1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Steve Chamberlain
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
35 #include "arch-utils.h"
36 #include "floatformat.h"
40 #include "reggroups.h"
45 #include "sh64-tdep.h"
48 #include "solib-svr4.h"
53 /* registers numbers shared with the simulator. */
54 #include "gdb/sim-sh.h"
57 /* List of "set sh ..." and "show sh ..." commands. */
58 static struct cmd_list_element
*setshcmdlist
= NULL
;
59 static struct cmd_list_element
*showshcmdlist
= NULL
;
61 static const char sh_cc_gcc
[] = "gcc";
62 static const char sh_cc_renesas
[] = "renesas";
63 static const char *const sh_cc_enum
[] = {
69 static const char *sh_active_calling_convention
= sh_cc_gcc
;
71 #define SH_NUM_REGS 67
80 /* Flag showing that a frame has been created in the prologue code. */
83 /* Saved registers. */
84 CORE_ADDR saved_regs
[SH_NUM_REGS
];
89 sh_is_renesas_calling_convention (struct type
*func_type
)
95 func_type
= check_typedef (func_type
);
97 if (TYPE_CODE (func_type
) == TYPE_CODE_PTR
)
98 func_type
= check_typedef (TYPE_TARGET_TYPE (func_type
));
100 if (TYPE_CODE (func_type
) == TYPE_CODE_FUNC
101 && TYPE_CALLING_CONVENTION (func_type
) == DW_CC_GNU_renesas_sh
)
105 if (sh_active_calling_convention
== sh_cc_renesas
)
112 sh_sh_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
114 static char *register_names
[] = {
115 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
116 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
117 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
119 "", "", "", "", "", "", "", "",
120 "", "", "", "", "", "", "", "",
122 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
124 "", "", "", "", "", "", "", "",
128 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
130 return register_names
[reg_nr
];
134 sh_sh3_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
136 static char *register_names
[] = {
137 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
138 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
139 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
141 "", "", "", "", "", "", "", "",
142 "", "", "", "", "", "", "", "",
144 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
145 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
146 "", "", "", "", "", "", "", "",
150 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
152 return register_names
[reg_nr
];
156 sh_sh3e_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
158 static char *register_names
[] = {
159 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
163 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
164 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
166 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
167 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
168 "", "", "", "", "", "", "", "",
172 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
174 return register_names
[reg_nr
];
178 sh_sh2e_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
180 static char *register_names
[] = {
181 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
182 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
183 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
185 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
186 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
188 "", "", "", "", "", "", "", "",
189 "", "", "", "", "", "", "", "",
190 "", "", "", "", "", "", "", "",
194 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
196 return register_names
[reg_nr
];
200 sh_sh2a_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
202 static char *register_names
[] = {
203 /* general registers 0-15 */
204 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
207 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
210 /* floating point registers 25 - 40 */
211 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
212 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
215 /* 43 - 62. Banked registers. The bank number used is determined by
216 the bank register (63). */
217 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
218 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
219 "machb", "ivnb", "prb", "gbrb", "maclb",
220 /* 63: register bank number, not a real register but used to
221 communicate the register bank currently get/set. This register
222 is hidden to the user, who manipulates it using the pseudo
223 register called "bank" (67). See below. */
226 "ibcr", "ibnr", "tbr",
227 /* 67: register bank number, the user visible pseudo register. */
229 /* double precision (pseudo) 68 - 75 */
230 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
234 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
236 return register_names
[reg_nr
];
240 sh_sh2a_nofpu_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
242 static char *register_names
[] = {
243 /* general registers 0-15 */
244 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
245 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
247 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
250 /* floating point registers 25 - 40 */
251 "", "", "", "", "", "", "", "",
252 "", "", "", "", "", "", "", "",
255 /* 43 - 62. Banked registers. The bank number used is determined by
256 the bank register (63). */
257 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
258 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
259 "machb", "ivnb", "prb", "gbrb", "maclb",
260 /* 63: register bank number, not a real register but used to
261 communicate the register bank currently get/set. This register
262 is hidden to the user, who manipulates it using the pseudo
263 register called "bank" (67). See below. */
266 "ibcr", "ibnr", "tbr",
267 /* 67: register bank number, the user visible pseudo register. */
269 /* double precision (pseudo) 68 - 75 */
270 "", "", "", "", "", "", "", "",
274 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
276 return register_names
[reg_nr
];
280 sh_sh_dsp_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
282 static char *register_names
[] = {
283 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
284 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
285 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
287 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
288 "y0", "y1", "", "", "", "", "", "mod",
290 "rs", "re", "", "", "", "", "", "",
291 "", "", "", "", "", "", "", "",
292 "", "", "", "", "", "", "", "",
296 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
298 return register_names
[reg_nr
];
302 sh_sh3_dsp_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
304 static char *register_names
[] = {
305 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
306 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
307 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
309 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
310 "y0", "y1", "", "", "", "", "", "mod",
312 "rs", "re", "", "", "", "", "", "",
313 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
314 "", "", "", "", "", "", "", "",
315 "", "", "", "", "", "", "", "",
319 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
321 return register_names
[reg_nr
];
325 sh_sh4_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
327 static char *register_names
[] = {
328 /* general registers 0-15 */
329 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
330 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
332 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
335 /* floating point registers 25 - 40 */
336 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
337 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
341 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
343 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
345 "", "", "", "", "", "", "", "",
346 /* pseudo bank register. */
348 /* double precision (pseudo) 68 - 75 */
349 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
350 /* vectors (pseudo) 76 - 79 */
351 "fv0", "fv4", "fv8", "fv12",
352 /* FIXME: missing XF */
353 /* FIXME: missing XD */
357 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
359 return register_names
[reg_nr
];
363 sh_sh4_nofpu_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
365 static char *register_names
[] = {
366 /* general registers 0-15 */
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
370 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
373 /* floating point registers 25 - 40 -- not for nofpu target */
374 "", "", "", "", "", "", "", "",
375 "", "", "", "", "", "", "", "",
379 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
381 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
383 "", "", "", "", "", "", "", "",
384 /* pseudo bank register. */
386 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
387 "", "", "", "", "", "", "", "",
388 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
393 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
395 return register_names
[reg_nr
];
399 sh_sh4al_dsp_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
401 static char *register_names
[] = {
402 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
403 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
404 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
406 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
407 "y0", "y1", "", "", "", "", "", "mod",
409 "rs", "re", "", "", "", "", "", "",
410 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
416 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
418 return register_names
[reg_nr
];
421 static const unsigned char *
422 sh_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
, int *lenptr
)
424 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
425 static unsigned char breakpoint
[] = { 0xc3, 0xc3 };
427 /* For remote stub targets, trapa #20 is used. */
428 if (strcmp (target_shortname
, "remote") == 0)
430 static unsigned char big_remote_breakpoint
[] = { 0xc3, 0x20 };
431 static unsigned char little_remote_breakpoint
[] = { 0x20, 0xc3 };
433 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
435 *lenptr
= sizeof (big_remote_breakpoint
);
436 return big_remote_breakpoint
;
440 *lenptr
= sizeof (little_remote_breakpoint
);
441 return little_remote_breakpoint
;
445 *lenptr
= sizeof (breakpoint
);
449 /* Prologue looks like
453 sub <room_for_loca_vars>,r15
456 Actually it can be more complicated than this but that's it, basically. */
458 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
459 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
461 /* JSR @Rm 0100mmmm00001011 */
462 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
464 /* STS.L PR,@-r15 0100111100100010
465 r15-4-->r15, PR-->(r15) */
466 #define IS_STS(x) ((x) == 0x4f22)
468 /* STS.L MACL,@-r15 0100111100010010
469 r15-4-->r15, MACL-->(r15) */
470 #define IS_MACL_STS(x) ((x) == 0x4f12)
472 /* MOV.L Rm,@-r15 00101111mmmm0110
473 r15-4-->r15, Rm-->(R15) */
