrlen < 0)
1497 return -1;
1498 if (GDB_TARGET_IS_ESAME)
1499 {
1500
1501 if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
1502 return 0;
1503 }
1504 else if (instrlen != 4 || instr[0] != 0x98)
1505 {
1506 return 0;
1507 }
1508 if ((instr[2] >> 4) != 0xf)
1509 return 0;
1510 if (regidx == 14)
1511 return 1;
1512 instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8));
1513 if (instrlen < 0)
1514 return -1;
1515 if (GDB_TARGET_IS_ESAME)
1516 {
1517 /* Check for LG */
1518 if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
1519 return 0;
1520 }
1521 else
1522 {
1523 /* Check for L */
1524 if (instrlen != 4 || instr[0] != 0x58)
1525 return 0;
1526 }
1527 if (instr[2] >> 4 != 0xf)
1528 return 0;
1529 if (instr[1] >> 4 != regidx)
1530 return 0;
1531 return 1;
1532 }
1533
1534 static CORE_ADDR
1535 s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
1536 {
1537 CORE_ADDR function_start, test_function_start;
1538 int loop_cnt, err, function_end;
1539 struct frame_extra_info fextra_info;
1540 function_start = get_pc_function_start (pc);
1541
1542 if (function_start == 0)
1543 {
1544 test_function_start = pc;
1545 if (test_function_start & 1)
1546 return 0; /* This has to be bogus */
1547 loop_cnt = 0;
1548 do
1549 {
1550
1551 err =
1552 s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
1553 loop_cnt++;
1554 test_function_start -= 2;
1555 function_end = s390_check_function_end (test_function_start);
1556 }
1557 while (!(function_end == 1 || err || loop_cnt >= 4096 ||
1558 (fextra_info.good_prologue)));
1559 if (fextra_info.good_prologue)
1560 function_start = fextra_info.function_start;
1561 else if (function_end == 1)
1562 function_start = test_function_start;
1563 }
1564 return function_start;
1565 }
1566
1567
1568 static int
1569 s390_frameless_function_invocation (struct frame_info *fi)
1570 {
1571 struct frame_extra_info fextra_info, *fextra_info_ptr;
1572 int frameless = 0;
1573
1574 if (get_next_frame (fi) == NULL) /* no may be frameless */
1575 {
1576 if (get_frame_extra_info (fi))
1577 fextra_info_ptr = get_frame_extra_info (fi);
1578 else
1579 {
1580 fextra_info_ptr = &fextra_info;
1581 s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
1582 fextra_info_ptr, fi, 1);
1583 }
1584 frameless = (fextra_info_ptr->stack_bought_valid
1585 && fextra_info_ptr->stack_bought == 0);
1586 }
1587 return frameless;
1588
1589 }
1590
1591
1592 static int
1593 s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
1594 CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
1595 {
1596 bfd_byte instr[S390_MAX_INSTR_SIZE];
1597 int instrlen;
1598 CORE_ADDR scontext;
1599 int retval = 0;
1600 CORE_ADDR orig_sp;
1601 CORE_ADDR temp_sregs;
1602
1603 scontext = temp_sregs = 0;
1604
1605 instrlen = s390_readinstruction (instr, pc);
1606 if (sigcaller_pc)
1607 *sigcaller_pc = 0;
1608 if (((instrlen == S390_SYSCALL_SIZE) &&
1609 (instr[0] == S390_SYSCALL_OPCODE)) &&
1610 ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
1611 {
1612 if (sighandler_fi)
1613 {
1614 if (s390_frameless_function_invocation (sighandler_fi))
1615 orig_sp = get_frame_base (sighandler_fi);
1616 else
1617 orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
1618 read_memory_integer (get_frame_base (sighandler_fi),
1619 S390_GPR_SIZE));
1620 if (orig_sp && sigcaller_pc)
1621 {
1622 scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
1623 if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
1624 {
1625 /* We got a new style rt_signal */
1626 /* get address of read ucontext->uc_mcontext */
1627 temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
1628 S390X_UC_MCONTEXT_OFFSET :
1629 S390_UC_MCONTEXT_OFFSET);
1630 }
1631 else
1632 {
1633 /* read sigcontext->sregs */
1634 temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
1635 read_memory_integer (scontext
1636 +
1637 (GDB_TARGET_IS_ESAME
1638 ?
1639 S390X_SIGCONTEXT_SREGS_OFFSET
1640 :
1641 S390_SIGCONTEXT_SREGS_OFFSET),
1642 S390_GPR_SIZE));
1643
1644 }
1645 /* read sigregs->psw.addr */
1646 *sigcaller_pc =
1647 ADDR_BITS_REMOVE ((CORE_ADDR)
1648 read_memory_integer (temp_sregs +
1649 DEPRECATED_REGISTER_BYTE (S390_PC_REGNUM),
1650 S390_PSW_ADDR_SIZE));
1651 }
1652 }
1653 retval = 1;
1654 }
1655 if (sregs)
1656 *sregs = temp_sregs;
1657 return retval;
1658 }
1659
1660 /*
1661 We need to do something better here but this will keep us out of trouble
1662 for the moment.
