1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Steve Chamberlain
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
35 #include "arch-utils.h"
36 #include "floatformat.h"
40 #include "reggroups.h"
45 #include "sh64-tdep.h"
48 #include "solib-svr4.h"
53 /* registers numbers shared with the simulator. */
54 #include "gdb/sim-sh.h"
57 /* List of "set sh ..." and "show sh ..." commands. */
58 static struct cmd_list_element
*setshcmdlist
= NULL
;
59 static struct cmd_list_element
*showshcmdlist
= NULL
;
61 static const char sh_cc_gcc
[] = "gcc";
62 static const char sh_cc_renesas
[] = "renesas";
63 static const char *const sh_cc_enum
[] = {
69 static const char *sh_active_calling_convention
= sh_cc_gcc
;
71 #define SH_NUM_REGS 67
80 /* Flag showing that a frame has been created in the prologue code. */
83 /* Saved registers. */
84 CORE_ADDR saved_regs
[SH_NUM_REGS
];
89 sh_is_renesas_calling_convention (struct type
*func_type
)
95 func_type
= check_typedef (func_type
);
97 if (TYPE_CODE (func_type
) == TYPE_CODE_PTR
)
98 func_type
= check_typedef (TYPE_TARGET_TYPE (func_type
));
100 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
101 && TYPE_CALLING_CONVENTION (func_type
) == DW_CC_GNU_renesas_sh
)
105 if (sh_active_calling_convention
== sh_cc_renesas
)
112 sh_sh_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
114 static char *register_names
[] = {
115 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
116 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
117 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
119 "", "", "", "", "", "", "", "",
120 "", "", "", "", "", "", "", "",
122 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
128 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
130 return register_names
[reg_nr
];
134 sh_sh3_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
136 static char *register_names
[] = {
137 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
138 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
139 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
141 "", "", "", "", "", "", "", "",
142 "", "", "", "", "", "", "", "",
144 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
145 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
146 "", "", "", "", "", "", "", "",
150 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
152 return register_names
[reg_nr
];
156 sh_sh3e_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
158 static char *register_names
[] = {
159 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
163 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
164 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
166 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
167 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
168 "", "", "", "", "", "", "", "",
172 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
174 return register_names
[reg_nr
];
178 sh_sh2e_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
180 static char *register_names
[] = {
181 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
182 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
183 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
185 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
186 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
188 "", "", "", "", "", "", "", "",
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
194 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
196 return register_names
[reg_nr
];
200 sh_sh2a_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
202 static char *register_names
[] = {
203 /* general registers 0-15 */
204 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
210 /* floating point registers 25 - 40 */
211 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
212 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
215 /* 43 - 62. Banked registers. The bank number used is determined by
216 the bank register (63). */
217 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
218 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
219 "machb", "ivnb", "prb", "gbrb", "maclb",
220 /* 63: register bank number, not a real register but used to
221 communicate the register bank currently get/set. This register
222 is hidden to the user, who manipulates it using the pseudo
223 register called "bank" (67). See below. */
226 "ibcr", "ibnr", "tbr",
227 /* 67: register bank number, the user visible pseudo register. */
229 /* double precision (pseudo) 68 - 75 */
230 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
234 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
236 return register_names
[reg_nr
];
240 sh_sh2a_nofpu_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
242 static char *register_names
[] = {
243 /* general registers 0-15 */
244 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
245 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
247 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
250 /* floating point registers 25 - 40 */
251 "", "", "", "", "", "", "", "",
252 "", "", "", "", "", "", "", "",
255 /* 43 - 62. Banked registers. The bank number used is determined by
256 the bank register (63). */
257 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
258 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
259 "machb", "ivnb", "prb", "gbrb", "maclb",
260 /* 63: register bank number, not a real register but used to
261 communicate the register bank currently get/set. This register
262 is hidden to the user, who manipulates it using the pseudo
263 register called "bank" (67). See below. */
266 "ibcr", "ibnr", "tbr",
267 /* 67: register bank number, the user visible pseudo register. */
269 /* double precision (pseudo) 68 - 75 */
270 "", "", "", "", "", "", "", "",
274 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
276 return register_names
[reg_nr
];
280 sh_sh_dsp_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
282 static char *register_names
[] = {
283 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
284 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
285 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
287 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
288 "y0", "y1", "", "", "", "", "", "mod",
290 "rs", "re", "", "", "", "", "", "",
291 "", "", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
296 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
298 return register_names
[reg_nr
];
302 sh_sh3_dsp_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
304 static char *register_names
[] = {
305 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
306 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
307 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
309 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
310 "y0", "y1", "", "", "", "", "", "mod",
312 "rs", "re", "", "", "", "", "", "",
313 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
314 "", "", "", "", "", "", "", "",
315 "", "", "", "", "", "", "", "",
319 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
321 return register_names
[reg_nr
];
325 sh_sh4_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
327 static char *register_names
[] = {
328 /* general registers 0-15 */
329 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
330 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
332 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
335 /* floating point registers 25 - 40 */
336 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
337 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
341 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
343 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
345 "", "", "", "", "", "", "", "",
346 /* pseudo bank register. */
348 /* double precision (pseudo) 68 - 75 */
349 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
350 /* vectors (pseudo) 76 - 79 */
351 "fv0", "fv4", "fv8", "fv12",
352 /* FIXME: missing XF */
353 /* FIXME: missing XD */
357 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
359 return register_names
[reg_nr
];
363 sh_sh4_nofpu_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
365 static char *register_names
[] = {
366 /* general registers 0-15 */
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
370 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
373 /* floating point registers 25 - 40 -- not for nofpu target */
374 "", "", "", "", "", "", "", "",
375 "", "", "", "", "", "", "", "",
379 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
381 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
383 "", "", "", "", "", "", "", "",
384 /* pseudo bank register. */
386 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
387 "", "", "", "", "", "", "", "",
388 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
393 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
395 return register_names
[reg_nr
];
399 sh_sh4al_dsp_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
401 static char *register_names
[] = {
402 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
403 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
404 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
406 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
407 "y0", "y1", "", "", "", "", "", "mod",
409 "rs", "re", "", "", "", "", "", "",
410 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
416 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
418 return register_names
[reg_nr
];
421 /* Implement the breakpoint_kind_from_pc gdbarch method. */
424 sh_breakpoint_kind_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
)
429 /* Implement the sw_breakpoint_from_kind gdbarch method. */
431 static const gdb_byte
*
432 sh_sw_breakpoint_from_kind (struct gdbarch
*gdbarch
, int kind
, int *size
)
436 /* For remote stub targets, trapa #20 is used. */
437 if (strcmp (target_shortname
, "remote") == 0)
439 static unsigned char big_remote_breakpoint
[] = { 0xc3, 0x20 };
440 static unsigned char little_remote_breakpoint
[] = { 0x20, 0xc3 };
442 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
443 return big_remote_breakpoint
;
445 return little_remote_breakpoint
;
449 /* 0xc3c3 is trapa #c3, and it works in big and little endian
451 static unsigned char breakpoint
[] = { 0xc3, 0xc3 };
457 /* Prologue looks like
461 sub <room_for_loca_vars>,r15
464 Actually it can be more complicated than this but that's it, basically. */
466 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
467 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
469 /* JSR @Rm 0100mmmm00001011 */
470 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
472 /* STS.L PR,@-r15 0100111100100010
473 r15-4-->r15, PR-->(r15) */
474 #define IS_STS(x) ((x) == 0x4f22)
476 /* STS.L MACL,@-r15 0100111100010010
477 r15-4-->r15, MACL-->(r15) */
478 #define IS_MACL_STS(x) ((x) == 0x4f12)
480 /* MOV.L Rm,@-r15 00101111mmmm0110
481 r15-4-->r15, Rm-->(R15) */
482 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
