gdb/
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Contributed by Steve Chamberlain
23 sac@cygnus.com. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "dis-asm.h"
36 #include "inferior.h"
37 #include "gdb_string.h"
38 #include "gdb_assert.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "regcache.h"
42 #include "doublest.h"
43 #include "osabi.h"
44 #include "reggroups.h"
45 #include "regset.h"
46
47 #include "sh-tdep.h"
48
49 #include "elf-bfd.h"
50 #include "solib-svr4.h"
51
52 /* sh flags */
53 #include "elf/sh.h"
54 #include "dwarf2.h"
55 /* registers numbers shared with the simulator. */
56 #include "gdb/sim-sh.h"
57
58 /* List of "set sh ..." and "show sh ..." commands. */
59 static struct cmd_list_element *setshcmdlist = NULL;
60 static struct cmd_list_element *showshcmdlist = NULL;
61
62 static const char sh_cc_gcc[] = "gcc";
63 static const char sh_cc_renesas[] = "renesas";
64 static const char *sh_cc_enum[] = {
65 sh_cc_gcc,
66 sh_cc_renesas,
67 NULL
68 };
69
70 static const char *sh_active_calling_convention = sh_cc_gcc;
71
72 static void (*sh_show_regs) (struct frame_info *);
73
74 #define SH_NUM_REGS 67
75
76 struct sh_frame_cache
77 {
78 /* Base address. */
79 CORE_ADDR base;
80 LONGEST sp_offset;
81 CORE_ADDR pc;
82
83 /* Flag showing that a frame has been created in the prologue code. */
84 int uses_fp;
85
86 /* Saved registers. */
87 CORE_ADDR saved_regs[SH_NUM_REGS];
88 CORE_ADDR saved_sp;
89 };
90
91 static int
92 sh_is_renesas_calling_convention (struct type *func_type)
93 {
94 return ((func_type
95 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
96 || sh_active_calling_convention == sh_cc_renesas);
97 }
98
99 static const char *
100 sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
101 {
102 static char *register_names[] = {
103 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
104 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
105 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
106 "", "",
107 "", "", "", "", "", "", "", "",
108 "", "", "", "", "", "", "", "",
109 "", "",
110 "", "", "", "", "", "", "", "",
111 "", "", "", "", "", "", "", "",
112 "", "", "", "", "", "", "", "",
113 };
114 if (reg_nr < 0)
115 return NULL;
116 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
117 return NULL;
118 return register_names[reg_nr];
119 }
120
121 static const char *
122 sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
123 {
124 static char *register_names[] = {
125 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
126 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
127 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
128 "", "",
129 "", "", "", "", "", "", "", "",
130 "", "", "", "", "", "", "", "",
131 "ssr", "spc",
132 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
133 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
134 "", "", "", "", "", "", "", "",
135 };
136 if (reg_nr < 0)
137 return NULL;
138 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
139 return NULL;
140 return register_names[reg_nr];
141 }
142
143 static const char *
144 sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
145 {
146 static char *register_names[] = {
147 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
150 "fpul", "fpscr",
151 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
152 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
153 "ssr", "spc",
154 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
155 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
156 "", "", "", "", "", "", "", "",
157 };
158 if (reg_nr < 0)
159 return NULL;
160 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
161 return NULL;
162 return register_names[reg_nr];
163 }
164
165 static const char *
166 sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
167 {
168 static char *register_names[] = {
169 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
170 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
171 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
172 "fpul", "fpscr",
173 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
174 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
175 "", "",
176 "", "", "", "", "", "", "", "",
177 "", "", "", "", "", "", "", "",
178 "", "", "", "", "", "", "", "",
179 };
180 if (reg_nr < 0)
181 return NULL;
182 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
183 return NULL;
184 return register_names[reg_nr];
185 }
186
187 static const char *
188 sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
189 {
190 static char *register_names[] = {
191 /* general registers 0-15 */
192 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
193 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
194 /* 16 - 22 */
195 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
196 /* 23, 24 */
197 "fpul", "fpscr",
198 /* floating point registers 25 - 40 */
199 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
200 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
201 /* 41, 42 */
202 "", "",
203 /* 43 - 62. Banked registers. The bank number used is determined by
204 the bank register (63). */
205 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
206 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
207 "machb", "ivnb", "prb", "gbrb", "maclb",
208 /* 63: register bank number, not a real register but used to
209 communicate the register bank currently get/set. This register
210 is hidden to the user, who manipulates it using the pseudo
211 register called "bank" (67). See below. */
212 "",
213 /* 64 - 66 */
214 "ibcr", "ibnr", "tbr",
215 /* 67: register bank number, the user visible pseudo register. */
216 "bank",
217 /* double precision (pseudo) 68 - 75 */
218 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
219 };
220 if (reg_nr < 0)
221 return NULL;
222 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
223 return NULL;
224 return register_names[reg_nr];
225 }
226
227 static const char *
228 sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
229 {
230 static char *register_names[] = {
231 /* general registers 0-15 */
232 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
233 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
234 /* 16 - 22 */
235 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
236 /* 23, 24 */
237 "", "",
238 /* floating point registers 25 - 40 */
239 "", "", "", "", "", "", "", "",
240 "", "", "", "", "", "", "", "",
241 /* 41, 42 */
242 "", "",
243 /* 43 - 62. Banked registers. The bank number used is determined by
244 the bank register (63). */
245 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
246 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
247 "machb", "ivnb", "prb", "gbrb", "maclb",
248 /* 63: register bank number, not a real register but used to
249 communicate the register bank currently get/set. This register
250 is hidden to the user, who manipulates it using the pseudo
251 register called "bank" (67). See below. */
252 "",
253 /* 64 - 66 */
254 "ibcr", "ibnr", "tbr",
255 /* 67: register bank number, the user visible pseudo register. */
256 "bank",
257 /* double precision (pseudo) 68 - 75 */
258 "", "", "", "", "", "", "", "",
259 };
260 if (reg_nr < 0)
261 return NULL;
262 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
263 return NULL;
264 return register_names[reg_nr];
265 }
266
267 static const char *
268 sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
269 {
270 static char *register_names[] = {
271 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
272 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
273 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
274 "", "dsr",
275 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
276 "y0", "y1", "", "", "", "", "", "mod",
277 "", "",
278 "rs", "re", "", "", "", "", "", "",
279 "", "", "", "", "", "", "", "",
280 "", "", "", "", "", "", "", "",
281 };
282 if (reg_nr < 0)
283 return NULL;
284 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
285 return NULL;
286 return register_names[reg_nr];
287 }
288
289 static const char *
290 sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
291 {
292 static char *register_names[] = {
293 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
294 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
295 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
296 "", "dsr",
297 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
298 "y0", "y1", "", "", "", "", "", "mod",
299 "ssr", "spc",
300 "rs", "re", "", "", "", "", "", "",
301 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
302 "", "", "", "", "", "", "", "",
303 "", "", "", "", "", "", "", "",
304 };
305 if (reg_nr < 0)
306 return NULL;
307 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
308 return NULL;
309 return register_names[reg_nr];
310 }
311
312 static const char *
313 sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
314 {
315 static char *register_names[] = {
316 /* general registers 0-15 */
317 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
318 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
319 /* 16 - 22 */
320 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
321 /* 23, 24 */
322 "fpul", "fpscr",
323 /* floating point registers 25 - 40 */
324 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
325 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
326 /* 41, 42 */
327 "ssr", "spc",
328 /* bank 0 43 - 50 */
329 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
330 /* bank 1 51 - 58 */
331 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
332 "", "", "", "", "", "", "", "",
333 /* pseudo bank register. */
334 "",
335 /* double precision (pseudo) 59 - 66 */
336 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
337 /* vectors (pseudo) 67 - 70 */
338 "fv0", "fv4", "fv8", "fv12",
339 /* FIXME: missing XF 71 - 86 */
340 /* FIXME: missing XD 87 - 94 */
341 };