1663 For some reason the blockframe.c calls us with fi->next->fromleaf
1664 so this seems of little use to us. */
1665 static CORE_ADDR
1666 s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
1667 {
1668 CORE_ADDR sigcaller_pc;
1669 CORE_ADDR pc = 0;
1670 if (next_fromleaf)
1671 {
1672 pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
1673 /* fix signal handlers */
1674 }
1675 else if (get_next_frame (fi) && get_frame_pc (get_next_frame (fi)))
1676 pc = s390_frame_saved_pc_nofix (get_next_frame (fi));
1677 if (pc && get_next_frame (fi) && get_frame_base (get_next_frame (fi))
1678 && s390_is_sigreturn (pc, get_next_frame (fi), NULL, &sigcaller_pc))
1679 {
1680 pc = sigcaller_pc;
1681 }
1682 return pc;
1683 }
1684
1685 static void
1686 s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1687 {
1688 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1689 if (get_frame_pc (fi))
1690 s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
1691 get_frame_extra_info (fi), fi, 1);
1692 else
1693 s390_memset_extra_info (get_frame_extra_info (fi));
1694 }
1695
1696 /* If saved registers of frame FI are not known yet, read and cache them.
1697 &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
1698 in which case the framedata are read. */
1699
1700 static void
1701 s390_frame_init_saved_regs (struct frame_info *fi)
1702 {
1703
1704 int quick;
1705
1706 if (deprecated_get_frame_saved_regs (fi) == NULL)
1707 {
1708 /* zalloc memsets the saved regs */
1709 frame_saved_regs_zalloc (fi);
1710 if (get_frame_pc (fi))
1711 {
1712 quick = (get_frame_extra_info (fi)
1713 && get_frame_extra_info (fi)->initialised
1714 && get_frame_extra_info (fi)->good_prologue);
1715 s390_get_frame_info (quick
1716 ? get_frame_extra_info (fi)->function_start
1717 : s390_sniff_pc_function_start (get_frame_pc (fi), fi),
1718 get_frame_extra_info (fi), fi, !quick);
1719 }
1720 }
1721 }
1722
1723
1724
1725 static CORE_ADDR
1726 s390_frame_saved_pc_nofix (struct frame_info *fi)
1727 {
1728 if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->saved_pc_valid)
1729 return get_frame_extra_info (fi)->saved_pc;
1730
1731 if (deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1732 get_frame_base (fi)))
1733 return deprecated_read_register_dummy (get_frame_pc (fi),
1734 get_frame_base (fi), S390_PC_REGNUM);
1735
1736 s390_frame_init_saved_regs (fi);
1737 if (get_frame_extra_info (fi))
1738 {
1739 get_frame_extra_info (fi)->saved_pc_valid = 1;
1740 if (get_frame_extra_info (fi)->good_prologue
1741 && deprecated_get_frame_saved_regs (fi)[S390_RETADDR_REGNUM])
1742 get_frame_extra_info (fi)->saved_pc
1743 = ADDR_BITS_REMOVE (read_memory_integer
1744 (deprecated_get_frame_saved_regs (fi)[S390_RETADDR_REGNUM],
1745 S390_GPR_SIZE));
1746 else
1747 get_frame_extra_info (fi)->saved_pc
1748 = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
1749 return get_frame_extra_info (fi)->saved_pc;
1750 }
1751 return 0;
1752 }
1753
1754 static CORE_ADDR
1755 s390_frame_saved_pc (struct frame_info *fi)
1756 {
1757 CORE_ADDR saved_pc = 0, sig_pc;
1758
1759 if (get_frame_extra_info (fi)
1760 && get_frame_extra_info (fi)->sig_fixed_saved_pc_valid)
1761 return get_frame_extra_info (fi)->sig_fixed_saved_pc;
1762 saved_pc = s390_frame_saved_pc_nofix (fi);
1763
1764 if (get_frame_extra_info (fi))
1765 {
1766 get_frame_extra_info (fi)->sig_fixed_saved_pc_valid = 1;
1767 if (saved_pc)
1768 {
1769 if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
1770 saved_pc = sig_pc;
1771 }
1772 get_frame_extra_info (fi)->sig_fixed_saved_pc = saved_pc;
1773 }
1774 return saved_pc;
1775 }
1776
1777
1778
1779
1780 /* We want backtraces out of signal handlers so we don't set
1781 (get_frame_type (thisframe) == SIGTRAMP_FRAME) to 1 */
1782
1783 static CORE_ADDR
1784 s390_frame_chain (struct frame_info *thisframe)
1785 {
1786 CORE_ADDR prev_fp = 0;
1787
1788 if (deprecated_generic_find_dummy_frame (get_frame_pc (thisframe),
1789 get_frame_base (thisframe)))
1790 return deprecated_read_register_dummy (get_frame_pc (thisframe),
1791 get_frame_base (thisframe),
1792 S390_SP_REGNUM);
1793 else
1794 {
1795 int sigreturn = 0;
1796 CORE_ADDR sregs = 0;
1797 struct frame_extra_info prev_fextra_info;
1798
1799 memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
1800 if (get_frame_pc (thisframe))
1801 {
1802 CORE_ADDR saved_pc, sig_pc;
1803
1804 saved_pc = s390_frame_saved_pc_nofix (thisframe);
1805 if (saved_pc)
1806 {
1807 if ((sigreturn =
1808 s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
1809 saved_pc = sig_pc;
1810 s390_get_frame_info (s390_sniff_pc_function_start
1811 (saved_pc, NULL), &prev_fextra_info, NULL,
1812 1);
1813 }
1814 }
1815 if (sigreturn)
1816 {
1817 /* read sigregs,regs.gprs[11 or 15] */
1818 prev_fp = read_memory_integer (sregs +
1819 DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM +
1820 (prev_fextra_info.
