daily update
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Hitachi Super-H, for GDB.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
25 */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "symfile.h"
32 #include "gdbtypes.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "value.h"
36 #include "dis-asm.h"
37 #include "inferior.h" /* for BEFORE_TEXT_END etc. */
38 #include "gdb_string.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "regcache.h"
42 #include "doublest.h"
43
44 #include "solib-svr4.h"
45
46 #undef XMALLOC
47 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
48
49 void (*sh_show_regs) (void);
50 CORE_ADDR (*skip_prologue_hard_way) (CORE_ADDR);
51 void (*do_pseudo_register) (int);
52
53 #define SH_DEFAULT_NUM_REGS 59
54
55 /* Define other aspects of the stack frame.
56 we keep a copy of the worked out return pc lying around, since it
57 is a useful bit of info */
58
59 struct frame_extra_info
60 {
61 CORE_ADDR return_pc;
62 int leaf_function;
63 int f_offset;
64 };
65
66 static char *
67 sh_generic_register_name (int reg_nr)
68 {
69 static char *register_names[] =
70 {
71 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
72 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
73 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
74 "fpul", "fpscr",
75 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
76 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
77 "ssr", "spc",
78 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
79 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
80 };
81 if (reg_nr < 0)
82 return NULL;
83 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
84 return NULL;
85 return register_names[reg_nr];
86 }
87
88 static char *
89 sh_sh_register_name (int reg_nr)
90 {
91 static char *register_names[] =
92 {
93 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
94 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
95 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
96 "", "",
97 "", "", "", "", "", "", "", "",
98 "", "", "", "", "", "", "", "",
99 "", "",
100 "", "", "", "", "", "", "", "",
101 "", "", "", "", "", "", "", "",
102 };
103 if (reg_nr < 0)
104 return NULL;
105 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
106 return NULL;
107 return register_names[reg_nr];
108 }
109
110 static char *
111 sh_sh3_register_name (int reg_nr)
112 {
113 static char *register_names[] =
114 {
115 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
116 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
117 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
118 "", "",
119 "", "", "", "", "", "", "", "",
120 "", "", "", "", "", "", "", "",
121 "ssr", "spc",
122 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
123 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
124 };
125 if (reg_nr < 0)
126 return NULL;
127 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
128 return NULL;
129 return register_names[reg_nr];
130 }
131
132 static char *
133 sh_sh3e_register_name (int reg_nr)
134 {
135 static char *register_names[] =
136 {
137 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
138 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
139 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
140 "fpul", "fpscr",
141 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
142 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
143 "ssr", "spc",
144 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
145 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
146 };
147 if (reg_nr < 0)
148 return NULL;
149 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
150 return NULL;
151 return register_names[reg_nr];
152 }
153
154 static char *
155 sh_sh_dsp_register_name (int reg_nr)
156 {
157 static char *register_names[] =
158 {
159 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
162 "", "dsr",
163 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
164 "y0", "y1", "", "", "", "", "", "mod",
165 "", "",
166 "rs", "re", "", "", "", "", "", "",
167 "", "", "", "", "", "", "", "",
168 };
169 if (reg_nr < 0)
170 return NULL;
171 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
172 return NULL;
173 return register_names[reg_nr];
174 }
175
176 static char *
177 sh_sh3_dsp_register_name (int reg_nr)
178 {
179 static char *register_names[] =
180 {
181 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
182 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
183 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
184 "", "dsr",
185 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
186 "y0", "y1", "", "", "", "", "", "mod",
187 "ssr", "spc",
188 "rs", "re", "", "", "", "", "", "",
189 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b"
190 "", "", "", "", "", "", "", "",
191 };
192 if (reg_nr < 0)
193 return NULL;
194 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
195 return NULL;
196 return register_names[reg_nr];
197 }
198
199 static char *
200 sh_sh4_register_name (int reg_nr)
201 {
202 static char *register_names[] =
203 {
204 /* general registers 0-15 */
205 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
206 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 /* 16 - 22 */
208 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
209 /* 23, 24 */
210 "fpul", "fpscr",
211 /* floating point registers 25 - 40 */
212 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
213 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
214 /* 41, 42 */
215 "ssr", "spc",
216 /* bank 0 43 - 50 */
217 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
218 /* bank 1 51 - 58 */
219 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
220 /* double precision (pseudo) 59 - 66 */
221 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
222 /* vectors (pseudo) 67 - 70 */
223 "fv0", "fv4", "fv8", "fv12",
224 /* FIXME: missing XF 71 - 86 */
225 /* FIXME: missing XD 87 - 94 */
226 };
227 if (reg_nr < 0)
228 return NULL;
229 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
230 return NULL;
231 return register_names[reg_nr];
232 }
233
234 static unsigned char *
235 sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
236 {
237 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
238 static unsigned char breakpoint[] = {0xc3, 0xc3};
239
240 *lenptr = sizeof (breakpoint);
241 return breakpoint;
242 }
243
244 /* Prologue looks like
245 [mov.l <regs>,@-r15]...
246 [sts.l pr,@-r15]
247 [mov.l r14,@-r15]
248 [mov r15,r14]
249
250 Actually it can be more complicated than this. For instance, with
251 newer gcc's:
252
253 mov.l r14,@-r15
254 add #-12,r15
255 mov r15,r14
256 mov r4,r1
257 mov r5,r2
258 mov.l r6,@(4,r14)
259 mov.l r7,@(8,r14)
260 mov.b r1,@r14
261 mov r14,r1
262 mov r14,r1
263 add #2,r1
264 mov.w r2,@r1
265
266 */
267
268 /* STS.L PR,@-r15 0100111100100010
269 r15-4-->r15, PR-->(r15) */
270 #define IS_STS(x) ((x) == 0x4f22)
271
272 /* MOV.L Rm,@-r15 00101111mmmm0110
273 r15-4-->r15, Rm-->(R15) */
274 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
275
276 #define GET_PUSHED_REG(x) (((x) >> 4) & 0xf)
277
278 /* MOV r15,r14 0110111011110011
279 r15-->r14 */
280 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
281
282 /* ADD #imm,r15 01111111iiiiiiii
283 r15+imm-->r15 */
284 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
285
286 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
287 #define IS_SHLL_R3(x) ((x) == 0x4300)
288
289 /* ADD r3,r15 0011111100111100
290 r15+r3-->r15 */
291 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
292
293 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
294 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
295 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
296 #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
297
298 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011
299 MOV.L Rm,@(disp,Rn) Rm-->(dispx4+Rn) 0001nnnnmmmmdddd
300 MOV.L Rm,@Rn Rm-->(Rn) 0010nnnnmmmm0010
301 where Rm is one of r4,r5,r6,r7 which are the argument registers. */
302 #define IS_ARG_MOV(x) \
303 (((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
304 || ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
305 || ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)))
306
307 /* MOV.L Rm,@(disp,r14) 00011110mmmmdddd
308 Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */
309 #define IS_MOV_TO_R14(x) \
310 ((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))
311
312 #define FPSCR_SZ (1 << 20)
313
314 /* Skip any prologue before the guts of a function */
315
316 /* Skip the prologue using the debug information. If this fails we'll
317 fall back on the 'guess' method below. */
318 static CORE_ADDR
319 after_prologue (CORE_ADDR pc)
320 {
321 struct symtab_and_line sal;
322 CORE_ADDR func_addr, func_end;
323
324 /* If we can not find the symbol in the partial symbol table, then
325 there is no hope we can determine the function's start address
326 with this code. */
327 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
328 return 0;
329
330 /* Get the line associated with FUNC_ADDR. */
331 sal = find_pc_line (func_addr, 0);
332
333 /* There are only two cases to consider. First, the end of the source line
334 is within the function bounds. In that case we return the end of the
335 source line. Second is the end of the source line extends beyond the
336 bounds of the current function. We need to use the slow code to
337 examine instructions in that case. */
338 if (sal.end < func_end)
339 return sal.end;
340 else
341 return 0;
342 }
343
344 /* Here we look at each instruction in the function, and try to guess
345 where the prologue ends. Unfortunately this is not always
346 accurate. */
347 static CORE_ADDR
348 sh_skip_prologue_hard_way (CORE_ADDR start_pc)
349 {
350 CORE_ADDR here, end;
351 int updated_fp = 0;
352
353 if (!start_pc)
354 return 0;
355
356 for (here = start_pc, end = start_pc + (2 * 28); here < end;)
357 {
358 int w = read_memory_integer (here, 2);
359 here += 2;
360 if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w)
361 || IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w)
362 || IS_ARG_MOV (w) || IS_MOV_TO_R14 (w))
363 {
364 start_pc = here;
365 }
366 else if (IS_MOV_SP_FP (w))
367 {
368 start_pc = here;
369 updated_fp = 1;
370 }
371 else
372 /* Don't bail out yet, if we are before the copy of sp. */
373 if (updated_fp)
374 break;
375 }
376
377 return start_pc;
378 }
379
380 static CORE_ADDR
381 sh_skip_prologue (CORE_ADDR pc)
382 {
383 CORE_ADDR post_prologue_pc;
384
385 /* See if we can determine the end of the prologue via the symbol table.