474 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
476 /* MOV r15,r14 0110111011110011
478 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
480 /* ADD #imm,r15 01111111iiiiiiii
482 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
484 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
485 #define IS_SHLL_R3(x) ((x) == 0x4300)
487 /* ADD r3,r15 0011111100111100
489 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
491 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
492 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
493 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
494 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
495 make this entirely clear. */
496 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
497 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
499 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
500 #define IS_MOV_ARG_TO_REG(x) \
501 (((x) & 0xf00f) == 0x6003 && \
502 ((x) & 0x00f0) >= 0x0040 && \
503 ((x) & 0x00f0) <= 0x0070)
504 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
505 #define IS_MOV_ARG_TO_IND_R14(x) \
506 (((x) & 0xff0f) == 0x2e02 && \
507 ((x) & 0x00f0) >= 0x0040 && \
508 ((x) & 0x00f0) <= 0x0070)
509 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
510 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
511 (((x) & 0xff00) == 0x1e00 && \
512 ((x) & 0x00f0) >= 0x0040 && \
513 ((x) & 0x00f0) <= 0x0070)
515 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
516 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
517 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
518 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
519 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
520 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
521 /* SUB Rn,R15 00111111nnnn1000 */
522 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
524 #define FPSCR_SZ (1 << 20)
526 /* The following instructions are used for epilogue testing. */
527 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
528 #define IS_RTS(x) ((x) == 0x000b)
529 #define IS_LDS(x) ((x) == 0x4f26)
530 #define IS_MACL_LDS(x) ((x) == 0x4f16)
531 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
532 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
533 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
536 sh_analyze_prologue (struct gdbarch
*gdbarch
,
537 CORE_ADDR pc
, CORE_ADDR limit_pc
,
538 struct sh_frame_cache
*cache
, ULONGEST fpscr
)
540 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
545 int reg
, sav_reg
= -1;
548 for (; pc
< limit_pc
; pc
+= 2)
550 inst
= read_memory_unsigned_integer (pc
, 2, byte_order
);
551 /* See where the registers will be saved to. */
554 cache
->saved_regs
[GET_SOURCE_REG (inst
)] = cache
->sp_offset
;
555 cache
->sp_offset
+= 4;
557 else if (IS_STS (inst
))
559 cache
->saved_regs
[PR_REGNUM
] = cache
->sp_offset
;
560 cache
->sp_offset
+= 4;
562 else if (IS_MACL_STS (inst
))
564 cache
->saved_regs
[MACL_REGNUM
] = cache
->sp_offset
;
565 cache
->sp_offset
+= 4;
567 else if (IS_MOV_R3 (inst
))
569 r3_val
= ((inst
& 0xff) ^ 0x80) - 0x80;
571 else if (IS_SHLL_R3 (inst
))
575 else if (IS_ADD_R3SP (inst
))
577 cache
->sp_offset
+= -r3_val
;
579 else if (IS_ADD_IMM_SP (inst
))
581 offset
= ((inst
& 0xff) ^ 0x80) - 0x80;
582 cache
->sp_offset
-= offset
;
584 else if (IS_MOVW_PCREL_TO_REG (inst
))
588 reg
= GET_TARGET_REG (inst
);
592 offset
= (inst
& 0xff) << 1;
594 read_memory_integer ((pc
+ 4) + offset
, 2, byte_order
);
598 else if (IS_MOVL_PCREL_TO_REG (inst
))
602 reg
= GET_TARGET_REG (inst
);
606 offset
= (inst
& 0xff) << 2;
608 read_memory_integer (((pc
& 0xfffffffc) + 4) + offset
,
613 else if (IS_MOVI20 (inst
)
614 && (pc
+ 2 < limit_pc
))
618 reg
= GET_TARGET_REG (inst
);
622 sav_offset
= GET_SOURCE_REG (inst
) << 16;
623 /* MOVI20 is a 32 bit instruction! */
626 |= read_memory_unsigned_integer (pc
, 2, byte_order
);
627 /* Now sav_offset contains an unsigned 20 bit value.
628 It must still get sign extended. */
629 if (sav_offset
& 0x00080000)
630 sav_offset
|= 0xfff00000;
634 else if (IS_SUB_REG_FROM_SP (inst
))
636 reg
= GET_SOURCE_REG (inst
);
637 if (sav_reg
> 0 && reg
== sav_reg
)
641 cache
->sp_offset
+= sav_offset
;
643 else if (IS_FPUSH (inst
))
645 if (fpscr
& FPSCR_SZ
)
647 cache
->sp_offset
+= 8;
651 cache
->sp_offset
+= 4;
654 else if (IS_MOV_SP_FP (inst
))
657 /* Don't go any further than six more instructions. */
658 limit_pc
= std::min (limit_pc
, pc
+ (2 * 6));
661 /* At this point, only allow argument register moves to other
662 registers or argument register moves to @(X,fp) which are
663 moving the register arguments onto the stack area allocated
664 by a former add somenumber to SP call. Don't allow moving
665 to an fp indirect address above fp + cache->sp_offset. */
666 for (; pc
< limit_pc
; pc
+= 2)
668 inst
= read_memory_integer (pc
, 2, byte_order
);
669 if (IS_MOV_ARG_TO_IND_R14 (inst
))
671 reg
= GET_SOURCE_REG (inst
);
672 if (cache
->sp_offset
> 0)
673 cache
->saved_regs
[reg
] = cache
->sp_offset
;
675 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst
))
677 reg
= GET_SOURCE_REG (inst
);
678 offset
= (inst
& 0xf) * 4;
679 if (cache
->sp_offset
> offset
)
680 cache
->saved_regs
[reg
] = cache
->sp_offset
- offset
;
682 else if (IS_MOV_ARG_TO_REG (inst
))
689 else if (IS_JSR (inst
))
691 /* We have found a jsr that has been scheduled into the prologue.
692 If we continue the scan and return a pc someplace after this,
693 then setting a breakpoint on this function will cause it to
694 appear to be called after the function it is calling via the
695 jsr, which will be very confusing. Most likely the next
696 instruction is going to be IS_MOV_SP_FP in the delay slot. If
697 so, note that before returning the current pc. */
698 if (pc
+ 2 < limit_pc
)
700 inst
= read_memory_integer (pc
+ 2, 2, byte_order
);
701 if (IS_MOV_SP_FP (inst
))
706 #if 0 /* This used to just stop when it found an instruction
707 that was not considered part of the prologue. Now,
708 we just keep going looking for likely
718 /* Skip any prologue before the guts of a function. */
720 sh_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
722 CORE_ADDR post_prologue_pc
, func_addr
, func_end_addr
, limit_pc
;
723 struct sh_frame_cache cache
;
725 /* See if we can determine the end of the prologue via the symbol table.
726 If so, then return either PC, or the PC after the prologue, whichever
728 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end_addr
))
730 post_prologue_pc
= skip_prologue_using_sal (gdbarch
, func_addr
);
731 if (post_prologue_pc
!= 0)
732 return std::max (pc
, post_prologue_pc
);
735 /* Can't determine prologue from the symbol table, need to examine
738 /* Find an upper limit on the function prologue using the debug
739 information. If the debug information could not be used to provide
740 that bound, then use an arbitrary large number as the upper bound. */
741 limit_pc
= skip_prologue_using_sal (gdbarch
, pc
);
743 /* Don't go any further than 28 instructions. */
744 limit_pc
= pc
+ (2 * 28);
746 /* Do not allow limit_pc to be past the function end, if we know
747 where that end is... */
748 if (func_end_addr
!= 0)
749 limit_pc
= std::min (limit_pc
, func_end_addr
);
751 cache
.sp_offset
= -4;
752 post_prologue_pc
= sh_analyze_prologue (gdbarch
, pc
, limit_pc
, &cache
, 0);
754 pc
= post_prologue_pc
;
761 Aggregate types not bigger than 8 bytes that have the same size and
762 alignment as one of the integer scalar types are returned in the
763 same registers as the integer type they match.
765 For example, a 2-byte aligned structure with size 2 bytes has the
766 same size and alignment as a short int, and will be returned in R0.
767 A 4-byte aligned structure with size 8 bytes has the same size and
768 alignment as a long long int, and will be returned in R0 and R1.
770 When an aggregate type is returned in R0 and R1, R0 contains the
771 first four bytes of the aggregate, and R1 contains the
772 remainder. If the size of the aggregate type is not a multiple of 4
773 bytes, the aggregate is tail-padded up to a multiple of 4
774 bytes. The value of the padding is undefined. For little-endian
775 targets the padding will appear at the most significant end of the
776 last element, for big-endian targets the padding appears at the
777 least significant end of the last element.
779 All other aggregate types are returned by address. The caller
780 function passes the address of an area large enough to hold the
781 aggregate value in R2. The called function stores the result in
784 To reiterate, structs smaller than 8 bytes could also be returned
785 in memory, if they don't pass the "same size and alignment as an
790 struct s { char c[3]; } wibble;
791 struct s foo(void) { return wibble; }
793 the return value from foo() will be in memory, not
794 in R0, because there is no 3-byte integer type.
798 struct s { char c[2]; } wibble;
799 struct s foo(void) { return wibble; }
801 because a struct containing two chars has alignment 1, that matches
802 type char, but size 2, that matches type short. There's no integer
803 type that has alignment 1 and size 2, so the struct is returned in
807 sh_use_struct_convention (int renesas_abi
, struct type
*type
)
809 int len
= TYPE_LENGTH (type
);
810 int nelem
= TYPE_NFIELDS (type
);
812 /* The Renesas ABI returns aggregate types always on stack. */
813 if (renesas_abi
&& (TYPE_CODE (type
) == TYPE_CODE_STRUCT
814 || TYPE_CODE (type
) == TYPE_CODE_UNION
))
817 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
818 fit in two registers anyway) use struct convention. */
819 if (len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8)
822 /* Scalar types and aggregate types with exactly one field are aligned
823 by definition. They are returned in registers. */
827 /* If the first field in the aggregate has the same length as the entire
828 aggregate type, the type is returned in registers. */
829 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0)) == len
)
832 /* If the size of the aggregate is 8 bytes and the first field is
833 of size 4 bytes its alignment is equal to long long's alignment,
834 so it's returned in registers. */
835 if (len
== 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0)) == 4)
838 /* Otherwise use struct convention. */
843 sh_use_struct_convention_nofpu (int renesas_abi
, struct type
*type
)
845 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
846 if (renesas_abi
&& TYPE_NFIELDS (type
) == 0 && TYPE_LENGTH (type
) >= 8)
848 return sh_use_struct_convention (renesas_abi
, type
);
852 sh_frame_align (struct gdbarch
*ignore
, CORE_ADDR sp
)
857 /* Function: push_dummy_call (formerly push_arguments)
858 Setup the function arguments for calling a function in the inferior.
860 On the Renesas SH architecture, there are four registers (R4 to R7)
861 which are dedicated for passing function arguments. Up to the first
862 four arguments (depending on size) may go into these registers.