484 /* MOV r15,r14 0110111011110011
486 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
488 /* ADD #imm,r15 01111111iiiiiiii
490 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
492 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
493 #define IS_SHLL_R3(x) ((x) == 0x4300)
495 /* ADD r3,r15 0011111100111100
497 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
499 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
500 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
501 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
502 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
503 make this entirely clear. */
504 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
505 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
507 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
508 #define IS_MOV_ARG_TO_REG(x) \
509 (((x) & 0xf00f) == 0x6003 && \
510 ((x) & 0x00f0) >= 0x0040 && \
511 ((x) & 0x00f0) <= 0x0070)
512 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
513 #define IS_MOV_ARG_TO_IND_R14(x) \
514 (((x) & 0xff0f) == 0x2e02 && \
515 ((x) & 0x00f0) >= 0x0040 && \
516 ((x) & 0x00f0) <= 0x0070)
517 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
518 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
519 (((x) & 0xff00) == 0x1e00 && \
520 ((x) & 0x00f0) >= 0x0040 && \
521 ((x) & 0x00f0) <= 0x0070)
523 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
524 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
525 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
526 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
527 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
528 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
529 /* SUB Rn,R15 00111111nnnn1000 */
530 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
532 #define FPSCR_SZ (1 << 20)
534 /* The following instructions are used for epilogue testing. */
535 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
536 #define IS_RTS(x) ((x) == 0x000b)
537 #define IS_LDS(x) ((x) == 0x4f26)
538 #define IS_MACL_LDS(x) ((x) == 0x4f16)
539 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
540 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
541 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
544 sh_analyze_prologue (struct gdbarch
*gdbarch
,
545 CORE_ADDR pc
, CORE_ADDR limit_pc
,
546 struct sh_frame_cache
*cache
, ULONGEST fpscr
)
548 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
553 int reg
, sav_reg
= -1;
556 for (; pc
< limit_pc
; pc
+= 2)
558 inst
= read_memory_unsigned_integer (pc
, 2, byte_order
);
559 /* See where the registers will be saved to. */
562 cache
->saved_regs
[GET_SOURCE_REG (inst
)] = cache
->sp_offset
;
563 cache
->sp_offset
+= 4;
565 else if (IS_STS (inst
))
567 cache
->saved_regs
[PR_REGNUM
] = cache
->sp_offset
;
568 cache
->sp_offset
+= 4;
570 else if (IS_MACL_STS (inst
))
572 cache
->saved_regs
[MACL_REGNUM
] = cache
->sp_offset
;
573 cache
->sp_offset
+= 4;
575 else if (IS_MOV_R3 (inst
))
577 r3_val
= ((inst
& 0xff) ^ 0x80) - 0x80;
579 else if (IS_SHLL_R3 (inst
))
583 else if (IS_ADD_R3SP (inst
))
585 cache
->sp_offset
+= -r3_val
;
587 else if (IS_ADD_IMM_SP (inst
))
589 offset
= ((inst
& 0xff) ^ 0x80) - 0x80;
590 cache
->sp_offset
-= offset
;
592 else if (IS_MOVW_PCREL_TO_REG (inst
))
596 reg
= GET_TARGET_REG (inst
);
600 offset
= (inst
& 0xff) << 1;
602 read_memory_integer ((pc
+ 4) + offset
, 2, byte_order
);
606 else if (IS_MOVL_PCREL_TO_REG (inst
))
610 reg
= GET_TARGET_REG (inst
);
614 offset
= (inst
& 0xff) << 2;
616 read_memory_integer (((pc
& 0xfffffffc) + 4) + offset
,
621 else if (IS_MOVI20 (inst
)
622 && (pc
+ 2 < limit_pc
))
626 reg
= GET_TARGET_REG (inst
);
630 sav_offset
= GET_SOURCE_REG (inst
) << 16;
631 /* MOVI20 is a 32 bit instruction! */
634 |= read_memory_unsigned_integer (pc
, 2, byte_order
);
635 /* Now sav_offset contains an unsigned 20 bit value.
636 It must still get sign extended. */
637 if (sav_offset
& 0x00080000)
638 sav_offset
|= 0xfff00000;
642 else if (IS_SUB_REG_FROM_SP (inst
))
644 reg
= GET_SOURCE_REG (inst
);
645 if (sav_reg
> 0 && reg
== sav_reg
)
649 cache
->sp_offset
+= sav_offset
;
651 else if (IS_FPUSH (inst
))
653 if (fpscr
& FPSCR_SZ
)
655 cache
->sp_offset
+= 8;
659 cache
->sp_offset
+= 4;
662 else if (IS_MOV_SP_FP (inst
))
665 /* Don't go any further than six more instructions. */
666 limit_pc
= std::min (limit_pc
, pc
+ (2 * 6));
669 /* At this point, only allow argument register moves to other
670 registers or argument register moves to @(X,fp) which are
671 moving the register arguments onto the stack area allocated
672 by a former add somenumber to SP call. Don't allow moving
673 to an fp indirect address above fp + cache->sp_offset. */
674 for (; pc
< limit_pc
; pc
+= 2)
676 inst
= read_memory_integer (pc
, 2, byte_order
);
677 if (IS_MOV_ARG_TO_IND_R14 (inst
))
679 reg
= GET_SOURCE_REG (inst
);
680 if (cache
->sp_offset
> 0)
681 cache
->saved_regs
[reg
] = cache
->sp_offset
;
683 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst
))
685 reg
= GET_SOURCE_REG (inst
);
686 offset
= (inst
& 0xf) * 4;
687 if (cache
->sp_offset
> offset
)
688 cache
->saved_regs
[reg
] = cache
->sp_offset
- offset
;
690 else if (IS_MOV_ARG_TO_REG (inst
))
697 else if (IS_JSR (inst
))
699 /* We have found a jsr that has been scheduled into the prologue.
700 If we continue the scan and return a pc someplace after this,
701 then setting a breakpoint on this function will cause it to
702 appear to be called after the function it is calling via the
703 jsr, which will be very confusing. Most likely the next
704 instruction is going to be IS_MOV_SP_FP in the delay slot. If
705 so, note that before returning the current pc. */
706 if (pc
+ 2 < limit_pc
)
708 inst
= read_memory_integer (pc
+ 2, 2, byte_order
);
709 if (IS_MOV_SP_FP (inst
))
714 #if 0 /* This used to just stop when it found an instruction
715 that was not considered part of the prologue. Now,
716 we just keep going looking for likely
726 /* Skip any prologue before the guts of a function. */
728 sh_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
730 CORE_ADDR post_prologue_pc
, func_addr
, func_end_addr
, limit_pc
;
731 struct sh_frame_cache cache
;
733 /* See if we can determine the end of the prologue via the symbol table.
734 If so, then return either PC, or the PC after the prologue, whichever
736 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end_addr
))
738 post_prologue_pc
= skip_prologue_using_sal (gdbarch
, func_addr
);
739 if (post_prologue_pc
!= 0)
740 return std::max (pc
, post_prologue_pc
);
743 /* Can't determine prologue from the symbol table, need to examine
746 /* Find an upper limit on the function prologue using the debug
747 information. If the debug information could not be used to provide
748 that bound, then use an arbitrary large number as the upper bound. */
749 limit_pc
= skip_prologue_using_sal (gdbarch
, pc
);
751 /* Don't go any further than 28 instructions. */
752 limit_pc
= pc
+ (2 * 28);
754 /* Do not allow limit_pc to be past the function end, if we know
755 where that end is... */
756 if (func_end_addr
!= 0)
757 limit_pc
= std::min (limit_pc
, func_end_addr
);
759 cache
.sp_offset
= -4;
760 post_prologue_pc
= sh_analyze_prologue (gdbarch
, pc
, limit_pc
, &cache
, 0);
762 pc
= post_prologue_pc
;
769 Aggregate types not bigger than 8 bytes that have the same size and
770 alignment as one of the integer scalar types are returned in the
771 same registers as the integer type they match.
773 For example, a 2-byte aligned structure with size 2 bytes has the
774 same size and alignment as a short int, and will be returned in R0.
775 A 4-byte aligned structure with size 8 bytes has the same size and
776 alignment as a long long int, and will be returned in R0 and R1.
778 When an aggregate type is returned in R0 and R1, R0 contains the
779 first four bytes of the aggregate, and R1 contains the
780 remainder. If the size of the aggregate type is not a multiple of 4
781 bytes, the aggregate is tail-padded up to a multiple of 4
782 bytes. The value of the padding is undefined. For little-endian
783 targets the padding will appear at the most significant end of the
784 last element, for big-endian targets the padding appears at the
785 least significant end of the last element.
787 All other aggregate types are returned by address. The caller
788 function passes the address of an area large enough to hold the
789 aggregate value in R2. The called function stores the result in
792 To reiterate, structs smaller than 8 bytes could also be returned
793 in memory, if they don't pass the "same size and alignment as an
798 struct s { char c[3]; } wibble;
799 struct s foo(void) { return wibble; }
801 the return value from foo() will be in memory, not
802 in R0, because there is no 3-byte integer type.
806 struct s { char c[2]; } wibble;
807 struct s foo(void) { return wibble; }
809 because a struct containing two chars has alignment 1, that matches
810 type char, but size 2, that matches type short. There's no integer
811 type that has alignment 1 and size 2, so the struct is returned in
815 sh_use_struct_convention (int renesas_abi
, struct type
*type
)
817 int len
= TYPE_LENGTH (type
);
818 int nelem
= TYPE_NFIELDS (type
);
820 /* The Renesas ABI returns aggregate types always on stack. */
821 if (renesas_abi
&& (TYPE_CODE (type
) == TYPE_CODE_STRUCT
822 || TYPE_CODE (type
) == TYPE_CODE_UNION
))
825 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
826 fit in two registers anyway) use struct convention. */
827 if (len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8)
830 /* Scalar types and aggregate types with exactly one field are aligned
831 by definition. They are returned in registers. */
835 /* If the first field in the aggregate has the same length as the entire
836 aggregate type, the type is returned in registers. */
837 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0)) == len
)
840 /* If the size of the aggregate is 8 bytes and the first field is
841 of size 4 bytes its alignment is equal to long long's alignment,
842 so it's returned in registers. */
843 if (len
== 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0)) == 4)
846 /* Otherwise use struct convention. */
851 sh_use_struct_convention_nofpu (int renesas_abi
, struct type
*type
)
853 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
854 if (renesas_abi
&& TYPE_NFIELDS (type
) == 0 && TYPE_LENGTH (type
) >= 8)
856 return sh_use_struct_convention (renesas_abi
, type
);
860 sh_frame_align (struct gdbarch
*ignore
, CORE_ADDR sp
)
865 /* Function: push_dummy_call (formerly push_arguments)
866 Setup the function arguments for calling a function in the inferior.
868 On the Renesas SH architecture, there are four registers (R4 to R7)
869 which are dedicated for passing function arguments. Up to the first
870 four arguments (depending on size) may go into these registers.
