* configure.tgt (hppa*-*-bsd*, hppa*-*-osf*, m68*-*-sunos4*,
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Hitachi Super-H, for GDB.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 2000 Free Software
3 Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
25 */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "value.h"
36 #include "dis-asm.h"
37 #include "inferior.h" /* for BEFORE_TEXT_END etc. */
38 #include "gdb_string.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41
42 #include "solib-svr4.h"
43
44 #undef XMALLOC
45 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
46
47
48 /* Frame interpretation related functions. */
49 static gdbarch_breakpoint_from_pc_ftype sh_breakpoint_from_pc;
50 static gdbarch_frame_chain_ftype sh_frame_chain;
51 static gdbarch_frame_saved_pc_ftype sh_frame_saved_pc;
52 static gdbarch_skip_prologue_ftype sh_skip_prologue;
53
54 static gdbarch_frame_init_saved_regs_ftype sh_nofp_frame_init_saved_regs;
55 static gdbarch_frame_init_saved_regs_ftype sh_fp_frame_init_saved_regs;
56 static gdbarch_init_extra_frame_info_ftype sh_init_extra_frame_info;
57 static gdbarch_pop_frame_ftype sh_pop_frame;
58 static gdbarch_saved_pc_after_call_ftype sh_saved_pc_after_call;
59 static gdbarch_frame_args_address_ftype sh_frame_args_address;
60 static gdbarch_frame_locals_address_ftype sh_frame_locals_address;
61
62 /* Function call related functions. */
63 static gdbarch_extract_return_value_ftype sh_extract_return_value;
64 static gdbarch_extract_struct_value_address_ftype sh_extract_struct_value_address;
65 static gdbarch_use_struct_convention_ftype sh_use_struct_convention;
66 static gdbarch_store_struct_return_ftype sh_store_struct_return;
67 static gdbarch_push_arguments_ftype sh_push_arguments;
68 static gdbarch_push_return_address_ftype sh_push_return_address;
69 static gdbarch_coerce_float_to_double_ftype sh_coerce_float_to_double;
70 static gdbarch_store_return_value_ftype sh_default_store_return_value;
71 static gdbarch_store_return_value_ftype sh3e_sh4_store_return_value;
72
73 static gdbarch_register_name_ftype sh_generic_register_name;
74 static gdbarch_register_name_ftype sh_sh_register_name;
75 static gdbarch_register_name_ftype sh_sh3_register_name;
76 static gdbarch_register_name_ftype sh_sh3e_register_name;
77 static gdbarch_register_name_ftype sh_sh_dsp_register_name;
78 static gdbarch_register_name_ftype sh_sh3_dsp_register_name;
79
80 /* Registers display related functions */
81 static gdbarch_register_raw_size_ftype sh_default_register_raw_size;
82 static gdbarch_register_raw_size_ftype sh_sh4_register_raw_size;
83
84 static gdbarch_register_virtual_size_ftype sh_register_virtual_size;
85
86 static gdbarch_register_byte_ftype sh_default_register_byte;
87 static gdbarch_register_byte_ftype sh_sh4_register_byte;
88
89 static gdbarch_register_virtual_type_ftype sh_sh3e_register_virtual_type;
90 static gdbarch_register_virtual_type_ftype sh_sh4_register_virtual_type;
91 static gdbarch_register_virtual_type_ftype sh_default_register_virtual_type;
92
93 static void sh_generic_show_regs (void);
94 static void sh3_show_regs (void);
95 static void sh3e_show_regs (void);
96 static void sh3_dsp_show_regs (void);
97 static void sh_dsp_show_regs (void);
98 static void sh4_show_regs (void);
99 static void sh_show_regs_command (char *, int);
100
101 static struct type *sh_sh4_build_float_register_type (int high);
102
103 static gdbarch_fetch_pseudo_register_ftype sh_fetch_pseudo_register;
104 static gdbarch_store_pseudo_register_ftype sh_store_pseudo_register;
105 static int fv_reg_base_num (int);
106 static int dr_reg_base_num (int);
107 static void do_fv_register_info (int fv_regnum);
108 static void do_dr_register_info (int dr_regnum);
109 static void sh_do_pseudo_register (int regnum);
110 static void sh_do_fp_register (int regnum);
111 static void sh_do_register (int regnum);
112 static void sh_print_register (int regnum);
113
114 void (*sh_show_regs) (void);
115 int (*print_sh_insn) (bfd_vma, disassemble_info*);
116
117 /* Define other aspects of the stack frame.
118 we keep a copy of the worked out return pc lying around, since it
119 is a useful bit of info */
120
121 struct frame_extra_info
122 {
123 CORE_ADDR return_pc;
124 int leaf_function;
125 int f_offset;
126 };
127
128 #if 0
129 #ifdef _WIN32_WCE
130 char **sh_register_names = sh3_reg_names;
131 #else
132 char **sh_register_names = sh_generic_reg_names;
133 #endif
134 #endif
135
136 static char *
137 sh_generic_register_name (int reg_nr)
138 {
139 static char *register_names[] =
140 {
141 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
142 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
143 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
144 "fpul", "fpscr",
145 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
146 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
147 "ssr", "spc",
148 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
149 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
150 };
151 if (reg_nr < 0)
152 return NULL;
153 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
154 return NULL;
155 return register_names[reg_nr];
156 }
157
158 static char *
159 sh_sh_register_name (int reg_nr)
160 {
161 static char *register_names[] =
162 {
163 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
164 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
165 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
166 "", "",
167 "", "", "", "", "", "", "", "",
168 "", "", "", "", "", "", "", "",
169 "", "",
170 "", "", "", "", "", "", "", "",
171 "", "", "", "", "", "", "", "",
172 };
173 if (reg_nr < 0)
174 return NULL;
175 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
176 return NULL;
177 return register_names[reg_nr];
178 }
179
180 static char *
181 sh_sh3_register_name (int reg_nr)
182 {
183 static char *register_names[] =
184 {
185 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
186 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
187 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
188 "", "",
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
191 "ssr", "spc",
192 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
193 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
194 };
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 static char *
203 sh_sh3e_register_name (int reg_nr)
204 {
205 static char *register_names[] =
206 {
207 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
208 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
209 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
210 "fpul", "fpscr",
211 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
212 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
213 "ssr", "spc",
214 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
215 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
216 };
217 if (reg_nr < 0)
218 return NULL;
219 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
220 return NULL;
221 return register_names[reg_nr];
222 }
223
224 static char *
225 sh_sh_dsp_register_name (int reg_nr)
226 {
227 static char *register_names[] =
228 {
229 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
230 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
231 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
232 "", "dsr",
233 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
234 "y0", "y1", "", "", "", "", "", "mod",
235 "", "",
236 "rs", "re", "", "", "", "", "", "",
237 "", "", "", "", "", "", "", "",
238 };
239 if (reg_nr < 0)
240 return NULL;
241 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
242 return NULL;
243 return register_names[reg_nr];
244 }
245
246 static char *
247 sh_sh3_dsp_register_name (int reg_nr)
248 {
249 static char *register_names[] =
250 {
251 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
252 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
253 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
254 "", "dsr",
255 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
256 "y0", "y1", "", "", "", "", "", "mod",
257 "ssr", "spc",
258 "rs", "re", "", "", "", "", "", "",
259 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b"
260 "", "", "", "", "", "", "", "",
261 };
262 if (reg_nr < 0)
263 return NULL;
264 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
265 return NULL;
266 return register_names[reg_nr];
267 }
268
269 static char *
270 sh_sh4_register_name (int reg_nr)
271 {
272 static char *register_names[] =
273 {
274 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
275 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
276 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
277 "fpul", "fpscr",
278 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
279 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
280 "ssr", "spc",
281 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
282 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
283 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
284 "fv0", "fv4", "fv8", "fv12",
285 };
286 if (reg_nr < 0)
287 return NULL;
288 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
289 return NULL;
290 return register_names[reg_nr];
291 }
292
293 static unsigned char *
294 sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
295 {
296 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
297 static unsigned char breakpoint[] = {0xc3, 0xc3};
298
299 *lenptr = sizeof (breakpoint);
300 return breakpoint;
301 }
302
303 /* Prologue looks like
304 [mov.l <regs>,@-r15]...