863 The rest go on the stack.
865 MVS: Except on SH variants that have floating point registers.
866 In that case, float and double arguments are passed in the same
867 manner, but using FP registers instead of GP registers.
869 Arguments that are smaller than 4 bytes will still take up a whole
870 register or a whole 32-bit word on the stack, and will be
871 right-justified in the register or the stack word. This includes
872 chars, shorts, and small aggregate types.
874 Arguments that are larger than 4 bytes may be split between two or
875 more registers. If there are not enough registers free, an argument
876 may be passed partly in a register (or registers), and partly on the
877 stack. This includes doubles, long longs, and larger aggregates.
878 As far as I know, there is no upper limit to the size of aggregates
879 that will be passed in this way; in other words, the convention of
880 passing a pointer to a large aggregate instead of a copy is not used.
882 MVS: The above appears to be true for the SH variants that do not
883 have an FPU, however those that have an FPU appear to copy the
884 aggregate argument onto the stack (and not place it in registers)
885 if it is larger than 16 bytes (four GP registers).
887 An exceptional case exists for struct arguments (and possibly other
888 aggregates such as arrays) if the size is larger than 4 bytes but
889 not a multiple of 4 bytes. In this case the argument is never split
890 between the registers and the stack, but instead is copied in its
891 entirety onto the stack, AND also copied into as many registers as
892 there is room for. In other words, space in registers permitting,
893 two copies of the same argument are passed in. As far as I can tell,
894 only the one on the stack is used, although that may be a function
895 of the level of compiler optimization. I suspect this is a compiler
896 bug. Arguments of these odd sizes are left-justified within the
897 word (as opposed to arguments smaller than 4 bytes, which are
900 If the function is to return an aggregate type such as a struct, it
901 is either returned in the normal return value register R0 (if its
902 size is no greater than one byte), or else the caller must allocate
903 space into which the callee will copy the return value (if the size
904 is greater than one byte). In this case, a pointer to the return
905 value location is passed into the callee in register R2, which does
906 not displace any of the other arguments passed in via registers R4
909 /* Helper function to justify value in register according to endianess. */
910 static const gdb_byte
*
911 sh_justify_value_in_reg (struct gdbarch
*gdbarch
, struct value
*val
, int len
)
913 static gdb_byte valbuf
[4];
915 memset (valbuf
, 0, sizeof (valbuf
));
918 /* value gets right-justified in the register or stack word. */
919 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
920 memcpy (valbuf
+ (4 - len
), value_contents (val
), len
);
922 memcpy (valbuf
, value_contents (val
), len
);
925 return value_contents (val
);
928 /* Helper function to eval number of bytes to allocate on stack. */
930 sh_stack_allocsize (int nargs
, struct value
**args
)
934 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[nargs
])) + 3) & ~3);
938 /* Helper functions for getting the float arguments right. Registers usage
939 depends on the ABI and the endianess. The comments should enlighten how
940 it's intended to work. */
942 /* This array stores which of the float arg registers are already in use. */
943 static int flt_argreg_array
[FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
+ 1];
945 /* This function just resets the above array to "no reg used so far". */
947 sh_init_flt_argreg (void)
949 memset (flt_argreg_array
, 0, sizeof flt_argreg_array
);
952 /* This function returns the next register to use for float arg passing.
953 It returns either a valid value between FLOAT_ARG0_REGNUM and
954 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
955 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
957 Note that register number 0 in flt_argreg_array corresponds with the
958 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
959 29) the parity of the register number is preserved, which is important
960 for the double register passing test (see the "argreg & 1" test below). */
962 sh_next_flt_argreg (struct gdbarch
*gdbarch
, int len
, struct type
*func_type
)
966 /* First search for the next free register. */
967 for (argreg
= 0; argreg
<= FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
;
969 if (!flt_argreg_array
[argreg
])
972 /* No register left? */
973 if (argreg
> FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
)
974 return FLOAT_ARGLAST_REGNUM
+ 1;
978 /* Doubles are always starting in a even register number. */
981 /* In gcc ABI, the skipped register is lost for further argument
982 passing now. Not so in Renesas ABI. */
983 if (!sh_is_renesas_calling_convention (func_type
))
984 flt_argreg_array
[argreg
] = 1;
988 /* No register left? */
989 if (argreg
> FLOAT_ARGLAST_REGNUM
- FLOAT_ARG0_REGNUM
)
990 return FLOAT_ARGLAST_REGNUM
+ 1;
992 /* Also mark the next register as used. */
993 flt_argreg_array
[argreg
+ 1] = 1;
995 else if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
996 && !sh_is_renesas_calling_convention (func_type
))
998 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
999 if (!flt_argreg_array
[argreg
+ 1])
1002 flt_argreg_array
[argreg
] = 1;
1003 return FLOAT_ARG0_REGNUM
+ argreg
;
1006 /* Helper function which figures out, if a type is treated like a float type.
1008 The FPU ABIs have a special way how to treat types as float types.
1009 Structures with exactly one member, which is of type float or double, are
1010 treated exactly as the base types float or double:
1020 are handled the same way as just
1026 As a result, arguments of these struct types are pushed into floating point
1027 registers exactly as floats or doubles, using the same decision algorithm.
1029 The same is valid if these types are used as function return types. The
1030 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1031 or even using struct convention as it is for other structs. */
1034 sh_treat_as_flt_p (struct type
*type
)
1036 /* Ordinary float types are obviously treated as float. */
1037 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1039 /* Otherwise non-struct types are not treated as float. */
1040 if (TYPE_CODE (type
) != TYPE_CODE_STRUCT
)
1042 /* Otherwise structs with more than one memeber are not treated as float. */
1043 if (TYPE_NFIELDS (type
) != 1)
1045 /* Otherwise if the type of that member is float, the whole type is
1046 treated as float. */
1047 if (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0)) == TYPE_CODE_FLT
)
1049 /* Otherwise it's not treated as float. */
1054 sh_push_dummy_call_fpu (struct gdbarch
*gdbarch
,
1055 struct value
*function
,
1056 struct regcache
*regcache
,
1057 CORE_ADDR bp_addr
, int nargs
,
1058 struct value
**args
,
1059 CORE_ADDR sp
, int struct_return
,
1060 CORE_ADDR struct_addr
)
1062 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1063 int stack_offset
= 0;
1064 int argreg
= ARG0_REGNUM
;
1067 struct type
*func_type
= value_type (function
);
1070 const gdb_byte
*val
;
1071 int len
, reg_size
= 0;
1072 int pass_on_stack
= 0;
1074 int last_reg_arg
= INT_MAX
;
1076 /* The Renesas ABI expects all varargs arguments, plus the last
1077 non-vararg argument to be on the stack, no matter how many
1078 registers have been used so far. */
1079 if (sh_is_renesas_calling_convention (func_type
)
1080 && TYPE_VARARGS (func_type
))
1081 last_reg_arg
= TYPE_NFIELDS (func_type
) - 2;
1083 /* First force sp to a 4-byte alignment. */
1084 sp
= sh_frame_align (gdbarch
, sp
);
1086 /* Make room on stack for args. */
1087 sp
-= sh_stack_allocsize (nargs
, args
);
1089 /* Initialize float argument mechanism. */
1090 sh_init_flt_argreg ();
1092 /* Now load as many as possible of the first arguments into
1093 registers, and push the rest onto the stack. There are 16 bytes
1094 in four registers available. Loop thru args from first to last. */
1095 for (argnum
= 0; argnum
< nargs
; argnum
++)
1097 type
= value_type (args
[argnum
]);
1098 len
= TYPE_LENGTH (type
);
1099 val
= sh_justify_value_in_reg (gdbarch
, args
[argnum
], len
);
1101 /* Some decisions have to be made how various types are handled.