342 if (reg_nr < 0)
343 return NULL;
344 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
345 return NULL;
346 return register_names[reg_nr];
347 }
348
349 static const char *
350 sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
351 {
352 static char *register_names[] = {
353 /* general registers 0-15 */
354 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
355 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
356 /* 16 - 22 */
357 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
358 /* 23, 24 */
359 "", "",
360 /* floating point registers 25 - 40 -- not for nofpu target */
361 "", "", "", "", "", "", "", "",
362 "", "", "", "", "", "", "", "",
363 /* 41, 42 */
364 "ssr", "spc",
365 /* bank 0 43 - 50 */
366 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
367 /* bank 1 51 - 58 */
368 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
369 "", "", "", "", "", "", "", "",
370 /* pseudo bank register. */
371 "",
372 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
373 "", "", "", "", "", "", "", "",
374 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
375 "", "", "", "",
376 };
377 if (reg_nr < 0)
378 return NULL;
379 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
380 return NULL;
381 return register_names[reg_nr];
382 }
383
384 static const char *
385 sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
386 {
387 static char *register_names[] = {
388 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
389 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
390 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
391 "", "dsr",
392 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
393 "y0", "y1", "", "", "", "", "", "mod",
394 "ssr", "spc",
395 "rs", "re", "", "", "", "", "", "",
396 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
397 "", "", "", "", "", "", "", "",
398 "", "", "", "", "", "", "", "",
399 };
400 if (reg_nr < 0)
401 return NULL;
402 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
403 return NULL;
404 return register_names[reg_nr];
405 }
406
407 static const unsigned char *
408 sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
409 {
410 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
411 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
412
413 /* For remote stub targets, trapa #20 is used. */
414 if (strcmp (target_shortname, "remote") == 0)
415 {
416 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
417 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
418
419 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
420 {
421 *lenptr = sizeof (big_remote_breakpoint);
422 return big_remote_breakpoint;
423 }
424 else
425 {
426 *lenptr = sizeof (little_remote_breakpoint);
427 return little_remote_breakpoint;
428 }
429 }
430
431 *lenptr = sizeof (breakpoint);
432 return breakpoint;
433 }
434
435 /* Prologue looks like
436 mov.l r14,@-r15
437 sts.l pr,@-r15
438 mov.l <regs>,@-r15
439 sub <room_for_loca_vars>,r15
440 mov r15,r14
441
442 Actually it can be more complicated than this but that's it, basically. */
443
444 #define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
445 #define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
446
447 /* JSR @Rm 0100mmmm00001011 */
448 #define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
449
450 /* STS.L PR,@-r15 0100111100100010
451 r15-4-->r15, PR-->(r15) */
452 #define IS_STS(x) ((x) == 0x4f22)
453
454 /* STS.L MACL,@-r15 0100111100010010
455 r15-4-->r15, MACL-->(r15) */
456 #define IS_MACL_STS(x) ((x) == 0x4f12)
457
458 /* MOV.L Rm,@-r15 00101111mmmm0110
459 r15-4-->r15, Rm-->(R15) */
460 #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
461
462 /* MOV r15,r14 0110111011110011
463 r15-->r14 */
464 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
465
466 /* ADD #imm,r15 01111111iiiiiiii
467 r15+imm-->r15 */
468 #define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
469
470 #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
471 #define IS_SHLL_R3(x) ((x) == 0x4300)
472
473 /* ADD r3,r15 0011111100111100
474 r15+r3-->r15 */
475 #define IS_ADD_R3SP(x) ((x) == 0x3f3c)
476
477 /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
478 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
479 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
480 /* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
481 make this entirely clear. */
482 /* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
483 #define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
484
485 /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
486 #define IS_MOV_ARG_TO_REG(x) \
487 (((x) & 0xf00f) == 0x6003 && \
488 ((x) & 0x00f0) >= 0x0040 && \
489 ((x) & 0x00f0) <= 0x0070)
490 /* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
491 #define IS_MOV_ARG_TO_IND_R14(x) \
492 (((x) & 0xff0f) == 0x2e02 && \
493 ((x) & 0x00f0) >= 0x0040 && \
494 ((x) & 0x00f0) <= 0x0070)
495 /* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
496 #define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
497 (((x) & 0xff00) == 0x1e00 && \
498 ((x) & 0x00f0) >= 0x0040 && \
499 ((x) & 0x00f0) <= 0x0070)
500
501 /* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
502 #define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
503 /* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
504 #define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
505 /* MOVI20 #imm20,Rn 0000nnnniiii0000 */
506 #define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
507 /* SUB Rn,R15 00111111nnnn1000 */
508 #define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
509
510 #define FPSCR_SZ (1 << 20)
511
512 /* The following instructions are used for epilogue testing. */
513 #define IS_RESTORE_FP(x) ((x) == 0x6ef6)
514 #define IS_RTS(x) ((x) == 0x000b)
515 #define IS_LDS(x) ((x) == 0x4f26)
516 #define IS_MACL_LDS(x) ((x) == 0x4f16)
517 #define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
518 #define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
519 #define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
520
521 static CORE_ADDR
522 sh_analyze_prologue (struct gdbarch *gdbarch,
523 CORE_ADDR pc, CORE_ADDR current_pc,
524 struct sh_frame_cache *cache, ULONGEST fpscr)
525 {
526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
527 ULONGEST inst;
528 CORE_ADDR opc;
529 int offset;
530 int sav_offset = 0;
531 int r3_val = 0;
532 int reg, sav_reg = -1;
533
534 if (pc >= current_pc)
535 return current_pc;
536
537 cache->uses_fp = 0;
538 for (opc = pc + (2 * 28); pc < opc; pc += 2)
539 {
540 inst = read_memory_unsigned_integer (pc, 2, byte_order);
541 /* See where the registers will be saved to. */
542 if (IS_PUSH (inst))
543 {
544 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
545 cache->sp_offset += 4;
546 }
547 else if (IS_STS (inst))
548 {
549 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
550 cache->sp_offset += 4;
551 }
552 else if (IS_MACL_STS (inst))
553 {
554 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
555 cache->sp_offset += 4;
556 }
557 else if (IS_MOV_R3 (inst))
558 {
559 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
560 }
561 else if (IS_SHLL_R3 (inst))
562 {
563 r3_val <<= 1;
564 }
565 else if (IS_ADD_R3SP (inst))
566 {
567 cache->sp_offset += -r3_val;
568 }
569 else if (IS_ADD_IMM_SP (inst))
570 {
571 offset = ((inst & 0xff) ^ 0x80) - 0x80;
572 cache->sp_offset -= offset;
573 }
574 else if (IS_MOVW_PCREL_TO_REG (inst))
575 {
576 if (sav_reg < 0)
577 {
578 reg = GET_TARGET_REG (inst);
579 if (reg < 14)
580 {
581 sav_reg = reg;
582 offset = (inst & 0xff) << 1;
583 sav_offset =
584 read_memory_integer ((pc + 4) + offset, 2, byte_order);
585 }
586 }
587 }
588 else if (IS_MOVL_PCREL_TO_REG (inst))
589 {
590 if (sav_reg < 0)
591 {
592 reg = GET_TARGET_REG (inst);
593 if (reg < 14)
594 {
595 sav_reg = reg;
596 offset = (inst & 0xff) << 2;
597 sav_offset =
598 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
599 4, byte_order);
600 }
601 }
602 }
603 else if (IS_MOVI20 (inst))
604 {
605 if (sav_reg < 0)
606 {
607 reg = GET_TARGET_REG (inst);
608 if (reg < 14)
609 {
610 sav_reg = reg;
611 sav_offset = GET_SOURCE_REG (inst) << 16;
612 /* MOVI20 is a 32 bit instruction! */
613 pc += 2;
614 sav_offset
615 |= read_memory_unsigned_integer (pc, 2, byte_order);
616 /* Now sav_offset contains an unsigned 20 bit value.
617 It must still get sign extended. */
618 if (sav_offset & 0x00080000)
619 sav_offset |= 0xfff00000;
620 }
621 }
622 }
623 else if (IS_SUB_REG_FROM_SP (inst))
624 {
625 reg = GET_SOURCE_REG (inst);
626 if (sav_reg > 0 && reg == sav_reg)
627 {
628 sav_reg = -1;
629 }
630 cache->sp_offset += sav_offset;
631 }
632 else if (IS_FPUSH (inst))
633 {
634 if (fpscr & FPSCR_SZ)
635 {
636 cache->sp_offset += 8;
637 }
638 else
639 {
640 cache->sp_offset += 4;
641 }
642 }
643 else if (IS_MOV_SP_FP (inst))
644 {
645 cache->uses_fp = 1;
646 /* At this point, only allow argument register moves to other
647 registers or argument register moves to @(X,fp) which are
648 moving the register arguments onto the stack area allocated
649 by a former add somenumber to SP call. Don't allow moving
650 to an fp indirect address above fp + cache->sp_offset. */
651 pc += 2;
652 for (opc = pc + 12; pc < opc; pc += 2)
653 {
654 inst = read_memory_integer (pc, 2, byte_order);
655 if (IS_MOV_ARG_TO_IND_R14 (inst))
656 {
657 reg = GET_SOURCE_REG (inst);
658 if (cache->sp_offset > 0)
659 cache->saved_regs[reg] = cache->sp_offset;
660 }
661 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
662 {
663 reg = GET_SOURCE_REG (inst);
664 offset = (inst & 0xf) * 4;
665 if (cache->sp_offset > offset)
666 cache->saved_regs[reg] = cache->sp_offset - offset;
667 }
668 else if (IS_MOV_ARG_TO_REG (inst))
669 continue;
670 else
671 break;
672 }
673 break;
674 }
675 else if (IS_JSR (inst))
676 {
677 /* We have found a jsr that has been scheduled into the prologue.