871 The rest go on the stack.
873 MVS: Except on SH variants that have floating point registers.
874 In that case, float and double arguments are passed in the same
875 manner, but using FP registers instead of GP registers.
877 Arguments that are smaller than 4 bytes will still take up a whole
878 register or a whole 32-bit word on the stack, and will be
879 right-justified in the register or the stack word. This includes
880 chars, shorts, and small aggregate types.
882 Arguments that are larger than 4 bytes may be split between two or
883 more registers. If there are not enough registers free, an argument
884 may be passed partly in a register (or registers), and partly on the
885 stack. This includes doubles, long longs, and larger aggregates.
886 As far as I know, there is no upper limit to the size of aggregates
887 that will be passed in this way; in other words, the convention of
888 passing a pointer to a large aggregate instead of a copy is not used.
890 MVS: The above appears to be true for the SH variants that do not
891 have an FPU, however those that have an FPU appear to copy the
892 aggregate argument onto the stack (and not place it in registers)
893 if it is larger than 16 bytes (four GP registers).
895 An exceptional case exists for struct arguments (and possibly other
896 aggregates such as arrays) if the size is larger than 4 bytes but
897 not a multiple of 4 bytes. In this case the argument is never split
898 between the registers and the stack, but instead is copied in its
899 entirety onto the stack, AND also copied into as many registers as
900 there is room for. In other words, space in registers permitting,
901 two copies of the same argument are passed in. As far as I can tell,
902 only the one on the stack is used, although that may be a function
903 of the level of compiler optimization. I suspect this is a compiler
904 bug. Arguments of these odd sizes are left-justified within the
905 word (as opposed to arguments smaller than 4 bytes, which are
908 If the function is to return an aggregate type such as a struct, it
909 is either returned in the normal return value register R0 (if its
910 size is no greater than one byte), or else the caller must allocate
911 space into which the callee will copy the return value (if the size
912 is greater than one byte). In this case, a pointer to the return
913 value location is passed into the callee in register R2, which does
914 not displace any of the other arguments passed in via registers R4
917 /* Helper function to justify value in register according to endianess. */
918 static const gdb_byte
*
919 sh_justify_value_in_reg (struct gdbarch
*gdbarch
, struct value
*val
, int len
)
921 static gdb_byte valbuf
[4];
923 memset (valbuf
, 0, sizeof (valbuf
));
926 /* value gets right-justified in the register or stack word. */
927 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
928 memcpy (valbuf
+ (4 - len
), value_contents (val
), len
);
930 memcpy (valbuf
, value_contents (val
), len
);
933 return value_contents (val
);
936 /* Helper function to eval number of bytes to allocate on stack. */
938 sh_stack_allocsize (int nargs
, struct value
**args
)
942 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[nargs
])) + 3) & ~3);
946 /* Helper functions for getting the float arguments right. Registers usage
947 depends on the ABI and the endianess. The comments should enlighten how
948 it's intended to work. */
950 /* This array stores which of the float arg registers are already in use. */
951 static int flt_argreg_array
[FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
+ 1];
953 /* This function just resets the above array to "no reg used so far". */
955 sh_init_flt_argreg (void)
957 memset (flt_argreg_array
, 0, sizeof flt_argreg_array
);
960 /* This function returns the next register to use for float arg passing.
961 It returns either a valid value between FLOAT_ARG0_REGNUM and
962 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
963 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
965 Note that register number 0 in flt_argreg_array corresponds with the
966 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
967 29) the parity of the register number is preserved, which is important
968 for the double register passing test (see the "argreg & 1" test below). */
970 sh_next_flt_argreg (struct gdbarch
*gdbarch
, int len
, struct type
*func_type
)
974 /* First search for the next free register. */
975 for (argreg
= 0; argreg
<= FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
;
977 if (!flt_argreg_array
[argreg
])
980 /* No register left? */
981 if (argreg
> FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
)
982 return FLOAT_ARGLAST_REGNUM
+ 1;
986 /* Doubles are always starting in a even register number. */
989 /* In gcc ABI, the skipped register is lost for further argument
990 passing now. Not so in Renesas ABI. */
991 if (!sh_is_renesas_calling_convention (func_type
))
992 flt_argreg_array
[argreg
] = 1;
996 /* No register left? */
997 if (argreg
> FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
)
998 return FLOAT_ARGLAST_REGNUM
+ 1;
1000 /* Also mark the next register as used. */
1001 flt_argreg_array
[argreg
+ 1] = 1;
1003 else if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
1004 && !sh_is_renesas_calling_convention (func_type
))
1006 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
1007 if (!flt_argreg_array
[argreg
+ 1])
1010 flt_argreg_array
[argreg
] = 1;
1011 return FLOAT_ARG0_REGNUM
+ argreg
;
1014 /* Helper function which figures out, if a type is treated like a float type.
1016 The FPU ABIs have a special way how to treat types as float types.
1017 Structures with exactly one member, which is of type float or double, are
1018 treated exactly as the base types float or double:
1028 are handled the same way as just
1034 As a result, arguments of these struct types are pushed into floating point
1035 registers exactly as floats or doubles, using the same decision algorithm.
1037 The same is valid if these types are used as function return types. The
1038 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1039 or even using struct convention as it is for other structs. */
1042 sh_treat_as_flt_p (struct type
*type
)
1044 /* Ordinary float types are obviously treated as float. */
1045 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1047 /* Otherwise non-struct types are not treated as float. */
1048 if (TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
1050 /* Otherwise structs with more than one memeber are not treated as float. */
1051 if (TYPE_NFIELDS (type
) != 1)
1053 /* Otherwise if the type of that member is float, the whole type is
1054 treated as float. */
1055 if (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0)) == TYPE_CODE_FLT
)
1057 /* Otherwise it's not treated as float. */
1062 sh_push_dummy_call_fpu (struct gdbarch
*gdbarch
,
1063 struct value
*function
,
1064 struct regcache
*regcache
,
1065 CORE_ADDR bp_addr
, int nargs
,
1066 struct value
**args
,
1067 CORE_ADDR sp
, int struct_return
,
1068 CORE_ADDR struct_addr
)
1070 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1071 int stack_offset
= 0;
1072 int argreg
= ARG0_REGNUM
;
1075 struct type
*func_type
= value_type (function
);
1078 const gdb_byte
*val
;
1079 int len
, reg_size
= 0;
1080 int pass_on_stack
= 0;
1082 int last_reg_arg
= INT_MAX
;
1084 /* The Renesas ABI expects all varargs arguments, plus the last
1085 non-vararg argument to be on the stack, no matter how many
1086 registers have been used so far. */
1087 if (sh_is_renesas_calling_convention (func_type
)
1088 && TYPE_VARARGS (func_type
))
1089 last_reg_arg
= TYPE_NFIELDS (func_type
) - 2;
1091 /* First force sp to a 4-byte alignment. */
1092 sp
= sh_frame_align (gdbarch
, sp
);
1094 /* Make room on stack for args. */
1095 sp
-= sh_stack_allocsize (nargs
, args
);
1097 /* Initialize float argument mechanism. */
1098 sh_init_flt_argreg ();
1100 /* Now load as many as possible of the first arguments into
1101 registers, and push the rest onto the stack. There are 16 bytes
1102 in four registers available. Loop thru args from first to last. */
1103 for (argnum
= 0; argnum
< nargs
; argnum
++)
1105 type
= value_type (args
[argnum
]);
1106 len
= TYPE_LENGTH (type
);
1107 val
= sh_justify_value_in_reg (gdbarch
, args
[argnum
], len
);
1109 /* Some decisions have to be made how various types are handled.