1821 frame_pointer_saved_pc
1822 ? 11 : 15)),
1823 S390_GPR_SIZE);
1824 get_frame_extra_info (thisframe)->sigcontext = sregs;
1825 }
1826 else
1827 {
1828 if (deprecated_get_frame_saved_regs (thisframe))
1829 {
1830 int regno;
1831
1832 if (prev_fextra_info.frame_pointer_saved_pc
1833 && deprecated_get_frame_saved_regs (thisframe)[S390_FRAME_REGNUM])
1834 regno = S390_FRAME_REGNUM;
1835 else
1836 regno = S390_SP_REGNUM;
1837
1838 if (deprecated_get_frame_saved_regs (thisframe)[regno])
1839 {
1840 /* The SP's entry of `saved_regs' is special. */
1841 if (regno == S390_SP_REGNUM)
1842 prev_fp = deprecated_get_frame_saved_regs (thisframe)[regno];
1843 else
1844 prev_fp =
1845 read_memory_integer (deprecated_get_frame_saved_regs (thisframe)[regno],
1846 S390_GPR_SIZE);
1847 }
1848 }
1849 }
1850 }
1851 return ADDR_BITS_REMOVE (prev_fp);
1852 }
1853
1854 /*
1855 Whether struct frame_extra_info is actually needed I'll have to figure
1856 out as our frames are similar to rs6000 there is a possibility
1857 i386 dosen't need it. */
1858
1859
1860
1861 /* NOTE: cagney/2003-10-31: "return_value" makes
1862 "extract_struct_value_address", "extract_return_value", and
1863 "use_struct_convention" redundant. */
1864 static CORE_ADDR
1865 s390_cannot_extract_struct_value_address (struct regcache *regcache)
1866 {
1867 return 0;
1868 }
1869
1870 /* a given return value in `regbuf' with a type `valtype', extract and copy its
1871 value into `valbuf' */
1872 static void
1873 s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1874 {
1875 /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
1876 We need to truncate the return value into float size (4 byte) if
1877 necessary. */
1878 int len = TYPE_LENGTH (valtype);
1879
1880 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1881 memcpy (valbuf, &regbuf[DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM)], len);
1882 else
1883 {
1884 int offset = 0;
1885 /* return value is copied starting from r2. */
1886 if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
1887 offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
1888 memcpy (valbuf,
1889 regbuf + DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
1890 TYPE_LENGTH (valtype));
1891 }
1892 }
1893
1894
1895 static char *
1896 s390_promote_integer_argument (struct type *valtype, char *valbuf,
1897 char *reg_buff, int *arglen)
1898 {
1899 char *value = valbuf;
1900 int len = TYPE_LENGTH (valtype);
1901
1902 if (len < S390_GPR_SIZE)
1903 {
1904 /* We need to upgrade this value to a register to pass it correctly */
1905 int idx, diff = S390_GPR_SIZE - len, negative =
1906 (!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
1907 for (idx = 0; idx < S390_GPR_SIZE; idx++)
1908 {
1909 reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
1910 value[idx - diff]);
1911 }
1912 value = reg_buff;
1913 *arglen = S390_GPR_SIZE;
1914 }
1915 else
1916 {
1917 if (len & (S390_GPR_SIZE - 1))
1918 {
1919 fprintf_unfiltered (gdb_stderr,
1920 "s390_promote_integer_argument detected an argument not "
1921 "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
1922 "we might not deal with this correctly.\n");
1923 }
1924 *arglen = len;
1925 }
1926
1927 return (value);
1928 }
1929
1930 static void
1931 s390_store_return_value (struct type *valtype, char *valbuf)
1932 {
1933 int arglen;
1934 char *reg_buff = alloca (max (S390_FPR_SIZE, DEPRECATED_REGISTER_SIZE)), *value;
1935
1936 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1937 {
1938 if (TYPE_LENGTH (valtype) == 4
1939 || TYPE_LENGTH (valtype) == 8)
1940 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM),
1941 valbuf, TYPE_LENGTH (valtype));
1942 else
1943 error ("GDB is unable to return `long double' values "
1944 "on this architecture.");
1945 }
1946 else
1947 {
1948 value =
1949 s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
1950 /* Everything else is returned in GPR2 and up. */
1951 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM + 2),
1952 value, arglen);