305 [sts.l pr,@-r15]
306 [mov.l r14,@-r15]
307 [mov r15,r14]
308
309 Actually it can be more complicated than this. For instance, with
310 newer gcc's:
311
312 mov.l r14,@-r15
313 add #-12,r15
314 mov r15,r14
315 mov r4,r1
316 mov r5,r2
317 mov.l r6,@(4,r14)
318 mov.l r7,@(8,r14)
319 mov.b r1,@r14
320 mov r14,r1
321 mov r14,r1
322 add #2,r1
323 mov.w r2,@r1
324
325 */
326
327 /* STS.L PR,@-r15 0100111100100010
328 r15-4-->r15, PR-->(r15) */
329 #define IS_STS(x) ((x) == 0x4f22)
330
331 /* MOV.L Rm,@-r15 00101111mmmm0110
332 r15-4-->r15, Rm-->(R15) */
333 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
334
335 #define GET_PUSHED_REG(x) (((x) >> 4) & 0xf)
336
337 /* MOV r15,r14 0110111011110011
338 r15-->r14 */
339 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
340
341 /* ADD #imm,r15 01111111iiiiiiii
342 r15+imm-->r15 */
343 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
344
345 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
346 #define IS_SHLL_R3(x) ((x) == 0x4300)
347
348 /* ADD r3,r15 0011111100111100
349 r15+r3-->r15 */
350 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
351
352 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
353 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
354 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
355 #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
356
357 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011
358 MOV.L Rm,@(disp,Rn) Rm-->(dispx4+Rn) 0001nnnnmmmmdddd
359 MOV.L Rm,@Rn Rm-->(Rn) 0010nnnnmmmm0010
360 where Rm is one of r4,r5,r6,r7 which are the argument registers. */
361 #define IS_ARG_MOV(x) \
362 (((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
363 || ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
364 || ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)))
365
366 /* MOV.L Rm,@(disp,r14) 00011110mmmmdddd
367 Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */
368 #define IS_MOV_R14(x) \
369 ((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))
370
371 #define FPSCR_SZ (1 << 20)
372
373 /* Skip any prologue before the guts of a function */
374
375 /* Skip the prologue using the debug information. If this fails we'll
376 fall back on the 'guess' method below. */
377 static CORE_ADDR
378 after_prologue (CORE_ADDR pc)
379 {
380 struct symtab_and_line sal;
381 CORE_ADDR func_addr, func_end;
382
383 /* If we can not find the symbol in the partial symbol table, then
384 there is no hope we can determine the function's start address
385 with this code. */
386 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
387 return 0;
388
389 /* Get the line associated with FUNC_ADDR. */
390 sal = find_pc_line (func_addr, 0);
391
392 /* There are only two cases to consider. First, the end of the source line
393 is within the function bounds. In that case we return the end of the
394 source line. Second is the end of the source line extends beyond the
395 bounds of the current function. We need to use the slow code to
396 examine instructions in that case. */
397 if (sal.end < func_end)
398 return sal.end;
399 else
400 return 0;
401 }
402
403 /* Here we look at each instruction in the function, and try to guess
404 where the prologue ends. Unfortunately this is not always
405 accurate. */
406 static CORE_ADDR
407 skip_prologue_hard_way (CORE_ADDR start_pc)
408 {
409 CORE_ADDR here, end;
410 int updated_fp = 0;
411
412 if (!start_pc)
413 return 0;
414
415 for (here = start_pc, end = start_pc + (2 * 28); here < end;)
416 {
417 int w = read_memory_integer (here, 2);
418 here += 2;
419 if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w)
420 || IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w)
421 || IS_ARG_MOV (w) || IS_MOV_R14 (w))
422 {
423 start_pc = here;
424 }
425 else if (IS_MOV_SP_FP (w))
426 {
427 start_pc = here;
428 updated_fp = 1;
429 }
430 else
431 /* Don't bail out yet, if we are before the copy of sp. */
432 if (updated_fp)
433 break;
434 }
435
436 return start_pc;
437 }
438
439 static CORE_ADDR
440 sh_skip_prologue (CORE_ADDR pc)
441 {
442 CORE_ADDR post_prologue_pc;
443
444 /* See if we can determine the end of the prologue via the symbol table.
445 If so, then return either PC, or the PC after the prologue, whichever
446 is greater. */
447
448 post_prologue_pc = after_prologue (pc);
449
450 /* If after_prologue returned a useful address, then use it. Else
451 fall back on the instruction skipping code. */
452 if (post_prologue_pc != 0)
453 return max (pc, post_prologue_pc);
454 else
455 return (skip_prologue_hard_way (pc));
456 }
457
458 /* Immediately after a function call, return the saved pc.
459 Can't always go through the frames for this because on some machines
460 the new frame is not set up until the new function executes
461 some instructions.
462
463 The return address is the value saved in the PR register + 4 */
464 static CORE_ADDR
465 sh_saved_pc_after_call (struct frame_info *frame)
466 {
467 return (ADDR_BITS_REMOVE(read_register(PR_REGNUM)));
468 }
469
470 /* Should call_function allocate stack space for a struct return? */
471 static int
472 sh_use_struct_convention (int gcc_p, struct type *type)
473 {
474 return (TYPE_LENGTH (type) > 1);
475 }
476
477 /* Store the address of the place in which to copy the structure the
478 subroutine will return. This is called from call_function.
479
480 We store structs through a pointer passed in R0 */
481 static void
482 sh_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
483 {
484 write_register (STRUCT_RETURN_REGNUM, (addr));
485 }
486
487 /* Disassemble an instruction. */
488 static int
489 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
490 {
491 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
492 return print_insn_sh (memaddr, info);
493 else
494 return print_insn_shl (memaddr, info);
495 }
496
497 /* Given a GDB frame, determine the address of the calling function's frame.
498 This will be used to create a new GDB frame struct, and then
499 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
500
501 For us, the frame address is its stack pointer value, so we look up
502 the function prologue to determine the caller's sp value, and return it. */
503 static CORE_ADDR
504 sh_frame_chain (struct frame_info *frame)
505 {
506 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
507 return frame->frame; /* dummy frame same as caller's frame */
508 if (frame->pc && !inside_entry_file (frame->pc))
509 return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, 4);
510 else
511 return 0;
512 }
513
514 /* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
515 we might want to do here is to check REGNUM against the clobber mask, and
516 somehow flag it as invalid if it isn't saved on the stack somewhere. This
517 would provide a graceful failure mode when trying to get the value of
518 caller-saves registers for an inner frame. */
519
520 static CORE_ADDR
521 sh_find_callers_reg (struct frame_info *fi, int regnum)
522 {
523 for (; fi; fi = fi->next)
524 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
525 /* When the caller requests PR from the dummy frame, we return PC because
526 that's where the previous routine appears to have done a call from. */
527 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
528 else
529 {
530 FRAME_INIT_SAVED_REGS (fi);
531 if (!fi->pc)
532 return 0;
533 if (fi->saved_regs[regnum] != 0)
534 return read_memory_integer (fi->saved_regs[regnum],
535 REGISTER_RAW_SIZE (regnum));
536 }
537 return read_register (regnum);
538 }
539
540 /* Put here the code to store, into a struct frame_saved_regs, the
541 addresses of the saved registers of frame described by FRAME_INFO.