1110 This also differs in different ABIs. */
1113 /* Find out the next register to use for a floating point value. */
1114 treat_as_flt
= sh_treat_as_flt_p (type
);
1116 flt_argreg
= sh_next_flt_argreg (gdbarch
, len
, func_type
);
1117 /* In Renesas ABI, long longs and aggregate types are always passed
1119 else if (sh_is_renesas_calling_convention (func_type
)
1120 && ((TYPE_CODE (type
) == TYPE_CODE_INT
&& len
== 8)
1121 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
1122 || TYPE_CODE (type
) == TYPE_CODE_UNION
))
1124 /* In contrast to non-FPU CPUs, arguments are never split between
1125 registers and stack. If an argument doesn't fit in the remaining
1126 registers it's always pushed entirely on the stack. */
1127 else if (len
> ((ARGLAST_REGNUM
- argreg
+ 1) * 4))
1132 if ((treat_as_flt
&& flt_argreg
> FLOAT_ARGLAST_REGNUM
)
1133 || (!treat_as_flt
&& (argreg
> ARGLAST_REGNUM
1135 || argnum
> last_reg_arg
)
1137 /* The data goes entirely on the stack, 4-byte aligned. */
1138 reg_size
= (len
+ 3) & ~3;
1139 write_memory (sp
+ stack_offset
, val
, reg_size
);
1140 stack_offset
+= reg_size
;
1142 else if (treat_as_flt
&& flt_argreg
<= FLOAT_ARGLAST_REGNUM
)
1144 /* Argument goes in a float argument register. */
1145 reg_size
= register_size (gdbarch
, flt_argreg
);
1146 regval
= extract_unsigned_integer (val
, reg_size
, byte_order
);
1147 /* In little endian mode, float types taking two registers
1148 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1149 be stored swapped in the argument registers. The below
1150 code first writes the first 32 bits in the next but one
1151 register, increments the val and len values accordingly
1152 and then proceeds as normal by writing the second 32 bits
1153 into the next register. */
1154 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
1155 && TYPE_LENGTH (type
) == 2 * reg_size
)
1157 regcache_cooked_write_unsigned (regcache
, flt_argreg
+ 1,
1161 regval
= extract_unsigned_integer (val
, reg_size
,
1164 regcache_cooked_write_unsigned (regcache
, flt_argreg
++, regval
);
1166 else if (!treat_as_flt
&& argreg
<= ARGLAST_REGNUM
)
1168 /* there's room in a register */
1169 reg_size
= register_size (gdbarch
, argreg
);
1170 regval
= extract_unsigned_integer (val
, reg_size
, byte_order
);
1171 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
1173 /* Store the value one register at a time or in one step on
1182 if (sh_is_renesas_calling_convention (func_type
))
1183 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1184 the stack and store the struct return address there. */
1185 write_memory_unsigned_integer (sp
-= 4, 4, byte_order
, struct_addr
);
1187 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1188 its own dedicated register. */
1189 regcache_cooked_write_unsigned (regcache
,
1190 STRUCT_RETURN_REGNUM
, struct_addr
);
1193 /* Store return address. */
1194 regcache_cooked_write_unsigned (regcache
, PR_REGNUM
, bp_addr
);
1196 /* Update stack pointer. */
1197 regcache_cooked_write_unsigned (regcache
,
1198 gdbarch_sp_regnum (gdbarch
), sp
);
1204 sh_push_dummy_call_nofpu (struct gdbarch
*gdbarch
,
1205 struct value
*function
,
1206 struct regcache
*regcache
,
1208 int nargs
, struct value
**args
,
1209 CORE_ADDR sp
, int struct_return
,
1210 CORE_ADDR struct_addr
)
1212 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1213 int stack_offset
= 0;
1214 int argreg
= ARG0_REGNUM
;
1216 struct type
*func_type
= value_type (function
);
1219 const gdb_byte
*val
;
1220 int len
, reg_size
= 0;
1221 int pass_on_stack
= 0;
1222 int last_reg_arg
= INT_MAX
;
1224 /* The Renesas ABI expects all varargs arguments, plus the last
1225 non-vararg argument to be on the stack, no matter how many
1226 registers have been used so far. */
1227 if (sh_is_renesas_calling_convention (func_type
)
1228 && TYPE_VARARGS (func_type
))
1229 last_reg_arg
= TYPE_NFIELDS (func_type
) - 2;
1231 /* First force sp to a 4-byte alignment. */
1232 sp
= sh_frame_align (gdbarch
, sp
);
1234 /* Make room on stack for args. */
1235 sp
-= sh_stack_allocsize (nargs
, args
);
1237 /* Now load as many as possible of the first arguments into
1238 registers, and push the rest onto the stack. There are 16 bytes
1239 in four registers available. Loop thru args from first to last. */
1240 for (argnum
= 0; argnum
< nargs
; argnum
++)
1242 type
= value_type (args
[argnum
]);
1243 len
= TYPE_LENGTH (type
);
1244 val
= sh_justify_value_in_reg (gdbarch
, args
[argnum
], len
);
1246 /* Some decisions have to be made how various types are handled.
1247 This also differs in different ABIs. */
1249 /* Renesas ABI pushes doubles and long longs entirely on stack.
1250 Same goes for aggregate types. */
1251 if (sh_is_renesas_calling_convention (func_type
)
1252 && ((TYPE_CODE (type
) == TYPE_CODE_INT
&& len
>= 8)
1253 || (TYPE_CODE (type
) == TYPE_CODE_FLT
&& len
>= 8)
1254 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
1255 || TYPE_CODE (type
) == TYPE_CODE_UNION
))
1259 if (argreg
> ARGLAST_REGNUM
|| pass_on_stack
1260 || argnum
> last_reg_arg
)
1262 /* The remainder of the data goes entirely on the stack,
1264 reg_size
= (len
+ 3) & ~3;
1265 write_memory (sp
+ stack_offset
, val
, reg_size
);
1266 stack_offset
+= reg_size
;
1268 else if (argreg
<= ARGLAST_REGNUM
)
1270 /* There's room in a register. */
1271 reg_size
= register_size (gdbarch
, argreg
);
1272 regval
= extract_unsigned_integer (val
, reg_size
, byte_order
);
1273 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
1275 /* Store the value reg_size bytes at a time. This means that things
1276 larger than reg_size bytes may go partly in registers and partly
1285 if (sh_is_renesas_calling_convention (func_type
))
1286 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1287 the stack and store the struct return address there. */
1288 write_memory_unsigned_integer (sp
-= 4, 4, byte_order
, struct_addr
);
1290 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1291 its own dedicated register. */
1292 regcache_cooked_write_unsigned (regcache
,
1293 STRUCT_RETURN_REGNUM
, struct_addr
);
1296 /* Store return address. */
1297 regcache_cooked_write_unsigned (regcache
, PR_REGNUM
, bp_addr
);
1299 /* Update stack pointer. */
1300 regcache_cooked_write_unsigned (regcache
,
1301 gdbarch_sp_regnum (gdbarch
), sp
);
1306 /* Find a function's return value in the appropriate registers (in
1307 regbuf), and copy it into valbuf. Extract from an array REGBUF
1308 containing the (raw) register state a function return value of type
1309 TYPE, and copy that, in virtual format, into VALBUF. */
1311 sh_extract_return_value_nofpu (struct type
*type
, struct regcache
*regcache
,
1314 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1315 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1316 int len
= TYPE_LENGTH (type
);
1322 regcache_cooked_read_unsigned (regcache
, R0_REGNUM
, &c
);
1323 store_unsigned_integer (valbuf
, len
, byte_order
, c
);
1327 int i
, regnum
= R0_REGNUM
;
1328 for (i
= 0; i
< len
; i
+= 4)
1329 regcache_raw_read (regcache
, regnum
++, valbuf
+ i
);
1332 error (_("bad size for return value"));
1336 sh_extract_return_value_fpu (struct type
*type
, struct regcache
*regcache
,
1339 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1340 if (sh_treat_as_flt_p (type
))
1342 int len
= TYPE_LENGTH (type
);
1343 int i
, regnum
= gdbarch_fp0_regnum (gdbarch
);
1344 for (i
= 0; i
< len
; i
+= 4)
1345 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1346 regcache_raw_read (regcache
, regnum
++,
1347 valbuf
+ len
- 4 - i
);
1349 regcache_raw_read (regcache
, regnum
++, valbuf
+ i
);
1352 sh_extract_return_value_nofpu (type
, regcache
, valbuf
);
1355 /* Write into appropriate registers a function return value
1356 of type TYPE, given in virtual format.