1102 This also differs in different ABIs. */
1105 /* Find out the next register to use for a floating point value. */
1106 treat_as_flt
= sh_treat_as_flt_p (type
);
1108 flt_argreg
= sh_next_flt_argreg (gdbarch
, len
, func_type
);
1109 /* In Renesas ABI, long longs and aggregate types are always passed
1111 else if (sh_is_renesas_calling_convention (func_type
)
1112 && ((TYPE_CODE (type
) == TYPE_CODE_INT
&& len
== 8)
1113 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
1114 || TYPE_CODE (type
) == TYPE_CODE_UNION
))
1116 /* In contrast to non-FPU CPUs, arguments are never split between
1117 registers and stack. If an argument doesn't fit in the remaining
1118 registers it's always pushed entirely on the stack. */
1119 else if (len
> ((ARGLAST_REGNUM
- argreg
+ 1) * 4))
1124 if ((treat_as_flt
&& flt_argreg
> FLOAT_ARGLAST_REGNUM
)
1125 || (!treat_as_flt
&& (argreg
> ARGLAST_REGNUM
1127 || argnum
> last_reg_arg
)
1129 /* The data goes entirely on the stack, 4-byte aligned. */
1130 reg_size
= (len
+ 3) & ~3;
1131 write_memory (sp
+ stack_offset
, val
, reg_size
);
1132 stack_offset
+= reg_size
;
1134 else if (treat_as_flt
&& flt_argreg
<= FLOAT_ARGLAST_REGNUM
)
1136 /* Argument goes in a float argument register. */
1137 reg_size
= register_size (gdbarch
, flt_argreg
);
1138 regval
= extract_unsigned_integer (val
, reg_size
, byte_order
);
1139 /* In little endian mode, float types taking two registers
1140 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1141 be stored swapped in the argument registers. The below
1142 code first writes the first 32 bits in the next but one
1143 register, increments the val and len values accordingly
1144 and then proceeds as normal by writing the second 32 bits
1145 into the next register. */
1146 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
1147 && TYPE_LENGTH (type
) == 2 * reg_size
)
1149 regcache_cooked_write_unsigned (regcache
, flt_argreg
+ 1,
1153 regval
= extract_unsigned_integer (val
, reg_size
,
1156 regcache_cooked_write_unsigned (regcache
, flt_argreg
++, regval
);
1158 else if (!treat_as_flt
&& argreg
<= ARGLAST_REGNUM
)
1160 /* there's room in a register */
1161 reg_size
= register_size (gdbarch
, argreg
);
1162 regval
= extract_unsigned_integer (val
, reg_size
, byte_order
);
1163 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
1165 /* Store the value one register at a time or in one step on
1174 if (sh_is_renesas_calling_convention (func_type
))
1175 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1176 the stack and store the struct return address there. */
1177 write_memory_unsigned_integer (sp
-= 4, 4, byte_order
, struct_addr
);
1179 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1180 its own dedicated register. */
1181 regcache_cooked_write_unsigned (regcache
,
1182 STRUCT_RETURN_REGNUM
, struct_addr
);
1185 /* Store return address. */
1186 regcache_cooked_write_unsigned (regcache
, PR_REGNUM
, bp_addr
);
1188 /* Update stack pointer. */
1189 regcache_cooked_write_unsigned (regcache
,
1190 gdbarch_sp_regnum (gdbarch
), sp
);
1196 sh_push_dummy_call_nofpu (struct gdbarch
*gdbarch
,
1197 struct value
*function
,
1198 struct regcache
*regcache
,
1200 int nargs
, struct value
**args
,
1201 CORE_ADDR sp
, int struct_return
,
1202 CORE_ADDR struct_addr
)
1204 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1205 int stack_offset
= 0;
1206 int argreg
= ARG0_REGNUM
;
1208 struct type
*func_type
= value_type (function
);
1211 const gdb_byte
*val
;
1212 int len
, reg_size
= 0;
1213 int pass_on_stack
= 0;
1214 int last_reg_arg
= INT_MAX
;
1216 /* The Renesas ABI expects all varargs arguments, plus the last
1217 non-vararg argument to be on the stack, no matter how many
1218 registers have been used so far. */
1219 if (sh_is_renesas_calling_convention (func_type
)
1220 && TYPE_VARARGS (func_type
))
1221 last_reg_arg
= TYPE_NFIELDS (func_type
) - 2;
1223 /* First force sp to a 4-byte alignment. */
1224 sp
= sh_frame_align (gdbarch
, sp
);
1226 /* Make room on stack for args. */
1227 sp
-= sh_stack_allocsize (nargs
, args
);
1229 /* Now load as many as possible of the first arguments into
1230 registers, and push the rest onto the stack. There are 16 bytes
1231 in four registers available. Loop thru args from first to last. */
1232 for (argnum
= 0; argnum
< nargs
; argnum
++)
1234 type
= value_type (args
[argnum
]);
1235 len
= TYPE_LENGTH (type
);
1236 val
= sh_justify_value_in_reg (gdbarch
, args
[argnum
], len
);
1238 /* Some decisions have to be made how various types are handled.
1239 This also differs in different ABIs. */
1241 /* Renesas ABI pushes doubles and long longs entirely on stack.
1242 Same goes for aggregate types. */
1243 if (sh_is_renesas_calling_convention (func_type
)
1244 && ((TYPE_CODE (type
) == TYPE_CODE_INT
&& len
>= 8)
1245 || (TYPE_CODE (type
) == TYPE_CODE_FLT
&& len
>= 8)
1246 || TYPE_CODE (type
) == TYPE_CODE_STRUCT
1247 || TYPE_CODE (type
) == TYPE_CODE_UNION
))
1251 if (argreg
> ARGLAST_REGNUM
|| pass_on_stack
1252 || argnum
> last_reg_arg
)
1254 /* The remainder of the data goes entirely on the stack,
1256 reg_size
= (len
+ 3) & ~3;
1257 write_memory (sp
+ stack_offset
, val
, reg_size
);
1258 stack_offset
+= reg_size
;
1260 else if (argreg
<= ARGLAST_REGNUM
)
1262 /* There's room in a register. */
1263 reg_size
= register_size (gdbarch
, argreg
);
1264 regval
= extract_unsigned_integer (val
, reg_size
, byte_order
);
1265 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
1267 /* Store the value reg_size bytes at a time. This means that things
1268 larger than reg_size bytes may go partly in registers and partly
1277 if (sh_is_renesas_calling_convention (func_type
))
1278 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1279 the stack and store the struct return address there. */
1280 write_memory_unsigned_integer (sp
-= 4, 4, byte_order
, struct_addr
);
1282 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1283 its own dedicated register. */
1284 regcache_cooked_write_unsigned (regcache
,
1285 STRUCT_RETURN_REGNUM
, struct_addr
);
1288 /* Store return address. */
1289 regcache_cooked_write_unsigned (regcache
, PR_REGNUM
, bp_addr
);
1291 /* Update stack pointer. */
1292 regcache_cooked_write_unsigned (regcache
,
1293 gdbarch_sp_regnum (gdbarch
), sp
);
1298 /* Find a function's return value in the appropriate registers (in
1299 regbuf), and copy it into valbuf. Extract from an array REGBUF
1300 containing the (raw) register state a function return value of type
1301 TYPE, and copy that, in virtual format, into VALBUF. */
1303 sh_extract_return_value_nofpu (struct type
*type
, struct regcache
*regcache
,
1306 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1307 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1308 int len
= TYPE_LENGTH (type
);
1314 regcache_cooked_read_unsigned (regcache
, R0_REGNUM
, &c
);
1315 store_unsigned_integer (valbuf
, len
, byte_order
, c
);
1319 int i
, regnum
= R0_REGNUM
;
1320 for (i
= 0; i
< len
; i
+= 4)
1321 regcache_raw_read (regcache
, regnum
++, valbuf
+ i
);
1324 error (_("bad size for return value"));
1328 sh_extract_return_value_fpu (struct type
*type
, struct regcache
*regcache
,
1331 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1332 if (sh_treat_as_flt_p (type
))
1334 int len
= TYPE_LENGTH (type
);
1335 int i
, regnum
= gdbarch_fp0_regnum (gdbarch
);
1336 for (i
= 0; i
< len
; i
+= 4)
1337 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1338 regcache_raw_read (regcache
, regnum
++,
1339 valbuf
+ len
- 4 - i
);
1341 regcache_raw_read (regcache
, regnum
++, valbuf
+ i
);
1344 sh_extract_return_value_nofpu (type
, regcache
, valbuf
);
1347 /* Write into appropriate registers a function return value
1348 of type TYPE, given in virtual format.