542 This includes special registers such as pc and fp saved in special
543 ways in the stack frame. sp is even more special: the address we
544 return for it IS the sp for the next frame. */
545 static void
546 sh_nofp_frame_init_saved_regs (struct frame_info *fi)
547 {
548 int where[NUM_REGS];
549 int rn;
550 int have_fp = 0;
551 int depth;
552 int pc;
553 int opc;
554 int insn;
555 int r3_val = 0;
556 char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
557
558 if (fi->saved_regs == NULL)
559 frame_saved_regs_zalloc (fi);
560 else
561 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
562
563 if (dummy_regs)
564 {
565 /* DANGER! This is ONLY going to work if the char buffer format of
566 the saved registers is byte-for-byte identical to the
567 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
568 memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
569 return;
570 }
571
572 fi->extra_info->leaf_function = 1;
573 fi->extra_info->f_offset = 0;
574
575 for (rn = 0; rn < NUM_REGS; rn++)
576 where[rn] = -1;
577
578 depth = 0;
579
580 /* Loop around examining the prologue insns until we find something
581 that does not appear to be part of the prologue. But give up
582 after 20 of them, since we're getting silly then. */
583
584 pc = get_pc_function_start (fi->pc);
585 if (!pc)
586 {
587 fi->pc = 0;
588 return;
589 }
590
591 for (opc = pc + (2 * 28); pc < opc; pc += 2)
592 {
593 insn = read_memory_integer (pc, 2);
594 /* See where the registers will be saved to */
595 if (IS_PUSH (insn))
596 {
597 rn = GET_PUSHED_REG (insn);
598 where[rn] = depth;
599 depth += 4;
600 }
601 else if (IS_STS (insn))
602 {
603 where[PR_REGNUM] = depth;
604 /* If we're storing the pr then this isn't a leaf */
605 fi->extra_info->leaf_function = 0;
606 depth += 4;
607 }
608 else if (IS_MOV_R3 (insn))
609 {
610 r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
611 }
612 else if (IS_SHLL_R3 (insn))
613 {
614 r3_val <<= 1;
615 }
616 else if (IS_ADD_R3SP (insn))
617 {
618 depth += -r3_val;
619 }
620 else if (IS_ADD_SP (insn))
621 {
622 depth -= ((insn & 0xff) ^ 0x80) - 0x80;
623 }
624 else if (IS_MOV_SP_FP (insn))
625 break;
626 #if 0 /* This used to just stop when it found an instruction that
627 was not considered part of the prologue. Now, we just
628 keep going looking for likely instructions. */
629 else
630 break;
631 #endif
632 }
633
634 /* Now we know how deep things are, we can work out their addresses */
635
636 for (rn = 0; rn < NUM_REGS; rn++)
637 {
638 if (where[rn] >= 0)
639 {
640 if (rn == FP_REGNUM)
641 have_fp = 1;
642
643 fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
644 }
645 else
646 {
647 fi->saved_regs[rn] = 0;
648 }
649 }
650
651 if (have_fp)
652 {
653 fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
654 }
655 else
656 {
657 fi->saved_regs[SP_REGNUM] = fi->frame - 4;
658 }
659
660 fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
661 /* Work out the return pc - either from the saved pr or the pr
662 value */
663 }
664
665 static void
666 sh_fp_frame_init_saved_regs (struct frame_info *fi)
667 {
668 int where[NUM_REGS];
669 int rn;
670 int have_fp = 0;
671 int depth;
672 int pc;
673 int opc;
674 int insn;
675 int r3_val = 0;
676 char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
677
678 if (fi->saved_regs == NULL)
679 frame_saved_regs_zalloc (fi);
680 else
681 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
682
683 if (dummy_regs)
684 {
685 /* DANGER! This is ONLY going to work if the char buffer format of
686 the saved registers is byte-for-byte identical to the
687 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
688 memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
689 return;
690 }
691
692 fi->extra_info->leaf_function = 1;
693 fi->extra_info->f_offset = 0;
694
695 for (rn = 0; rn < NUM_REGS; rn++)
696 where[rn] = -1;
697
698 depth = 0;
699
700 /* Loop around examining the prologue insns until we find something
701 that does not appear to be part of the prologue. But give up
702 after 20 of them, since we're getting silly then. */
703
704 pc = get_pc_function_start (fi->pc);
705 if (!pc)
706 {
707 fi->pc = 0;
708 return;
709 }
710
711 for (opc = pc + (2 * 28); pc < opc; pc += 2)
712 {
713 insn = read_memory_integer (pc, 2);
714 /* See where the registers will be saved to */
715 if (IS_PUSH (insn))
716 {
717 rn = GET_PUSHED_REG (insn);
718 where[rn] = depth;
719 depth += 4;
720 }
721 else if (IS_STS (insn))
722 {
723 where[PR_REGNUM] = depth;
724 /* If we're storing the pr then this isn't a leaf */
725 fi->extra_info->leaf_function = 0;
726 depth += 4;
727 }
728 else if (IS_MOV_R3 (insn))
729 {
730 r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
731 }
732 else if (IS_SHLL_R3 (insn))
733 {
734 r3_val <<= 1;
735 }
736 else if (IS_ADD_R3SP (insn))
737 {
738 depth += -r3_val;
739 }
740 else if (IS_ADD_SP (insn))
741 {
742 depth -= ((insn & 0xff) ^ 0x80) - 0x80;
743 }
744 else if (IS_FMOV (insn))
745 {
746 if (read_register (gdbarch_tdep (current_gdbarch)->FPSCR_REGNUM) & FPSCR_SZ)
747 {
748 depth += 8;
749 }
750 else
751 {
752 depth += 4;
753 }
754 }
755 else if (IS_MOV_SP_FP (insn))
756 break;
757 #if 0 /* This used to just stop when it found an instruction that
758 was not considered part of the prologue. Now, we just
759 keep going looking for likely instructions. */
760 else
761 break;
762 #endif
763 }
764
765 /* Now we know how deep things are, we can work out their addresses */
766
767 for (rn = 0; rn < NUM_REGS; rn++)
768 {
769 if (where[rn] >= 0)
770 {
771 if (rn == FP_REGNUM)
772 have_fp = 1;
773
774 fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
775 }
776 else
777 {
778 fi->saved_regs[rn] = 0;
779 }
780 }
781
782 if (have_fp)
783 {
784 fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
785 }
786 else
787 {
788 fi->saved_regs[SP_REGNUM] = fi->frame - 4;
789 }
790
791 fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
792 /* Work out the return pc - either from the saved pr or the pr
793 value */
794 }
795
796 /* Initialize the extra info saved in a FRAME */
797 static void
798 sh_init_extra_frame_info (int fromleaf, struct frame_info *fi)
799 {
800
801 fi->extra_info = (struct frame_extra_info *)
802 frame_obstack_alloc (sizeof (struct frame_extra_info));
803
804 if (fi->next)
805 fi->pc = FRAME_SAVED_PC (fi->next);
806
807 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
808 {
809 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
810 by assuming it's always FP. */
811 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
812 SP_REGNUM);
813 fi->extra_info->return_pc = generic_read_register_dummy (fi->pc, fi->frame,
814 PC_REGNUM);
815 fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
816 fi->extra_info->leaf_function = 0;
817 return;
818 }
819 else
820 {
821 FRAME_INIT_SAVED_REGS (fi);
822 fi->extra_info->return_pc = sh_find_callers_reg (fi, PR_REGNUM);
823 }
824 }
825
826 /* Extract from an array REGBUF containing the (raw) register state
827 the address in which a function should return its structure value,
828 as a CORE_ADDR (or an expression that can be used as one). */
829 static CORE_ADDR
830 sh_extract_struct_value_address (char *regbuf)
831 {
832 return (extract_address ((regbuf), REGISTER_RAW_SIZE (0)));
833 }
834
835 static CORE_ADDR
836 sh_frame_saved_pc (struct frame_info *frame)
837 {
838 return ((frame)->extra_info->return_pc);
839 }
840
841 static CORE_ADDR
842 sh_frame_args_address (struct frame_info *fi)
843 {
844 return (fi)->frame;
845 }
846
847 static CORE_ADDR
848 sh_frame_locals_address (struct frame_info *fi)
849 {
850 return (fi)->frame;
851 }
852
853 /* Discard from the stack the innermost frame,
854 restoring all saved registers. */
855 static void
856 sh_pop_frame (void)
857 {
858 register struct frame_info *frame = get_current_frame ();
859 register CORE_ADDR fp;
860 register int regnum;
861
862 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
863 generic_pop_dummy_frame ();
864 else
865 {
866 fp = FRAME_FP (frame);
867 FRAME_INIT_SAVED_REGS (frame);
868
869 /* Copy regs from where they were saved in the frame */
870 for (regnum = 0; regnum < NUM_REGS; regnum++)
871 if (frame->saved_regs[regnum])
872 write_register (regnum, read_memory_integer (frame->saved_regs[regnum], 4));
873
874 write_register (PC_REGNUM, frame->extra_info->return_pc);
875 write_register (SP_REGNUM, fp + 4);
876 }
877 flush_cached_frames ();
878 }
879
880 /* Function: push_arguments
881 Setup the function arguments for calling a function in the inferior.
882
883 On the Hitachi SH architecture, there are four registers (R4 to R7)
884 which are dedicated for passing function arguments. Up to the first
885 four arguments (depending on size) may go into these registers.
886 The rest go on the stack.
887
888 Arguments that are smaller than 4 bytes will still take up a whole
889 register or a whole 32-bit word on the stack, and will be
890 right-justified in the register or the stack word. This includes
891 chars, shorts, and small aggregate types.
892
893 Arguments that are larger than 4 bytes may be split between two or
894 more registers. If there are not enough registers free, an argument
895 may be passed partly in a register (or registers), and partly on the
896 stack. This includes doubles, long longs, and larger aggregates.
897 As far as I know, there is no upper limit to the size of aggregates
898 that will be passed in this way; in other words, the convention of
899 passing a pointer to a large aggregate instead of a copy is not used.
900
901 An exceptional case exists for struct arguments (and possibly other
902 aggregates such as arrays) if the size is larger than 4 bytes but
903 not a multiple of 4 bytes. In this case the argument is never split
904 between the registers and the stack, but instead is copied in its
905 entirety onto the stack, AND also copied into as many registers as
906 there is room for. In other words, space in registers permitting,
907 two copies of the same argument are passed in. As far as I can tell,
908 only the one on the stack is used, although that may be a function
909 of the level of compiler optimization. I suspect this is a compiler
910 bug. Arguments of these odd sizes are left-justified within the
911 word (as opposed to arguments smaller than 4 bytes, which are
912 right-justified).