1357 If the architecture is sh4 or sh3e, store a function's return value
1358 in the R0 general register or in the FP0 floating point register,
1359 depending on the type of the return value. In all the other cases
1360 the result is stored in r0, left-justified. */
1362 sh_store_return_value_nofpu (struct type
*type
, struct regcache
*regcache
,
1363 const gdb_byte
*valbuf
)
1365 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1366 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1368 int len
= TYPE_LENGTH (type
);
1372 val
= extract_unsigned_integer (valbuf
, len
, byte_order
);
1373 regcache_cooked_write_unsigned (regcache
, R0_REGNUM
, val
);
1377 int i
, regnum
= R0_REGNUM
;
1378 for (i
= 0; i
< len
; i
+= 4)
1379 regcache_raw_write (regcache
, regnum
++, valbuf
+ i
);
1384 sh_store_return_value_fpu (struct type
*type
, struct regcache
*regcache
,
1385 const gdb_byte
*valbuf
)
1387 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1388 if (sh_treat_as_flt_p (type
))
1390 int len
= TYPE_LENGTH (type
);
1391 int i
, regnum
= gdbarch_fp0_regnum (gdbarch
);
1392 for (i
= 0; i
< len
; i
+= 4)
1393 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1394 regcache_raw_write (regcache
, regnum
++,
1395 valbuf
+ len
- 4 - i
);
1397 regcache_raw_write (regcache
, regnum
++, valbuf
+ i
);
1400 sh_store_return_value_nofpu (type
, regcache
, valbuf
);
1403 static enum return_value_convention
1404 sh_return_value_nofpu (struct gdbarch
*gdbarch
, struct value
*function
,
1405 struct type
*type
, struct regcache
*regcache
,
1406 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1408 struct type
*func_type
= function
? value_type (function
) : NULL
;
1410 if (sh_use_struct_convention_nofpu (
1411 sh_is_renesas_calling_convention (func_type
), type
))
1412 return RETURN_VALUE_STRUCT_CONVENTION
;
1414 sh_store_return_value_nofpu (type
, regcache
, writebuf
);
1416 sh_extract_return_value_nofpu (type
, regcache
, readbuf
);
1417 return RETURN_VALUE_REGISTER_CONVENTION
;
1420 static enum return_value_convention
1421 sh_return_value_fpu (struct gdbarch
*gdbarch
, struct value
*function
,
1422 struct type
*type
, struct regcache
*regcache
,
1423 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1425 struct type
*func_type
= function
? value_type (function
) : NULL
;
1427 if (sh_use_struct_convention (
1428 sh_is_renesas_calling_convention (func_type
), type
))
1429 return RETURN_VALUE_STRUCT_CONVENTION
;
1431 sh_store_return_value_fpu (type
, regcache
, writebuf
);
1433 sh_extract_return_value_fpu (type
, regcache
, readbuf
);
1434 return RETURN_VALUE_REGISTER_CONVENTION
;
1437 static struct type
*
1438 sh_sh2a_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1440 if ((reg_nr
>= gdbarch_fp0_regnum (gdbarch
)
1441 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1442 return builtin_type (gdbarch
)->builtin_float
;
1443 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1444 return builtin_type (gdbarch
)->builtin_double
;
1446 return builtin_type (gdbarch
)->builtin_int
;
1449 /* Return the GDB type object for the "standard" data type
1450 of data in register N. */
1451 static struct type
*
1452 sh_sh3e_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1454 if ((reg_nr
>= gdbarch_fp0_regnum (gdbarch
)
1455 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1456 return builtin_type (gdbarch
)->builtin_float
;
1458 return builtin_type (gdbarch
)->builtin_int
;
1461 static struct type
*
1462 sh_sh4_build_float_register_type (struct gdbarch
*gdbarch
, int high
)
1464 return lookup_array_range_type (builtin_type (gdbarch
)->builtin_float
,
1468 static struct type
*
1469 sh_sh4_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1471 if ((reg_nr
>= gdbarch_fp0_regnum (gdbarch
)
1472 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1473 return builtin_type (gdbarch
)->builtin_float
;
1474 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1475 return builtin_type (gdbarch
)->builtin_double
;
1476 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
1477 return sh_sh4_build_float_register_type (gdbarch
, 3);
1479 return builtin_type (gdbarch
)->builtin_int
;
1482 static struct type
*
1483 sh_default_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1485 return builtin_type (gdbarch
)->builtin_int
;
1488 /* Is a register in a reggroup?
1489 The default code in reggroup.c doesn't identify system registers, some
1490 float registers or any of the vector registers.
1491 TODO: sh2a and dsp registers. */
1493 sh_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
1494 struct reggroup
*reggroup
)
1496 if (gdbarch_register_name (gdbarch
, regnum
) == NULL
1497 || *gdbarch_register_name (gdbarch
, regnum
) == '\0')
1500 if (reggroup
== float_reggroup
1501 && (regnum
== FPUL_REGNUM
1502 || regnum
== FPSCR_REGNUM
))
1505 if (regnum
>= FV0_REGNUM
&& regnum
<= FV_LAST_REGNUM
)
1507 if (reggroup
== vector_reggroup
|| reggroup
== float_reggroup
)
1509 if (reggroup
== general_reggroup
)
1513 if (regnum
== VBR_REGNUM
1514 || regnum
== SR_REGNUM
1515 || regnum
== FPSCR_REGNUM
1516 || regnum
== SSR_REGNUM
1517 || regnum
== SPC_REGNUM
)
1519 if (reggroup
== system_reggroup
)
1521 if (reggroup
== general_reggroup
)
1525 /* The default code can cope with any other registers. */
1526 return default_register_reggroup_p (gdbarch
, regnum
, reggroup
);
1529 /* On the sh4, the DRi pseudo registers are problematic if the target
1530 is little endian. When the user writes one of those registers, for
1531 instance with 'set var $dr0=1', we want the double to be stored
1533 fr0 = 0x00 0x00 0xf0 0x3f
1534 fr1 = 0x00 0x00 0x00 0x00
1536 This corresponds to little endian byte order & big endian word
1537 order. However if we let gdb write the register w/o conversion, it
1538 will write fr0 and fr1 this way:
1539 fr0 = 0x00 0x00 0x00 0x00
1540 fr1 = 0x00 0x00 0xf0 0x3f
1541 because it will consider fr0 and fr1 as a single LE stretch of memory.
1543 To achieve what we want we must force gdb to store things in
1544 floatformat_ieee_double_littlebyte_bigword (which is defined in
1545 include/floatformat.h and libiberty/floatformat.c.
1547 In case the target is big endian, there is no problem, the
1548 raw bytes will look like:
1549 fr0 = 0x3f 0xf0 0x00 0x00
1550 fr1 = 0x00 0x00 0x00 0x00
1552 The other pseudo registers (the FVs) also don't pose a problem
1553 because they are stored as 4 individual FP elements. */
1556 sh_register_convert_to_virtual (struct gdbarch
*gdbarch
, int regnum
,
1557 struct type
*type
, gdb_byte
*from
, gdb_byte
*to
)
1559 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_LITTLE
)
1561 /* It is a no-op. */
1562 memcpy (to
, from
, register_size (gdbarch
, regnum
));
1566 if (regnum
>= DR0_REGNUM
&& regnum
<= DR_LAST_REGNUM
)
1569 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1571 store_typed_floating (to
, type
, val
);
1575 ("sh_register_convert_to_virtual called with non DR register number");
1579 sh_register_convert_to_raw (struct gdbarch
*gdbarch
, struct type
*type
,
1580 int regnum
, const gdb_byte
*from
, gdb_byte
*to
)
1582 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_LITTLE
)
1584 /* It is a no-op. */
1585 memcpy (to
, from
, register_size (gdbarch
, regnum
));
1589 if (regnum
>= DR0_REGNUM
&& regnum
<= DR_LAST_REGNUM
)
1591 DOUBLEST val
= extract_typed_floating (from
, type
);
1592 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1596 error (_("sh_register_convert_to_raw called with non DR register number"));
1599 /* For vectors of 4 floating point registers. */
1601 fv_reg_base_num (struct gdbarch
*gdbarch