678 If we continue the scan and return a pc someplace after this,
679 then setting a breakpoint on this function will cause it to
680 appear to be called after the function it is calling via the
681 jsr, which will be very confusing. Most likely the next
682 instruction is going to be IS_MOV_SP_FP in the delay slot. If
683 so, note that before returning the current pc. */
684 inst = read_memory_integer (pc + 2, 2, byte_order);
685 if (IS_MOV_SP_FP (inst))
686 cache->uses_fp = 1;
687 break;
688 }
689 #if 0 /* This used to just stop when it found an instruction
690 that was not considered part of the prologue. Now,
691 we just keep going looking for likely
692 instructions. */
693 else
694 break;
695 #endif
696 }
697
698 return pc;
699 }
700
701 /* Skip any prologue before the guts of a function. */
702
703 /* Skip the prologue using the debug information. If this fails we'll
704 fall back on the 'guess' method below. */
705 static CORE_ADDR
706 after_prologue (CORE_ADDR pc)
707 {
708 struct symtab_and_line sal;
709 CORE_ADDR func_addr, func_end;
710
711 /* If we can not find the symbol in the partial symbol table, then
712 there is no hope we can determine the function's start address
713 with this code. */
714 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
715 return 0;
716
717 /* Get the line associated with FUNC_ADDR. */
718 sal = find_pc_line (func_addr, 0);
719
720 /* There are only two cases to consider. First, the end of the source line
721 is within the function bounds. In that case we return the end of the
722 source line. Second is the end of the source line extends beyond the
723 bounds of the current function. We need to use the slow code to
724 examine instructions in that case. */
725 if (sal.end < func_end)
726 return sal.end;
727 else
728 return 0;
729 }
730
731 static CORE_ADDR
732 sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
733 {
734 CORE_ADDR pc;
735 struct sh_frame_cache cache;
736
737 /* See if we can determine the end of the prologue via the symbol table.
738 If so, then return either PC, or the PC after the prologue, whichever
739 is greater. */
740 pc = after_prologue (start_pc);
741
742 /* If after_prologue returned a useful address, then use it. Else
743 fall back on the instruction skipping code. */
744 if (pc)
745 return max (pc, start_pc);
746
747 cache.sp_offset = -4;
748 pc = sh_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache, 0);
749 if (!cache.uses_fp)
750 return start_pc;
751
752 return pc;
753 }
754
755 /* The ABI says:
756
757 Aggregate types not bigger than 8 bytes that have the same size and
758 alignment as one of the integer scalar types are returned in the
759 same registers as the integer type they match.
760
761 For example, a 2-byte aligned structure with size 2 bytes has the
762 same size and alignment as a short int, and will be returned in R0.
763 A 4-byte aligned structure with size 8 bytes has the same size and
764 alignment as a long long int, and will be returned in R0 and R1.
765
766 When an aggregate type is returned in R0 and R1, R0 contains the
767 first four bytes of the aggregate, and R1 contains the
768 remainder. If the size of the aggregate type is not a multiple of 4
769 bytes, the aggregate is tail-padded up to a multiple of 4
770 bytes. The value of the padding is undefined. For little-endian
771 targets the padding will appear at the most significant end of the
772 last element, for big-endian targets the padding appears at the
773 least significant end of the last element.
774
775 All other aggregate types are returned by address. The caller
776 function passes the address of an area large enough to hold the
777 aggregate value in R2. The called function stores the result in
778 this location.
779
780 To reiterate, structs smaller than 8 bytes could also be returned
781 in memory, if they don't pass the "same size and alignment as an
782 integer type" rule.
783
784 For example, in
785
786 struct s { char c[3]; } wibble;
787 struct s foo(void) { return wibble; }
788
789 the return value from foo() will be in memory, not
790 in R0, because there is no 3-byte integer type.
791
792 Similarly, in
793
794 struct s { char c[2]; } wibble;
795 struct s foo(void) { return wibble; }
796
797 because a struct containing two chars has alignment 1, that matches
798 type char, but size 2, that matches type short. There's no integer
799 type that has alignment 1 and size 2, so the struct is returned in
800 memory. */
801
802 static int
803 sh_use_struct_convention (int renesas_abi, struct type *type)
804 {
805 int len = TYPE_LENGTH (type);
806 int nelem = TYPE_NFIELDS (type);
807
808 /* The Renesas ABI returns aggregate types always on stack. */
809 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
810 || TYPE_CODE (type) == TYPE_CODE_UNION))
811 return 1;
812
813 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
814 fit in two registers anyway) use struct convention. */
815 if (len != 1 && len != 2 && len != 4 && len != 8)
816 return 1;
817
818 /* Scalar types and aggregate types with exactly one field are aligned
819 by definition. They are returned in registers. */
820 if (nelem <= 1)
821 return 0;
822
823 /* If the first field in the aggregate has the same length as the entire
824 aggregate type, the type is returned in registers. */
825 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
826 return 0;
827
828 /* If the size of the aggregate is 8 bytes and the first field is
829 of size 4 bytes its alignment is equal to long long's alignment,
830 so it's returned in registers. */
831 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
832 return 0;
833
834 /* Otherwise use struct convention. */
835 return 1;
836 }
837
838 static int
839 sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
840 {
841 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
842 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
843 return 1;
844 return sh_use_struct_convention (renesas_abi, type);
845 }
846
847 static CORE_ADDR
848 sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
849 {
850 return sp & ~3;
851 }
852
853 /* Function: push_dummy_call (formerly push_arguments)
854 Setup the function arguments for calling a function in the inferior.
855
856 On the Renesas SH architecture, there are four registers (R4 to R7)
857 which are dedicated for passing function arguments. Up to the first
858 four arguments (depending on size) may go into these registers.
859 The rest go on the stack.
860
861 MVS: Except on SH variants that have floating point registers.
862 In that case, float and double arguments are passed in the same
863 manner, but using FP registers instead of GP registers.
864
865 Arguments that are smaller than 4 bytes will still take up a whole
866 register or a whole 32-bit word on the stack, and will be
867 right-justified in the register or the stack word. This includes
868 chars, shorts, and small aggregate types.
869
870 Arguments that are larger than 4 bytes may be split between two or
871 more registers. If there are not enough registers free, an argument
872 may be passed partly in a register (or registers), and partly on the
873 stack. This includes doubles, long longs, and larger aggregates.
874 As far as I know, there is no upper limit to the size of aggregates
875 that will be passed in this way; in other words, the convention of
876 passing a pointer to a large aggregate instead of a copy is not used.
877
878 MVS: The above appears to be true for the SH variants that do not
879 have an FPU, however those that have an FPU appear to copy the
880 aggregate argument onto the stack (and not place it in registers)
881 if it is larger than 16 bytes (four GP registers).
882
883 An exceptional case exists for struct arguments (and possibly other
884 aggregates such as arrays) if the size is larger than 4 bytes but
885 not a multiple of 4 bytes. In this case the argument is never split
886 between the registers and the stack, but instead is copied in its
887 entirety onto the stack, AND also copied into as many registers as
888 there is room for. In other words, space in registers permitting,
889 two copies of the same argument are passed in. As far as I can tell,
890 only the one on the stack is used, although that may be a function
891 of the level of compiler optimization. I suspect this is a compiler
892 bug. Arguments of these odd sizes are left-justified within the
893 word (as opposed to arguments smaller than 4 bytes, which are
894 right-justified).