386 If so, then return either PC, or the PC after the prologue, whichever
387 is greater. */
388 post_prologue_pc = after_prologue (pc);
389
390 /* If after_prologue returned a useful address, then use it. Else
391 fall back on the instruction skipping code. */
392 if (post_prologue_pc != 0)
393 return max (pc, post_prologue_pc);
394 else
395 return (skip_prologue_hard_way (pc));
396 }
397
398 /* Immediately after a function call, return the saved pc.
399 Can't always go through the frames for this because on some machines
400 the new frame is not set up until the new function executes
401 some instructions.
402
403 The return address is the value saved in the PR register + 4 */
404 static CORE_ADDR
405 sh_saved_pc_after_call (struct frame_info *frame)
406 {
407 return (ADDR_BITS_REMOVE (read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM)));
408 }
409
410 /* Should call_function allocate stack space for a struct return? */
411 static int
412 sh_use_struct_convention (int gcc_p, struct type *type)
413 {
414 return (TYPE_LENGTH (type) > 1);
415 }
416
417 /* Store the address of the place in which to copy the structure the
418 subroutine will return. This is called from call_function.
419
420 We store structs through a pointer passed in R2 */
421 static void
422 sh_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
423 {
424 write_register (STRUCT_RETURN_REGNUM, (addr));
425 }
426
427 /* Disassemble an instruction. */
428 static int
429 gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
430 {
431 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
432 return print_insn_sh (memaddr, info);
433 else
434 return print_insn_shl (memaddr, info);
435 }
436
437 /* Given a GDB frame, determine the address of the calling function's frame.
438 This will be used to create a new GDB frame struct, and then
439 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
440
441 For us, the frame address is its stack pointer value, so we look up
442 the function prologue to determine the caller's sp value, and return it. */
443 static CORE_ADDR
444 sh_frame_chain (struct frame_info *frame)
445 {
446 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
447 return frame->frame; /* dummy frame same as caller's frame */
448 if (frame->pc && !inside_entry_file (frame->pc))
449 return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, 4);
450 else
451 return 0;
452 }
453
454 /* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
455 we might want to do here is to check REGNUM against the clobber mask, and
456 somehow flag it as invalid if it isn't saved on the stack somewhere. This
457 would provide a graceful failure mode when trying to get the value of
458 caller-saves registers for an inner frame. */
459 static CORE_ADDR
460 sh_find_callers_reg (struct frame_info *fi, int regnum)
461 {
462 for (; fi; fi = fi->next)
463 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
464 /* When the caller requests PR from the dummy frame, we return PC because
465 that's where the previous routine appears to have done a call from. */
466 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
467 else
468 {
469 FRAME_INIT_SAVED_REGS (fi);
470 if (!fi->pc)
471 return 0;
472 if (fi->saved_regs[regnum] != 0)
473 return read_memory_integer (fi->saved_regs[regnum],
474 REGISTER_RAW_SIZE (regnum));
475 }
476 return read_register (regnum);
477 }
478
479 /* Put here the code to store, into a struct frame_saved_regs, the
480 addresses of the saved registers of frame described by FRAME_INFO.
481 This includes special registers such as pc and fp saved in special
482 ways in the stack frame. sp is even more special: the address we
483 return for it IS the sp for the next frame. */
484 static void
485 sh_nofp_frame_init_saved_regs (struct frame_info *fi)
486 {
487 int where[NUM_REGS];
488 int rn;
489 int have_fp = 0;
490 int depth;
491 int pc;
492 int opc;
493 int insn;
494 int r3_val = 0;
495 char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
496
497 if (fi->saved_regs == NULL)
498 frame_saved_regs_zalloc (fi);
499 else
500 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
501
502 if (dummy_regs)
503 {
504 /* DANGER! This is ONLY going to work if the char buffer format of
505 the saved registers is byte-for-byte identical to the
506 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
507 memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
508 return;
509 }
510
511 fi->extra_info->leaf_function = 1;
512 fi->extra_info->f_offset = 0;
513
514 for (rn = 0; rn < NUM_REGS; rn++)
515 where[rn] = -1;
516
517 depth = 0;
518
519 /* Loop around examining the prologue insns until we find something
520 that does not appear to be part of the prologue. But give up
521 after 20 of them, since we're getting silly then. */
522
523 pc = get_pc_function_start (fi->pc);
524 if (!pc)
525 {
526 fi->pc = 0;
527 return;
528 }
529
530 for (opc = pc + (2 * 28); pc < opc; pc += 2)
531 {
532 insn = read_memory_integer (pc, 2);
533 /* See where the registers will be saved to */
534 if (IS_PUSH (insn))
535 {
536 rn = GET_PUSHED_REG (insn);
537 where[rn] = depth;
538 depth += 4;
539 }
540 else if (IS_STS (insn))
541 {
542 where[gdbarch_tdep (current_gdbarch)->PR_REGNUM] = depth;
543 /* If we're storing the pr then this isn't a leaf */
544 fi->extra_info->leaf_function = 0;
545 depth += 4;
546 }
547 else if (IS_MOV_R3 (insn))
548 {
549 r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
550 }
551 else if (IS_SHLL_R3 (insn))
552 {
553 r3_val <<= 1;
554 }
555 else if (IS_ADD_R3SP (insn))
556 {
557 depth += -r3_val;
558 }
559 else if (IS_ADD_SP (insn))
560 {
561 depth -= ((insn & 0xff) ^ 0x80) - 0x80;
562 }
563 else if (IS_MOV_SP_FP (insn))
564 break;
565 #if 0 /* This used to just stop when it found an instruction that
566 was not considered part of the prologue. Now, we just
567 keep going looking for likely instructions. */
568 else
569 break;
570 #endif
571 }
572
573 /* Now we know how deep things are, we can work out their addresses */
574
575 for (rn = 0; rn < NUM_REGS; rn++)
576 {
577 if (where[rn] >= 0)
578 {
579 if (rn == FP_REGNUM)
580 have_fp = 1;
581
582 fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
583 }
584 else
585 {
586 fi->saved_regs[rn] = 0;
587 }
588 }
589
590 if (have_fp)
591 {
592 fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
593 }
594 else
595 {
596 fi->saved_regs[SP_REGNUM] = fi->frame - 4;
597 }
598
599 fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
600 /* Work out the return pc - either from the saved pr or the pr
601 value */
602 }
603
604 /* For vectors of 4 floating point registers. */
605 static int
606 fv_reg_base_num (int fv_regnum)
607 {
608 int fp_regnum;
609
610 fp_regnum = FP0_REGNUM +
611 (fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM) * 4;
612 return fp_regnum;
613 }
614
615 /* For double precision floating point registers, i.e 2 fp regs.*/
616 static int
617 dr_reg_base_num (int dr_regnum)
618 {
619 int fp_regnum;
620
621 fp_regnum = FP0_REGNUM +
622 (dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM) * 2;
623 return fp_regnum;
624 }
625
626 static void
627 sh_fp_frame_init_saved_regs (struct frame_info *fi)
628 {
629 int where[NUM_REGS];
630 int rn;
631 int have_fp = 0;
632 int depth;
633 int pc;
634 int opc;
635 int insn;
636 int r3_val = 0;
637 char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
638 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
639
640 if (fi->saved_regs == NULL)
641 frame_saved_regs_zalloc (fi);
642 else
643 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
644
645 if (dummy_regs)
646 {
647 /* DANGER! This is ONLY going to work if the char buffer format of
648 the saved registers is byte-for-byte identical to the
649 CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
650 memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
651 return;
652 }
653
654 fi->extra_info->leaf_function = 1;
655 fi->extra_info->f_offset = 0;
656
657 for (rn = 0; rn < NUM_REGS; rn++)
658 where[rn] = -1;
659
660 depth = 0;
661
662 /* Loop around examining the prologue insns until we find something
663 that does not appear to be part of the prologue. But give up
664 after 20 of them, since we're getting silly then. */
665
666 pc = get_pc_function_start (fi->pc);
667 if (!pc)
668 {
669 fi->pc = 0;
670 return;
671 }
672
673 for (opc = pc + (2 * 28); pc < opc; pc += 2)