913
914 If the function is to return an aggregate type such as a struct, it
915 is either returned in the normal return value register R0 (if its
916 size is no greater than one byte), or else the caller must allocate
917 space into which the callee will copy the return value (if the size
918 is greater than one byte). In this case, a pointer to the return
919 value location is passed into the callee in register R2, which does
920 not displace any of the other arguments passed in via registers R4
921 to R7. */
922
923 static CORE_ADDR
924 sh_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
925 int struct_return, CORE_ADDR struct_addr)
926 {
927 int stack_offset, stack_alloc;
928 int argreg;
929 int argnum;
930 struct type *type;
931 CORE_ADDR regval;
932 char *val;
933 char valbuf[4];
934 int len;
935 int odd_sized_struct;
936
937 /* first force sp to a 4-byte alignment */
938 sp = sp & ~3;
939
940 /* The "struct return pointer" pseudo-argument has its own dedicated
941 register */
942 if (struct_return)
943 write_register (STRUCT_RETURN_REGNUM, struct_addr);
944
945 /* Now make sure there's space on the stack */
946 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
947 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
948 sp -= stack_alloc; /* make room on stack for args */
949
950 /* Now load as many as possible of the first arguments into
951 registers, and push the rest onto the stack. There are 16 bytes
952 in four registers available. Loop thru args from first to last. */
953
954 argreg = ARG0_REGNUM;
955 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
956 {
957 type = VALUE_TYPE (args[argnum]);
958 len = TYPE_LENGTH (type);
959 memset (valbuf, 0, sizeof (valbuf));
960 if (len < 4)
961 {
962 /* value gets right-justified in the register or stack word */
963 memcpy (valbuf + (4 - len),
964 (char *) VALUE_CONTENTS (args[argnum]), len);
965 val = valbuf;
966 }
967 else
968 val = (char *) VALUE_CONTENTS (args[argnum]);
969
970 if (len > 4 && (len & 3) != 0)
971 odd_sized_struct = 1; /* such structs go entirely on stack */
972 else
973 odd_sized_struct = 0;
974 while (len > 0)
975 {
976 if (argreg > ARGLAST_REGNUM || odd_sized_struct)
977 { /* must go on the stack */
978 write_memory (sp + stack_offset, val, 4);
979 stack_offset += 4;
980 }
981 /* NOTE WELL!!!!! This is not an "else if" clause!!!
982 That's because some *&^%$ things get passed on the stack
983 AND in the registers! */
984 if (argreg <= ARGLAST_REGNUM)
985 { /* there's room in a register */
986 regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
987 write_register (argreg++, regval);
988 }
989 /* Store the value 4 bytes at a time. This means that things
990 larger than 4 bytes may go partly in registers and partly
991 on the stack. */
992 len -= REGISTER_RAW_SIZE (argreg);
993 val += REGISTER_RAW_SIZE (argreg);
994 }
995 }
996 return sp;
997 }
998
999 /* Function: push_return_address (pc)
1000 Set up the return address for the inferior function call.
1001 Needed for targets where we don't actually execute a JSR/BSR instruction */
1002
1003 static CORE_ADDR
1004 sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1005 {
1006 write_register (PR_REGNUM, CALL_DUMMY_ADDRESS ());
1007 return sp;
1008 }
1009
1010 /* Function: fix_call_dummy
1011 Poke the callee function's address into the destination part of
1012 the CALL_DUMMY. The address is actually stored in a data word
1013 following the actualy CALL_DUMMY instructions, which will load
1014 it into a register using PC-relative addressing. This function
1015 expects the CALL_DUMMY to look like this:
1016
1017 mov.w @(2,PC), R8
1018 jsr @R8
1019 nop
1020 trap
1021 <destination>
1022 */
1023
1024 #if 0
1025 void
1026 sh_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1027 value_ptr *args, struct type *type, int gcc_p)
1028 {
1029 *(unsigned long *) (dummy + 8) = fun;
1030 }
1031 #endif
1032
1033 static int
1034 sh_coerce_float_to_double (struct type *formal, struct type *actual)
1035 {
1036 return 1;
1037 }
1038
1039 /* Find a function's return value in the appropriate registers (in
1040 regbuf), and copy it into valbuf. Extract from an array REGBUF
1041 containing the (raw) register state a function return value of type
1042 TYPE, and copy that, in virtual format, into VALBUF. */
1043 static void
1044 sh_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1045 {
1046 int len = TYPE_LENGTH (type);
1047
1048 if (len <= 4)
1049 memcpy (valbuf, ((char *) regbuf) + 4 - len, len);
1050 else if (len <= 8)
1051 memcpy (valbuf, ((char *) regbuf) + 8 - len, len);
1052 else
1053 error ("bad size for return value");
1054 }
1055
1056 /* Write into appropriate registers a function return value
1057 of type TYPE, given in virtual format.
1058 If the architecture is sh4 or sh3e, store a function's return value
1059 in the R0 general register or in the FP0 floating point register,
1060 depending on the type of the return value. In all the other cases
1061 the result is stored in r0. */
1062 static void
1063 sh_default_store_return_value (struct type *type, char *valbuf)
1064 {
1065 write_register_bytes (REGISTER_BYTE (0),
1066 valbuf, TYPE_LENGTH (type));
1067 }
1068
1069 static void
1070 sh3e_sh4_store_return_value (struct type *type, char *valbuf)
1071 {
1072 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1073 write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1074 valbuf, TYPE_LENGTH (type));
1075 else
1076 write_register_bytes (REGISTER_BYTE (0),
1077 valbuf, TYPE_LENGTH (type));
1078 }
1079
1080
1081 /* Print the registers in a form similar to the E7000 */
1082
1083 static void
1084 sh_generic_show_regs (void)
1085 {
1086 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1087 paddr (read_register (PC_REGNUM)),
1088 (long) read_register (SR_REGNUM),
1089 (long) read_register (PR_REGNUM),
1090 (long) read_register (MACH_REGNUM),
1091 (long) read_register (MACL_REGNUM));
1092
1093 printf_filtered ("GBR=%08lx VBR=%08lx",
1094 (long) read_register (GBR_REGNUM),
1095 (long) read_register (VBR_REGNUM));
1096
1097 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1098 (long) read_register (0),
1099 (long) read_register (1),
1100 (long) read_register (2),
1101 (long) read_register (3),
1102 (long) read_register (4),
1103 (long) read_register (5),
1104 (long) read_register (6),
1105 (long) read_register (7));
1106 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1107 (long) read_register (8),
1108 (long) read_register (9),
1109 (long) read_register (10),
1110 (long) read_register (11),
1111 (long) read_register (12),
1112 (long) read_register (13),
1113 (long) read_register (14),
1114 (long) read_register (15));
1115 }
1116
1117 static void
1118 sh3_show_regs (void)
1119 {
1120 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1121 paddr (read_register (PC_REGNUM)),
1122 (long) read_register (SR_REGNUM),
1123 (long) read_register (PR_REGNUM),
1124 (long) read_register (MACH_REGNUM),
1125 (long) read_register (MACL_REGNUM));
1126
1127 printf_filtered ("GBR=%08lx VBR=%08lx",
1128 (long) read_register (GBR_REGNUM),
1129 (long) read_register (VBR_REGNUM));
1130 printf_filtered (" SSR=%08lx SPC=%08lx",
1131 (long) read_register (gdbarch_tdep (current_gdbarch)->SSR_REGNUM),
1132 (long) read_register (gdbarch_tdep (current_gdbarch)->SPC_REGNUM));
1133
1134 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1135 (long) read_register (0),
1136 (long) read_register (1),
1137 (long) read_register (2),
1138 (long) read_register (3),
1139 (long) read_register (4),
1140 (long) read_register (5),
1141 (long) read_register (6),
1142 (long) read_register (7));
1143 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1144 (long) read_register (8),
1145 (long) read_register (9),
1146 (long) read_register (10),
1147 (long) read_register (11),
1148 (long) read_register (12),
1149 (long) read_register (13),
1150 (long) read_register (14),
1151 (long) read_register (15));
1152 }
1153
1154
1155 static void
1156 sh3e_show_regs (void)
1157 {
1158 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1159 paddr (read_register (PC_REGNUM)),
1160 (long) read_register (SR_REGNUM),
1161 (long) read_register (PR_REGNUM),
1162 (long) read_register (MACH_REGNUM),
1163 (long) read_register (MACL_REGNUM));
1164
1165 printf_filtered ("GBR=%08lx VBR=%08lx",
1166 (long) read_register (GBR_REGNUM),
1167 (long) read_register (VBR_REGNUM));
1168 printf_filtered (" SSR=%08lx SPC=%08lx",
1169 (long) read_register (gdbarch_tdep (current_gdbarch)->SSR_REGNUM),
1170 (long) read_register (gdbarch_tdep (current_gdbarch)->SPC_REGNUM));
1171 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1172 (long) read_register (gdbarch_tdep (current_gdbarch)->FPUL_REGNUM),