895
896 If the function is to return an aggregate type such as a struct, it
897 is either returned in the normal return value register R0 (if its
898 size is no greater than one byte), or else the caller must allocate
899 space into which the callee will copy the return value (if the size
900 is greater than one byte). In this case, a pointer to the return
901 value location is passed into the callee in register R2, which does
902 not displace any of the other arguments passed in via registers R4
903 to R7. */
904
905 /* Helper function to justify value in register according to endianess. */
906 static char *
907 sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
908 {
909 static char valbuf[4];
910
911 memset (valbuf, 0, sizeof (valbuf));
912 if (len < 4)
913 {
914 /* value gets right-justified in the register or stack word. */
915 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
916 memcpy (valbuf + (4 - len), (char *) value_contents (val), len);
917 else
918 memcpy (valbuf, (char *) value_contents (val), len);
919 return valbuf;
920 }
921 return (char *) value_contents (val);
922 }
923
924 /* Helper function to eval number of bytes to allocate on stack. */
925 static CORE_ADDR
926 sh_stack_allocsize (int nargs, struct value **args)
927 {
928 int stack_alloc = 0;
929 while (nargs-- > 0)
930 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
931 return stack_alloc;
932 }
933
934 /* Helper functions for getting the float arguments right. Registers usage
935 depends on the ABI and the endianess. The comments should enlighten how
936 it's intended to work. */
937
938 /* This array stores which of the float arg registers are already in use. */
939 static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
940
941 /* This function just resets the above array to "no reg used so far". */
942 static void
943 sh_init_flt_argreg (void)
944 {
945 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
946 }
947
948 /* This function returns the next register to use for float arg passing.
949 It returns either a valid value between FLOAT_ARG0_REGNUM and
950 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
951 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
952
953 Note that register number 0 in flt_argreg_array corresponds with the
954 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
955 29) the parity of the register number is preserved, which is important
956 for the double register passing test (see the "argreg & 1" test below). */
957 static int
958 sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
959 {
960 int argreg;
961
962 /* First search for the next free register. */
963 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
964 ++argreg)
965 if (!flt_argreg_array[argreg])
966 break;
967
968 /* No register left? */
969 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
970 return FLOAT_ARGLAST_REGNUM + 1;
971
972 if (len == 8)
973 {
974 /* Doubles are always starting in a even register number. */
975 if (argreg & 1)
976 {
977 /* In gcc ABI, the skipped register is lost for further argument
978 passing now. Not so in Renesas ABI. */
979 if (!sh_is_renesas_calling_convention (func_type))
980 flt_argreg_array[argreg] = 1;
981
982 ++argreg;
983
984 /* No register left? */
985 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
986 return FLOAT_ARGLAST_REGNUM + 1;
987 }
988 /* Also mark the next register as used. */
989 flt_argreg_array[argreg + 1] = 1;
990 }
991 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
992 && !sh_is_renesas_calling_convention (func_type))
993 {
994 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
995 if (!flt_argreg_array[argreg + 1])
996 ++argreg;
997 }
998 flt_argreg_array[argreg] = 1;
999 return FLOAT_ARG0_REGNUM + argreg;
1000 }
1001
1002 /* Helper function which figures out, if a type is treated like a float type.
1003
1004 The FPU ABIs have a special way how to treat types as float types.
1005 Structures with exactly one member, which is of type float or double, are
1006 treated exactly as the base types float or double:
1007
1008 struct sf {
1009 float f;
1010 };
1011
1012 struct sd {
1013 double d;
1014 };
1015
1016 are handled the same way as just
1017
1018 float f;
1019
1020 double d;
1021
1022 As a result, arguments of these struct types are pushed into floating point
1023 registers exactly as floats or doubles, using the same decision algorithm.
1024
1025 The same is valid if these types are used as function return types. The
1026 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1027 or even using struct convention as it is for other structs. */
1028
1029 static int
1030 sh_treat_as_flt_p (struct type *type)
1031 {
1032 int len = TYPE_LENGTH (type);
1033
1034 /* Ordinary float types are obviously treated as float. */
1035 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1036 return 1;
1037 /* Otherwise non-struct types are not treated as float. */
1038 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1039 return 0;
1040 /* Otherwise structs with more than one memeber are not treated as float. */
1041 if (TYPE_NFIELDS (type) != 1)
1042 return 0;
1043 /* Otherwise if the type of that member is float, the whole type is
1044 treated as float. */
1045 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1046 return 1;
1047 /* Otherwise it's not treated as float. */
1048 return 0;
1049 }
1050
1051 static CORE_ADDR
1052 sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
1053 struct value *function,
1054 struct regcache *regcache,
1055 CORE_ADDR bp_addr, int nargs,
1056 struct value **args,
1057 CORE_ADDR sp, int struct_return,
1058 CORE_ADDR struct_addr)
1059 {
1060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1061 int stack_offset = 0;
1062 int argreg = ARG0_REGNUM;
1063 int flt_argreg = 0;
1064 int argnum;
1065 struct type *func_type = value_type (function);
1066 struct type *type;
1067 CORE_ADDR regval;
1068 char *val;
1069 int len, reg_size = 0;
1070 int pass_on_stack = 0;
1071 int treat_as_flt;
1072 int last_reg_arg = INT_MAX;
1073
1074 /* The Renesas ABI expects all varargs arguments, plus the last
1075 non-vararg argument to be on the stack, no matter how many
1076 registers have been used so far. */
1077 if (sh_is_renesas_calling_convention (func_type)
1078 && TYPE_VARARGS (func_type))
1079 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1080
1081 /* First force sp to a 4-byte alignment. */
1082 sp = sh_frame_align (gdbarch, sp);
1083
1084 /* Make room on stack for args. */
1085 sp -= sh_stack_allocsize (nargs, args);
1086
1087 /* Initialize float argument mechanism. */
1088 sh_init_flt_argreg ();
1089
1090 /* Now load as many as possible of the first arguments into
1091 registers, and push the rest onto the stack. There are 16 bytes
1092 in four registers available. Loop thru args from first to last. */
1093 for (argnum = 0; argnum < nargs; argnum++)
1094 {
1095 type = value_type (args[argnum]);
1096 len = TYPE_LENGTH (type);
1097 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1098
1099 /* Some decisions have to be made how various types are handled.
1100 This also differs in different ABIs. */
1101 pass_on_stack = 0;
1102
1103 /* Find out the next register to use for a floating point value. */
1104 treat_as_flt = sh_treat_as_flt_p (type);
1105 if (treat_as_flt)
1106 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1107 /* In Renesas ABI, long longs and aggregate types are always passed
1108 on stack. */
1109 else if (sh_is_renesas_calling_convention (func_type)
1110 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1111 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1112 || TYPE_CODE (type) == TYPE_CODE_UNION))
1113 pass_on_stack = 1;
1114 /* In contrast to non-FPU CPUs, arguments are never split between
1115 registers and stack. If an argument doesn't fit in the remaining
1116 registers it's always pushed entirely on the stack. */
1117 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1118 pass_on_stack = 1;
1119
1120 while (len > 0)
1121 {
1122 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1123 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1124 || pass_on_stack))
1125 || argnum > last_reg_arg)
1126 {
1127 /* The data goes entirely on the stack, 4-byte aligned. */
1128 reg_size = (len + 3) & ~3;
1129 write_memory (sp + stack_offset, val, reg_size);
1130 stack_offset += reg_size;
1131 }
1132 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
1133 {
1134 /* Argument goes in a float argument register. */
1135 reg_size = register_size (gdbarch, flt_argreg);
1136 regval = extract_unsigned_integer (val, reg_size, byte_order);
1137 /* In little endian mode, float types taking two registers
1138 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1139 be stored swapped in the argument registers. The below
1140 code first writes the first 32 bits in the next but one
1141 register, increments the val and len values accordingly
1142 and then proceeds as normal by writing the second 32 bits
1143 into the next register. */
1144 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1145 && TYPE_LENGTH (type) == 2 * reg_size)
1146 {
1147 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1148 regval);
1149 val += reg_size;
1150 len -= reg_size;
1151 regval = extract_unsigned_integer (val, reg_size,
1152 byte_order);
1153 }
1154 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1155 }
1156 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
1157 {
1158 /* there's room in a register */
1159 reg_size = register_size (gdbarch, argreg);
1160 regval = extract_unsigned_integer (val, reg_size, byte_order);
1161 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1162 }
1163 /* Store the value one register at a time or in one step on
1164 stack. */
1165 len -= reg_size;
1166 val += reg_size;
1167 }
1168 }
1169
1170 if (struct_return)
1171 {
1172 if (sh_is_renesas_calling_convention (func_type))
1173 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1174 the stack and store the struct return address there. */
1175 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1176 else
1177 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1178 its own dedicated register. */
1179 regcache_cooked_write_unsigned (regcache,
1180 STRUCT_RETURN_REGNUM, struct_addr);
1181 }
1182
1183 /* Store return address. */
1184 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1185
1186 /* Update stack pointer. */
1187 regcache_cooked_write_unsigned (regcache,
1188 gdbarch_sp_regnum (gdbarch), sp);
1189
1190 return sp;
1191 }
1192
1193 static CORE_ADDR
1194 sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
1195 struct value *function,
1196 struct regcache *regcache,
1197 CORE_ADDR bp_addr,
1198 int nargs, struct value **args,
1199 CORE_ADDR sp, int struct_return,
1200 CORE_ADDR struct_addr)
1201 {
1202 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1203 int stack_offset = 0;
1204 int argreg = ARG0_REGNUM;
1205 int argnum;
1206 struct type *func_type = value_type (function);
1207 struct type *type;
1208 CORE_ADDR regval;
1209 char *val;
1210 int len, reg_size = 0;
1211 int pass_on_stack = 0;
1212 int last_reg_arg = INT_MAX;
1213
1214 /* The Renesas ABI expects all varargs arguments, plus the last
1215 non-vararg argument to be on the stack, no matter how many
1216 registers have been used so far. */
1217 if (sh_is_renesas_calling_convention (func_type)
1218 && TYPE_VARARGS (func_type))
1219 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
1220
1221 /* First force sp to a 4-byte alignment. */
1222 sp = sh_frame_align (gdbarch, sp);
1223
1224 /* Make room on stack for args. */
1225 sp -= sh_stack_allocsize (nargs, args);
1226
1227 /* Now load as many as possible of the first arguments into
1228 registers, and push the rest onto the stack. There are 16 bytes
1229 in four registers available. Loop thru args from first to last. */
1230 for (argnum = 0; argnum < nargs; argnum++)
1231 {
1232 type = value_type (args[argnum]);
1233 len = TYPE_LENGTH (type);
1234 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
1235
1236 /* Some decisions have to be made how various types are handled.