674 {
675 insn = read_memory_integer (pc, 2);
676 /* See where the registers will be saved to */
677 if (IS_PUSH (insn))
678 {
679 rn = GET_PUSHED_REG (insn);
680 where[rn] = depth;
681 depth += 4;
682 }
683 else if (IS_STS (insn))
684 {
685 where[tdep->PR_REGNUM] = depth;
686 /* If we're storing the pr then this isn't a leaf */
687 fi->extra_info->leaf_function = 0;
688 depth += 4;
689 }
690 else if (IS_MOV_R3 (insn))
691 {
692 r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
693 }
694 else if (IS_SHLL_R3 (insn))
695 {
696 r3_val <<= 1;
697 }
698 else if (IS_ADD_R3SP (insn))
699 {
700 depth += -r3_val;
701 }
702 else if (IS_ADD_SP (insn))
703 {
704 depth -= ((insn & 0xff) ^ 0x80) - 0x80;
705 }
706 else if (IS_FMOV (insn))
707 {
708 if (read_register (tdep->FPSCR_REGNUM) & FPSCR_SZ)
709 {
710 depth += 8;
711 }
712 else
713 {
714 depth += 4;
715 }
716 }
717 else if (IS_MOV_SP_FP (insn))
718 break;
719 #if 0 /* This used to just stop when it found an instruction that
720 was not considered part of the prologue. Now, we just
721 keep going looking for likely instructions. */
722 else
723 break;
724 #endif
725 }
726
727 /* Now we know how deep things are, we can work out their addresses */
728
729 for (rn = 0; rn < NUM_REGS; rn++)
730 {
731 if (where[rn] >= 0)
732 {
733 if (rn == FP_REGNUM)
734 have_fp = 1;
735
736 fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
737 }
738 else
739 {
740 fi->saved_regs[rn] = 0;
741 }
742 }
743
744 if (have_fp)
745 {
746 fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
747 }
748 else
749 {
750 fi->saved_regs[SP_REGNUM] = fi->frame - 4;
751 }
752
753 fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
754 /* Work out the return pc - either from the saved pr or the pr
755 value */
756 }
757
758 /* Initialize the extra info saved in a FRAME */
759 static void
760 sh_init_extra_frame_info (int fromleaf, struct frame_info *fi)
761 {
762
763 fi->extra_info = (struct frame_extra_info *)
764 frame_obstack_alloc (sizeof (struct frame_extra_info));
765
766 if (fi->next)
767 fi->pc = FRAME_SAVED_PC (fi->next);
768
769 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
770 {
771 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
772 by assuming it's always FP. */
773 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
774 SP_REGNUM);
775 fi->extra_info->return_pc = generic_read_register_dummy (fi->pc, fi->frame,
776 PC_REGNUM);
777 fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
778 fi->extra_info->leaf_function = 0;
779 return;
780 }
781 else
782 {
783 FRAME_INIT_SAVED_REGS (fi);
784 fi->extra_info->return_pc = sh_find_callers_reg (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
785 }
786 }
787
788 /* Extract from an array REGBUF containing the (raw) register state
789 the address in which a function should return its structure value,
790 as a CORE_ADDR (or an expression that can be used as one). */
791 static CORE_ADDR
792 sh_extract_struct_value_address (char *regbuf)
793 {
794 return (extract_address ((regbuf), REGISTER_RAW_SIZE (0)));
795 }
796
797 static CORE_ADDR
798 sh_frame_saved_pc (struct frame_info *frame)
799 {
800 return ((frame)->extra_info->return_pc);
801 }
802
803 /* Discard from the stack the innermost frame,
804 restoring all saved registers. */
805 static void
806 sh_pop_frame (void)
807 {
808 register struct frame_info *frame = get_current_frame ();
809 register CORE_ADDR fp;
810 register int regnum;
811
812 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
813 generic_pop_dummy_frame ();
814 else
815 {
816 fp = FRAME_FP (frame);
817 FRAME_INIT_SAVED_REGS (frame);
818
819 /* Copy regs from where they were saved in the frame */
820 for (regnum = 0; regnum < NUM_REGS; regnum++)
821 if (frame->saved_regs[regnum])
822 write_register (regnum, read_memory_integer (frame->saved_regs[regnum], 4));
823
824 write_register (PC_REGNUM, frame->extra_info->return_pc);
825 write_register (SP_REGNUM, fp + 4);
826 }
827 flush_cached_frames ();
828 }
829
830 /* Function: push_arguments
831 Setup the function arguments for calling a function in the inferior.
832
833 On the Hitachi SH architecture, there are four registers (R4 to R7)
834 which are dedicated for passing function arguments. Up to the first
835 four arguments (depending on size) may go into these registers.
836 The rest go on the stack.
837
838 Arguments that are smaller than 4 bytes will still take up a whole
839 register or a whole 32-bit word on the stack, and will be
840 right-justified in the register or the stack word. This includes
841 chars, shorts, and small aggregate types.
842
843 Arguments that are larger than 4 bytes may be split between two or
844 more registers. If there are not enough registers free, an argument
845 may be passed partly in a register (or registers), and partly on the
846 stack. This includes doubles, long longs, and larger aggregates.
847 As far as I know, there is no upper limit to the size of aggregates
848 that will be passed in this way; in other words, the convention of
849 passing a pointer to a large aggregate instead of a copy is not used.
850
851 An exceptional case exists for struct arguments (and possibly other
852 aggregates such as arrays) if the size is larger than 4 bytes but
853 not a multiple of 4 bytes. In this case the argument is never split
854 between the registers and the stack, but instead is copied in its
855 entirety onto the stack, AND also copied into as many registers as
856 there is room for. In other words, space in registers permitting,
857 two copies of the same argument are passed in. As far as I can tell,
858 only the one on the stack is used, although that may be a function
859 of the level of compiler optimization. I suspect this is a compiler
860 bug. Arguments of these odd sizes are left-justified within the
861 word (as opposed to arguments smaller than 4 bytes, which are
862 right-justified).
863
864 If the function is to return an aggregate type such as a struct, it
865 is either returned in the normal return value register R0 (if its
866 size is no greater than one byte), or else the caller must allocate
867 space into which the callee will copy the return value (if the size
868 is greater than one byte). In this case, a pointer to the return
869 value location is passed into the callee in register R2, which does
870 not displace any of the other arguments passed in via registers R4
871 to R7. */
872
873 static CORE_ADDR
874 sh_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
875 int struct_return, CORE_ADDR struct_addr)
876 {
877 int stack_offset, stack_alloc;
878 int argreg;
879 int argnum;
880 struct type *type;
881 CORE_ADDR regval;
882 char *val;
883 char valbuf[4];
884 int len;
885 int odd_sized_struct;
886 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
887
888 /* first force sp to a 4-byte alignment */
889 sp = sp & ~3;
890
891 /* The "struct return pointer" pseudo-argument has its own dedicated
892 register */
893 if (struct_return)
894 write_register (STRUCT_RETURN_REGNUM, struct_addr);
895
896 /* Now make sure there's space on the stack */
897 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
898 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
899 sp -= stack_alloc; /* make room on stack for args */
900
901 /* Now load as many as possible of the first arguments into
902 registers, and push the rest onto the stack. There are 16 bytes
903 in four registers available. Loop thru args from first to last. */
904
905 argreg = tdep->ARG0_REGNUM;
906 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
907 {
908 type = VALUE_TYPE (args[argnum]);
909 len = TYPE_LENGTH (type);
910 memset (valbuf, 0, sizeof (valbuf));
911 if (len < 4)
912 {
913 /* value gets right-justified in the register or stack word */
914 memcpy (valbuf + (4 - len),
915 (char *) VALUE_CONTENTS (args[argnum]), len);
916 val = valbuf;
917 }
918 else
919 val = (char *) VALUE_CONTENTS (args[argnum]);
920
921 if (len > 4 && (len & 3) != 0)
922 odd_sized_struct = 1; /* such structs go entirely on stack */
923 else
924 odd_sized_struct = 0;
925 while (len > 0)
926 {
927 if (argreg > tdep->ARGLAST_REGNUM
928 || odd_sized_struct)
929 {
930 /* must go on the stack */
931 write_memory (sp + stack_offset, val, 4);
932 stack_offset += 4;
933 }
934 /* NOTE WELL!!!!! This is not an "else if" clause!!!