1173 (long) read_register (gdbarch_tdep (current_gdbarch)->FPSCR_REGNUM));
1174
1175 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1176 (long) read_register (0),
1177 (long) read_register (1),
1178 (long) read_register (2),
1179 (long) read_register (3),
1180 (long) read_register (4),
1181 (long) read_register (5),
1182 (long) read_register (6),
1183 (long) read_register (7));
1184 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1185 (long) read_register (8),
1186 (long) read_register (9),
1187 (long) read_register (10),
1188 (long) read_register (11),
1189 (long) read_register (12),
1190 (long) read_register (13),
1191 (long) read_register (14),
1192 (long) read_register (15));
1193
1194 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1195 (long) read_register (FP0_REGNUM + 0),
1196 (long) read_register (FP0_REGNUM + 1),
1197 (long) read_register (FP0_REGNUM + 2),
1198 (long) read_register (FP0_REGNUM + 3),
1199 (long) read_register (FP0_REGNUM + 4),
1200 (long) read_register (FP0_REGNUM + 5),
1201 (long) read_register (FP0_REGNUM + 6),
1202 (long) read_register (FP0_REGNUM + 7));
1203 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1204 (long) read_register (FP0_REGNUM + 8),
1205 (long) read_register (FP0_REGNUM + 9),
1206 (long) read_register (FP0_REGNUM + 10),
1207 (long) read_register (FP0_REGNUM + 11),
1208 (long) read_register (FP0_REGNUM + 12),
1209 (long) read_register (FP0_REGNUM + 13),
1210 (long) read_register (FP0_REGNUM + 14),
1211 (long) read_register (FP0_REGNUM + 15));
1212 }
1213
1214 static void
1215 sh3_dsp_show_regs (void)
1216 {
1217 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1218 paddr (read_register (PC_REGNUM)),
1219 (long) read_register (SR_REGNUM),
1220 (long) read_register (PR_REGNUM),
1221 (long) read_register (MACH_REGNUM),
1222 (long) read_register (MACL_REGNUM));
1223
1224 printf_filtered ("GBR=%08lx VBR=%08lx",
1225 (long) read_register (GBR_REGNUM),
1226 (long) read_register (VBR_REGNUM));
1227
1228 printf_filtered (" SSR=%08lx SPC=%08lx",
1229 (long) read_register (gdbarch_tdep (current_gdbarch)->SSR_REGNUM),
1230 (long) read_register (gdbarch_tdep (current_gdbarch)->SPC_REGNUM));
1231
1232 printf_filtered (" DSR=%08lx",
1233 (long) read_register (gdbarch_tdep (current_gdbarch)->DSR_REGNUM));
1234
1235 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1236 (long) read_register (0),
1237 (long) read_register (1),
1238 (long) read_register (2),
1239 (long) read_register (3),
1240 (long) read_register (4),
1241 (long) read_register (5),
1242 (long) read_register (6),
1243 (long) read_register (7));
1244 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1245 (long) read_register (8),
1246 (long) read_register (9),
1247 (long) read_register (10),
1248 (long) read_register (11),
1249 (long) read_register (12),
1250 (long) read_register (13),
1251 (long) read_register (14),
1252 (long) read_register (15));
1253
1254 printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1255 (long) read_register (gdbarch_tdep (current_gdbarch)->A0G_REGNUM) & 0xff,
1256 (long) read_register (gdbarch_tdep (current_gdbarch)->A0_REGNUM),
1257 (long) read_register (gdbarch_tdep (current_gdbarch)->M0_REGNUM),
1258 (long) read_register (gdbarch_tdep (current_gdbarch)->X0_REGNUM),
1259 (long) read_register (gdbarch_tdep (current_gdbarch)->Y0_REGNUM),
1260 (long) read_register (gdbarch_tdep (current_gdbarch)->RS_REGNUM),
1261 (long) read_register (gdbarch_tdep (current_gdbarch)->MOD_REGNUM));
1262 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1263 (long) read_register (gdbarch_tdep (current_gdbarch)->A1G_REGNUM) & 0xff,
1264 (long) read_register (gdbarch_tdep (current_gdbarch)->A1_REGNUM),
1265 (long) read_register (gdbarch_tdep (current_gdbarch)->M1_REGNUM),
1266 (long) read_register (gdbarch_tdep (current_gdbarch)->X1_REGNUM),
1267 (long) read_register (gdbarch_tdep (current_gdbarch)->Y1_REGNUM),
1268 (long) read_register (gdbarch_tdep (current_gdbarch)->RE_REGNUM));
1269 }
1270
1271 static void
1272 sh4_show_regs (void)
1273 {
1274 int pr = read_register (gdbarch_tdep (current_gdbarch)->FPSCR_REGNUM) & 0x80000;
1275 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1276 paddr (read_register (PC_REGNUM)),
1277 (long) read_register (SR_REGNUM),
1278 (long) read_register (PR_REGNUM),
1279 (long) read_register (MACH_REGNUM),
1280 (long) read_register (MACL_REGNUM));
1281
1282 printf_filtered ("GBR=%08lx VBR=%08lx",
1283 (long) read_register (GBR_REGNUM),
1284 (long) read_register (VBR_REGNUM));
1285 printf_filtered (" SSR=%08lx SPC=%08lx",
1286 (long) read_register (gdbarch_tdep (current_gdbarch)->SSR_REGNUM),
1287 (long) read_register (gdbarch_tdep (current_gdbarch)->SPC_REGNUM));
1288 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1289 (long) read_register (gdbarch_tdep (current_gdbarch)->FPUL_REGNUM),
1290 (long) read_register (gdbarch_tdep (current_gdbarch)->FPSCR_REGNUM));
1291
1292 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1293 (long) read_register (0),
1294 (long) read_register (1),
1295 (long) read_register (2),
1296 (long) read_register (3),
1297 (long) read_register (4),
1298 (long) read_register (5),
1299 (long) read_register (6),
1300 (long) read_register (7));
1301 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1302 (long) read_register (8),
1303 (long) read_register (9),
1304 (long) read_register (10),
1305 (long) read_register (11),
1306 (long) read_register (12),
1307 (long) read_register (13),
1308 (long) read_register (14),
1309 (long) read_register (15));
1310
1311 printf_filtered ((pr
1312 ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1313 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1314 (long) read_register (FP0_REGNUM + 0),
1315 (long) read_register (FP0_REGNUM + 1),
1316 (long) read_register (FP0_REGNUM + 2),
1317 (long) read_register (FP0_REGNUM + 3),
1318 (long) read_register (FP0_REGNUM + 4),
1319 (long) read_register (FP0_REGNUM + 5),
1320 (long) read_register (FP0_REGNUM + 6),
1321 (long) read_register (FP0_REGNUM + 7));
1322 printf_filtered ((pr
1323 ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1324 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1325 (long) read_register (FP0_REGNUM + 8),
1326 (long) read_register (FP0_REGNUM + 9),
1327 (long) read_register (FP0_REGNUM + 10),
1328 (long) read_register (FP0_REGNUM + 11),
1329 (long) read_register (FP0_REGNUM + 12),
1330 (long) read_register (FP0_REGNUM + 13),
1331 (long) read_register (FP0_REGNUM + 14),
1332 (long) read_register (FP0_REGNUM + 15));
1333 }
1334
1335 static void
1336 sh_dsp_show_regs (void)
1337 {
1338 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1339 paddr (read_register (PC_REGNUM)),
1340 (long) read_register (SR_REGNUM),
1341 (long) read_register (PR_REGNUM),
1342 (long) read_register (MACH_REGNUM),
1343 (long) read_register (MACL_REGNUM));
1344
1345 printf_filtered ("GBR=%08lx VBR=%08lx",
1346 (long) read_register (GBR_REGNUM),
1347 (long) read_register (VBR_REGNUM));
1348
1349 printf_filtered (" DSR=%08lx",
1350 (long) read_register (gdbarch_tdep (current_gdbarch)->DSR_REGNUM));
1351
1352 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1353 (long) read_register (0),
1354 (long) read_register (1),
1355 (long) read_register (2),
1356 (long) read_register (3),
1357 (long) read_register (4),
1358 (long) read_register (5),
1359 (long) read_register (6),
1360 (long) read_register (7));
1361 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1362 (long) read_register (8),
1363 (long) read_register (9),
1364 (long) read_register (10),
1365 (long) read_register (11),
1366 (long) read_register (12),
1367 (long) read_register (13),
1368 (long) read_register (14),
1369 (long) read_register (15));
1370
1371 printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1372 (long) read_register (gdbarch_tdep (current_gdbarch)->A0G_REGNUM) & 0xff,
1373 (long) read_register (gdbarch_tdep (current_gdbarch)->A0_REGNUM),
1374 (long) read_register (gdbarch_tdep (current_gdbarch)->M0_REGNUM),
1375 (long) read_register (gdbarch_tdep (current_gdbarch)->X0_REGNUM),
1376 (long) read_register (gdbarch_tdep (current_gdbarch)->Y0_REGNUM),
1377 (long) read_register (gdbarch_tdep (current_gdbarch)->RS_REGNUM),
1378 (long) read_register (gdbarch_tdep (current_gdbarch)->MOD_REGNUM));
1379 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1380 (long) read_register (gdbarch_tdep (current_gdbarch)->A1G_REGNUM) & 0xff,
1381 (long) read_register (gdbarch_tdep (current_gdbarch)->A1_REGNUM),
1382 (long) read_register (gdbarch_tdep (current_gdbarch)->M1_REGNUM),
1383 (long) read_register (gdbarch_tdep (current_gdbarch)->X1_REGNUM),