1237 This also differs in different ABIs. */
1238 pass_on_stack = 0;
1239 /* Renesas ABI pushes doubles and long longs entirely on stack.
1240 Same goes for aggregate types. */
1241 if (sh_is_renesas_calling_convention (func_type)
1242 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1243 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1244 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1245 || TYPE_CODE (type) == TYPE_CODE_UNION))
1246 pass_on_stack = 1;
1247 while (len > 0)
1248 {
1249 if (argreg > ARGLAST_REGNUM || pass_on_stack
1250 || argnum > last_reg_arg)
1251 {
1252 /* The remainder of the data goes entirely on the stack,
1253 4-byte aligned. */
1254 reg_size = (len + 3) & ~3;
1255 write_memory (sp + stack_offset, val, reg_size);
1256 stack_offset += reg_size;
1257 }
1258 else if (argreg <= ARGLAST_REGNUM)
1259 {
1260 /* There's room in a register. */
1261 reg_size = register_size (gdbarch, argreg);
1262 regval = extract_unsigned_integer (val, reg_size, byte_order);
1263 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1264 }
1265 /* Store the value reg_size bytes at a time. This means that things
1266 larger than reg_size bytes may go partly in registers and partly
1267 on the stack. */
1268 len -= reg_size;
1269 val += reg_size;
1270 }
1271 }
1272
1273 if (struct_return)
1274 {
1275 if (sh_is_renesas_calling_convention (func_type))
1276 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1277 the stack and store the struct return address there. */
1278 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
1279 else
1280 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1281 its own dedicated register. */
1282 regcache_cooked_write_unsigned (regcache,
1283 STRUCT_RETURN_REGNUM, struct_addr);
1284 }
1285
1286 /* Store return address. */
1287 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1288
1289 /* Update stack pointer. */
1290 regcache_cooked_write_unsigned (regcache,
1291 gdbarch_sp_regnum (gdbarch), sp);
1292
1293 return sp;
1294 }
1295
1296 /* Find a function's return value in the appropriate registers (in
1297 regbuf), and copy it into valbuf. Extract from an array REGBUF
1298 containing the (raw) register state a function return value of type
1299 TYPE, and copy that, in virtual format, into VALBUF. */
1300 static void
1301 sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
1302 void *valbuf)
1303 {
1304 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1306 int len = TYPE_LENGTH (type);
1307 int return_register = R0_REGNUM;
1308 int offset;
1309
1310 if (len <= 4)
1311 {
1312 ULONGEST c;
1313
1314 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1315 store_unsigned_integer (valbuf, len, byte_order, c);
1316 }
1317 else if (len == 8)
1318 {
1319 int i, regnum = R0_REGNUM;
1320 for (i = 0; i < len; i += 4)
1321 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1322 }
1323 else
1324 error (_("bad size for return value"));
1325 }
1326
1327 static void
1328 sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
1329 void *valbuf)
1330 {
1331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1332 if (sh_treat_as_flt_p (type))
1333 {
1334 int len = TYPE_LENGTH (type);
1335 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1336 for (i = 0; i < len; i += 4)
1337 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1338 regcache_raw_read (regcache, regnum++,
1339 (char *) valbuf + len - 4 - i);
1340 else
1341 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
1342 }
1343 else
1344 sh_extract_return_value_nofpu (type, regcache, valbuf);
1345 }
1346
1347 /* Write into appropriate registers a function return value
1348 of type TYPE, given in virtual format.
1349 If the architecture is sh4 or sh3e, store a function's return value
1350 in the R0 general register or in the FP0 floating point register,
1351 depending on the type of the return value. In all the other cases
1352 the result is stored in r0, left-justified. */
1353 static void
1354 sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
1355 const void *valbuf)
1356 {
1357 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1358 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1359 ULONGEST val;
1360 int len = TYPE_LENGTH (type);
1361
1362 if (len <= 4)
1363 {
1364 val = extract_unsigned_integer (valbuf, len, byte_order);
1365 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
1366 }
1367 else
1368 {
1369 int i, regnum = R0_REGNUM;
1370 for (i = 0; i < len; i += 4)
1371 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1372 }
1373 }
1374
1375 static void
1376 sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
1377 const void *valbuf)
1378 {
1379 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1380 if (sh_treat_as_flt_p (type))
1381 {
1382 int len = TYPE_LENGTH (type);
1383 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1384 for (i = 0; i < len; i += 4)
1385 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1386 regcache_raw_write (regcache, regnum++,
1387 (char *) valbuf + len - 4 - i);
1388 else
1389 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1390 }
1391 else
1392 sh_store_return_value_nofpu (type, regcache, valbuf);
1393 }
1394
1395 static enum return_value_convention
1396 sh_return_value_nofpu (struct gdbarch *gdbarch, struct type *func_type,
1397 struct type *type, struct regcache *regcache,
1398 gdb_byte *readbuf, const gdb_byte *writebuf)
1399 {
1400 if (sh_use_struct_convention_nofpu (
1401 sh_is_renesas_calling_convention (func_type), type))
1402 return RETURN_VALUE_STRUCT_CONVENTION;
1403 if (writebuf)
1404 sh_store_return_value_nofpu (type, regcache, writebuf);
1405 else if (readbuf)
1406 sh_extract_return_value_nofpu (type, regcache, readbuf);
1407 return RETURN_VALUE_REGISTER_CONVENTION;
1408 }
1409
1410 static enum return_value_convention
1411 sh_return_value_fpu (struct gdbarch *gdbarch, struct type *func_type,
1412 struct type *type, struct regcache *regcache,
1413 gdb_byte *readbuf, const gdb_byte *writebuf)
1414 {
1415 if (sh_use_struct_convention (
1416 sh_is_renesas_calling_convention (func_type), type))
1417 return RETURN_VALUE_STRUCT_CONVENTION;
1418 if (writebuf)
1419 sh_store_return_value_fpu (type, regcache, writebuf);
1420 else if (readbuf)
1421 sh_extract_return_value_fpu (type, regcache, readbuf);
1422 return RETURN_VALUE_REGISTER_CONVENTION;
1423 }
1424
1425 /* Print the registers in a form similar to the E7000. */
1426
1427 static void
1428 sh_generic_show_regs (struct frame_info *frame)
1429 {
1430 printf_filtered
1431 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1432 phex (get_frame_register_unsigned (frame,
1433 gdbarch_pc_regnum
1434 (get_frame_arch (frame))), 4),
1435 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1436 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1437 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1438
1439 printf_filtered
1440 (" GBR %08lx VBR %08lx MACL %08lx\n",
1441 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1442 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1443 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1444
1445 printf_filtered
1446 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1447 (long) get_frame_register_unsigned (frame, 0),
1448 (long) get_frame_register_unsigned (frame, 1),
1449 (long) get_frame_register_unsigned (frame, 2),
1450 (long) get_frame_register_unsigned (frame, 3),
1451 (long) get_frame_register_unsigned (frame, 4),
1452 (long) get_frame_register_unsigned (frame, 5),
1453 (long) get_frame_register_unsigned (frame, 6),
1454 (long) get_frame_register_unsigned (frame, 7));
1455 printf_filtered
1456 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1457 (long) get_frame_register_unsigned (frame, 8),
1458 (long) get_frame_register_unsigned (frame, 9),
1459 (long) get_frame_register_unsigned (frame, 10),
1460 (long) get_frame_register_unsigned (frame, 11),
1461 (long) get_frame_register_unsigned (frame, 12),
1462 (long) get_frame_register_unsigned (frame, 13),
1463 (long) get_frame_register_unsigned (frame, 14),
1464 (long) get_frame_register_unsigned (frame, 15));
1465 }
1466
1467 static void
1468 sh3_show_regs (struct frame_info *frame)
1469 {
1470 printf_filtered
1471 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1472 phex (get_frame_register_unsigned (frame,
1473 gdbarch_pc_regnum
1474 (get_frame_arch (frame))), 4),
1475 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1476 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1477 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1478
1479 printf_filtered
1480 (" GBR %08lx VBR %08lx MACL %08lx\n",
1481 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1482 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1483 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1484 printf_filtered
1485 (" SSR %08lx SPC %08lx\n",
1486 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1487 (long) get_frame_register_unsigned (frame, SPC_REGNUM));
1488
1489 printf_filtered
1490 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1491 (long) get_frame_register_unsigned (frame, 0),
1492 (long) get_frame_register_unsigned (frame, 1),
1493 (long) get_frame_register_unsigned (frame, 2),
1494 (long) get_frame_register_unsigned (frame, 3),
1495 (long) get_frame_register_unsigned (frame, 4),
1496 (long) get_frame_register_unsigned (frame, 5),
1497 (long) get_frame_register_unsigned (frame, 6),
1498 (long) get_frame_register_unsigned (frame, 7));
1499 printf_filtered
1500 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1501 (long) get_frame_register_unsigned (frame, 8),