1349 If the architecture is sh4 or sh3e, store a function's return value
1350 in the R0 general register or in the FP0 floating point register,
1351 depending on the type of the return value. In all the other cases
1352 the result is stored in r0, left-justified. */
1354 sh_store_return_value_nofpu (struct type
*type
, struct regcache
*regcache
,
1355 const gdb_byte
*valbuf
)
1357 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1358 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1360 int len
= TYPE_LENGTH (type
);
1364 val
= extract_unsigned_integer (valbuf
, len
, byte_order
);
1365 regcache_cooked_write_unsigned (regcache
, R0_REGNUM
, val
);
1369 int i
, regnum
= R0_REGNUM
;
1370 for (i
= 0; i
< len
; i
+= 4)
1371 regcache_raw_write (regcache
, regnum
++, valbuf
+ i
);
1376 sh_store_return_value_fpu (struct type
*type
, struct regcache
*regcache
,
1377 const gdb_byte
*valbuf
)
1379 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1380 if (sh_treat_as_flt_p (type
))
1382 int len
= TYPE_LENGTH (type
);
1383 int i
, regnum
= gdbarch_fp0_regnum (gdbarch
);
1384 for (i
= 0; i
< len
; i
+= 4)
1385 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1386 regcache_raw_write (regcache
, regnum
++,
1387 valbuf
+ len
- 4 - i
);
1389 regcache_raw_write (regcache
, regnum
++, valbuf
+ i
);
1392 sh_store_return_value_nofpu (type
, regcache
, valbuf
);
1395 static enum return_value_convention
1396 sh_return_value_nofpu (struct gdbarch
*gdbarch
, struct value
*function
,
1397 struct type
*type
, struct regcache
*regcache
,
1398 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1400 struct type
*func_type
= function
? value_type (function
) : NULL
;
1402 if (sh_use_struct_convention_nofpu (
1403 sh_is_renesas_calling_convention (func_type
), type
))
1404 return RETURN_VALUE_STRUCT_CONVENTION
;
1406 sh_store_return_value_nofpu (type
, regcache
, writebuf
);
1408 sh_extract_return_value_nofpu (type
, regcache
, readbuf
);
1409 return RETURN_VALUE_REGISTER_CONVENTION
;
1412 static enum return_value_convention
1413 sh_return_value_fpu (struct gdbarch
*gdbarch
, struct value
*function
,
1414 struct type
*type
, struct regcache
*regcache
,
1415 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1417 struct type
*func_type
= function
? value_type (function
) : NULL
;
1419 if (sh_use_struct_convention (
1420 sh_is_renesas_calling_convention (func_type
), type
))
1421 return RETURN_VALUE_STRUCT_CONVENTION
;
1423 sh_store_return_value_fpu (type
, regcache
, writebuf
);
1425 sh_extract_return_value_fpu (type
, regcache
, readbuf
);
1426 return RETURN_VALUE_REGISTER_CONVENTION
;
1429 static struct type
*
1430 sh_sh2a_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1432 if ((reg_nr
>= gdbarch_fp0_regnum (gdbarch
)
1433 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1434 return builtin_type (gdbarch
)->builtin_float
;
1435 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1436 return builtin_type (gdbarch
)->builtin_double
;
1438 return builtin_type (gdbarch
)->builtin_int
;
1441 /* Return the GDB type object for the "standard" data type
1442 of data in register N. */
1443 static struct type
*
1444 sh_sh3e_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1446 if ((reg_nr
>= gdbarch_fp0_regnum (gdbarch
)
1447 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1448 return builtin_type (gdbarch
)->builtin_float
;
1450 return builtin_type (gdbarch
)->builtin_int
;
1453 static struct type
*
1454 sh_sh4_build_float_register_type (struct gdbarch
*gdbarch
, int high
)
1456 return lookup_array_range_type (builtin_type (gdbarch
)->builtin_float
,
1460 static struct type
*
1461 sh_sh4_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1463 if ((reg_nr
>= gdbarch_fp0_regnum (gdbarch
)
1464 && (reg_nr
<= FP_LAST_REGNUM
)) || (reg_nr
== FPUL_REGNUM
))
1465 return builtin_type (gdbarch
)->builtin_float
;
1466 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1467 return builtin_type (gdbarch
)->builtin_double
;
1468 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
1469 return sh_sh4_build_float_register_type (gdbarch
, 3);
1471 return builtin_type (gdbarch
)->builtin_int
;
1474 static struct type
*
1475 sh_default_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1477 return builtin_type (gdbarch
)->builtin_int
;
1480 /* Is a register in a reggroup?
1481 The default code in reggroup.c doesn't identify system registers, some
1482 float registers or any of the vector registers.
1483 TODO: sh2a and dsp registers. */
1485 sh_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
1486 struct reggroup
*reggroup
)
1488 if (gdbarch_register_name (gdbarch
, regnum
) == NULL
1489 || *gdbarch_register_name (gdbarch
, regnum
) == '\0')
1492 if (reggroup
== float_reggroup
1493 && (regnum
== FPUL_REGNUM
1494 || regnum
== FPSCR_REGNUM
))
1497 if (regnum
>= FV0_REGNUM
&& regnum
<= FV_LAST_REGNUM
)
1499 if (reggroup
== vector_reggroup
|| reggroup
== float_reggroup
)
1501 if (reggroup
== general_reggroup
)
1505 if (regnum
== VBR_REGNUM
1506 || regnum
== SR_REGNUM
1507 || regnum
== FPSCR_REGNUM
1508 || regnum
== SSR_REGNUM
1509 || regnum
== SPC_REGNUM
)
1511 if (reggroup
== system_reggroup
)
1513 if (reggroup
== general_reggroup
)
1517 /* The default code can cope with any other registers. */
1518 return default_register_reggroup_p (gdbarch
, regnum
, reggroup
);
1521 /* On the sh4, the DRi pseudo registers are problematic if the target
1522 is little endian. When the user writes one of those registers, for
1523 instance with 'set var $dr0=1', we want the double to be stored
1525 fr0 = 0x00 0x00 0xf0 0x3f
1526 fr1 = 0x00 0x00 0x00 0x00
1528 This corresponds to little endian byte order & big endian word
1529 order. However if we let gdb write the register w/o conversion, it
1530 will write fr0 and fr1 this way:
1531 fr0 = 0x00 0x00 0x00 0x00
1532 fr1 = 0x00 0x00 0xf0 0x3f
1533 because it will consider fr0 and fr1 as a single LE stretch of memory.
1535 To achieve what we want we must force gdb to store things in
1536 floatformat_ieee_double_littlebyte_bigword (which is defined in
1537 include/floatformat.h and libiberty/floatformat.c.
1539 In case the target is big endian, there is no problem, the
1540 raw bytes will look like:
1541 fr0 = 0x3f 0xf0 0x00 0x00
1542 fr1 = 0x00 0x00 0x00 0x00
1544 The other pseudo registers (the FVs) also don't pose a problem
1545 because they are stored as 4 individual FP elements. */
1548 sh_register_convert_to_virtual (struct gdbarch
*gdbarch
, int regnum
,
1549 struct type
*type
, gdb_byte
*from
, gdb_byte
*to
)
1551 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_LITTLE
)
1553 /* It is a no-op. */
1554 memcpy (to
, from
, register_size (gdbarch
, regnum
));
1558 if (regnum
>= DR0_REGNUM
&& regnum
<= DR_LAST_REGNUM
)
1561 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1563 store_typed_floating (to
, type
, val
);
1567 ("sh_register_convert_to_virtual called with non DR register number");
1571 sh_register_convert_to_raw (struct gdbarch
*gdbarch
, struct type
*type
,
1572 int regnum
, const gdb_byte
*from
, gdb_byte
*to
)
1574 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_LITTLE
)
1576 /* It is a no-op. */
1577 memcpy (to
, from
, register_size (gdbarch
, regnum
));
1581 if (regnum
>= DR0_REGNUM
&& regnum
<= DR_LAST_REGNUM
)
1583 DOUBLEST val
= extract_typed_floating (from
, type
);
1584 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1588 error (_("sh_register_convert_to_raw called with non DR register number"));
1591 /* For vectors of 4 floating point registers. */
1593 fv_reg_base_num (struct gdbarch
*gdbarch