935 That's because some *&^%$ things get passed on the stack
936 AND in the registers! */
937 if (argreg <= tdep->ARGLAST_REGNUM)
938 {
939 /* there's room in a register */
940 regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
941 write_register (argreg++, regval);
942 }
943 /* Store the value 4 bytes at a time. This means that things
944 larger than 4 bytes may go partly in registers and partly
945 on the stack. */
946 len -= REGISTER_RAW_SIZE (argreg);
947 val += REGISTER_RAW_SIZE (argreg);
948 }
949 }
950 return sp;
951 }
952
953 /* Function: push_return_address (pc)
954 Set up the return address for the inferior function call.
955 Needed for targets where we don't actually execute a JSR/BSR instruction */
956
957 static CORE_ADDR
958 sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
959 {
960 write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM, CALL_DUMMY_ADDRESS ());
961 return sp;
962 }
963
964 /* Function: fix_call_dummy
965 Poke the callee function's address into the destination part of
966 the CALL_DUMMY. The address is actually stored in a data word
967 following the actualy CALL_DUMMY instructions, which will load
968 it into a register using PC-relative addressing. This function
969 expects the CALL_DUMMY to look like this:
970
971 mov.w @(2,PC), R8
972 jsr @R8
973 nop
974 trap
975 <destination>
976 */
977
978 #if 0
979 void
980 sh_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
981 struct value **args, struct type *type, int gcc_p)
982 {
983 *(unsigned long *) (dummy + 8) = fun;
984 }
985 #endif
986
987 static int
988 sh_coerce_float_to_double (struct type *formal, struct type *actual)
989 {
990 return 1;
991 }
992
993 /* Find a function's return value in the appropriate registers (in
994 regbuf), and copy it into valbuf. Extract from an array REGBUF
995 containing the (raw) register state a function return value of type
996 TYPE, and copy that, in virtual format, into VALBUF. */
997 static void
998 sh_extract_return_value (struct type *type, char *regbuf, char *valbuf)
999 {
1000 int len = TYPE_LENGTH (type);
1001 int return_register = R0_REGNUM;
1002 int offset;
1003
1004 if (len <= 4)
1005 {
1006 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1007 offset = REGISTER_BYTE (return_register) + 4 - len;
1008 else
1009 offset = REGISTER_BYTE (return_register);
1010 memcpy (valbuf, regbuf + offset, len);
1011 }
1012 else if (len <= 8)
1013 {
1014 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1015 offset = REGISTER_BYTE (return_register) + 8 - len;
1016 else
1017 offset = REGISTER_BYTE (return_register);
1018 memcpy (valbuf, regbuf + offset, len);
1019 }
1020 else
1021 error ("bad size for return value");
1022 }
1023
1024 static void
1025 sh3e_sh4_extract_return_value (struct type *type, char *regbuf, char *valbuf)
1026 {
1027 int return_register;
1028 int offset;
1029 int len = TYPE_LENGTH (type);
1030
1031 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1032 return_register = FP0_REGNUM;
1033 else
1034 return_register = R0_REGNUM;
1035
1036 if (len == 8 && TYPE_CODE (type) == TYPE_CODE_FLT)
1037 {
1038 DOUBLEST val;
1039 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1040 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1041 (char *) regbuf + REGISTER_BYTE (return_register),
1042 &val);
1043 else
1044 floatformat_to_doublest (&floatformat_ieee_double_big,
1045 (char *) regbuf + REGISTER_BYTE (return_register),
1046 &val);
1047 store_floating (valbuf, len, val);
1048 }
1049 else if (len <= 4)
1050 {
1051 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1052 offset = REGISTER_BYTE (return_register) + 4 - len;
1053 else
1054 offset = REGISTER_BYTE (return_register);
1055 memcpy (valbuf, regbuf + offset, len);
1056 }
1057 else if (len <= 8)
1058 {
1059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1060 offset = REGISTER_BYTE (return_register) + 8 - len;
1061 else
1062 offset = REGISTER_BYTE (return_register);
1063 memcpy (valbuf, regbuf + offset, len);
1064 }
1065 else
1066 error ("bad size for return value");
1067 }
1068
1069 /* Write into appropriate registers a function return value
1070 of type TYPE, given in virtual format.
1071 If the architecture is sh4 or sh3e, store a function's return value
1072 in the R0 general register or in the FP0 floating point register,
1073 depending on the type of the return value. In all the other cases
1074 the result is stored in r0, left-justified. */
1075 static void
1076 sh_default_store_return_value (struct type *type, char *valbuf)
1077 {
1078 char buf[32]; /* more than enough... */
1079
1080 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (R0_REGNUM))
1081 {
1082 /* Add leading zeros to the value. */
1083 memset (buf, 0, REGISTER_RAW_SIZE (R0_REGNUM));
1084 memcpy (buf + REGISTER_RAW_SIZE (R0_REGNUM) - TYPE_LENGTH (type),
1085 valbuf, TYPE_LENGTH (type));
1086 write_register_bytes (REGISTER_BYTE (R0_REGNUM), buf,
1087 REGISTER_RAW_SIZE (R0_REGNUM));
1088 }
1089 else
1090 write_register_bytes (REGISTER_BYTE (R0_REGNUM), valbuf,
1091 TYPE_LENGTH (type));
1092 }
1093
1094 static void
1095 sh3e_sh4_store_return_value (struct type *type, char *valbuf)
1096 {
1097 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1098 write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1099 valbuf, TYPE_LENGTH (type));
1100 else
1101 sh_default_store_return_value (type, valbuf);
1102 }
1103
1104 /* Print the registers in a form similar to the E7000 */
1105
1106 static void
1107 sh_generic_show_regs (void)
1108 {
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1110
1111 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1112 paddr (read_register (PC_REGNUM)),
1113 (long) read_register (tdep->SR_REGNUM),
1114 (long) read_register (tdep->PR_REGNUM),
1115 (long) read_register (MACH_REGNUM),
1116 (long) read_register (MACL_REGNUM));
1117
1118 printf_filtered ("GBR=%08lx VBR=%08lx",
1119 (long) read_register (GBR_REGNUM),
1120 (long) read_register (VBR_REGNUM));
1121
1122 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1123 (long) read_register (0),
1124 (long) read_register (1),
1125 (long) read_register (2),
1126 (long) read_register (3),
1127 (long) read_register (4),
1128 (long) read_register (5),
1129 (long) read_register (6),
1130 (long) read_register (7));
1131 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1132 (long) read_register (8),
1133 (long) read_register (9),
1134 (long) read_register (10),
1135 (long) read_register (11),
1136 (long) read_register (12),
1137 (long) read_register (13),
1138 (long) read_register (14),
1139 (long) read_register (15));
1140 }
1141
1142 static void
1143 sh3_show_regs (void)
1144 {
1145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1146
1147 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1148 paddr (read_register (PC_REGNUM)),
1149 (long) read_register (tdep->SR_REGNUM),
1150 (long) read_register (tdep->PR_REGNUM),
1151 (long) read_register (MACH_REGNUM),
1152 (long) read_register (MACL_REGNUM));
1153
1154 printf_filtered ("GBR=%08lx VBR=%08lx",
1155 (long) read_register (GBR_REGNUM),
1156 (long) read_register (VBR_REGNUM));
1157 printf_filtered (" SSR=%08lx SPC=%08lx",
1158 (long) read_register (tdep->SSR_REGNUM),
1159 (long) read_register (tdep->SPC_REGNUM));
1160
1161 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1162 (long) read_register (0),
1163 (long) read_register (1),
1164 (long) read_register (2),
1165 (long) read_register (3),
1166 (long) read_register (4),
1167 (long) read_register (5),
1168 (long) read_register (6),
1169 (long) read_register (7));
1170 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1171 (long) read_register (8),
1172 (long) read_register (9),
1173 (long) read_register (10),
1174 (long) read_register (11),
1175 (long) read_register (12),
1176 (long) read_register (13),
1177 (long) read_register (14),
1178 (long) read_register (15));
1179 }
1180
1181
1182 static void
1183 sh3e_show_regs (void)
1184 {
1185 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1186
1187 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1188 paddr (read_register (PC_REGNUM)),
1189 (long) read_register (tdep->SR_REGNUM),
1190 (long) read_register (tdep->PR_REGNUM),
1191 (long) read_register (MACH_REGNUM),
1192 (long) read_register (MACL_REGNUM));
1193
1194 printf_filtered ("GBR=%08lx VBR=%08lx",
1195 (long) read_register (GBR_REGNUM),
1196 (long) read_register (VBR_REGNUM));
1197 printf_filtered (" SSR=%08lx SPC=%08lx",
1198 (long) read_register (tdep->SSR_REGNUM),
1199 (long) read_register (tdep->SPC_REGNUM));
1200 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1201 (long) read_register (tdep->FPUL_REGNUM),