1502 (long) get_frame_register_unsigned (frame, 9),
1503 (long) get_frame_register_unsigned (frame, 10),
1504 (long) get_frame_register_unsigned (frame, 11),
1505 (long) get_frame_register_unsigned (frame, 12),
1506 (long) get_frame_register_unsigned (frame, 13),
1507 (long) get_frame_register_unsigned (frame, 14),
1508 (long) get_frame_register_unsigned (frame, 15));
1509 }
1510
1511 static void
1512 sh2e_show_regs (struct frame_info *frame)
1513 {
1514 struct gdbarch *gdbarch = get_frame_arch (frame);
1515 printf_filtered
1516 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1517 phex (get_frame_register_unsigned (frame,
1518 gdbarch_pc_regnum (gdbarch)), 4),
1519 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1520 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1521 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1522
1523 printf_filtered
1524 (" GBR %08lx VBR %08lx MACL %08lx\n",
1525 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1526 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1527 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1528 printf_filtered
1529 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1530 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1531 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1532 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1533 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1534
1535 printf_filtered
1536 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1537 (long) get_frame_register_unsigned (frame, 0),
1538 (long) get_frame_register_unsigned (frame, 1),
1539 (long) get_frame_register_unsigned (frame, 2),
1540 (long) get_frame_register_unsigned (frame, 3),
1541 (long) get_frame_register_unsigned (frame, 4),
1542 (long) get_frame_register_unsigned (frame, 5),
1543 (long) get_frame_register_unsigned (frame, 6),
1544 (long) get_frame_register_unsigned (frame, 7));
1545 printf_filtered
1546 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1547 (long) get_frame_register_unsigned (frame, 8),
1548 (long) get_frame_register_unsigned (frame, 9),
1549 (long) get_frame_register_unsigned (frame, 10),
1550 (long) get_frame_register_unsigned (frame, 11),
1551 (long) get_frame_register_unsigned (frame, 12),
1552 (long) get_frame_register_unsigned (frame, 13),
1553 (long) get_frame_register_unsigned (frame, 14),
1554 (long) get_frame_register_unsigned (frame, 15));
1555
1556 printf_filtered
1557 ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1558 (long) get_frame_register_unsigned
1559 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1560 (long) get_frame_register_unsigned
1561 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1562 (long) get_frame_register_unsigned
1563 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1564 (long) get_frame_register_unsigned
1565 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1566 (long) get_frame_register_unsigned
1567 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1568 (long) get_frame_register_unsigned
1569 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1570 (long) get_frame_register_unsigned
1571 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1572 (long) get_frame_register_unsigned
1573 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1574 printf_filtered
1575 ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1576 (long) get_frame_register_unsigned
1577 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1578 (long) get_frame_register_unsigned
1579 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1580 (long) get_frame_register_unsigned
1581 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1582 (long) get_frame_register_unsigned
1583 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1584 (long) get_frame_register_unsigned
1585 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1586 (long) get_frame_register_unsigned
1587 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1588 (long) get_frame_register_unsigned
1589 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1590 (long) get_frame_register_unsigned
1591 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1592 }
1593
1594 static void
1595 sh2a_show_regs (struct frame_info *frame)
1596 {
1597 struct gdbarch *gdbarch = get_frame_arch (frame);
1598 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1599
1600 printf_filtered
1601 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1602 phex (get_frame_register_unsigned (frame,
1603 gdbarch_pc_regnum (gdbarch)), 4),
1604 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1605 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1606 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1607
1608 printf_filtered
1609 (" GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1610 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1611 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1612 (long) get_frame_register_unsigned (frame, TBR_REGNUM),
1613 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1614 printf_filtered
1615 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1616 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1617 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1618 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1619 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1620
1621 printf_filtered
1622 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1623 (long) get_frame_register_unsigned (frame, 0),
1624 (long) get_frame_register_unsigned (frame, 1),
1625 (long) get_frame_register_unsigned (frame, 2),
1626 (long) get_frame_register_unsigned (frame, 3),
1627 (long) get_frame_register_unsigned (frame, 4),
1628 (long) get_frame_register_unsigned (frame, 5),
1629 (long) get_frame_register_unsigned (frame, 6),
1630 (long) get_frame_register_unsigned (frame, 7));
1631 printf_filtered
1632 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1633 (long) get_frame_register_unsigned (frame, 8),
1634 (long) get_frame_register_unsigned (frame, 9),
1635 (long) get_frame_register_unsigned (frame, 10),
1636 (long) get_frame_register_unsigned (frame, 11),
1637 (long) get_frame_register_unsigned (frame, 12),
1638 (long) get_frame_register_unsigned (frame, 13),
1639 (long) get_frame_register_unsigned (frame, 14),
1640 (long) get_frame_register_unsigned (frame, 15));
1641
1642 printf_filtered
1643 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1644 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1645 (long) get_frame_register_unsigned
1646 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1647 (long) get_frame_register_unsigned
1648 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1649 (long) get_frame_register_unsigned
1650 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1651 (long) get_frame_register_unsigned
1652 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1653 (long) get_frame_register_unsigned
1654 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1655 (long) get_frame_register_unsigned
1656 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1657 (long) get_frame_register_unsigned
1658 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1659 (long) get_frame_register_unsigned
1660 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1661 printf_filtered
1662 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1663 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1664 (long) get_frame_register_unsigned
1665 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1666 (long) get_frame_register_unsigned
1667 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1668 (long) get_frame_register_unsigned
1669 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1670 (long) get_frame_register_unsigned
1671 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1672 (long) get_frame_register_unsigned
1673 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1674 (long) get_frame_register_unsigned
1675 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1676 (long) get_frame_register_unsigned
1677 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1678 (long) get_frame_register_unsigned
1679 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1680 printf_filtered
1681 ("BANK=%-3d\n", (int) get_frame_register_unsigned (frame, BANK_REGNUM));
1682 printf_filtered
1683 ("R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1684 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 0),
1685 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 1),
1686 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 2),
1687 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 3),
1688 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 4),
1689 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 5),
1690 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 6),
1691 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 7));
1692 printf_filtered
1693 ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1694 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 8),
1695 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 9),
1696 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 10),
1697 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 11),
1698 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 12),
1699 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 13),
1700 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 14));
1701 printf_filtered
1702 ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1703 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 15),