1953 }
1954 }
1955
1956
1957 /* Not the most efficent code in the world */
1958 static int
1959 s390_fp_regnum (void)
1960 {
1961 int regno = S390_SP_REGNUM;
1962 struct frame_extra_info fextra_info;
1963
1964 CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
1965
1966 s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
1967 NULL, 1);
1968 if (fextra_info.frame_pointer_saved_pc)
1969 regno = S390_FRAME_REGNUM;
1970 return regno;
1971 }
1972
1973 static CORE_ADDR
1974 s390_read_fp (void)
1975 {
1976 return read_register (s390_fp_regnum ());
1977 }
1978
1979
1980 static void
1981 s390_pop_frame_regular (struct frame_info *frame)
1982 {
1983 int regnum;
1984
1985 write_register (S390_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
1986
1987 /* Restore any saved registers. */
1988 if (deprecated_get_frame_saved_regs (frame))
1989 {
1990 for (regnum = 0; regnum < NUM_REGS; regnum++)
1991 if (deprecated_get_frame_saved_regs (frame)[regnum] != 0)
1992 {
1993 ULONGEST value;
1994
1995 value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
1996 DEPRECATED_REGISTER_RAW_SIZE (regnum));
1997 write_register (regnum, value);
1998 }
1999
2000 /* Actually cut back the stack. Remember that the SP's element of
2001 saved_regs is the old SP itself, not the address at which it is
2002 saved. */
2003 write_register (S390_SP_REGNUM, deprecated_get_frame_saved_regs (frame)[S390_SP_REGNUM]);
2004 }
2005
2006 /* Throw away any cached frame information. */
2007 flush_cached_frames ();
2008 }
2009
2010
2011 /* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
2012 machine state that was in effect before the frame was created.
2013 Used in the contexts of the "return" command, and of
2014 target function calls from the debugger. */
2015 static void
2016 s390_pop_frame (void)
2017 {
2018 /* This function checks for and handles generic dummy frames, and
2019 calls back to our function for ordinary frames. */
2020 generic_pop_current_frame (s390_pop_frame_regular);
2021 }
2022
2023
2024 /* Return non-zero if TYPE is an integer-like type, zero otherwise.
2025 "Integer-like" types are those that should be passed the way
2026 integers are: integers, enums, ranges, characters, and booleans. */
2027 static int
2028 is_integer_like (struct type *type)
2029 {
2030 enum type_code code = TYPE_CODE (type);
2031
2032 return (code == TYPE_CODE_INT
2033 || code == TYPE_CODE_ENUM
2034 || code == TYPE_CODE_RANGE
2035 || code == TYPE_CODE_CHAR
2036 || code == TYPE_CODE_BOOL);
2037 }
2038
2039
2040 /* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2041 "Pointer-like" types are those that should be passed the way
2042 pointers are: pointers and references. */
2043 static int
2044 is_pointer_like (struct type *type)
2045 {
2046 enum type_code code = TYPE_CODE (type);
2047
2048 return (code == TYPE_CODE_PTR
2049 || code == TYPE_CODE_REF);
2050 }
2051
2052
2053 /* Return non-zero if TYPE is a `float singleton' or `double
2054 singleton', zero otherwise.
2055
2056 A `T singleton' is a struct type with one member, whose type is
2057 either T or a `T singleton'. So, the following are all float
2058 singletons:
2059
2060 struct { float x };
2061 struct { struct { float x; } x; };
2062 struct { struct { struct { float x; } x; } x; };
2063
2064 ... and so on.
2065
2066 WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC
2067 passes all float singletons and double singletons as if they were
2068 simply floats or doubles. This is *not* what the ABI says it
2069 should do. */
2070 static int
2071 is_float_singleton (struct type *type)
2072 {
2073 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
2074 && TYPE_NFIELDS (type) == 1
2075 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
2076 || is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
2077 }
2078
2079
2080 /* Return non-zero if TYPE is a struct-like type, zero otherwise.
2081 "Struct-like" types are those that should be passed as structs are:
2082 structs and unions.