1202 (long) read_register (tdep->FPSCR_REGNUM));
1203
1204 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1205 (long) read_register (0),
1206 (long) read_register (1),
1207 (long) read_register (2),
1208 (long) read_register (3),
1209 (long) read_register (4),
1210 (long) read_register (5),
1211 (long) read_register (6),
1212 (long) read_register (7));
1213 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1214 (long) read_register (8),
1215 (long) read_register (9),
1216 (long) read_register (10),
1217 (long) read_register (11),
1218 (long) read_register (12),
1219 (long) read_register (13),
1220 (long) read_register (14),
1221 (long) read_register (15));
1222
1223 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1224 (long) read_register (FP0_REGNUM + 0),
1225 (long) read_register (FP0_REGNUM + 1),
1226 (long) read_register (FP0_REGNUM + 2),
1227 (long) read_register (FP0_REGNUM + 3),
1228 (long) read_register (FP0_REGNUM + 4),
1229 (long) read_register (FP0_REGNUM + 5),
1230 (long) read_register (FP0_REGNUM + 6),
1231 (long) read_register (FP0_REGNUM + 7));
1232 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1233 (long) read_register (FP0_REGNUM + 8),
1234 (long) read_register (FP0_REGNUM + 9),
1235 (long) read_register (FP0_REGNUM + 10),
1236 (long) read_register (FP0_REGNUM + 11),
1237 (long) read_register (FP0_REGNUM + 12),
1238 (long) read_register (FP0_REGNUM + 13),
1239 (long) read_register (FP0_REGNUM + 14),
1240 (long) read_register (FP0_REGNUM + 15));
1241 }
1242
1243 static void
1244 sh3_dsp_show_regs (void)
1245 {
1246 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1247
1248 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1249 paddr (read_register (PC_REGNUM)),
1250 (long) read_register (tdep->SR_REGNUM),
1251 (long) read_register (tdep->PR_REGNUM),
1252 (long) read_register (MACH_REGNUM),
1253 (long) read_register (MACL_REGNUM));
1254
1255 printf_filtered ("GBR=%08lx VBR=%08lx",
1256 (long) read_register (GBR_REGNUM),
1257 (long) read_register (VBR_REGNUM));
1258
1259 printf_filtered (" SSR=%08lx SPC=%08lx",
1260 (long) read_register (tdep->SSR_REGNUM),
1261 (long) read_register (tdep->SPC_REGNUM));
1262
1263 printf_filtered (" DSR=%08lx",
1264 (long) read_register (tdep->DSR_REGNUM));
1265
1266 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1267 (long) read_register (0),
1268 (long) read_register (1),
1269 (long) read_register (2),
1270 (long) read_register (3),
1271 (long) read_register (4),
1272 (long) read_register (5),
1273 (long) read_register (6),
1274 (long) read_register (7));
1275 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1276 (long) read_register (8),
1277 (long) read_register (9),
1278 (long) read_register (10),
1279 (long) read_register (11),
1280 (long) read_register (12),
1281 (long) read_register (13),
1282 (long) read_register (14),
1283 (long) read_register (15));
1284
1285 printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1286 (long) read_register (tdep->A0G_REGNUM) & 0xff,
1287 (long) read_register (tdep->A0_REGNUM),
1288 (long) read_register (tdep->M0_REGNUM),
1289 (long) read_register (tdep->X0_REGNUM),
1290 (long) read_register (tdep->Y0_REGNUM),
1291 (long) read_register (tdep->RS_REGNUM),
1292 (long) read_register (tdep->MOD_REGNUM));
1293 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1294 (long) read_register (tdep->A1G_REGNUM) & 0xff,
1295 (long) read_register (tdep->A1_REGNUM),
1296 (long) read_register (tdep->M1_REGNUM),
1297 (long) read_register (tdep->X1_REGNUM),
1298 (long) read_register (tdep->Y1_REGNUM),
1299 (long) read_register (tdep->RE_REGNUM));
1300 }
1301
1302 static void
1303 sh4_show_regs (void)
1304 {
1305 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1306
1307 int pr = read_register (tdep->FPSCR_REGNUM) & 0x80000;
1308 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1309 paddr (read_register (PC_REGNUM)),
1310 (long) read_register (tdep->SR_REGNUM),
1311 (long) read_register (tdep->PR_REGNUM),
1312 (long) read_register (MACH_REGNUM),
1313 (long) read_register (MACL_REGNUM));
1314
1315 printf_filtered ("GBR=%08lx VBR=%08lx",
1316 (long) read_register (GBR_REGNUM),
1317 (long) read_register (VBR_REGNUM));
1318 printf_filtered (" SSR=%08lx SPC=%08lx",
1319 (long) read_register (tdep->SSR_REGNUM),
1320 (long) read_register (tdep->SPC_REGNUM));
1321 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
1322 (long) read_register (tdep->FPUL_REGNUM),
1323 (long) read_register (tdep->FPSCR_REGNUM));
1324
1325 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1326 (long) read_register (0),
1327 (long) read_register (1),
1328 (long) read_register (2),
1329 (long) read_register (3),
1330 (long) read_register (4),
1331 (long) read_register (5),
1332 (long) read_register (6),
1333 (long) read_register (7));
1334 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1335 (long) read_register (8),
1336 (long) read_register (9),
1337 (long) read_register (10),
1338 (long) read_register (11),
1339 (long) read_register (12),
1340 (long) read_register (13),
1341 (long) read_register (14),
1342 (long) read_register (15));
1343
1344 printf_filtered ((pr
1345 ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1346 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1347 (long) read_register (FP0_REGNUM + 0),
1348 (long) read_register (FP0_REGNUM + 1),
1349 (long) read_register (FP0_REGNUM + 2),
1350 (long) read_register (FP0_REGNUM + 3),
1351 (long) read_register (FP0_REGNUM + 4),
1352 (long) read_register (FP0_REGNUM + 5),
1353 (long) read_register (FP0_REGNUM + 6),
1354 (long) read_register (FP0_REGNUM + 7));
1355 printf_filtered ((pr
1356 ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1357 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1358 (long) read_register (FP0_REGNUM + 8),
1359 (long) read_register (FP0_REGNUM + 9),
1360 (long) read_register (FP0_REGNUM + 10),
1361 (long) read_register (FP0_REGNUM + 11),
1362 (long) read_register (FP0_REGNUM + 12),
1363 (long) read_register (FP0_REGNUM + 13),
1364 (long) read_register (FP0_REGNUM + 14),
1365 (long) read_register (FP0_REGNUM + 15));
1366 }
1367
1368 static void
1369 sh_dsp_show_regs (void)
1370 {
1371 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1372
1373 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1374 paddr (read_register (PC_REGNUM)),
1375 (long) read_register (tdep->SR_REGNUM),
1376 (long) read_register (tdep->PR_REGNUM),
1377 (long) read_register (MACH_REGNUM),
1378 (long) read_register (MACL_REGNUM));
1379
1380 printf_filtered ("GBR=%08lx VBR=%08lx",
1381 (long) read_register (GBR_REGNUM),
1382 (long) read_register (VBR_REGNUM));
1383
1384 printf_filtered (" DSR=%08lx",
1385 (long) read_register (tdep->DSR_REGNUM));
1386
1387 printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1388 (long) read_register (0),
1389 (long) read_register (1),
1390 (long) read_register (2),
1391 (long) read_register (3),
1392 (long) read_register (4),
1393 (long) read_register (5),
1394 (long) read_register (6),
1395 (long) read_register (7));
1396 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1397 (long) read_register (8),
1398 (long) read_register (9),
1399 (long) read_register (10),
1400 (long) read_register (11),
1401 (long) read_register (12),
1402 (long) read_register (13),
1403 (long) read_register (14),
1404 (long) read_register (15));
1405
1406 printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1407 (long) read_register (tdep->A0G_REGNUM) & 0xff,
1408 (long) read_register (tdep->A0_REGNUM),
1409 (long) read_register (tdep->M0_REGNUM),
1410 (long) read_register (tdep->X0_REGNUM),
1411 (long) read_register (tdep->Y0_REGNUM),
1412 (long) read_register (tdep->RS_REGNUM),
1413 (long) read_register (tdep->MOD_REGNUM));
1414 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1415 (long) read_register (tdep->A1G_REGNUM) & 0xff,
1416 (long) read_register (tdep->A1_REGNUM),
1417 (long) read_register (tdep->M1_REGNUM),
1418 (long) read_register (tdep->X1_REGNUM),
1419 (long) read_register (tdep->Y1_REGNUM),
1420 (long) read_register (tdep->RE_REGNUM));
1421 }
1422
1423 void sh_show_regs_command (char *args, int from_tty)
1424 {
1425 if (sh_show_regs)
1426 (*sh_show_regs)();
1427 }
1428
1429 /* Index within `registers' of the first byte of the space for
1430 register N. */
1431 static int
1432 sh_default_register_byte (int reg_nr)
1433 {
1434 return (reg_nr * 4);
1435 }
1436
1437 static int
1438 sh_sh4_register_byte (int reg_nr)
1439 {
1440 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1441
1442 if (reg_nr >= tdep->DR0_REGNUM
1443 && reg_nr <= tdep->DR_LAST_REGNUM)
1444 return (dr_reg_base_num (reg_nr) * 4);