1704 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 16),
1705 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 17),
1706 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 18),
1707 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 19));
1708 }
1709
1710 static void
1711 sh2a_nofpu_show_regs (struct frame_info *frame)
1712 {
1713 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1714
1715 printf_filtered
1716 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1717 phex (get_frame_register_unsigned (frame,
1718 gdbarch_pc_regnum
1719 (get_frame_arch (frame))), 4),
1720 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1721 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1722 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1723
1724 printf_filtered
1725 (" GBR %08lx VBR %08lx TBR %08lx MACL %08lx\n",
1726 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1727 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1728 (long) get_frame_register_unsigned (frame, TBR_REGNUM),
1729 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1730 printf_filtered
1731 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1732 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1733 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1734 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1735 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1736
1737 printf_filtered
1738 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1739 (long) get_frame_register_unsigned (frame, 0),
1740 (long) get_frame_register_unsigned (frame, 1),
1741 (long) get_frame_register_unsigned (frame, 2),
1742 (long) get_frame_register_unsigned (frame, 3),
1743 (long) get_frame_register_unsigned (frame, 4),
1744 (long) get_frame_register_unsigned (frame, 5),
1745 (long) get_frame_register_unsigned (frame, 6),
1746 (long) get_frame_register_unsigned (frame, 7));
1747 printf_filtered
1748 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1749 (long) get_frame_register_unsigned (frame, 8),
1750 (long) get_frame_register_unsigned (frame, 9),
1751 (long) get_frame_register_unsigned (frame, 10),
1752 (long) get_frame_register_unsigned (frame, 11),
1753 (long) get_frame_register_unsigned (frame, 12),
1754 (long) get_frame_register_unsigned (frame, 13),
1755 (long) get_frame_register_unsigned (frame, 14),
1756 (long) get_frame_register_unsigned (frame, 15));
1757
1758 printf_filtered
1759 ("BANK=%-3d\n", (int) get_frame_register_unsigned (frame, BANK_REGNUM));
1760 printf_filtered
1761 ("R0b-R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1762 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 0),
1763 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 1),
1764 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 2),
1765 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 3),
1766 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 4),
1767 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 5),
1768 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 6),
1769 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 7));
1770 printf_filtered
1771 ("R8b-R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1772 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 8),
1773 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 9),
1774 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 10),
1775 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 11),
1776 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 12),
1777 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 13),
1778 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 14));
1779 printf_filtered
1780 ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1781 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 15),
1782 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 16),
1783 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 17),
1784 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 18),
1785 (long) get_frame_register_unsigned (frame, R0_BANK0_REGNUM + 19));
1786 }
1787
1788 static void
1789 sh3e_show_regs (struct frame_info *frame)
1790 {
1791 struct gdbarch *gdbarch = get_frame_arch (frame);
1792 printf_filtered
1793 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1794 phex (get_frame_register_unsigned (frame,
1795 gdbarch_pc_regnum (gdbarch)), 4),
1796 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1797 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1798 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1799
1800 printf_filtered
1801 (" GBR %08lx VBR %08lx MACL %08lx\n",
1802 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1803 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1804 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1805 printf_filtered
1806 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1807 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1808 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1809 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1810 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1811
1812 printf_filtered
1813 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1814 (long) get_frame_register_unsigned (frame, 0),
1815 (long) get_frame_register_unsigned (frame, 1),
1816 (long) get_frame_register_unsigned (frame, 2),
1817 (long) get_frame_register_unsigned (frame, 3),
1818 (long) get_frame_register_unsigned (frame, 4),
1819 (long) get_frame_register_unsigned (frame, 5),
1820 (long) get_frame_register_unsigned (frame, 6),
1821 (long) get_frame_register_unsigned (frame, 7));
1822 printf_filtered
1823 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1824 (long) get_frame_register_unsigned (frame, 8),
1825 (long) get_frame_register_unsigned (frame, 9),
1826 (long) get_frame_register_unsigned (frame, 10),
1827 (long) get_frame_register_unsigned (frame, 11),
1828 (long) get_frame_register_unsigned (frame, 12),
1829 (long) get_frame_register_unsigned (frame, 13),
1830 (long) get_frame_register_unsigned (frame, 14),
1831 (long) get_frame_register_unsigned (frame, 15));
1832
1833 printf_filtered
1834 ("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1835 (long) get_frame_register_unsigned
1836 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1837 (long) get_frame_register_unsigned
1838 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1839 (long) get_frame_register_unsigned
1840 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1841 (long) get_frame_register_unsigned
1842 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1843 (long) get_frame_register_unsigned
1844 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1845 (long) get_frame_register_unsigned
1846 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1847 (long) get_frame_register_unsigned
1848 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1849 (long) get_frame_register_unsigned
1850 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
1851 printf_filtered
1852 ("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1853 (long) get_frame_register_unsigned
1854 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
1855 (long) get_frame_register_unsigned
1856 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
1857 (long) get_frame_register_unsigned
1858 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
1859 (long) get_frame_register_unsigned
1860 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
1861 (long) get_frame_register_unsigned
1862 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
1863 (long) get_frame_register_unsigned
1864 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
1865 (long) get_frame_register_unsigned
1866 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
1867 (long) get_frame_register_unsigned
1868 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
1869 }
1870
1871 static void
1872 sh3_dsp_show_regs (struct frame_info *frame)
1873 {
1874 printf_filtered
1875 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1876 phex (get_frame_register_unsigned (frame,
1877 gdbarch_pc_regnum
1878 (get_frame_arch (frame))), 4),
1879 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1880 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1881 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1882
1883 printf_filtered
1884 (" GBR %08lx VBR %08lx MACL %08lx\n",
1885 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1886 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1887 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1888
1889 printf_filtered
1890 (" SSR %08lx SPC %08lx DSR %08lx\n",
1891 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1892 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1893 (long) get_frame_register_unsigned (frame, DSR_REGNUM));
1894
1895 printf_filtered
1896 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1897 (long) get_frame_register_unsigned (frame, 0),
1898 (long) get_frame_register_unsigned (frame, 1),
1899 (long) get_frame_register_unsigned (frame, 2),
1900 (long) get_frame_register_unsigned (frame, 3),
1901 (long) get_frame_register_unsigned (frame, 4),
1902 (long) get_frame_register_unsigned (frame, 5),
1903 (long) get_frame_register_unsigned (frame, 6),
1904 (long) get_frame_register_unsigned (frame, 7));
1905 printf_filtered
1906 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1907 (long) get_frame_register_unsigned (frame, 8),
1908 (long) get_frame_register_unsigned (frame, 9),
1909 (long) get_frame_register_unsigned (frame, 10),
1910 (long) get_frame_register_unsigned (frame, 11),
1911 (long) get_frame_register_unsigned (frame, 12),