, int fv_regnum
)
1605 fp_regnum
= gdbarch_fp0_regnum (gdbarch
)
1606 + (fv_regnum
- FV0_REGNUM
) * 4;
1610 /* For double precision floating point registers, i.e 2 fp regs. */
1612 dr_reg_base_num (struct gdbarch
*gdbarch
, int dr_regnum
)
1616 fp_regnum
= gdbarch_fp0_regnum (gdbarch
)
1617 + (dr_regnum
- DR0_REGNUM
) * 2;
1621 /* Concatenate PORTIONS contiguous raw registers starting at
1622 BASE_REGNUM into BUFFER. */
1624 static enum register_status
1625 pseudo_register_read_portions (struct gdbarch
*gdbarch
,
1626 struct regcache
*regcache
,
1628 int base_regnum
, gdb_byte
*buffer
)
1632 for (portion
= 0; portion
< portions
; portion
++)
1634 enum register_status status
;
1637 b
= buffer
+ register_size (gdbarch
, base_regnum
) * portion
;
1638 status
= regcache_raw_read (regcache
, base_regnum
+ portion
, b
);
1639 if (status
!= REG_VALID
)
1646 static enum register_status
1647 sh_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1648 int reg_nr
, gdb_byte
*buffer
)
1651 gdb_byte temp_buffer
[MAX_REGISTER_SIZE
];
1652 enum register_status status
;
1654 if (reg_nr
== PSEUDO_BANK_REGNUM
)
1655 return regcache_raw_read (regcache
, BANK_REGNUM
, buffer
);
1656 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1658 base_regnum
= dr_reg_base_num (gdbarch
, reg_nr
);
1660 /* Build the value in the provided buffer. */
1661 /* Read the real regs for which this one is an alias. */
1662 status
= pseudo_register_read_portions (gdbarch
, regcache
,
1663 2, base_regnum
, temp_buffer
);
1664 if (status
== REG_VALID
)
1666 /* We must pay attention to the endiannes. */
1667 sh_register_convert_to_virtual (gdbarch
, reg_nr
,
1668 register_type (gdbarch
, reg_nr
),
1669 temp_buffer
, buffer
);
1673 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
1675 base_regnum
= fv_reg_base_num (gdbarch
, reg_nr
);
1677 /* Read the real regs for which this one is an alias. */
1678 return pseudo_register_read_portions (gdbarch
, regcache
,
1679 4, base_regnum
, buffer
);
1682 gdb_assert_not_reached ("invalid pseudo register number");
1686 sh_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1687 int reg_nr
, const gdb_byte
*buffer
)
1689 int base_regnum
, portion
;
1690 gdb_byte temp_buffer
[MAX_REGISTER_SIZE
];
1692 if (reg_nr
== PSEUDO_BANK_REGNUM
)
1694 /* When the bank register is written to, the whole register bank
1695 is switched and all values in the bank registers must be read
1696 from the target/sim again. We're just invalidating the regcache
1697 so that a re-read happens next time it's necessary. */
1700 regcache_raw_write (regcache
, BANK_REGNUM
, buffer
);
1701 for (bregnum
= R0_BANK0_REGNUM
; bregnum
< MACLB_REGNUM
; ++bregnum
)
1702 regcache_invalidate (regcache
, bregnum
);
1704 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1706 base_regnum
= dr_reg_base_num (gdbarch
, reg_nr
);
1708 /* We must pay attention to the endiannes. */
1709 sh_register_convert_to_raw (gdbarch
, register_type (gdbarch
, reg_nr
),
1710 reg_nr
, buffer
, temp_buffer
);
1712 /* Write the real regs for which this one is an alias. */
1713 for (portion
= 0; portion
< 2; portion
++)
1714 regcache_raw_write (regcache
, base_regnum
+ portion
,
1716 + register_size (gdbarch
,
1717 base_regnum
) * portion
));
1719 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
1721 base_regnum
= fv_reg_base_num (gdbarch
, reg_nr
);
1723 /* Write the real regs for which this one is an alias. */
1724 for (portion
= 0; portion
< 4; portion
++)
1725 regcache_raw_write (regcache
, base_regnum
+ portion
,
1727 + register_size (gdbarch
,
1728 base_regnum
) * portion
));
1733 sh_dsp_register_sim_regno (struct gdbarch
*gdbarch
, int nr
)
1735 if (legacy_register_sim_regno (gdbarch
, nr
) < 0)
1736 return legacy_register_sim_regno (gdbarch
, nr
);
1737 if (nr
>= DSR_REGNUM
&& nr
<= Y1_REGNUM
)
1738 return nr
- DSR_REGNUM
+ SIM_SH_DSR_REGNUM
;
1739 if (nr
== MOD_REGNUM
)
1740 return SIM_SH_MOD_REGNUM
;
1741 if (nr
== RS_REGNUM
)
1742 return SIM_SH_RS_REGNUM
;
1743 if (nr
== RE_REGNUM
)
1744 return SIM_SH_RE_REGNUM
;
1745 if (nr
>= DSP_R0_BANK_REGNUM
&& nr
<= DSP_R7_BANK_REGNUM
)
1746 return nr
- DSP_R0_BANK_REGNUM
+ SIM_SH_R0_BANK_REGNUM
;
1751 sh_sh2a_register_sim_regno (struct gdbarch
*gdbarch
, int nr
)
1756 return SIM_SH_TBR_REGNUM
;
1758 return SIM_SH_IBNR_REGNUM
;
1760 return SIM_SH_IBCR_REGNUM
;
1762 return SIM_SH_BANK_REGNUM
;
1764 return SIM_SH_BANK_MACL_REGNUM
;
1766 return SIM_SH_BANK_GBR_REGNUM
;
1768 return SIM_SH_BANK_PR_REGNUM
;
1770 return SIM_SH_BANK_IVN_REGNUM
;
1772 return SIM_SH_BANK_MACH_REGNUM
;
1776 return legacy_register_sim_regno (gdbarch
, nr
);
1779 /* Set up the register unwinding such that call-clobbered registers are
1780 not displayed in frames >0 because the true value is not certain.
1781 The 'undefined' registers will show up as 'not available' unless the
1784 This function is currently set up for SH4 and compatible only. */
1787 sh_dwarf2_frame_init_reg (struct gdbarch
*gdbarch
, int regnum
,
1788 struct dwarf2_frame_state_reg
*reg
,
1789 struct frame_info
*this_frame
)
1791 /* Mark the PC as the destination for the return address. */
1792 if (regnum
== gdbarch_pc_regnum (gdbarch
))
1793 reg
->how
= DWARF2_FRAME_REG_RA
;
1795 /* Mark the stack pointer as the call frame address. */
1796 else if (regnum
== gdbarch_sp_regnum (gdbarch
))
1797 reg
->how
= DWARF2_FRAME_REG_CFA
;
1799 /* The above was taken from the default init_reg in dwarf2-frame.c
1800 while the below is SH specific. */
1802 /* Caller save registers. */
1803 else if ((regnum
>= R0_REGNUM
&& regnum
<= R0_REGNUM
+7)
1804 || (regnum
>= FR0_REGNUM
&& regnum
<= FR0_REGNUM
+11)
1805 || (regnum
>= DR0_REGNUM
&& regnum
<= DR0_REGNUM
+5)
1806 || (regnum
>= FV0_REGNUM
&& regnum
<= FV0_REGNUM
+2)
1807 || (regnum
== MACH_REGNUM
)
1808 || (regnum
== MACL_REGNUM
)
1809 || (regnum
== FPUL_REGNUM
)
1810 || (regnum
== SR_REGNUM
))
1811 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
1813 /* Callee save registers. */
1814 else if ((regnum
>= R0_REGNUM
+8 && regnum
<= R0_REGNUM
+15)
1815 || (regnum
>= FR0_REGNUM
+12 && regnum
<= FR0_REGNUM
+15)
1816 || (regnum
>= DR0_REGNUM
+6 && regnum
<= DR0_REGNUM
+8)
1817 || (regnum
== FV0_REGNUM
+3))
1818 reg
->how
= DWARF2_FRAME_REG_SAME_VALUE
;
1820 /* Other registers. These are not in the ABI and may or may not
1821 mean anything in frames >0 so don't show them. */
1822 else if ((regnum
>= R0_BANK0_REGNUM
&& regnum
<= R0_BANK0_REGNUM
+15)
1823 || (regnum
== GBR_REGNUM
)
1824 || (regnum
== VBR_REGNUM
)
1825 || (regnum
== FPSCR_REGNUM
)
1826 || (regnum
== SSR_REGNUM
)
1827 || (regnum
== SPC_REGNUM
))
1828 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
1831 static struct sh_frame_cache
*
1832 sh_alloc_frame_cache (void)
1834 struct sh_frame_cache
*cache
;
1837 cache
= FRAME_OBSTACK_ZALLOC (struct sh_frame_cache
);
1841 cache
->saved_sp
= 0;
1842 cache
->sp_offset
= 0;
1845 /* Frameless until proven otherwise. */
1848 /* Saved registers. We initialize these to -1 since zero is a valid
1849 offset (that's where fp is supposed to be stored). */
1850 for (i
= 0; i
< SH_NUM_REGS
; i
++)
1852 cache
->saved_regs
[i
] = -1;
1858 static struct sh_frame_cache
*
1859 sh_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
1861 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1862 struct sh_frame_cache
*cache
;
1863 CORE_ADDR current_pc
;
1867 return (struct sh_frame_cache
*) *this_cache
;
1869 cache
= sh_alloc_frame_cache ();
1870 *this_cache
= cache
;
1872 /* In principle, for normal frames, fp holds the frame pointer,
1873 which holds the base address for the current stack frame.