1445 else if (reg_nr >= tdep->FV0_REGNUM
1446 && reg_nr <= tdep->FV_LAST_REGNUM)
1447 return (fv_reg_base_num (reg_nr) * 4);
1448 else
1449 return (reg_nr * 4);
1450 }
1451
1452 /* Number of bytes of storage in the actual machine representation for
1453 register REG_NR. */
1454 static int
1455 sh_default_register_raw_size (int reg_nr)
1456 {
1457 return 4;
1458 }
1459
1460 static int
1461 sh_sh4_register_raw_size (int reg_nr)
1462 {
1463 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1464
1465 if (reg_nr >= tdep->DR0_REGNUM
1466 && reg_nr <= tdep->DR_LAST_REGNUM)
1467 return 8;
1468 else if (reg_nr >= tdep->FV0_REGNUM
1469 && reg_nr <= tdep->FV_LAST_REGNUM)
1470 return 16;
1471 else
1472 return 4;
1473 }
1474
1475 /* Number of bytes of storage in the program's representation
1476 for register N. */
1477 static int
1478 sh_register_virtual_size (int reg_nr)
1479 {
1480 return 4;
1481 }
1482
1483 /* Return the GDB type object for the "standard" data type
1484 of data in register N. */
1485 static struct type *
1486 sh_sh3e_register_virtual_type (int reg_nr)
1487 {
1488 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1489
1490 if ((reg_nr >= FP0_REGNUM
1491 && (reg_nr <= tdep->FP_LAST_REGNUM))
1492 || (reg_nr == tdep->FPUL_REGNUM))
1493 return builtin_type_float;
1494 else
1495 return builtin_type_int;
1496 }
1497
1498 static struct type *
1499 sh_sh4_build_float_register_type (int high)
1500 {
1501 struct type *temp;
1502
1503 temp = create_range_type (NULL, builtin_type_int, 0, high);
1504 return create_array_type (NULL, builtin_type_float, temp);
1505 }
1506
1507 static struct type *
1508 sh_sh4_register_virtual_type (int reg_nr)
1509 {
1510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1511
1512 if ((reg_nr >= FP0_REGNUM
1513 && (reg_nr <= tdep->FP_LAST_REGNUM))
1514 || (reg_nr == tdep->FPUL_REGNUM))
1515 return builtin_type_float;
1516 else if (reg_nr >= tdep->DR0_REGNUM
1517 && reg_nr <= tdep->DR_LAST_REGNUM)
1518 return builtin_type_double;
1519 else if (reg_nr >= tdep->FV0_REGNUM
1520 && reg_nr <= tdep->FV_LAST_REGNUM)
1521 return sh_sh4_build_float_register_type (3);
1522 else
1523 return builtin_type_int;
1524 }
1525
1526 static struct type *
1527 sh_default_register_virtual_type (int reg_nr)
1528 {
1529 return builtin_type_int;
1530 }
1531
1532 /* On the sh4, the DRi pseudo registers are problematic if the target
1533 is little endian. When the user writes one of those registers, for
1534 instance with 'ser var $dr0=1', we want the double to be stored
1535 like this:
1536 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1537 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1538
1539 This corresponds to little endian byte order & big endian word
1540 order. However if we let gdb write the register w/o conversion, it
1541 will write fr0 and fr1 this way:
1542 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1543 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1544 because it will consider fr0 and fr1 as a single LE stretch of memory.
1545
1546 To achieve what we want we must force gdb to store things in
1547 floatformat_ieee_double_littlebyte_bigword (which is defined in
1548 include/floatformat.h and libiberty/floatformat.c.
1549
1550 In case the target is big endian, there is no problem, the
1551 raw bytes will look like:
1552 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1553 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1554
1555 The other pseudo registers (the FVs) also don't pose a problem
1556 because they are stored as 4 individual FP elements. */
1557
1558 static void
1559 sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
1560 char *from, char *to)
1561 {
1562 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1563
1564 if (regnum >= tdep->DR0_REGNUM
1565 && regnum <= tdep->DR_LAST_REGNUM)
1566 {
1567 DOUBLEST val;
1568 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
1569 store_floating (to, TYPE_LENGTH (type), val);
1570 }
1571 else
1572 error ("sh_register_convert_to_virtual called with non DR register number");
1573 }
1574
1575 static void
1576 sh_sh4_register_convert_to_raw (struct type *type, int regnum,
1577 char *from, char *to)
1578 {
1579 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1580
1581 if (regnum >= tdep->DR0_REGNUM
1582 && regnum <= tdep->DR_LAST_REGNUM)
1583 {
1584 DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
1585 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
1586 }
1587 else
1588 error("sh_register_convert_to_raw called with non DR register number");
1589 }
1590
1591 void
1592 sh_pseudo_register_read (int reg_nr, char *buffer)
1593 {
1594 int base_regnum, portion;
1595 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1596 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1597
1598 if (reg_nr >= tdep->DR0_REGNUM
1599 && reg_nr <= tdep->DR_LAST_REGNUM)
1600 {
1601 base_regnum = dr_reg_base_num (reg_nr);
1602
1603 /* Build the value in the provided buffer. */
1604 /* Read the real regs for which this one is an alias. */
1605 for (portion = 0; portion < 2; portion++)
1606 regcache_read (base_regnum + portion,
1607 temp_buffer
1608 + REGISTER_RAW_SIZE (base_regnum) * portion);
1609 /* We must pay attention to the endiannes. */
1610 sh_sh4_register_convert_to_virtual (reg_nr,
1611 REGISTER_VIRTUAL_TYPE (reg_nr),
1612 temp_buffer, buffer);
1613 }
1614 else if (reg_nr >= tdep->FV0_REGNUM
1615 && reg_nr <= tdep->FV_LAST_REGNUM)
1616 {
1617 base_regnum = fv_reg_base_num (reg_nr);
1618
1619 /* Read the real regs for which this one is an alias. */
1620 for (portion = 0; portion < 4; portion++)
1621 regcache_read (base_regnum + portion,
1622 buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
1623 }
1624 }
1625
1626 static void
1627 sh4_register_read (struct gdbarch *gdbarch, int reg_nr, char *buffer)
1628 {
1629 if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
1630 /* It is a regular register. */
1631 regcache_read (reg_nr, buffer);
1632 else
1633 /* It is a pseudo register and we need to construct its value */
1634 sh_pseudo_register_read (reg_nr, buffer);
1635 }
1636
1637 void
1638 sh_pseudo_register_write (int reg_nr, char *buffer)
1639 {
1640 int base_regnum, portion;
1641 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1642 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1643
1644 if (reg_nr >= tdep->DR0_REGNUM
1645 && reg_nr <= tdep->DR_LAST_REGNUM)
1646 {
1647 base_regnum = dr_reg_base_num (reg_nr);
1648
1649 /* We must pay attention to the endiannes. */
1650 sh_sh4_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
1651 buffer, temp_buffer);
1652
1653 /* Write the real regs for which this one is an alias. */
1654 for (portion = 0; portion < 2; portion++)
1655 regcache_write (base_regnum + portion,
1656 temp_buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
1657 }
1658 else if (reg_nr >= tdep->FV0_REGNUM
1659 && reg_nr <= tdep->FV_LAST_REGNUM)
1660 {
1661 base_regnum = fv_reg_base_num (reg_nr);
1662
1663 /* Write the real regs for which this one is an alias. */
1664 for (portion = 0; portion < 4; portion++)
1665 regcache_write (base_regnum + portion,
1666 buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
1667 }
1668 }
1669
1670 static void
1671 sh4_register_write (struct gdbarch *gdbarch, int reg_nr, char *buffer)
1672 {
1673 if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
1674 /* It is a regular register. */
1675 regcache_write (reg_nr, buffer);
1676 else
1677 /* It is a pseudo register and we need to construct its value */
1678 sh_pseudo_register_write (reg_nr, buffer);
1679 }
1680
1681 /* Floating point vector of 4 float registers. */
1682 static void
1683 do_fv_register_info (int fv_regnum)
1684 {
1685 int first_fp_reg_num = fv_reg_base_num (fv_regnum);
1686 printf_filtered ("fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1687 fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM,
1688 (int) read_register (first_fp_reg_num),
1689 (int) read_register (first_fp_reg_num + 1),
1690 (int) read_register (first_fp_reg_num + 2),
1691 (int) read_register (first_fp_reg_num + 3));
1692 }
1693
1694 /* Double precision registers. */
1695 static void
1696 do_dr_register_info (int dr_regnum)
1697 {
1698 int first_fp_reg_num = dr_reg_base_num (dr_regnum);
1699
1700 printf_filtered ("dr%d\t0x%08x%08x\n",
1701 dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM,
1702 (int) read_register (first_fp_reg_num),
1703 (int) read_register (first_fp_reg_num + 1));
1704 }
1705
1706 static void
1707 sh_do_pseudo_register (int regnum)
1708 {
1709 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1710