1384 (long) read_register (gdbarch_tdep (current_gdbarch)->Y1_REGNUM),
1385 (long) read_register (gdbarch_tdep (current_gdbarch)->RE_REGNUM));
1386 }
1387
1388 void sh_show_regs_command (char *args, int from_tty)
1389 {
1390 if (sh_show_regs)
1391 (*sh_show_regs)();
1392 }
1393
1394 /* Index within `registers' of the first byte of the space for
1395 register N. */
1396 static int
1397 sh_default_register_byte (int reg_nr)
1398 {
1399 return (reg_nr * 4);
1400 }
1401
1402 static int
1403 sh_sh4_register_byte (int reg_nr)
1404 {
1405 if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1406 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1407 return (dr_reg_base_num (reg_nr) * 4);
1408 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1409 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1410 return (fv_reg_base_num (reg_nr) * 4);
1411 else
1412 return (reg_nr * 4);
1413 }
1414
1415 /* Number of bytes of storage in the actual machine representation for
1416 register REG_NR. */
1417 static int
1418 sh_default_register_raw_size (int reg_nr)
1419 {
1420 return 4;
1421 }
1422
1423 static int
1424 sh_sh4_register_raw_size (int reg_nr)
1425 {
1426 if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1427 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1428 return 8;
1429 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1430 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1431 return 16;
1432 else
1433 return 4;
1434 }
1435
1436 /* Number of bytes of storage in the program's representation
1437 for register N. */
1438 static int
1439 sh_register_virtual_size (int reg_nr)
1440 {
1441 return 4;
1442 }
1443
1444 /* Return the GDB type object for the "standard" data type
1445 of data in register N. */
1446
1447 static struct type *
1448 sh_sh3e_register_virtual_type (int reg_nr)
1449 {
1450 if ((reg_nr >= FP0_REGNUM
1451 && (reg_nr <= gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM))
1452 || (reg_nr == gdbarch_tdep (current_gdbarch)->FPUL_REGNUM))
1453 return builtin_type_float;
1454 else
1455 return builtin_type_int;
1456 }
1457
1458 static struct type *
1459 sh_sh4_register_virtual_type (int reg_nr)
1460 {
1461 if ((reg_nr >= FP0_REGNUM
1462 && (reg_nr <= gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM))
1463 || (reg_nr == gdbarch_tdep (current_gdbarch)->FPUL_REGNUM))
1464 return builtin_type_float;
1465 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1466 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1467 return builtin_type_double;
1468 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1469 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1470 return sh_sh4_build_float_register_type (3);
1471 else
1472 return builtin_type_int;
1473 }
1474
1475 static struct type *
1476 sh_sh4_build_float_register_type (int high)
1477 {
1478 struct type *temp;
1479
1480 temp = create_range_type (NULL, builtin_type_int, 0, high);
1481 return create_array_type (NULL, builtin_type_float, temp);
1482 }
1483
1484 static struct type *
1485 sh_default_register_virtual_type (int reg_nr)
1486 {
1487 return builtin_type_int;
1488 }
1489
1490 /* On the sh4, the DRi pseudo registers are problematic if the target
1491 is little endian. When the user writes one of those registers, for
1492 instance with 'ser var $dr0=1', we want the double to be stored
1493 like this:
1494 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1495 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1496
1497 This corresponds to little endian byte order & big endian word
1498 order. However if we let gdb write the register w/o conversion, it
1499 will write fr0 and fr1 this way:
1500 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1501 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1502 because it will consider fr0 and fr1 as a single LE stretch of memory.
1503
1504 To achieve what we want we must force gdb to store things in
1505 floatformat_ieee_double_littlebyte_bigword (which is defined in
1506 include/floatformat.h and libiberty/floatformat.c.
1507
1508 In case the target is big endian, there is no problem, the
1509 raw bytes will look like:
1510 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1511 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1512
1513 The other pseudo registers (the FVs) also don't pose a problem
1514 because they are stored as 4 individual FP elements. */
1515
1516 int
1517 sh_sh4_register_convertible (int nr)
1518 {
1519 if (TARGET_BYTE_ORDER == LITTLE_ENDIAN)
1520 return (gdbarch_tdep (current_gdbarch)->DR0_REGNUM <= nr
1521 && nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM);
1522 else
1523 return 0;
1524 }
1525
1526 void
1527 sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
1528 char *from, char *to)
1529 {
1530 if (regnum >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1531 && regnum <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1532 {
1533 DOUBLEST val;
1534 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
1535 store_floating(to, TYPE_LENGTH(type), val);
1536 }
1537 else
1538 error("sh_register_convert_to_virtual called with non DR register number");
1539 }
1540
1541 void
1542 sh_sh4_register_convert_to_raw (struct type *type, int regnum,
1543 char *from, char *to)
1544 {
1545 if (regnum >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1546 && regnum <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1547 {
1548 DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
1549 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
1550 }
1551 else
1552 error("sh_register_convert_to_raw called with non DR register number");
1553 }
1554
1555 void
1556 sh_fetch_pseudo_register (int reg_nr)
1557 {
1558 int base_regnum, portion;
1559
1560 if (!register_cached (reg_nr))
1561 {
1562 if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1563 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1564 {
1565 base_regnum = dr_reg_base_num (reg_nr);
1566
1567 /* Read the real regs for which this one is an alias. */
1568 for (portion = 0; portion < 2; portion++)
1569 if (!register_cached (base_regnum + portion))
1570 target_fetch_registers (base_regnum + portion);
1571 }
1572 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1573 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1574 {
1575 base_regnum = fv_reg_base_num (reg_nr);
1576
1577 /* Read the real regs for which this one is an alias. */
1578 for (portion = 0; portion < 4; portion++)
1579 if (!register_cached (base_regnum + portion))
1580 target_fetch_registers (base_regnum + portion);
1581
1582 }
1583 register_valid [reg_nr] = 1;
1584 }
1585 }
1586
1587 void
1588 sh_store_pseudo_register (int reg_nr)
1589 {
1590 int base_regnum, portion;
1591
1592 if (reg_nr >= gdbarch_tdep (current_gdbarch)->DR0_REGNUM
1593 && reg_nr <= gdbarch_tdep (current_gdbarch)->DR_LAST_REGNUM)
1594 {
1595 base_regnum = dr_reg_base_num (reg_nr);
1596
1597 /* Write the real regs for which this one is an alias. */
1598 for (portion = 0; portion < 2; portion++)
1599 {
1600 register_valid[base_regnum + portion] = 1;
1601 target_store_registers (base_regnum + portion);
1602 }
1603 }
1604 else if (reg_nr >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM
1605 && reg_nr <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1606 {
1607 base_regnum = fv_reg_base_num (reg_nr);
1608
1609 /* Write the real regs for which this one is an alias. */
1610 for (portion = 0; portion < 4; portion++)
1611 {
1612 register_valid[base_regnum + portion] = 1;
1613 target_store_registers (base_regnum + portion);
1614 }
1615 }
1616 }
1617
1618 static int
1619 fv_reg_base_num (int fv_regnum)
1620 {
1621 int fp_regnum;
1622
1623 fp_regnum = FP0_REGNUM +
1624 (fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM) * 4;
1625 return fp_regnum;
1626 }
1627
1628 static int
1629 dr_reg_base_num (int dr_regnum)
1630 {
1631 int fp_regnum;
1632
1633 fp_regnum = FP0_REGNUM +
1634 (dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM) * 2;
1635 return fp_regnum;
1636 }
1637
1638 static void
1639 do_fv_register_info (int fv_regnum)
1640 {
1641 int first_fp_reg_num = fv_reg_base_num (fv_regnum);
1642 printf_filtered ("fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1643 fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM,
1644 (int) read_register (first_fp_reg_num),
1645 (int) read_register (first_fp_reg_num + 1),
1646 (int) read_register (first_fp_reg_num + 2),
1647 (int) read_register (first_fp_reg_num + 3));
1648 }
1649
1650 static void
1651 do_dr_register_info (int dr_regnum)
1652 {
1653 int first_fp_reg_num = dr_reg_base_num (dr_regnum);
1654
1655 printf_filtered ("dr%d\t0x%08x%08x\n",