2083
2084 As an odd quirk, not mentioned in the ABI, GCC passes float and
2085 double singletons as if they were a plain float, double, etc. (The
2086 corresponding union types are handled normally.) So we exclude
2087 those types here. *shrug* */
2088 static int
2089 is_struct_like (struct type *type)
2090 {
2091 enum type_code code = TYPE_CODE (type);
2092
2093 return (code == TYPE_CODE_UNION
2094 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2095 }
2096
2097
2098 /* Return non-zero if TYPE is a float-like type, zero otherwise.
2099 "Float-like" types are those that should be passed as
2100 floating-point values are.
2101
2102 You'd think this would just be floats, doubles, long doubles, etc.
2103 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2104 double singletons as if they were a plain float, double, etc. (The
2105 corresponding union types are handled normally.) So we include
2106 those types here. *shrug* */
2107 static int
2108 is_float_like (struct type *type)
2109 {
2110 return (TYPE_CODE (type) == TYPE_CODE_FLT
2111 || is_float_singleton (type));
2112 }
2113
2114
2115 /* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
2116 defined by the parameter passing conventions described in the
2117 "GNU/Linux for S/390 ELF Application Binary Interface Supplement".
2118 Otherwise, return zero. */
2119 static int
2120 is_double_or_float (struct type *type)
2121 {
2122 return (is_float_like (type)
2123 && (TYPE_LENGTH (type) == 4
2124 || TYPE_LENGTH (type) == 8));
2125 }
2126
2127
2128 /* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
2129 parameter passing conventions described in the "GNU/Linux for S/390
2130 ELF Application Binary Interface Supplement". Return zero
2131 otherwise. */
2132 static int
2133 is_double_arg (struct type *type)
2134 {
2135 unsigned length = TYPE_LENGTH (type);
2136
2137 /* The s390x ABI doesn't handle DOUBLE_ARGS specially. */
2138 if (GDB_TARGET_IS_ESAME)
2139 return 0;
2140
2141 return ((is_integer_like (type)
2142 || is_struct_like (type))
2143 && length == 8);
2144 }
2145
2146
2147 /* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
2148 the parameter passing conventions described in the "GNU/Linux for
2149 S/390 ELF Application Binary Interface Supplement". Return zero
2150 otherwise. */
2151 static int
2152 is_simple_arg (struct type *type)
2153 {
2154 unsigned length = TYPE_LENGTH (type);
2155
2156 /* This is almost a direct translation of the ABI's language, except
2157 that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */
2158 return ((is_integer_like (type) && length <= DEPRECATED_REGISTER_SIZE)
2159 || is_pointer_like (type)
2160 || (is_struct_like (type) && !is_double_arg (type)));
2161 }
2162
2163
2164 static int
2165 is_power_of_two (unsigned int n)
2166 {
2167 return ((n & (n - 1)) == 0);
2168 }
2169
2170 /* Return non-zero if TYPE should be passed as a pointer to a copy,
2171 zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
2172 `is_simple_arg'. */
2173 static int
2174 pass_by_copy_ref (struct type *type)
2175 {
2176 unsigned length = TYPE_LENGTH (type);
2177
2178 return (is_struct_like (type)
2179 && !(is_power_of_two (length) && length <= DEPRECATED_REGISTER_SIZE));
2180 }
2181
2182
2183 /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2184 word as required for the ABI. */
2185 static LONGEST
2186 extend_simple_arg (struct value *arg)
2187 {
2188 struct type *type = VALUE_TYPE (arg);
2189
2190 /* Even structs get passed in the least significant bits of the
2191 register / memory word. It's not really right to extract them as
2192 an integer, but it does take care of the extension. */
2193 if (TYPE_UNSIGNED (type))
2194 return extract_unsigned_integer (VALUE_CONTENTS (arg),
2195 TYPE_LENGTH (type));
2196 else
2197 return extract_signed_integer (VALUE_CONTENTS (arg),
2198 TYPE_LENGTH (type));
2199 }
2200
2201
2202 /* Return the alignment required by TYPE. */
2203 static int
2204 alignment_of (struct type *type)
2205 {
2206 int alignment;
2207
2208 if (is_integer_like (type)
2209 || is_pointer_like (type)
2210 || TYPE_CODE (type) == TYPE_CODE_FLT)
2211 alignment = TYPE_LENGTH (type);
2212 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2213 || TYPE_CODE (type) == TYPE_CODE_UNION)
2214 {
2215 int i;
2216
2217 alignment = 1;
2218 for (i = 0; i < TYPE_NFIELDS (type); i++)
2219 {
2220 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
2221
2222 if (field_alignment > alignment)
2223 alignment = field_alignment;
2224 }
2225 }
2226 else
2227 alignment = 1;
2228
2229 /* Check that everything we ever return is a power of two. Lots of
2230 code doesn't want to deal with aligning things to arbitrary
2231 boundaries. */
2232 gdb_assert ((alignment & (alignment - 1)) == 0);
2233
2234 return alignment;
2235 }
2236
2237
2238 /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
2239 place to be passed to a function, as specified by the "GNU/Linux
2240 for S/390 ELF Application Binary Interface Supplement".