1711 if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
1712 internal_error (__FILE__, __LINE__,
1713 "Invalid pseudo register number %d\n", regnum);
1714 else if (regnum >= tdep->DR0_REGNUM
1715 && regnum < tdep->DR_LAST_REGNUM)
1716 do_dr_register_info (regnum);
1717 else if (regnum >= tdep->FV0_REGNUM
1718 && regnum <= tdep->FV_LAST_REGNUM)
1719 do_fv_register_info (regnum);
1720 }
1721
1722 static void
1723 sh_do_fp_register (int regnum)
1724 { /* do values for FP (float) regs */
1725 char *raw_buffer;
1726 double flt; /* double extracted from raw hex data */
1727 int inv;
1728 int j;
1729
1730 /* Allocate space for the float. */
1731 raw_buffer = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
1732
1733 /* Get the data in raw format. */
1734 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1735 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1736
1737 /* Get the register as a number */
1738 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1739
1740 /* Print the name and some spaces. */
1741 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
1742 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
1743
1744 /* Print the value. */
1745 if (inv)
1746 printf_filtered ("<invalid float>");
1747 else
1748 printf_filtered ("%-10.9g", flt);
1749
1750 /* Print the fp register as hex. */
1751 printf_filtered ("\t(raw 0x");
1752 for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
1753 {
1754 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1755 : REGISTER_RAW_SIZE (regnum) - 1 - j;
1756 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1757 }
1758 printf_filtered (")");
1759 printf_filtered ("\n");
1760 }
1761
1762 static void
1763 sh_do_register (int regnum)
1764 {
1765 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1766
1767 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
1768 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
1769
1770 /* Get the data in raw format. */
1771 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1772 printf_filtered ("*value not available*\n");
1773
1774 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
1775 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1776 printf_filtered ("\t");
1777 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
1778 gdb_stdout, 0, 1, 0, Val_pretty_default);
1779 printf_filtered ("\n");
1780 }
1781
1782 static void
1783 sh_print_register (int regnum)
1784 {
1785 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
1786 internal_error (__FILE__, __LINE__,
1787 "Invalid register number %d\n", regnum);
1788
1789 else if (regnum >= 0 && regnum < NUM_REGS)
1790 {
1791 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1792 sh_do_fp_register (regnum); /* FP regs */
1793 else
1794 sh_do_register (regnum); /* All other regs */
1795 }
1796
1797 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1798 do_pseudo_register (regnum);
1799 }
1800
1801 void
1802 sh_do_registers_info (int regnum, int fpregs)
1803 {
1804 if (regnum != -1) /* do one specified register */
1805 {
1806 if (*(REGISTER_NAME (regnum)) == '\0')
1807 error ("Not a valid register for the current processor type");
1808
1809 sh_print_register (regnum);
1810 }
1811 else
1812 /* do all (or most) registers */
1813 {
1814 regnum = 0;
1815 while (regnum < NUM_REGS)
1816 {
1817 /* If the register name is empty, it is undefined for this
1818 processor, so don't display anything. */
1819 if (REGISTER_NAME (regnum) == NULL
1820 || *(REGISTER_NAME (regnum)) == '\0')
1821 {
1822 regnum++;
1823 continue;
1824 }
1825
1826 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1827 {
1828 if (fpregs)
1829 {
1830 /* true for "INFO ALL-REGISTERS" command */
1831 sh_do_fp_register (regnum); /* FP regs */
1832 regnum ++;
1833 }
1834 else
1835 regnum += (gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM - FP0_REGNUM); /* skip FP regs */
1836 }
1837 else
1838 {
1839 sh_do_register (regnum); /* All other regs */
1840 regnum++;
1841 }
1842 }
1843
1844 if (fpregs)
1845 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1846 {
1847 do_pseudo_register (regnum);
1848 regnum++;
1849 }
1850 }
1851 }
1852
1853 #ifdef SVR4_SHARED_LIBS
1854
1855 /* Fetch (and possibly build) an appropriate link_map_offsets structure
1856 for native i386 linux targets using the struct offsets defined in
1857 link.h (but without actual reference to that file).
1858
1859 This makes it possible to access i386-linux shared libraries from
1860 a gdb that was not built on an i386-linux host (for cross debugging).
1861 */
1862
1863 struct link_map_offsets *
1864 sh_linux_svr4_fetch_link_map_offsets (void)
1865 {
1866 static struct link_map_offsets lmo;
1867 static struct link_map_offsets *lmp = 0;
1868
1869 if (lmp == 0)
1870 {
1871 lmp = &lmo;
1872
1873 lmo.r_debug_size = 8; /* 20 not actual size but all we need */
1874
1875 lmo.r_map_offset = 4;
1876 lmo.r_map_size = 4;
1877
1878 lmo.link_map_size = 20; /* 552 not actual size but all we need */
1879
1880 lmo.l_addr_offset = 0;
1881 lmo.l_addr_size = 4;
1882
1883 lmo.l_name_offset = 4;
1884 lmo.l_name_size = 4;
1885
1886 lmo.l_next_offset = 12;
1887 lmo.l_next_size = 4;
1888
1889 lmo.l_prev_offset = 16;
1890 lmo.l_prev_size = 4;
1891 }
1892
1893 return lmp;
1894 }
1895 #endif /* SVR4_SHARED_LIBS */
1896
1897 static gdbarch_init_ftype sh_gdbarch_init;
1898
1899 static struct gdbarch *
1900 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1901 {
1902 static LONGEST sh_call_dummy_words[] = {0};
1903 struct gdbarch *gdbarch;
1904 struct gdbarch_tdep *tdep;
1905 gdbarch_register_name_ftype *sh_register_name;
1906 gdbarch_store_return_value_ftype *sh_store_return_value;
1907 gdbarch_register_virtual_type_ftype *sh_register_virtual_type;
1908
1909 /* Find a candidate among the list of pre-declared architectures. */
1910 arches = gdbarch_list_lookup_by_info (arches, &info);
1911 if (arches != NULL)
1912 return arches->gdbarch;
1913
1914 /* None found, create a new architecture from the information
1915 provided. */
1916 tdep = XMALLOC (struct gdbarch_tdep);
1917 gdbarch = gdbarch_alloc (&info, tdep);
1918
1919 /* Initialize the register numbers that are not common to all the
1920 variants to -1, if necessary thse will be overwritten in the case
1921 statement below. */
1922 tdep->FPUL_REGNUM = -1;
1923 tdep->FPSCR_REGNUM = -1;
1924 tdep->PR_REGNUM = 17;
1925 tdep->SR_REGNUM = 22;
1926 tdep->DSR_REGNUM = -1;
1927 tdep->FP_LAST_REGNUM = -1;
1928 tdep->A0G_REGNUM = -1;
1929 tdep->A0_REGNUM = -1;
1930 tdep->A1G_REGNUM = -1;
1931 tdep->A1_REGNUM = -1;
1932 tdep->M0_REGNUM = -1;
1933 tdep->M1_REGNUM = -1;
1934 tdep->X0_REGNUM = -1;
1935 tdep->X1_REGNUM = -1;
1936 tdep->Y0_REGNUM = -1;
1937 tdep->Y1_REGNUM = -1;
1938 tdep->MOD_REGNUM = -1;
1939 tdep->RS_REGNUM = -1;
1940 tdep->RE_REGNUM = -1;
1941 tdep->SSR_REGNUM = -1;
1942 tdep->SPC_REGNUM = -1;
1943 tdep->DR0_REGNUM = -1;
1944 tdep->DR_LAST_REGNUM = -1;
1945 tdep->FV0_REGNUM = -1;
1946 tdep->FV_LAST_REGNUM = -1;
1947 tdep->ARG0_REGNUM = 4;
1948 tdep->ARGLAST_REGNUM = 7;
1949 tdep->RETURN_REGNUM = 0;
1950 tdep->FLOAT_ARGLAST_REGNUM = -1;
1951
1952 set_gdbarch_fp0_regnum (gdbarch, -1);
1953 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1954 set_gdbarch_max_register_raw_size (gdbarch, 4);
1955 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1956 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1957 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1958 set_gdbarch_num_regs (gdbarch, SH_DEFAULT_NUM_REGS);
1959 set_gdbarch_sp_regnum (gdbarch, 15);
1960 set_gdbarch_fp_regnum (gdbarch, 14);
1961 set_gdbarch_pc_regnum (gdbarch, 16);
1962 set_gdbarch_register_size (gdbarch, 4);
1963 set_gdbarch_register_bytes (gdbarch, SH_DEFAULT_NUM_REGS * 4);
1964 set_gdbarch_do_registers_info (gdbarch, sh_do_registers_info);
1965 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
1966 set_gdbarch_frame_chain (gdbarch, sh_frame_chain);
1967 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1968 set_gdbarch_init_extra_frame_info (gdbarch, sh_init_extra_frame_info);
1969 set_gdbarch_extract_return_value (gdbarch, sh_extract_return_value);
1970 set_gdbarch_push_arguments (gdbarch, sh_push_arguments);
1971 set_gdbarch_store_struct_return (gdbarch, sh_store_struct_return);
1972 set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
1973 set_gdbarch_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
1974 set_gdbarch_pop_frame (gdbarch, sh_pop_frame);
1975 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
1976 skip_prologue_hard_way = sh_skip_prologue_hard_way;
1977 do_pseudo_register = sh_do_pseudo_register;
1978
1979 switch (info.bfd_arch_info->mach)
1980 {
1981 case bfd_mach_sh:
1982 sh_register_name = sh_sh_register_name;