1874 However, for functions that don't need it, the frame pointer is
1875 optional. For these "frameless" functions the frame pointer is
1876 actually the frame pointer of the calling frame. */
1877 cache
->base
= get_frame_register_unsigned (this_frame
, FP_REGNUM
);
1878 if (cache
->base
== 0)
1881 cache
->pc
= get_frame_func (this_frame
);
1882 current_pc
= get_frame_pc (this_frame
);
1887 /* Check for the existence of the FPSCR register. If it exists,
1888 fetch its value for use in prologue analysis. Passing a zero
1889 value is the best choice for architecture variants upon which
1890 there's no FPSCR register. */
1891 if (gdbarch_register_reggroup_p (gdbarch
, FPSCR_REGNUM
, all_reggroup
))
1892 fpscr
= get_frame_register_unsigned (this_frame
, FPSCR_REGNUM
);
1896 sh_analyze_prologue (gdbarch
, cache
->pc
, current_pc
, cache
, fpscr
);
1899 if (!cache
->uses_fp
)
1901 /* We didn't find a valid frame, which means that CACHE->base
1902 currently holds the frame pointer for our calling frame. If
1903 we're at the start of a function, or somewhere half-way its
1904 prologue, the function's frame probably hasn't been fully
1905 setup yet. Try to reconstruct the base address for the stack
1906 frame by looking at the stack pointer. For truly "frameless"
1907 functions this might work too. */
1908 cache
->base
= get_frame_register_unsigned
1909 (this_frame
, gdbarch_sp_regnum (gdbarch
));
1912 /* Now that we have the base address for the stack frame we can
1913 calculate the value of sp in the calling frame. */
1914 cache
->saved_sp
= cache
->base
+ cache
->sp_offset
;
1916 /* Adjust all the saved registers such that they contain addresses
1917 instead of offsets. */
1918 for (i
= 0; i
< SH_NUM_REGS
; i
++)
1919 if (cache
->saved_regs
[i
] != -1)
1920 cache
->saved_regs
[i
] = cache
->saved_sp
- cache
->saved_regs
[i
] - 4;
1925 static struct value
*
1926 sh_frame_prev_register (struct frame_info
*this_frame
,
1927 void **this_cache
, int regnum
)
1929 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1930 struct sh_frame_cache
*cache
= sh_frame_cache (this_frame
, this_cache
);
1932 gdb_assert (regnum
>= 0);
1934 if (regnum
== gdbarch_sp_regnum (gdbarch
) && cache
->saved_sp
)
1935 return frame_unwind_got_constant (this_frame
, regnum
, cache
->saved_sp
);
1937 /* The PC of the previous frame is stored in the PR register of
1938 the current frame. Frob regnum so that we pull the value from
1939 the correct place. */
1940 if (regnum
== gdbarch_pc_regnum (gdbarch
))
1943 if (regnum
< SH_NUM_REGS
&& cache
->saved_regs
[regnum
] != -1)
1944 return frame_unwind_got_memory (this_frame
, regnum
,
1945 cache
->saved_regs
[regnum
]);
1947 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1951 sh_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
1952 struct frame_id
*this_id
)
1954 struct sh_frame_cache
*cache
= sh_frame_cache (this_frame
, this_cache
);
1956 /* This marks the outermost frame. */
1957 if (cache
->base
== 0)
1960 *this_id
= frame_id_build (cache
->saved_sp
, cache
->pc
);
1963 static const struct frame_unwind sh_frame_unwind
= {
1965 default_frame_unwind_stop_reason
,
1967 sh_frame_prev_register
,
1969 default_frame_sniffer
1973 sh_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1975 return frame_unwind_register_unsigned (next_frame
,
1976 gdbarch_sp_regnum (gdbarch
));
1980 sh_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1982 return frame_unwind_register_unsigned (next_frame
,
1983 gdbarch_pc_regnum (gdbarch
));
1986 static struct frame_id
1987 sh_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1989 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
,
1990 gdbarch_sp_regnum (gdbarch
));
1991 return frame_id_build (sp
, get_frame_pc (this_frame
));
1995 sh_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
1997 struct sh_frame_cache
*cache
= sh_frame_cache (this_frame
, this_cache
);
2002 static const struct frame_base sh_frame_base
= {
2004 sh_frame_base_address
,
2005 sh_frame_base_address
,
2006 sh_frame_base_address
2009 static struct sh_frame_cache
*
2010 sh_make_stub_cache (struct frame_info
*this_frame
)
2012 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2013 struct sh_frame_cache
*cache
;
2015 cache
= sh_alloc_frame_cache ();
2018 = get_frame_register_unsigned (this_frame
, gdbarch_sp_regnum (gdbarch
));
2024 sh_stub_this_id (struct frame_info
*this_frame
, void **this_cache
,
2025 struct frame_id
*this_id
)
2027 struct sh_frame_cache
*cache
;
2029 if (*this_cache
== NULL
)
2030 *this_cache
= sh_make_stub_cache (this_frame
);
2031 cache
= (struct sh_frame_cache
*) *this_cache
;
2033 *this_id
= frame_id_build (cache
->saved_sp
, get_frame_pc (this_frame
));
2037 sh_stub_unwind_sniffer (const struct frame_unwind
*self
,
2038 struct frame_info
*this_frame
,
2039 void **this_prologue_cache
)
2041 CORE_ADDR addr_in_block
;
2043 addr_in_block
= get_frame_address_in_block (this_frame
);
2044 if (in_plt_section (addr_in_block
))
2050 static const struct frame_unwind sh_stub_unwind
=
2053 default_frame_unwind_stop_reason
,
2055 sh_frame_prev_register
,
2057 sh_stub_unwind_sniffer
2060 /* Implement the stack_frame_destroyed_p gdbarch method.
2062 The epilogue is defined here as the area at the end of a function,
2063 either on the `ret' instruction itself or after an instruction which
2064 destroys the function's stack frame. */
2067 sh_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2069 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2070 CORE_ADDR func_addr
= 0, func_end
= 0;
2072 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
2075 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2076 for a nop and some fixed data (e.g. big offsets) which are
2077 unfortunately also treated as part of the function (which
2078 means, they are below func_end. */
2079 CORE_ADDR addr
= func_end
- 28;
2080 if (addr
< func_addr
+ 4)
2081 addr
= func_addr
+ 4;
2085 /* First search forward until hitting an rts. */
2086 while (addr
< func_end
2087 && !IS_RTS (read_memory_unsigned_integer (addr
, 2, byte_order
)))
2089 if (addr
>= func_end
)
2092 /* At this point we should find a mov.l @r15+,r14 instruction,
2093 either before or after the rts. If not, then the function has
2094 probably no "normal" epilogue and we bail out here. */
2095 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2096 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr
- 2, 2,
2099 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr
+ 2, 2,
2103 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2105 /* Step over possible lds.l @r15+,macl. */
2106 if (IS_MACL_LDS (inst
))
2109 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2112 /* Step over possible lds.l @r15+,pr. */
2116 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2119 /* Step over possible mov r14,r15. */
2120 if (IS_MOV_FP_SP (inst
))
2123 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2126 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2128 while (addr
> func_addr
+ 4
2129 && (IS_ADD_REG_TO_FP (inst
) || IS_ADD_IMM_FP (inst
)))
2132 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2135 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2136 That's allowed for the epilogue. */
2137 if ((gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_sh2a
2138 || gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_sh2a_nofpu
)
2139 && addr
> func_addr
+ 6
2140 && IS_MOVI20 (read_memory_unsigned_integer (addr
- 4, 2,
2151 /* Supply register REGNUM from the buffer specified by REGS and LEN
2152 in the register set REGSET to register cache REGCACHE.
2153 REGTABLE specifies where each register can be found in REGS.
2154 If REGNUM is -1, do this for all registers in REGSET. */
2157 sh_corefile_supply_regset (const struct regset
*regset
,
2158 struct regcache
*regcache
,
2159 int regnum
, const void *regs
, size_t len
)
2161 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
2162 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2163 const struct sh_corefile_regmap
*regmap
= (regset
== &sh_corefile_gregset
2164 ? tdep
->core_gregmap
2165 : tdep
->core_fpregmap
);
2168 for (i
= 0; regmap
[i
].regnum
!= -1; i
++)
2170 if ((regnum
== -1 || regnum
== regmap
[i
].regnum
)
2171 && regmap
[i
].offset
+ 4 <= len
)
2172 regcache_raw_supply (regcache
, regmap
[i
].regnum
,
2173 (char *)regs
+ regmap
[i
].offset
);