, int fv_regnum
)
1597 fp_regnum
= gdbarch_fp0_regnum (gdbarch
)
1598 + (fv_regnum
- FV0_REGNUM
) * 4;
1602 /* For double precision floating point registers, i.e 2 fp regs. */
1604 dr_reg_base_num (struct gdbarch
*gdbarch
, int dr_regnum
)
1608 fp_regnum
= gdbarch_fp0_regnum (gdbarch
)
1609 + (dr_regnum
- DR0_REGNUM
) * 2;
1613 /* Concatenate PORTIONS contiguous raw registers starting at
1614 BASE_REGNUM into BUFFER. */
1616 static enum register_status
1617 pseudo_register_read_portions (struct gdbarch
*gdbarch
,
1618 struct regcache
*regcache
,
1620 int base_regnum
, gdb_byte
*buffer
)
1624 for (portion
= 0; portion
< portions
; portion
++)
1626 enum register_status status
;
1629 b
= buffer
+ register_size (gdbarch
, base_regnum
) * portion
;
1630 status
= regcache_raw_read (regcache
, base_regnum
+ portion
, b
);
1631 if (status
!= REG_VALID
)
1638 static enum register_status
1639 sh_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1640 int reg_nr
, gdb_byte
*buffer
)
1643 gdb_byte temp_buffer
[MAX_REGISTER_SIZE
];
1644 enum register_status status
;
1646 if (reg_nr
== PSEUDO_BANK_REGNUM
)
1647 return regcache_raw_read (regcache
, BANK_REGNUM
, buffer
);
1648 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1650 base_regnum
= dr_reg_base_num (gdbarch
, reg_nr
);
1652 /* Build the value in the provided buffer. */
1653 /* Read the real regs for which this one is an alias. */
1654 status
= pseudo_register_read_portions (gdbarch
, regcache
,
1655 2, base_regnum
, temp_buffer
);
1656 if (status
== REG_VALID
)
1658 /* We must pay attention to the endiannes. */
1659 sh_register_convert_to_virtual (gdbarch
, reg_nr
,
1660 register_type (gdbarch
, reg_nr
),
1661 temp_buffer
, buffer
);
1665 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
1667 base_regnum
= fv_reg_base_num (gdbarch
, reg_nr
);
1669 /* Read the real regs for which this one is an alias. */
1670 return pseudo_register_read_portions (gdbarch
, regcache
,
1671 4, base_regnum
, buffer
);
1674 gdb_assert_not_reached ("invalid pseudo register number");
1678 sh_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1679 int reg_nr
, const gdb_byte
*buffer
)
1681 int base_regnum
, portion
;
1682 gdb_byte temp_buffer
[MAX_REGISTER_SIZE
];
1684 if (reg_nr
== PSEUDO_BANK_REGNUM
)
1686 /* When the bank register is written to, the whole register bank
1687 is switched and all values in the bank registers must be read
1688 from the target/sim again. We're just invalidating the regcache
1689 so that a re-read happens next time it's necessary. */
1692 regcache_raw_write (regcache
, BANK_REGNUM
, buffer
);
1693 for (bregnum
= R0_BANK0_REGNUM
; bregnum
< MACLB_REGNUM
; ++bregnum
)
1694 regcache_invalidate (regcache
, bregnum
);
1696 else if (reg_nr
>= DR0_REGNUM
&& reg_nr
<= DR_LAST_REGNUM
)
1698 base_regnum
= dr_reg_base_num (gdbarch
, reg_nr
);
1700 /* We must pay attention to the endiannes. */
1701 sh_register_convert_to_raw (gdbarch
, register_type (gdbarch
, reg_nr
),
1702 reg_nr
, buffer
, temp_buffer
);
1704 /* Write the real regs for which this one is an alias. */
1705 for (portion
= 0; portion
< 2; portion
++)
1706 regcache_raw_write (regcache
, base_regnum
+ portion
,
1708 + register_size (gdbarch
,
1709 base_regnum
) * portion
));
1711 else if (reg_nr
>= FV0_REGNUM
&& reg_nr
<= FV_LAST_REGNUM
)
1713 base_regnum
= fv_reg_base_num (gdbarch
, reg_nr
);
1715 /* Write the real regs for which this one is an alias. */
1716 for (portion
= 0; portion
< 4; portion
++)
1717 regcache_raw_write (regcache
, base_regnum
+ portion
,
1719 + register_size (gdbarch
,
1720 base_regnum
) * portion
));
1725 sh_dsp_register_sim_regno (struct gdbarch
*gdbarch
, int nr
)
1727 if (legacy_register_sim_regno (gdbarch
, nr
) < 0)
1728 return legacy_register_sim_regno (gdbarch
, nr
);
1729 if (nr
>= DSR_REGNUM
&& nr
<= Y1_REGNUM
)
1730 return nr
- DSR_REGNUM
+ SIM_SH_DSR_REGNUM
;
1731 if (nr
== MOD_REGNUM
)
1732 return SIM_SH_MOD_REGNUM
;
1733 if (nr
== RS_REGNUM
)
1734 return SIM_SH_RS_REGNUM
;
1735 if (nr
== RE_REGNUM
)
1736 return SIM_SH_RE_REGNUM
;
1737 if (nr
>= DSP_R0_BANK_REGNUM
&& nr
<= DSP_R7_BANK_REGNUM
)
1738 return nr
- DSP_R0_BANK_REGNUM
+ SIM_SH_R0_BANK_REGNUM
;
1743 sh_sh2a_register_sim_regno (struct gdbarch
*gdbarch
, int nr
)
1748 return SIM_SH_TBR_REGNUM
;
1750 return SIM_SH_IBNR_REGNUM
;
1752 return SIM_SH_IBCR_REGNUM
;
1754 return SIM_SH_BANK_REGNUM
;
1756 return SIM_SH_BANK_MACL_REGNUM
;
1758 return SIM_SH_BANK_GBR_REGNUM
;
1760 return SIM_SH_BANK_PR_REGNUM
;
1762 return SIM_SH_BANK_IVN_REGNUM
;
1764 return SIM_SH_BANK_MACH_REGNUM
;
1768 return legacy_register_sim_regno (gdbarch
, nr
);
1771 /* Set up the register unwinding such that call-clobbered registers are
1772 not displayed in frames >0 because the true value is not certain.
1773 The 'undefined' registers will show up as 'not available' unless the
1776 This function is currently set up for SH4 and compatible only. */
1779 sh_dwarf2_frame_init_reg (struct gdbarch
*gdbarch
, int regnum
,
1780 struct dwarf2_frame_state_reg
*reg
,
1781 struct frame_info
*this_frame
)
1783 /* Mark the PC as the destination for the return address. */
1784 if (regnum
== gdbarch_pc_regnum (gdbarch
))
1785 reg
->how
= DWARF2_FRAME_REG_RA
;
1787 /* Mark the stack pointer as the call frame address. */
1788 else if (regnum
== gdbarch_sp_regnum (gdbarch
))
1789 reg
->how
= DWARF2_FRAME_REG_CFA
;
1791 /* The above was taken from the default init_reg in dwarf2-frame.c
1792 while the below is SH specific. */
1794 /* Caller save registers. */
1795 else if ((regnum
>= R0_REGNUM
&& regnum
<= R0_REGNUM
+7)
1796 || (regnum
>= FR0_REGNUM
&& regnum
<= FR0_REGNUM
+11)
1797 || (regnum
>= DR0_REGNUM
&& regnum
<= DR0_REGNUM
+5)
1798 || (regnum
>= FV0_REGNUM
&& regnum
<= FV0_REGNUM
+2)
1799 || (regnum
== MACH_REGNUM
)
1800 || (regnum
== MACL_REGNUM
)
1801 || (regnum
== FPUL_REGNUM
)
1802 || (regnum
== SR_REGNUM
))
1803 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
1805 /* Callee save registers. */
1806 else if ((regnum
>= R0_REGNUM
+8 && regnum
<= R0_REGNUM
+15)
1807 || (regnum
>= FR0_REGNUM
+12 && regnum
<= FR0_REGNUM
+15)
1808 || (regnum
>= DR0_REGNUM
+6 && regnum
<= DR0_REGNUM
+8)
1809 || (regnum
== FV0_REGNUM
+3))
1810 reg
->how
= DWARF2_FRAME_REG_SAME_VALUE
;
1812 /* Other registers. These are not in the ABI and may or may not
1813 mean anything in frames >0 so don't show them. */
1814 else if ((regnum
>= R0_BANK0_REGNUM
&& regnum
<= R0_BANK0_REGNUM
+15)
1815 || (regnum
== GBR_REGNUM
)
1816 || (regnum
== VBR_REGNUM
)
1817 || (regnum
== FPSCR_REGNUM
)
1818 || (regnum
== SSR_REGNUM
)
1819 || (regnum
== SPC_REGNUM
))
1820 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
1823 static struct sh_frame_cache
*
1824 sh_alloc_frame_cache (void)
1826 struct sh_frame_cache
*cache
;
1829 cache
= FRAME_OBSTACK_ZALLOC (struct sh_frame_cache
);
1833 cache
->saved_sp
= 0;
1834 cache
->sp_offset
= 0;
1837 /* Frameless until proven otherwise. */
1840 /* Saved registers. We initialize these to -1 since zero is a valid
1841 offset (that's where fp is supposed to be stored). */
1842 for (i
= 0; i
< SH_NUM_REGS
; i
++)
1844 cache
->saved_regs
[i
] = -1;
1850 static struct sh_frame_cache
*
1851 sh_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
1853 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1854 struct sh_frame_cache
*cache
;
1855 CORE_ADDR current_pc
;
1859 return (struct sh_frame_cache
*) *this_cache
;
1861 cache
= sh_alloc_frame_cache ();
1862 *this_cache
= cache
;
1864 /* In principle, for normal frames, fp holds the frame pointer,
1865 which holds the base address for the current stack frame.