1983 sh_show_regs = sh_generic_show_regs;
1984 sh_store_return_value = sh_default_store_return_value;
1985 sh_register_virtual_type = sh_default_register_virtual_type;
1986 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1987 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1988 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1989 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
1990 break;
1991 case bfd_mach_sh2:
1992 sh_register_name = sh_sh_register_name;
1993 sh_show_regs = sh_generic_show_regs;
1994 sh_store_return_value = sh_default_store_return_value;
1995 sh_register_virtual_type = sh_default_register_virtual_type;
1996 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
1997 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
1998 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
1999 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2000 break;
2001 case bfd_mach_sh_dsp:
2002 sh_register_name = sh_sh_dsp_register_name;
2003 sh_show_regs = sh_dsp_show_regs;
2004 sh_store_return_value = sh_default_store_return_value;
2005 sh_register_virtual_type = sh_default_register_virtual_type;
2006 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
2007 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
2008 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2009 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2010 tdep->DSR_REGNUM = 24;
2011 tdep->A0G_REGNUM = 25;
2012 tdep->A0_REGNUM = 26;
2013 tdep->A1G_REGNUM = 27;
2014 tdep->A1_REGNUM = 28;
2015 tdep->M0_REGNUM = 29;
2016 tdep->M1_REGNUM = 30;
2017 tdep->X0_REGNUM = 31;
2018 tdep->X1_REGNUM = 32;
2019 tdep->Y0_REGNUM = 33;
2020 tdep->Y1_REGNUM = 34;
2021 tdep->MOD_REGNUM = 40;
2022 tdep->RS_REGNUM = 43;
2023 tdep->RE_REGNUM = 44;
2024 break;
2025 case bfd_mach_sh3:
2026 sh_register_name = sh_sh3_register_name;
2027 sh_show_regs = sh3_show_regs;
2028 sh_store_return_value = sh_default_store_return_value;
2029 sh_register_virtual_type = sh_default_register_virtual_type;
2030 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
2031 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
2032 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2033 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2034 tdep->SSR_REGNUM = 41;
2035 tdep->SPC_REGNUM = 42;
2036 break;
2037 case bfd_mach_sh3e:
2038 sh_register_name = sh_sh3e_register_name;
2039 sh_show_regs = sh3e_show_regs;
2040 sh_store_return_value = sh3e_sh4_store_return_value;
2041 sh_register_virtual_type = sh_sh3e_register_virtual_type;
2042 set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
2043 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
2044 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2045 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2046 set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
2047 set_gdbarch_fp0_regnum (gdbarch, 25);
2048 tdep->FPUL_REGNUM = 23;
2049 tdep->FPSCR_REGNUM = 24;
2050 tdep->FP_LAST_REGNUM = 40;
2051 tdep->SSR_REGNUM = 41;
2052 tdep->SPC_REGNUM = 42;
2053 break;
2054 case bfd_mach_sh3_dsp:
2055 sh_register_name = sh_sh3_dsp_register_name;
2056 sh_show_regs = sh3_dsp_show_regs;
2057 sh_store_return_value = sh_default_store_return_value;
2058 sh_register_virtual_type = sh_default_register_virtual_type;
2059 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
2060 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
2061 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2062 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2063 tdep->DSR_REGNUM = 24;
2064 tdep->A0G_REGNUM = 25;
2065 tdep->A0_REGNUM = 26;
2066 tdep->A1G_REGNUM = 27;
2067 tdep->A1_REGNUM = 28;
2068 tdep->M0_REGNUM = 29;
2069 tdep->M1_REGNUM = 30;
2070 tdep->X0_REGNUM = 31;
2071 tdep->X1_REGNUM = 32;
2072 tdep->Y0_REGNUM = 33;
2073 tdep->Y1_REGNUM = 34;
2074 tdep->MOD_REGNUM = 40;
2075 tdep->RS_REGNUM = 43;
2076 tdep->RE_REGNUM = 44;
2077 tdep->SSR_REGNUM = 41;
2078 tdep->SPC_REGNUM = 42;
2079 break;
2080 case bfd_mach_sh4:
2081 sh_register_name = sh_sh4_register_name;
2082 sh_show_regs = sh4_show_regs;
2083 sh_store_return_value = sh3e_sh4_store_return_value;
2084 sh_register_virtual_type = sh_sh4_register_virtual_type;
2085 set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
2086 set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
2087 set_gdbarch_fp0_regnum (gdbarch, 25);
2088 set_gdbarch_register_raw_size (gdbarch, sh_sh4_register_raw_size);
2089 set_gdbarch_register_virtual_size (gdbarch, sh_sh4_register_raw_size);
2090 set_gdbarch_register_byte (gdbarch, sh_sh4_register_byte);
2091 set_gdbarch_num_pseudo_regs (gdbarch, 12);
2092 set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
2093 set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
2094 set_gdbarch_register_read (gdbarch, sh4_register_read);
2095 set_gdbarch_register_write (gdbarch, sh4_register_write);
2096 tdep->FPUL_REGNUM = 23;
2097 tdep->FPSCR_REGNUM = 24;
2098 tdep->FP_LAST_REGNUM = 40;
2099 tdep->SSR_REGNUM = 41;
2100 tdep->SPC_REGNUM = 42;
2101 tdep->DR0_REGNUM = 59;
2102 tdep->DR_LAST_REGNUM = 66;
2103 tdep->FV0_REGNUM = 67;
2104 tdep->FV_LAST_REGNUM = 70;
2105 break;
2106 default:
2107 sh_register_name = sh_generic_register_name;
2108 sh_show_regs = sh_generic_show_regs;
2109 sh_store_return_value = sh_default_store_return_value;
2110 sh_register_virtual_type = sh_default_register_virtual_type;
2111 set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
2112 set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
2113 set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
2114 set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
2115 break;
2116 }
2117
2118 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2119 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2120 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2121 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
2122 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2123 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2124
2125 set_gdbarch_register_name (gdbarch, sh_register_name);
2126 set_gdbarch_register_virtual_type (gdbarch, sh_register_virtual_type);
2127
2128 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2129 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2130 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2131 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2132 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2133 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);/*??should be 8?*/
2134
2135 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2136 set_gdbarch_call_dummy_length (gdbarch, 0);
2137 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2138 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2139 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
2140 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2141 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2142 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2143 set_gdbarch_call_dummy_words (gdbarch, sh_call_dummy_words);
2144 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (sh_call_dummy_words));
2145 set_gdbarch_call_dummy_p (gdbarch, 1);
2146 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2147 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
2148 set_gdbarch_coerce_float_to_double (gdbarch,
2149 sh_coerce_float_to_double);
2150
2151 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2152 set_gdbarch_push_return_address (gdbarch, sh_push_return_address);
2153
2154 set_gdbarch_store_return_value (gdbarch, sh_store_return_value);
2155 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2156 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2157 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2158 set_gdbarch_function_start_offset (gdbarch, 0);
2159
2160 set_gdbarch_frame_args_skip (gdbarch, 0);
2161 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
2162 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
2163 set_gdbarch_frame_saved_pc (gdbarch, sh_frame_saved_pc);
2164 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
2165 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
2166 set_gdbarch_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
2167 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2168 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2169
2170 return gdbarch;
2171 }
2172
2173 void
2174 _initialize_sh_tdep (void)
2175 {
2176 struct cmd_list_element *c;
2177
2178 register_gdbarch_init (bfd_arch_sh, sh_gdbarch_init);
2179
2180 add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
2181 }
This page took 0.131671 seconds and 4 git commands to generate.