2241
2242 SP is the current stack pointer. We must put arguments, links,
2243 padding, etc. whereever they belong, and return the new stack
2244 pointer value.
2245
2246 If STRUCT_RETURN is non-zero, then the function we're calling is
2247 going to return a structure by value; STRUCT_ADDR is the address of
2248 a block we've allocated for it on the stack.
2249
2250 Our caller has taken care of any type promotions needed to satisfy
2251 prototypes or the old K&R argument-passing rules. */
2252 static CORE_ADDR
2253 s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2254 int struct_return, CORE_ADDR struct_addr)
2255 {
2256 int i;
2257 int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
2258
2259 /* The number of arguments passed by reference-to-copy. */
2260 int num_copies;
2261
2262 /* If the i'th argument is passed as a reference to a copy, then
2263 copy_addr[i] is the address of the copy we made. */
2264 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
2265
2266 /* Build the reference-to-copy area. */
2267 num_copies = 0;
2268 for (i = 0; i < nargs; i++)
2269 {
2270 struct value *arg = args[i];
2271 struct type *type = VALUE_TYPE (arg);
2272 unsigned length = TYPE_LENGTH (type);
2273
2274 if (is_simple_arg (type)
2275 && pass_by_copy_ref (type))
2276 {
2277 sp -= length;
2278 sp = align_down (sp, alignment_of (type));
2279 write_memory (sp, VALUE_CONTENTS (arg), length);
2280 copy_addr[i] = sp;
2281 num_copies++;
2282 }
2283 }
2284
2285 /* Reserve space for the parameter area. As a conservative
2286 simplification, we assume that everything will be passed on the
2287 stack. */
2288 {
2289 int i;
2290
2291 for (i = 0; i < nargs; i++)
2292 {
2293 struct value *arg = args[i];
2294 struct type *type = VALUE_TYPE (arg);
2295 int length = TYPE_LENGTH (type);
2296
2297 sp = align_down (sp, alignment_of (type));
2298
2299 /* SIMPLE_ARG values get extended to DEPRECATED_REGISTER_SIZE bytes.
2300 Assume every argument is. */
2301 if (length < DEPRECATED_REGISTER_SIZE) length = DEPRECATED_REGISTER_SIZE;
2302 sp -= length;
2303 }
2304 }
2305
2306 /* Include space for any reference-to-copy pointers. */
2307 sp = align_down (sp, pointer_size);
2308 sp -= num_copies * pointer_size;
2309
2310 /* After all that, make sure it's still aligned on an eight-byte
2311 boundary. */
2312 sp = align_down (sp, 8);
2313
2314 /* Finally, place the actual parameters, working from SP towards
2315 higher addresses. The code above is supposed to reserve enough
2316 space for this. */
2317 {
2318 int fr = 0;
2319 int gr = 2;
2320 CORE_ADDR starg = sp;
2321
2322 /* A struct is returned using general register 2 */
2323 if (struct_return)
2324 gr++;
2325
2326 for (i = 0; i < nargs; i++)
2327 {
2328 struct value *arg = args[i];
2329 struct type *type = VALUE_TYPE (arg);
2330
2331 if (is_double_or_float (type)
2332 && fr <= S390_NUM_FP_PARAMETER_REGISTERS * 2 - 2)
2333 {
2334 /* When we store a single-precision value in an FP register,
2335 it occupies the leftmost bits. */
2336 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM + fr),
2337 VALUE_CONTENTS (arg),
2338 TYPE_LENGTH (type));
2339 fr += 2;
2340 }
2341 else if (is_simple_arg (type)
2342 && gr <= 6)
2343 {
2344 /* Do we need to pass a pointer to our copy of this
2345 argument? */
2346 if (pass_by_copy_ref (type))
2347 write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
2348 else
2349 write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
2350
2351 gr++;
2352 }
2353 else if (is_double_arg (type)
2354 && gr <= 5)
2355 {
2356 deprecated_write_register_gen (S390_GP0_REGNUM + gr,
2357 VALUE_CONTENTS (arg));
2358 deprecated_write_register_gen (S390_GP0_REGNUM + gr + 1,
2359 VALUE_CONTENTS (arg) + DEPRECATED_REGISTER_SIZE);
2360 gr += 2;
2361 }
2362 else
2363 {
2364 /* The `OTHER' case. */
2365 enum type_code code = TYPE_CODE (type);
2366 unsigned length = TYPE_LENGTH (type);
2367
2368 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2369 in it, then don't go back and use it again later. */
2370 if (is_double_arg (type) && gr == 6)
2371 gr = 7;
2372
2373 if (is_simple_arg (type))
2374 {
2375 /* Simple args are always extended to
2376 DEPRECATED_REGISTER_SIZE bytes. */
2377 starg = align_up (starg, DEPRECATED_REGISTER_SIZE);
2378
2379 /* Do we need to pass a pointer to our copy of this
2380 argument? */
2381 if (pass_by_copy_ref (type))
2382 write_memory_signed_integer (starg, pointer_size,
2383 copy_addr[i]);
2384 else
2385 /* Simple args are always extended to
2386 DEPRECATED_REGISTER_SIZE bytes. */
2387 write_memory_signed_integer (starg, DEPRECATED_REGISTER_SIZE,
2388 extend_simple_arg (arg));
2389 starg += DEPRECATED_REGISTER_SIZE;
2390 }
2391 else
2392 {
2393 /* You'd think we should say:
2394 starg = align_up (starg, alignment_of (type));
2395 Unfortunately, GCC seems to simply align the stack on
2396 a four/eight-byte boundary, even when passing doubles. */
2397 starg = align_up (starg, S390_STACK_PARAMETER_ALIGNMENT);