1866 However, for functions that don't need it, the frame pointer is
1867 optional. For these "frameless" functions the frame pointer is
1868 actually the frame pointer of the calling frame. */
1869 cache
->base
= get_frame_register_unsigned (this_frame
, FP_REGNUM
);
1870 if (cache
->base
== 0)
1873 cache
->pc
= get_frame_func (this_frame
);
1874 current_pc
= get_frame_pc (this_frame
);
1879 /* Check for the existence of the FPSCR register. If it exists,
1880 fetch its value for use in prologue analysis. Passing a zero
1881 value is the best choice for architecture variants upon which
1882 there's no FPSCR register. */
1883 if (gdbarch_register_reggroup_p (gdbarch
, FPSCR_REGNUM
, all_reggroup
))
1884 fpscr
= get_frame_register_unsigned (this_frame
, FPSCR_REGNUM
);
1888 sh_analyze_prologue (gdbarch
, cache
->pc
, current_pc
, cache
, fpscr
);
1891 if (!cache
->uses_fp
)
1893 /* We didn't find a valid frame, which means that CACHE->base
1894 currently holds the frame pointer for our calling frame. If
1895 we're at the start of a function, or somewhere half-way its
1896 prologue, the function's frame probably hasn't been fully
1897 setup yet. Try to reconstruct the base address for the stack
1898 frame by looking at the stack pointer. For truly "frameless"
1899 functions this might work too. */
1900 cache
->base
= get_frame_register_unsigned
1901 (this_frame
, gdbarch_sp_regnum (gdbarch
));
1904 /* Now that we have the base address for the stack frame we can
1905 calculate the value of sp in the calling frame. */
1906 cache
->saved_sp
= cache
->base
+ cache
->sp_offset
;
1908 /* Adjust all the saved registers such that they contain addresses
1909 instead of offsets. */
1910 for (i
= 0; i
< SH_NUM_REGS
; i
++)
1911 if (cache
->saved_regs
[i
] != -1)
1912 cache
->saved_regs
[i
] = cache
->saved_sp
- cache
->saved_regs
[i
] - 4;
1917 static struct value
*
1918 sh_frame_prev_register (struct frame_info
*this_frame
,
1919 void **this_cache
, int regnum
)
1921 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1922 struct sh_frame_cache
*cache
= sh_frame_cache (this_frame
, this_cache
);
1924 gdb_assert (regnum
>= 0);
1926 if (regnum
== gdbarch_sp_regnum (gdbarch
) && cache
->saved_sp
)
1927 return frame_unwind_got_constant (this_frame
, regnum
, cache
->saved_sp
);
1929 /* The PC of the previous frame is stored in the PR register of
1930 the current frame. Frob regnum so that we pull the value from
1931 the correct place. */
1932 if (regnum
== gdbarch_pc_regnum (gdbarch
))
1935 if (regnum
< SH_NUM_REGS
&& cache
->saved_regs
[regnum
] != -1)
1936 return frame_unwind_got_memory (this_frame
, regnum
,
1937 cache
->saved_regs
[regnum
]);
1939 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1943 sh_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
1944 struct frame_id
*this_id
)
1946 struct sh_frame_cache
*cache
= sh_frame_cache (this_frame
, this_cache
);
1948 /* This marks the outermost frame. */
1949 if (cache
->base
== 0)
1952 *this_id
= frame_id_build (cache
->saved_sp
, cache
->pc
);
1955 static const struct frame_unwind sh_frame_unwind
= {
1957 default_frame_unwind_stop_reason
,
1959 sh_frame_prev_register
,
1961 default_frame_sniffer
1965 sh_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1967 return frame_unwind_register_unsigned (next_frame
,
1968 gdbarch_sp_regnum (gdbarch
));
1972 sh_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1974 return frame_unwind_register_unsigned (next_frame
,
1975 gdbarch_pc_regnum (gdbarch
));
1978 static struct frame_id
1979 sh_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1981 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
,
1982 gdbarch_sp_regnum (gdbarch
));
1983 return frame_id_build (sp
, get_frame_pc (this_frame
));
1987 sh_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
1989 struct sh_frame_cache
*cache
= sh_frame_cache (this_frame
, this_cache
);
1994 static const struct frame_base sh_frame_base
= {
1996 sh_frame_base_address
,
1997 sh_frame_base_address
,
1998 sh_frame_base_address
2001 static struct sh_frame_cache
*
2002 sh_make_stub_cache (struct frame_info
*this_frame
)
2004 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2005 struct sh_frame_cache
*cache
;
2007 cache
= sh_alloc_frame_cache ();
2010 = get_frame_register_unsigned (this_frame
, gdbarch_sp_regnum (gdbarch
));
2016 sh_stub_this_id (struct frame_info
*this_frame
, void **this_cache
,
2017 struct frame_id
*this_id
)
2019 struct sh_frame_cache
*cache
;
2021 if (*this_cache
== NULL
)
2022 *this_cache
= sh_make_stub_cache (this_frame
);
2023 cache
= (struct sh_frame_cache
*) *this_cache
;
2025 *this_id
= frame_id_build (cache
->saved_sp
, get_frame_pc (this_frame
));
2029 sh_stub_unwind_sniffer (const struct frame_unwind
*self
,
2030 struct frame_info
*this_frame
,
2031 void **this_prologue_cache
)
2033 CORE_ADDR addr_in_block
;
2035 addr_in_block
= get_frame_address_in_block (this_frame
);
2036 if (in_plt_section (addr_in_block
))
2042 static const struct frame_unwind sh_stub_unwind
=
2045 default_frame_unwind_stop_reason
,
2047 sh_frame_prev_register
,
2049 sh_stub_unwind_sniffer
2052 /* Implement the stack_frame_destroyed_p gdbarch method.
2054 The epilogue is defined here as the area at the end of a function,
2055 either on the `ret' instruction itself or after an instruction which
2056 destroys the function's stack frame. */
2059 sh_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2061 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2062 CORE_ADDR func_addr
= 0, func_end
= 0;
2064 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
2067 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2068 for a nop and some fixed data (e.g. big offsets) which are
2069 unfortunately also treated as part of the function (which
2070 means, they are below func_end. */
2071 CORE_ADDR addr
= func_end
- 28;
2072 if (addr
< func_addr
+ 4)
2073 addr
= func_addr
+ 4;
2077 /* First search forward until hitting an rts. */
2078 while (addr
< func_end
2079 && !IS_RTS (read_memory_unsigned_integer (addr
, 2, byte_order
)))
2081 if (addr
>= func_end
)
2084 /* At this point we should find a mov.l @r15+,r14 instruction,
2085 either before or after the rts. If not, then the function has
2086 probably no "normal" epilogue and we bail out here. */
2087 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2088 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr
- 2, 2,
2091 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr
+ 2, 2,
2095 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2097 /* Step over possible lds.l @r15+,macl. */
2098 if (IS_MACL_LDS (inst
))
2101 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2104 /* Step over possible lds.l @r15+,pr. */
2108 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2111 /* Step over possible mov r14,r15. */
2112 if (IS_MOV_FP_SP (inst
))
2115 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2118 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2120 while (addr
> func_addr
+ 4
2121 && (IS_ADD_REG_TO_FP (inst
) || IS_ADD_IMM_FP (inst
)))
2124 inst
= read_memory_unsigned_integer (addr
- 2, 2, byte_order
);
2127 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2128 That's allowed for the epilogue. */
2129 if ((gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_sh2a
2130 || gdbarch_bfd_arch_info (gdbarch
)->mach
== bfd_mach_sh2a_nofpu
)
2131 && addr
> func_addr
+ 6
2132 && IS_MOVI20 (read_memory_unsigned_integer (addr
- 4, 2,
2143 /* Supply register REGNUM from the buffer specified by REGS and LEN
2144 in the register set REGSET to register cache REGCACHE.
2145 REGTABLE specifies where each register can be found in REGS.
2146 If REGNUM is -1, do this for all registers in REGSET. */
2149 sh_corefile_supply_regset (const struct regset
*regset
,
2150 struct regcache
*regcache
,
2151 int regnum
, const void *regs
, size_t len
)
2153 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
2154 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2155 const struct sh_corefile_regmap
*regmap
= (regset
== &sh_corefile_gregset
2156 ? tdep
->core_gregmap
2157 : tdep
->core_fpregmap
);
2160 for (i
= 0; regmap
[i
].regnum
!= -1; i
++)
2162 if ((regnum
== -1 || regnum
== regmap
[i
].regnum
)
2163 && regmap
[i
].offset
+ 4 <= len
)
2164 regcache_raw_supply (regcache
, regmap
[i
].regnum
,
2165 (char *)regs
+ regmap
[i
].offset
);