1656 dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM,
1657 (int) read_register (first_fp_reg_num),
1658 (int) read_register (first_fp_reg_num + 1));
1659 }
1660
1661 static void
1662 sh_do_pseudo_register (int regnum)
1663 {
1664 if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
1665 internal_error ("Invalid pseudo register number %d\n", regnum);
1666 else if (regnum >= NUM_REGS &&
1667 regnum < gdbarch_tdep (current_gdbarch)->FV0_REGNUM)
1668 do_dr_register_info (regnum);
1669 else if (regnum >= gdbarch_tdep (current_gdbarch)->FV0_REGNUM &&
1670 regnum <= gdbarch_tdep (current_gdbarch)->FV_LAST_REGNUM)
1671 do_fv_register_info (regnum);
1672 }
1673
1674
1675 static void
1676 sh_do_fp_register (int regnum)
1677 { /* do values for FP (float) regs */
1678 char *raw_buffer;
1679 double flt; /* double extracted from raw hex data */
1680 int inv;
1681 int j;
1682
1683 /* Allocate space for the float. */
1684 raw_buffer = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
1685
1686 /* Get the data in raw format. */
1687 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1688 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1689
1690 /* Get the register as a number */
1691 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1692
1693 /* Print the name and some spaces. */
1694 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
1695 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
1696
1697 /* Print the value. */
1698 printf_filtered (inv ? "<invalid float>" : "%-10.9g", flt);
1699
1700 /* Print the fp register as hex. */
1701 printf_filtered ("\t(raw 0x");
1702 for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
1703 {
1704 register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
1705 : REGISTER_RAW_SIZE (regnum) - 1 - j;
1706 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1707 }
1708 printf_filtered (")");
1709 printf_filtered ("\n");
1710 }
1711
1712 static void
1713 sh_do_register (int regnum)
1714 {
1715 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1716
1717 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
1718 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
1719
1720 /* Get the data in raw format. */
1721 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1722 printf_filtered ("*value not available*\n");
1723
1724 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
1725 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1726 printf_filtered ("\t");
1727 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
1728 gdb_stdout, 0, 1, 0, Val_pretty_default);
1729 printf_filtered ("\n");
1730 }
1731
1732 static void
1733 sh_print_register (int regnum)
1734 {
1735 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
1736 internal_error ("Invalid register number %d\n", regnum);
1737
1738 else if (regnum > 0 && regnum < NUM_REGS)
1739 {
1740 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1741 sh_do_fp_register (regnum); /* FP regs */
1742 else
1743 sh_do_register (regnum); /* All other regs */
1744 }
1745
1746 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1747 sh_do_pseudo_register (regnum);
1748 }
1749
1750 void
1751 sh_do_registers_info (int regnum, int fpregs)
1752 {
1753 if (regnum != -1) /* do one specified register */
1754 {
1755 if (*(REGISTER_NAME (regnum)) == '\0')
1756 error ("Not a valid register for the current processor type");
1757
1758 sh_print_register (regnum);
1759 }
1760 else
1761 /* do all (or most) registers */
1762 {
1763 regnum = 0;
1764 while (regnum < NUM_REGS)
1765 {
1766 /* If the register name is empty, it is undefined for this
1767 processor, so don't display anything. */
1768 if (REGISTER_NAME (regnum) == NULL
1769 || *(REGISTER_NAME (regnum)) == '\0')
1770 {
1771 regnum++;
1772 continue;
1773 }
1774
1775 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1776 {
1777 if (fpregs)
1778 {
1779 /* true for "INFO ALL-REGISTERS" command */
1780 sh_do_fp_register (regnum); /* FP regs */
1781 regnum ++;
1782 }
1783 else
1784 regnum += (gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM - FP0_REGNUM); /* skip FP regs */
1785 }
1786 else
1787 {
1788 sh_do_register (regnum); /* All other regs */
1789 regnum++;
1790 }
1791 }
1792
1793 if (fpregs)
1794 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1795 {
1796 sh_do_pseudo_register (regnum);
1797 regnum++;
1798 }
1799 }
1800 }
1801
1802 #ifdef SVR4_SHARED_LIBS
1803
1804 /* Fetch (and possibly build) an appropriate link_map_offsets structure
1805 for native i386 linux targets using the struct offsets defined in
1806 link.h (but without actual reference to that file).
1807
1808 This makes it possible to access i386-linux shared libraries from
1809 a gdb that was not built on an i386-linux host (for cross debugging).
1810 */
1811
1812 struct link_map_offsets *
1813 sh_linux_svr4_fetch_link_map_offsets (void)
1814 {
1815 static struct link_map_offsets lmo;
1816 static struct link_map_offsets *lmp = 0;
1817
1818 if (lmp == 0)
1819 {
1820 lmp = &lmo;
1821
1822 lmo.r_debug_size = 8; /* 20 not actual size but all we need */
1823
1824 lmo.r_map_offset = 4;
1825 lmo.r_map_size = 4;
1826
1827 lmo.link_map_size = 20; /* 552 not actual size but all we need */
1828
1829 lmo.l_addr_offset = 0;
1830 lmo.l_addr_size = 4;
1831
1832 lmo.l_name_offset = 4;
1833 lmo.l_name_size = 4;
1834
1835 lmo.l_next_offset = 12;
1836 lmo.l_next_size = 4;
1837
1838 lmo.l_prev_offset = 16;
1839 lmo.l_prev_size = 4;
1840 }
1841
1842 return lmp;
1843 }
1844 #endif /* SVR4_SHARED_LIBS */
1845
1846 static gdbarch_init_ftype sh_gdbarch_init;
1847
1848 static struct gdbarch *
1849 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1850 {
1851 static LONGEST sh_call_dummy_words[] = {0};
1852 struct gdbarch *gdbarch;
1853 struct gdbarch_tdep *tdep;
1854 gdbarch_register_name_ftype *sh_register_name;
1855 gdbarch_store_return_value_ftype *sh_store_return_value;
1856 gdbarch_register_virtual_type_ftype *sh_register_virtual_type;
1857
1858 /* Find a candidate among the list of pre-declared architectures. */
1859 arches = gdbarch_list_lookup_by_info (arches, &info);
1860 if (arches != NULL)
1861 return arches->gdbarch;
1862
1863 /* None found, create a new architecture from the information
1864 provided. */
1865 tdep = XMALLOC (struct gdbarch_tdep);
1866 gdbarch = gdbarch_alloc (&info, tdep);
1867
1868 /* Initialize the register numbers that are not common to all the
1869 variants to -1, if necessary thse will be overwritten in the case
1870 statement below. */
1871 tdep->FPUL_REGNUM = -1;
1872 tdep->FPSCR_REGNUM = -1;
1873 tdep->DSR_REGNUM = -1;
1874 tdep->FP_LAST_REGNUM = -1;
1875 tdep->A0G_REGNUM = -1;
1876 tdep->A0_REGNUM = -1;
1877 tdep->A1G_REGNUM = -1;
1878 tdep->A1_REGNUM = -1;
1879 tdep->M0_REGNUM = -1;
1880 tdep->M1_REGNUM = -1;
1881 tdep->X0_REGNUM = -1;
1882 tdep->X1_REGNUM = -1;
1883 tdep->Y0_REGNUM = -1;
1884 tdep->Y1_REGNUM = -1;
1885 tdep->MOD_REGNUM = -1;
1886 tdep->RS_REGNUM = -1;
1887 tdep->RE_REGNUM = -1;
1888 tdep->SSR_REGNUM = -1;
1889 tdep->SPC_REGNUM = -1;
1890 tdep->DR0_REGNUM = -1;
1891 tdep->DR_LAST_REGNUM = -1;
1892 tdep->FV0_REGNUM = -1;
1893 tdep->FV_LAST_REGNUM = -1;
1894 set_gdbarch_fp0_regnum (gdbarch, -1);
1895 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1896 set_gdbarch_max_register_raw_size (gdbarch, 4);
1897 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1898 print_sh_insn = gdb_print_insn_sh;
1899
1900 switch (info.bfd_arch_info->mach)
1901 {
1902 case bfd_mach_sh:
1903 sh_register_name = sh_sh_register_name;
1904 sh_show_regs = sh_generic_show_regs;
1905 sh_store_return_value = sh_default_store_return_value;
1906 sh_register_virtual_type = sh_default_register_virtual_type;
1907 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1908 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1909 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1910 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1911 break;
1912 case bfd_mach_sh2:
1913 sh_register_name = sh_sh_register_name;
1914 sh_show_regs = sh_generic_show_regs;
1915 sh_store_return_value = sh_default_store_return_value;
1916 sh_register_virtual_type = sh_default_register_virtual_type;
1917 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1918 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1919 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1920 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1921 break;
1922 case bfd_mach_sh_dsp:
1923 sh_register_name = sh_sh_dsp_register_name;
1924 sh_show_regs = sh_dsp_show_regs;
1925 sh_store_return_value = sh_default_store_return_value;
1926 sh_register_virtual_type = sh_default_register_virtual_type;