2398 write_memory (starg, VALUE_CONTENTS (arg), length);
2399 starg += length;
2400 }
2401 }
2402 }
2403 }
2404
2405 /* Allocate the standard frame areas: the register save area, the
2406 word reserved for the compiler (which seems kind of meaningless),
2407 and the back chain pointer. */
2408 sp -= S390_STACK_FRAME_OVERHEAD;
2409
2410 /* Write the back chain pointer into the first word of the stack
2411 frame. This will help us get backtraces from within functions
2412 called from GDB. */
2413 write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
2414 deprecated_read_fp ());
2415
2416 return sp;
2417 }
2418
2419
2420 static CORE_ADDR
2421 s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2422 {
2423 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2424 always be aligned on an eight-byte boundary. */
2425 return (addr & -8);
2426 }
2427
2428
2429 static int
2430 s390_use_struct_convention (int gcc_p, struct type *value_type)
2431 {
2432 enum type_code code = TYPE_CODE (value_type);
2433
2434 return (code == TYPE_CODE_STRUCT
2435 || code == TYPE_CODE_UNION);
2436 }
2437
2438
2439 /* Return the GDB type object for the "standard" data type
2440 of data in register N. */
2441 static struct type *
2442 s390_register_virtual_type (int regno)
2443 {
2444 if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
2445 return builtin_type_double;
2446 else
2447 return builtin_type_int;
2448 }
2449
2450
2451 static struct type *
2452 s390x_register_virtual_type (int regno)
2453 {
2454 return (regno == S390_FPC_REGNUM) ||
2455 (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
2456 (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
2457 }
2458
2459
2460
2461 static void
2462 s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2463 {
2464 write_register (S390_GP0_REGNUM + 2, addr);
2465 }
2466
2467
2468
2469 static const unsigned char *
2470 s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2471 {
2472 static unsigned char breakpoint[] = { 0x0, 0x1 };
2473
2474 *lenptr = sizeof (breakpoint);
2475 return breakpoint;
2476 }
2477
2478 /* Advance PC across any function entry prologue instructions to reach some
2479 "real" code. */
2480 static CORE_ADDR
2481 s390_skip_prologue (CORE_ADDR pc)
2482 {
2483 struct frame_extra_info fextra_info;
2484
2485 s390_get_frame_info (pc, &fextra_info, NULL, 1);
2486 return fextra_info.skip_prologue_function_start;
2487 }
2488
2489 /* Immediately after a function call, return the saved pc.
2490 Can't go through the frames for this because on some machines
2491 the new frame is not set up until the new function executes
2492 some instructions. */
2493 static CORE_ADDR
2494 s390_saved_pc_after_call (struct frame_info *frame)
2495 {
2496 return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
2497 }
2498
2499 static CORE_ADDR
2500 s390_addr_bits_remove (CORE_ADDR addr)
2501 {
2502 return (addr) & 0x7fffffff;
2503 }
2504
2505
2506 static CORE_ADDR
2507 s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
2508 {
2509 write_register (S390_RETADDR_REGNUM, entry_point_address ());
2510 return sp;
2511 }
2512
2513 static int
2514 s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2515 {
2516 if (byte_size == 4)
2517 return TYPE_FLAG_ADDRESS_CLASS_1;
2518 else
2519 return 0;
2520 }
2521
2522 static const char *
2523 s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2524 {
2525 if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
2526 return "mode32";
2527 else
2528 return NULL;
2529 }
2530
2531 static int
2532 s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
2533 int *type_flags_ptr)
2534 {
2535 if (strcmp (name, "mode32") == 0)
2536 {
2537 *type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
2538 return 1;
2539 }
2540 else
2541 return 0;
2542 }
2543
2544 static struct gdbarch *
2545 s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2546 {
2547 static LONGEST s390_call_dummy_words[] = { 0 };
2548 struct gdbarch *gdbarch;
2549 struct gdbarch_tdep *tdep;
2550 int elf_flags;
2551
2552 /* First see if there is already a gdbarch that can satisfy the request. */
2553 arches = gdbarch_list_lookup_by_info (arches, &info);
2554 if (arches != NULL)
2555 return arches->gdbarch;
2556
2557 /* None found: is the request for a s390 architecture? */
2558 if (info.bfd_arch_info->arch != bfd_arch_s390)
2559 return NULL; /* No; then it's not for us. */
2560
2561 /* Yes: create a new gdbarch for the specified machine type. */
2562 gdbarch = gdbarch_alloc (&info, NULL);
2563
2564 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2565 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2566 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
2567
2568 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
2569 set_gdbarch_char_signed (gdbarch, 0);
2570
2571 set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain);
2572 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
2573 set_gdbarch_deprecated_store_struct_return (gdbarch, s390_store_struct_return);