2169 /* Collect register REGNUM in the register set REGSET from register cache
2170 REGCACHE into the buffer specified by REGS and LEN.
2171 REGTABLE specifies where each register can be found in REGS.
2172 If REGNUM is -1, do this for all registers in REGSET. */
2175 sh_corefile_collect_regset (const struct regset
*regset
,
2176 const struct regcache
*regcache
,
2177 int regnum
, void *regs
, size_t len
)
2179 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
2180 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2181 const struct sh_corefile_regmap
*regmap
= (regset
== &sh_corefile_gregset
2182 ? tdep
->core_gregmap
2183 : tdep
->core_fpregmap
);
2186 for (i
= 0; regmap
[i
].regnum
!= -1; i
++)
2188 if ((regnum
== -1 || regnum
== regmap
[i
].regnum
)
2189 && regmap
[i
].offset
+ 4 <= len
)
2190 regcache_raw_collect (regcache
, regmap
[i
].regnum
,
2191 (char *)regs
+ regmap
[i
].offset
);
2195 /* The following two regsets have the same contents, so it is tempting to
2196 unify them, but they are distiguished by their address, so don't. */
2198 const struct regset sh_corefile_gregset
=
2201 sh_corefile_supply_regset
,
2202 sh_corefile_collect_regset
2205 static const struct regset sh_corefile_fpregset
=
2208 sh_corefile_supply_regset
,
2209 sh_corefile_collect_regset
2213 sh_iterate_over_regset_sections (struct gdbarch
*gdbarch
,
2214 iterate_over_regset_sections_cb
*cb
,
2216 const struct regcache
*regcache
)
2218 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2220 if (tdep
->core_gregmap
!= NULL
)
2221 cb (".reg", tdep
->sizeof_gregset
, &sh_corefile_gregset
, NULL
, cb_data
);
2223 if (tdep
->core_fpregmap
!= NULL
)
2224 cb (".reg2", tdep
->sizeof_fpregset
, &sh_corefile_fpregset
, NULL
, cb_data
);
2227 /* This is the implementation of gdbarch method
2228 return_in_first_hidden_param_p. */
2231 sh_return_in_first_hidden_param_p (struct gdbarch
*gdbarch
,
2239 static struct gdbarch
*
2240 sh_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2242 struct gdbarch
*gdbarch
;
2243 struct gdbarch_tdep
*tdep
;
2245 /* SH5 is handled entirely in sh64-tdep.c. */
2246 if (info
.bfd_arch_info
->mach
== bfd_mach_sh5
)
2247 return sh64_gdbarch_init (info
, arches
);
2249 /* If there is already a candidate, use it. */
2250 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2252 return arches
->gdbarch
;
2254 /* None found, create a new architecture from the information
2256 tdep
= XCNEW (struct gdbarch_tdep
);
2257 gdbarch
= gdbarch_alloc (&info
, tdep
);
2259 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
2260 set_gdbarch_int_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2261 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2262 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2263 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2264 set_gdbarch_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2265 set_gdbarch_long_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2266 set_gdbarch_ptr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2268 set_gdbarch_num_regs (gdbarch
, SH_NUM_REGS
);
2269 set_gdbarch_sp_regnum (gdbarch
, 15);
2270 set_gdbarch_pc_regnum (gdbarch
, 16);
2271 set_gdbarch_fp0_regnum (gdbarch
, -1);
2272 set_gdbarch_num_pseudo_regs (gdbarch
, 0);
2274 set_gdbarch_register_type (gdbarch
, sh_default_register_type
);
2275 set_gdbarch_register_reggroup_p (gdbarch
, sh_register_reggroup_p
);
2277 set_gdbarch_breakpoint_from_pc (gdbarch
, sh_breakpoint_from_pc
);
2279 set_gdbarch_print_insn (gdbarch
, print_insn_sh
);
2280 set_gdbarch_register_sim_regno (gdbarch
, legacy_register_sim_regno
);
2282 set_gdbarch_return_value (gdbarch
, sh_return_value_nofpu
);
2284 set_gdbarch_skip_prologue (gdbarch
, sh_skip_prologue
);
2285 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2287 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_nofpu
);
2288 set_gdbarch_return_in_first_hidden_param_p (gdbarch
,
2289 sh_return_in_first_hidden_param_p
);
2291 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
2293 set_gdbarch_frame_align (gdbarch
, sh_frame_align
);
2294 set_gdbarch_unwind_sp (gdbarch
, sh_unwind_sp
);
2295 set_gdbarch_unwind_pc (gdbarch
, sh_unwind_pc
);
2296 set_gdbarch_dummy_id (gdbarch
, sh_dummy_id
);
2297 frame_base_set_default (gdbarch
, &sh_frame_base
);
2299 set_gdbarch_stack_frame_destroyed_p (gdbarch
, sh_stack_frame_destroyed_p
);
2301 dwarf2_frame_set_init_reg (gdbarch
, sh_dwarf2_frame_init_reg
);
2303 set_gdbarch_iterate_over_regset_sections
2304 (gdbarch
, sh_iterate_over_regset_sections
);
2306 switch (info
.bfd_arch_info
->mach
)
2309 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2313 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2317 /* doubles on sh2e and sh3e are actually 4 byte. */
2318 set_gdbarch_double_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2319 set_gdbarch_double_format (gdbarch
, floatformats_ieee_single
);
2321 set_gdbarch_register_name (gdbarch
, sh_sh2e_register_name
);
2322 set_gdbarch_register_type (gdbarch
, sh_sh3e_register_type
);
2323 set_gdbarch_fp0_regnum (gdbarch
, 25);
2324 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2325 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2329 set_gdbarch_register_name (gdbarch
, sh_sh2a_register_name
);
2330 set_gdbarch_register_type (gdbarch
, sh_sh2a_register_type
);
2331 set_gdbarch_register_sim_regno (gdbarch
, sh_sh2a_register_sim_regno
);
2333 set_gdbarch_fp0_regnum (gdbarch
, 25);
2334 set_gdbarch_num_pseudo_regs (gdbarch
, 9);
2335 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2336 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2337 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2338 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2341 case bfd_mach_sh2a_nofpu
:
2342 set_gdbarch_register_name (gdbarch
, sh_sh2a_nofpu_register_name
);
2343 set_gdbarch_register_sim_regno (gdbarch
, sh_sh2a_register_sim_regno
);
2345 set_gdbarch_num_pseudo_regs (gdbarch
, 1);
2346 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2347 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2350 case bfd_mach_sh_dsp
:
2351 set_gdbarch_register_name (gdbarch
, sh_sh_dsp_register_name
);
2352 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2356 case bfd_mach_sh3_nommu
:
2357 case bfd_mach_sh2a_nofpu_or_sh3_nommu
:
2358 set_gdbarch_register_name (gdbarch
, sh_sh3_register_name
);
2362 case bfd_mach_sh2a_or_sh3e
:
2363 /* doubles on sh2e and sh3e are actually 4 byte. */
2364 set_gdbarch_double_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2365 set_gdbarch_double_format (gdbarch
, floatformats_ieee_single
);
2367 set_gdbarch_register_name (gdbarch
, sh_sh3e_register_name
);
2368 set_gdbarch_register_type (gdbarch
, sh_sh3e_register_type
);
2369 set_gdbarch_fp0_regnum (gdbarch
, 25);
2370 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2371 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2374 case bfd_mach_sh3_dsp
:
2375 set_gdbarch_register_name (gdbarch
, sh_sh3_dsp_register_name
);
2376 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2381 case bfd_mach_sh2a_or_sh4
:
2382 set_gdbarch_register_name (gdbarch
, sh_sh4_register_name
);
2383 set_gdbarch_register_type (gdbarch
, sh_sh4_register_type
);
2384 set_gdbarch_fp0_regnum (gdbarch
, 25);
2385 set_gdbarch_num_pseudo_regs (gdbarch
, 13);
2386 set_gdbarch_pseudo_register_read (gdbarch
, sh_pseudo_register_read
);
2387 set_gdbarch_pseudo_register_write (gdbarch
, sh_pseudo_register_write
);
2388 set_gdbarch_return_value (gdbarch
, sh_return_value_fpu
);
2389 set_gdbarch_push_dummy_call (gdbarch
, sh_push_dummy_call_fpu
);
2392 case bfd_mach_sh4_nofpu
:
2393 case bfd_mach_sh4a_nofpu
:
2394 case bfd_mach_sh4_nommu_nofpu
:
2395 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu
:
2396 set_gdbarch_register_name (gdbarch
, sh_sh4_nofpu_register_name
);
2399 case bfd_mach_sh4al_dsp
:
2400 set_gdbarch_register_name (gdbarch
, sh_sh4al_dsp_register_name
);
2401 set_gdbarch_register_sim_regno (gdbarch
, sh_dsp_register_sim_regno
);
2405 set_gdbarch_register_name (gdbarch
, sh_sh_register_name
);
2409 /* Hook in ABI-specific overrides, if they have been registered. */
2410 gdbarch_init_osabi (info
, gdbarch
);
2412 dwarf2_append_unwinders (gdbarch
);
2413 frame_unwind_append_unwinder (gdbarch
, &sh_stub_unwind
);
2414 frame_unwind_append_unwinder (gdbarch
, &sh_frame_unwind
);
2420 show_sh_command (char *args
, int from_tty
)
2422 help_list (showshcmdlist
, "show sh ", all_commands
, gdb_stdout
);
2426 set_sh_command (char *args
, int from_tty
)
2429 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2430 help_list (setshcmdlist
, "set sh ", all_commands
, gdb_stdout
);
2433 extern initialize_file_ftype _initialize_sh_tdep
; /* -Wmissing-prototypes */
2436 _initialize_sh_tdep (void)
2438 gdbarch_register (bfd_arch_sh
, sh_gdbarch_init
, NULL
);
2440 add_prefix_cmd ("sh", no_class
, set_sh_command
, "SH specific commands.",
2441 &setshcmdlist
, "set sh ", 0, &setlist
);
2442 add_prefix_cmd ("sh", no_class
, show_sh_command
, "SH specific commands.",
2443 &showshcmdlist
, "show sh ", 0, &showlist
);
2445 add_setshow_enum_cmd ("calling-convention", class_vars
, sh_cc_enum
,
2446 &sh_active_calling_convention
,
2447 _("Set calling convention used when calling target "
2448 "functions from GDB."),
2449 _("Show calling convention used when calling target "
2450 "functions from GDB."),
2451 _("gcc - Use GCC calling convention (default).\n"
2452 "renesas - Enforce Renesas calling convention."),
2454 &setshcmdlist
, &showshcmdlist
);