1927 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1928 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1929 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1930 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1931 tdep->DSR_REGNUM = 24;
1932 tdep->A0G_REGNUM = 25;
1933 tdep->A0_REGNUM = 26;
1934 tdep->A1G_REGNUM = 27;
1935 tdep->A1_REGNUM = 28;
1936 tdep->M0_REGNUM = 29;
1937 tdep->M1_REGNUM = 30;
1938 tdep->X0_REGNUM = 31;
1939 tdep->X1_REGNUM = 32;
1940 tdep->Y0_REGNUM = 33;
1941 tdep->Y1_REGNUM = 34;
1942 tdep->MOD_REGNUM = 40;
1943 tdep->RS_REGNUM = 43;
1944 tdep->RE_REGNUM = 44;
1945 break;
1946 case bfd_mach_sh3:
1947 sh_register_name = sh_sh3_register_name;
1948 sh_show_regs = sh3_show_regs;
1949 sh_store_return_value = sh_default_store_return_value;
1950 sh_register_virtual_type = sh_default_register_virtual_type;
1951 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1952 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1953 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1954 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1955 tdep->SSR_REGNUM = 41;
1956 tdep->SPC_REGNUM = 42;
1957 break;
1958 case bfd_mach_sh3e:
1959 sh_register_name = sh_sh3e_register_name;
1960 sh_show_regs = sh3e_show_regs;
1961 sh_store_return_value = sh3e_sh4_store_return_value;
1962 sh_register_virtual_type = sh_sh3e_register_virtual_type;
1963 set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
1964 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1965 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1966 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1967 set_gdbarch_fp0_regnum (gdbarch, 25);
1968 tdep->FPUL_REGNUM = 23;
1969 tdep->FPSCR_REGNUM = 24;
1970 tdep->FP_LAST_REGNUM = 40;
1971 tdep->SSR_REGNUM = 41;
1972 tdep->SPC_REGNUM = 42;
1973 break;
1974 case bfd_mach_sh3_dsp:
1975 sh_register_name = sh_sh3_dsp_register_name;
1976 sh_show_regs = sh3_dsp_show_regs;
1977 sh_store_return_value = sh_default_store_return_value;
1978 sh_register_virtual_type = sh_default_register_virtual_type;
1979 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1980 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1981 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1982 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1983 tdep->DSR_REGNUM = 24;
1984 tdep->A0G_REGNUM = 25;
1985 tdep->A0_REGNUM = 26;
1986 tdep->A1G_REGNUM = 27;
1987 tdep->A1_REGNUM = 28;
1988 tdep->M0_REGNUM = 29;
1989 tdep->M1_REGNUM = 30;
1990 tdep->X0_REGNUM = 31;
1991 tdep->X1_REGNUM = 32;
1992 tdep->Y0_REGNUM = 33;
1993 tdep->Y1_REGNUM = 34;
1994 tdep->MOD_REGNUM = 40;
1995 tdep->RS_REGNUM = 43;
1996 tdep->RE_REGNUM = 44;
1997 tdep->SSR_REGNUM = 41;
1998 tdep->SPC_REGNUM = 42;
1999 break;
2000 case bfd_mach_sh4:
2001 sh_register_name = sh_sh4_register_name;
2002 sh_show_regs = sh4_show_regs;
2003 sh_store_return_value = sh3e_sh4_store_return_value;
2004 sh_register_virtual_type = sh_sh4_register_virtual_type;
2005 set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
2006 set_gdbarch_fp0_regnum (gdbarch, 25);
2007 set_gdbarch_register_raw_size (gdbarch, sh_sh4_register_raw_size);
2008 set_gdbarch_register_virtual_size (gdbarch, sh_sh4_register_raw_size);
2009 set_gdbarch_register_byte (gdbarch, sh_sh4_register_byte);
2010 set_gdbarch_num_pseudo_regs (gdbarch, 12);
2011 set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
2012 set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
2013 set_gdbarch_register_convert_to_raw (gdbarch, sh_sh4_register_convert_to_raw);
2014 set_gdbarch_register_convert_to_virtual (gdbarch, sh_sh4_register_convert_to_virtual);
2015 set_gdbarch_register_convertible (gdbarch, sh_sh4_register_convertible);
2016 tdep->FPUL_REGNUM = 23;
2017 tdep->FPSCR_REGNUM = 24;
2018 tdep->FP_LAST_REGNUM = 40;
2019 tdep->SSR_REGNUM = 41;
2020 tdep->SPC_REGNUM = 42;
2021 tdep->DR0_REGNUM = 59;
2022 tdep->DR_LAST_REGNUM = 66;
2023 tdep->FV0_REGNUM = 67;
2024 tdep->FV_LAST_REGNUM = 70;
2025 break;
2026 default:
2027 sh_register_name = sh_generic_register_name;
2028 sh_show_regs = sh_generic_show_regs;
2029 sh_store_return_value = sh_default_store_return_value;
2030 sh_register_virtual_type = sh_default_register_virtual_type;
2031 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
2032 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
2033 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2034 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2035 break;
2036 }
2037
2038 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2039 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2040 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2041 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
2042 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2043 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2044
2045 set_gdbarch_num_regs (gdbarch, 59);
2046 set_gdbarch_sp_regnum (gdbarch, 15);
2047 set_gdbarch_fp_regnum (gdbarch, 14);
2048 set_gdbarch_pc_regnum (gdbarch, 16);
2049 set_gdbarch_register_name (gdbarch, sh_register_name);
2050 set_gdbarch_register_size (gdbarch, 4);
2051 set_gdbarch_register_bytes (gdbarch, NUM_REGS * 4);
2052 set_gdbarch_register_virtual_type (gdbarch, sh_register_virtual_type);
2053
2054 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2055 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2056 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2057 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2058 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2059 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2060 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2061 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2062
2063 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2064 set_gdbarch_call_dummy_length (gdbarch, 0);
2065 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2066 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2067 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
2068 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2069 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2070 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2071 set_gdbarch_call_dummy_words (gdbarch, sh_call_dummy_words);
2072 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (sh_call_dummy_words));
2073 set_gdbarch_call_dummy_p (gdbarch, 1);
2074 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2075 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2076 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
2077 set_gdbarch_coerce_float_to_double (gdbarch,
2078 sh_coerce_float_to_double);
2079
2080 set_gdbarch_extract_return_value (gdbarch, sh_extract_return_value);
2081 set_gdbarch_push_arguments (gdbarch, sh_push_arguments);
2082 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2083 set_gdbarch_push_return_address (gdbarch, sh_push_return_address);
2084
2085 set_gdbarch_store_struct_return (gdbarch, sh_store_struct_return);
2086 set_gdbarch_store_return_value (gdbarch, sh_store_return_value);
2087 set_gdbarch_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
2088 set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
2089 set_gdbarch_init_extra_frame_info (gdbarch, sh_init_extra_frame_info);
2090 set_gdbarch_pop_frame (gdbarch, sh_pop_frame);
2091 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2092 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2093 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2094 set_gdbarch_function_start_offset (gdbarch, 0);
2095 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2096
2097 set_gdbarch_fetch_pseudo_register (gdbarch, sh_fetch_pseudo_register);
2098 set_gdbarch_store_pseudo_register (gdbarch, sh_store_pseudo_register);
2099 set_gdbarch_frame_args_skip (gdbarch, 0);
2100 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
2101 set_gdbarch_frame_chain (gdbarch, sh_frame_chain);
2102 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
2103 set_gdbarch_frame_saved_pc (gdbarch, sh_frame_saved_pc);
2104 set_gdbarch_frame_args_address (gdbarch, sh_frame_args_address);
2105 set_gdbarch_frame_locals_address (gdbarch, sh_frame_locals_address);
2106 set_gdbarch_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
2107 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2108 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2109 set_gdbarch_ieee_float (gdbarch, 1);
2110
2111 return gdbarch;
2112 }
2113
2114 void
2115 _initialize_sh_tdep (void)
2116 {
2117 struct cmd_list_element *c;
2118
2119 register_gdbarch_init (bfd_arch_sh, sh_gdbarch_init);
2120 tm_print_insn = print_sh_insn;
2121
2122 add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
2123 }
This page took 0.077062 seconds and 4 git commands to generate.