2177 /* Collect register REGNUM in the register set REGSET from register cache
2178 REGCACHE into the buffer specified by REGS and LEN.
2179 REGTABLE specifies where each register can be found in REGS.
2180 If REGNUM is -1, do this for all registers in REGSET. */
2183 sh_corefile_collect_regset (const struct regset
*regset
,
2184 const struct regcache
*regcache
,
2185 int regnum
, void *regs
, size_t len
)
2187 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
2188 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2189 const struct sh_corefile_regmap
*regmap
= (regset
== &sh_corefile_gregset
2190 ? tdep
->core_gregmap
2191 : tdep
->core_fpregmap
);
2194 for (i
= 0; regmap
[i
].regnum
!= -1; i
++)
2196 if ((regnum
== -1 || regnum
== regmap
[i
].regnum
)
2197 && regmap
[i
].offset
+ 4 <= len
)
2198 regcache_raw_collect (regcache
, regmap
[i
].regnum
,
2199 (char *)regs
+ regmap
[i
].offset
);
2203 /* The following two regsets have the same contents, so it is tempting to
2204 unify them, but they are distiguished by their address, so don't. */
2206 const struct regset sh_corefile_gregset
=
2209 sh_corefile_supply_regset
,
2210 sh_corefile_collect_regset
2213 static const struct regset sh_corefile_fpregset
=
2216 sh_corefile_supply_regset
,
2217 sh_corefile_collect_regset
2221 sh_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
2222 iterate_over_regset_sections_cb
*cb
,
2224 const struct regcache
*regcache
)
2226 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2228 if (tdep
->core_gregmap
!= NULL
)
2229 cb (".reg", tdep
->sizeof_gregset
, &sh_corefile_gregset
, NULL
, cb_data
);
2231 if (tdep
->core_fpregmap
!= NULL
)
2232 cb (".reg2", tdep
->sizeof_fpregset
, &sh_corefile_fpregset
, NULL
, cb_data
);
2235 /* This is the implementation of gdbarch method
2236 return_in_first_hidden_param_p. */
2239 sh_return_in_first_hidden_param_p (struct gdbarch
*gdbarch
,
2247 static struct gdbarch
*
2248 sh_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2250 struct gdbarch
*gdbarch
;
2251 struct gdbarch_tdep
*tdep
;
2253 /* SH5 is handled entirely in sh64-tdep.c. */
2254 if (info
.bfd_arch_info
->mach
== bfd_mach_sh5
)
2255 return sh64_gdbarch_init (info
, arches
);
2257 /* If there is already a candidate, use it. */
2258 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2260 return arches
->gdbarch
;
2262 /* None found, create a new architecture from the information
2264 tdep
= XCNEW (struct gdbarch_tdep
);
2265 gdbarch
= gdbarch_alloc (&info
, tdep
);
2267 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
2268 set_gdbarch_int_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2269 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2270 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2271 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2272 set_gdbarch_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2273 set_gdbarch_long_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2274 set_gdbarch_ptr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2276 set_gdbarch_num_regs (gdbarch
, SH_NUM_REGS
);
2277 set_gdbarch_sp_regnum (gdbarch
, 15);
2278 set_gdbarch_pc_regnum (gdbarch
, 16);
2279 set_gdbarch_fp0_regnum (gdbarch
, -1);
2280 set_gdbarch_num_pseudo_regs (gdbarch
, 0);
2282 set_gdbarch_register_type (gdbarch
, sh_default_register_type
);
2283 set_gdbarch_register_reggroup_p (gdbarch
, sh_register_reggroup_p
);
2285 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, sh_breakpoint_kind_from_pc
);
2286 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, sh_sw_breakpoint_from_kind
);
2288 set_gdbarch_print_insn (gdbarch
, print_insn_sh
);
2289 set_gdbarch_register_sim_regno (gdbarch
, legacy_register_sim_regno
);
2291 set_gdbarch_return_value (gdbarch
, sh_return_value_nofpu
);
2293 set_gdbarch_skip_prologue (gdbarch
, sh_skip_prologue
);
2294 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2296 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_nofpu
);
2297 set_gdbarch_return_in_first_hidden_param_p (gdbarch
,
2298 sh_return_in_first_hidden_param_p
);
2300 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
2302 set_gdbarch_frame_align (gdbarch
, sh_frame_align
);
2303 set_gdbarch_unwind_sp (gdbarch
, sh_unwind_sp
);
2304 set_gdbarch_unwind_pc (gdbarch
, sh_unwind_pc
);
2305 set_gdbarch_dummy_id (gdbarch
, sh_dummy_id
);
2306 frame_base_set_default (gdbarch
, &sh_frame_base
);
2308 set_gdbarch_stack_frame_destroyed_p (gdbarch
, sh_stack_frame_destroyed_p
);
2310 dwarf2_frame_set_init_reg (gdbarch
, sh_dwarf2_frame_init_reg
);
2312 set_gdbarch_iterate_over_regset_sections
2313 (gdbarch
, sh_iterate_over_regset_sections
);
2315 switch (info
.bfd_arch_info
->mach
)
2318 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2322 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2326 /* doubles on sh2e and sh3e are actually 4 byte. */
2327 set_gdbarch_double_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2328 set_gdbarch_double_format (gdbarch
, floatformats_ieee_single
);
2330 set_gdbarch_register_name (gdbarch
, sh_sh2e_register_name
);
2331 set_gdbarch_register_type (gdbarch
, sh_sh3e_register_type
);
2332 set_gdbarch_fp0_regnum (gdbarch
, 25);
2333 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2334 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2338 set_gdbarch_register_name (gdbarch
, sh_sh2a_register_name
);
2339 set_gdbarch_register_type (gdbarch
, sh_sh2a_register_type
);
2340 set_gdbarch_register_sim_regno (gdbarch
, sh_sh2a_register_sim_regno
);
2342 set_gdbarch_fp0_regnum (gdbarch
, 25);
2343 set_gdbarch_num_pseudo_regs (gdbarch
, 9);
2344 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2345 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2346 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2347 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2350 case bfd_mach_sh2a_nofpu
:
2351 set_gdbarch_register_name (gdbarch
, sh_sh2a_nofpu_register_name
);
2352 set_gdbarch_register_sim_regno (gdbarch
, sh_sh2a_register_sim_regno
);
2354 set_gdbarch_num_pseudo_regs (gdbarch
, 1);
2355 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2356 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2359 case bfd_mach_sh_dsp
:
2360 set_gdbarch_register_name (gdbarch
, sh_sh_dsp_register_name
);
2361 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2365 case bfd_mach_sh3_nommu
:
2366 case bfd_mach_sh2a_nofpu_or_sh3_nommu
:
2367 set_gdbarch_register_name (gdbarch
, sh_sh3_register_name
);
2371 case bfd_mach_sh2a_or_sh3e
:
2372 /* doubles on sh2e and sh3e are actually 4 byte. */
2373 set_gdbarch_double_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2374 set_gdbarch_double_format (gdbarch
, floatformats_ieee_single
);
2376 set_gdbarch_register_name (gdbarch
, sh_sh3e_register_name
);
2377 set_gdbarch_register_type (gdbarch
, sh_sh3e_register_type
);
2378 set_gdbarch_fp0_regnum (gdbarch
, 25);
2379 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2380 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2383 case bfd_mach_sh3_dsp
:
2384 set_gdbarch_register_name (gdbarch
, sh_sh3_dsp_register_name
);
2385 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2390 case bfd_mach_sh2a_or_sh4
:
2391 set_gdbarch_register_name (gdbarch
, sh_sh4_register_name
);
2392 set_gdbarch_register_type (gdbarch
, sh_sh4_register_type
);
2393 set_gdbarch_fp0_regnum (gdbarch
, 25);
2394 set_gdbarch_num_pseudo_regs (gdbarch
, 13);
2395 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2396 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2397 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2398 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2401 case bfd_mach_sh4_nofpu
:
2402 case bfd_mach_sh4a_nofpu
:
2403 case bfd_mach_sh4_nommu_nofpu
:
2404 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu
:
2405 set_gdbarch_register_name (gdbarch
, sh_sh4_nofpu_register_name
);
2408 case bfd_mach_sh4al_dsp
:
2409 set_gdbarch_register_name (gdbarch
, sh_sh4al_dsp_register_name
);
2410 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2414 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2418 /* Hook in ABI-specific overrides, if they have been registered. */
2419 gdbarch_init_osabi (info
, gdbarch
);
2421 dwarf2_append_unwinders (gdbarch
);
2422 frame_unwind_append_unwinder (gdbarch
, &sh_stub_unwind
);
2423 frame_unwind_append_unwinder (gdbarch
, &sh_frame_unwind
);
2429 show_sh_command (char *args
, int from_tty
)
2431 help_list (showshcmdlist
, "show sh ", all_commands
, gdb_stdout
);
2435 set_sh_command (char *args
, int from_tty
)
2438 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2439 help_list (setshcmdlist
, "set sh ", all_commands
, gdb_stdout
);
2442 extern initialize_file_ftype _initialize_sh_tdep
; /* -Wmissing-prototypes */
2445 _initialize_sh_tdep (void)
2447 gdbarch_register (bfd_arch_sh
, sh_gdbarch_init
, NULL
);
2449 add_prefix_cmd ("sh", no_class
, set_sh_command
, "SH specific commands.",
2450 &setshcmdlist
, "set sh ", 0, &setlist
);
2451 add_prefix_cmd ("sh", no_class
, show_sh_command
, "SH specific commands.",
2452 &showshcmdlist
, "show sh ", 0, &showlist
);
2454 add_setshow_enum_cmd ("calling-convention", class_vars
, sh_cc_enum
,
2455 &sh_active_calling_convention
,
2456 _("Set calling convention used when calling target "
2457 "functions from GDB."),
2458 _("Show calling convention used when calling target "
2459 "functions from GDB."),
2460 _("gcc - Use GCC calling convention (default).\n"
2461 "renesas - Enforce Renesas calling convention."),
2463 &setshcmdlist
, &showshcmdlist
);