2574 set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value);
2575 set_gdbarch_deprecated_store_return_value (gdbarch, s390_store_return_value);
2576 /* Amount PC must be decremented by after a breakpoint. This is
2577 often the number of bytes returned by BREAKPOINT_FROM_PC but not
2578 always. */
2579 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2580 set_gdbarch_deprecated_pop_frame (gdbarch, s390_pop_frame);
2581 /* Stack grows downward. */
2582 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2583 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
2584 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
2585 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2586 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
2587 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
2588 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
2589 set_gdbarch_deprecated_target_read_fp (gdbarch, s390_read_fp);
2590 /* This function that tells us whether the function invocation represented
2591 by FI does not have a frame on the stack associated with it. If it
2592 does not, FRAMELESS is set to 1, else 0. */
2593 set_gdbarch_frameless_function_invocation (gdbarch,
2594 s390_frameless_function_invocation);
2595 /* Return saved PC from a frame */
2596 set_gdbarch_deprecated_frame_saved_pc (gdbarch, s390_frame_saved_pc);
2597 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and
2598 produces the frame's chain-pointer. */
2599 set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain);
2600 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
2601 set_gdbarch_deprecated_register_byte (gdbarch, s390_register_byte);
2602 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
2603 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
2604 set_gdbarch_deprecated_fp_regnum (gdbarch, S390_FP_REGNUM);
2605 set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
2606 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
2607 set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
2608 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
2609 set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
2610 set_gdbarch_register_name (gdbarch, s390_register_name);
2611 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
2612 set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
2613 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
2614 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, s390_cannot_extract_struct_value_address);
2615
2616 /* Parameters for inferior function calls. */
2617 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
2618 set_gdbarch_frame_align (gdbarch, s390_frame_align);
2619 set_gdbarch_deprecated_push_arguments (gdbarch, s390_push_arguments);
2620 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2621 set_gdbarch_deprecated_push_return_address (gdbarch,
2622 s390_push_return_address);
2623 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (s390_call_dummy_words));
2624 set_gdbarch_deprecated_call_dummy_words (gdbarch, s390_call_dummy_words);
2625
2626 switch (info.bfd_arch_info->mach)
2627 {
2628 case bfd_mach_s390_31:
2629 set_gdbarch_deprecated_register_size (gdbarch, 4);
2630 set_gdbarch_deprecated_register_raw_size (gdbarch, s390_register_raw_size);
2631 set_gdbarch_deprecated_register_virtual_size (gdbarch, s390_register_raw_size);
2632 set_gdbarch_deprecated_register_virtual_type (gdbarch, s390_register_virtual_type);
2633
2634 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
2635 set_gdbarch_deprecated_register_bytes (gdbarch, S390_REGISTER_BYTES);
2636 break;
2637 case bfd_mach_s390_64:
2638 set_gdbarch_deprecated_register_size (gdbarch, 8);
2639 set_gdbarch_deprecated_register_raw_size (gdbarch, s390x_register_raw_size);
2640 set_gdbarch_deprecated_register_virtual_size (gdbarch, s390x_register_raw_size);
2641 set_gdbarch_deprecated_register_virtual_type (gdbarch, s390x_register_virtual_type);
2642
2643 set_gdbarch_long_bit (gdbarch, 64);
2644 set_gdbarch_long_long_bit (gdbarch, 64);
2645 set_gdbarch_ptr_bit (gdbarch, 64);
2646 set_gdbarch_deprecated_register_bytes (gdbarch, S390X_REGISTER_BYTES);
2647 set_gdbarch_address_class_type_flags (gdbarch,
2648 s390_address_class_type_flags);
2649 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2650 s390_address_class_type_flags_to_name);
2651 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2652 s390_address_class_name_to_type_flags);
2653 break;
2654 }
2655
2656 /* Should be using push_dummy_call. */
2657 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
2658
2659 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2660
2661 return gdbarch;
2662 }
2663
2664
2665
2666 extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2667
2668 void
2669 _initialize_s390_tdep (void)
2670 {
2671
2672 /* Hook us into the gdbarch mechanism. */
2673 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
2674 }
This page took 0.115714 seconds and 5 git commands to generate.