1912 (long) get_frame_register_unsigned (frame, 13),
1913 (long) get_frame_register_unsigned (frame, 14),
1914 (long) get_frame_register_unsigned (frame, 15));
1915
1916 printf_filtered
1917 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1918 (long) get_frame_register_unsigned (frame, A0G_REGNUM) & 0xff,
1919 (long) get_frame_register_unsigned (frame, A0_REGNUM),
1920 (long) get_frame_register_unsigned (frame, M0_REGNUM),
1921 (long) get_frame_register_unsigned (frame, X0_REGNUM),
1922 (long) get_frame_register_unsigned (frame, Y0_REGNUM),
1923 (long) get_frame_register_unsigned (frame, RS_REGNUM),
1924 (long) get_frame_register_unsigned (frame, MOD_REGNUM));
1925 printf_filtered
1926 ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
1927 (long) get_frame_register_unsigned (frame, A1G_REGNUM) & 0xff,
1928 (long) get_frame_register_unsigned (frame, A1_REGNUM),
1929 (long) get_frame_register_unsigned (frame, M1_REGNUM),
1930 (long) get_frame_register_unsigned (frame, X1_REGNUM),
1931 (long) get_frame_register_unsigned (frame, Y1_REGNUM),
1932 (long) get_frame_register_unsigned (frame, RE_REGNUM));
1933 }
1934
1935 static void
1936 sh4_show_regs (struct frame_info *frame)
1937 {
1938 struct gdbarch *gdbarch = get_frame_arch (frame);
1939 int pr = get_frame_register_unsigned (frame, FPSCR_REGNUM) & 0x80000;
1940
1941 printf_filtered
1942 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
1943 phex (get_frame_register_unsigned (frame,
1944 gdbarch_pc_regnum (gdbarch)), 4),
1945 (long) get_frame_register_unsigned (frame, SR_REGNUM),
1946 (long) get_frame_register_unsigned (frame, PR_REGNUM),
1947 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
1948
1949 printf_filtered
1950 (" GBR %08lx VBR %08lx MACL %08lx\n",
1951 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
1952 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
1953 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
1954 printf_filtered
1955 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
1956 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
1957 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
1958 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
1959 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1960
1961 printf_filtered
1962 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1963 (long) get_frame_register_unsigned (frame, 0),
1964 (long) get_frame_register_unsigned (frame, 1),
1965 (long) get_frame_register_unsigned (frame, 2),
1966 (long) get_frame_register_unsigned (frame, 3),
1967 (long) get_frame_register_unsigned (frame, 4),
1968 (long) get_frame_register_unsigned (frame, 5),
1969 (long) get_frame_register_unsigned (frame, 6),
1970 (long) get_frame_register_unsigned (frame, 7));
1971 printf_filtered
1972 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1973 (long) get_frame_register_unsigned (frame, 8),
1974 (long) get_frame_register_unsigned (frame, 9),
1975 (long) get_frame_register_unsigned (frame, 10),
1976 (long) get_frame_register_unsigned (frame, 11),
1977 (long) get_frame_register_unsigned (frame, 12),
1978 (long) get_frame_register_unsigned (frame, 13),
1979 (long) get_frame_register_unsigned (frame, 14),
1980 (long) get_frame_register_unsigned (frame, 15));
1981
1982 printf_filtered
1983 (pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1984 : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1985 (long) get_frame_register_unsigned
1986 (frame, gdbarch_fp0_regnum (gdbarch) + 0),
1987 (long) get_frame_register_unsigned
1988 (frame, gdbarch_fp0_regnum (gdbarch) + 1),
1989 (long) get_frame_register_unsigned
1990 (frame, gdbarch_fp0_regnum (gdbarch) + 2),
1991 (long) get_frame_register_unsigned
1992 (frame, gdbarch_fp0_regnum (gdbarch) + 3),
1993 (long) get_frame_register_unsigned
1994 (frame, gdbarch_fp0_regnum (gdbarch) + 4),
1995 (long) get_frame_register_unsigned
1996 (frame, gdbarch_fp0_regnum (gdbarch) + 5),
1997 (long) get_frame_register_unsigned
1998 (frame, gdbarch_fp0_regnum (gdbarch) + 6),
1999 (long) get_frame_register_unsigned
2000 (frame, gdbarch_fp0_regnum (gdbarch) + 7));
2001 printf_filtered
2002 (pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
2003 : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2004 (long) get_frame_register_unsigned
2005 (frame, gdbarch_fp0_regnum (gdbarch) + 8),
2006 (long) get_frame_register_unsigned
2007 (frame, gdbarch_fp0_regnum (gdbarch) + 9),
2008 (long) get_frame_register_unsigned
2009 (frame, gdbarch_fp0_regnum (gdbarch) + 10),
2010 (long) get_frame_register_unsigned
2011 (frame, gdbarch_fp0_regnum (gdbarch) + 11),
2012 (long) get_frame_register_unsigned
2013 (frame, gdbarch_fp0_regnum (gdbarch) + 12),
2014 (long) get_frame_register_unsigned
2015 (frame, gdbarch_fp0_regnum (gdbarch) + 13),
2016 (long) get_frame_register_unsigned
2017 (frame, gdbarch_fp0_regnum (gdbarch) + 14),
2018 (long) get_frame_register_unsigned
2019 (frame, gdbarch_fp0_regnum (gdbarch) + 15));
2020 }
2021
2022 static void
2023 sh4_nofpu_show_regs (struct frame_info *frame)
2024 {
2025 printf_filtered
2026 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
2027 phex (get_frame_register_unsigned (frame,
2028 gdbarch_pc_regnum
2029 (get_frame_arch (frame))), 4),
2030 (long) get_frame_register_unsigned (frame, SR_REGNUM),
2031 (long) get_frame_register_unsigned (frame, PR_REGNUM),
2032 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
2033
2034 printf_filtered
2035 (" GBR %08lx VBR %08lx MACL %08lx\n",
2036 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
2037 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
2038 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
2039 printf_filtered
2040 (" SSR %08lx SPC %08lx FPUL %08lx FPSCR %08lx\n",
2041 (long) get_frame_register_unsigned (frame, SSR_REGNUM),
2042 (long) get_frame_register_unsigned (frame, SPC_REGNUM),
2043 (long) get_frame_register_unsigned (frame, FPUL_REGNUM),
2044 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
2045
2046 printf_filtered
2047 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2048 (long) get_frame_register_unsigned (frame, 0),
2049 (long) get_frame_register_unsigned (frame, 1),
2050 (long) get_frame_register_unsigned (frame, 2),
2051 (long) get_frame_register_unsigned (frame, 3),
2052 (long) get_frame_register_unsigned (frame, 4),
2053 (long) get_frame_register_unsigned (frame, 5),
2054 (long) get_frame_register_unsigned (frame, 6),
2055 (long) get_frame_register_unsigned (frame, 7));
2056 printf_filtered
2057 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2058 (long) get_frame_register_unsigned (frame, 8),
2059 (long) get_frame_register_unsigned (frame, 9),
2060 (long) get_frame_register_unsigned (frame, 10),
2061 (long) get_frame_register_unsigned (frame, 11),
2062 (long) get_frame_register_unsigned (frame, 12),
2063 (long) get_frame_register_unsigned (frame, 13),
2064 (long) get_frame_register_unsigned (frame, 14),
2065 (long) get_frame_register_unsigned (frame, 15));
2066 }
2067
2068 static void
2069 sh_dsp_show_regs (struct frame_info *frame)
2070 {
2071 printf_filtered
2072 (" PC %s SR %08lx PR %08lx MACH %08lx\n",
2073 phex (get_frame_register_unsigned (frame,
2074 gdbarch_pc_regnum
2075 (get_frame_arch (frame))), 4),
2076 (long) get_frame_register_unsigned (frame, SR_REGNUM),
2077 (long) get_frame_register_unsigned (frame, PR_REGNUM),
2078 (long) get_frame_register_unsigned (frame, MACH_REGNUM));
2079
2080 printf_filtered
2081 (" GBR %08lx VBR %08lx DSR %08lx MACL %08lx\n",
2082 (long) get_frame_register_unsigned (frame, GBR_REGNUM),
2083 (long) get_frame_register_unsigned (frame, VBR_REGNUM),
2084 (long) get_frame_register_unsigned (frame, DSR_REGNUM),
2085 (long) get_frame_register_unsigned (frame, MACL_REGNUM));
2086
2087 printf_filtered
2088 ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2089 (long) get_frame_register_unsigned (frame, 0),
2090 (long) get_frame_register_unsigned (frame, 1),
2091 (long) get_frame_register_unsigned (frame, 2),
2092 (long) get_frame_register_unsigned (frame, 3),
2093 (long) get_frame_register_unsigned (frame, 4),
2094 (long) get_frame_register_unsigned (frame, 5),
2095 (long) get_frame_register_unsigned (frame, 6),
2096 (long) get_frame_register_unsigned (frame, 7));
2097 printf_filtered
2098 ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
2099 (long) get_frame_register_unsigned (frame, 8),
2100 (long) get_frame_register_unsigned (frame, 9),
2101 (long) get_frame_register_unsigned (frame, 10),
2102 (long) get_frame_register_unsigned (frame, 11),
2103 (long) get_frame_register_unsigned (frame, 12),
2104 (long) get_frame_register_unsigned (frame, 13),
2105 (long) get_frame_register_unsigned (frame, 14),
2106 (long) get_frame_register_unsigned (frame, 15));
2107
2108 printf_filtered
2109 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
2110 (long) get_frame_register_unsigned (frame, A0G_REGNUM) & 0xff,
2111 (long) get_frame_register_unsigned (frame, A0_REGNUM),
2112 (long) get_frame_register_unsigned (frame, M0_REGNUM),
2113 (long) get_frame_register_unsigned (frame, X0_REGNUM),
2114 (long) get_frame_register_unsigned (frame, Y0_REGNUM),
2115 (long) get_frame_register_unsigned (frame, RS_REGNUM),
2116 (long) get_frame_register_unsigned (frame, MOD_REGNUM));
2117 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
2118 (long) get_frame_register_unsigned (frame, A1G_REGNUM) & 0xff,
2119 (long) get_frame_register_unsigned (frame, A1_REGNUM),
2120 (long) get_frame_register_unsigned (frame, M1_REGNUM),
2121 (long) get_frame_register_unsigned (frame, X1_REGNUM),
2122 (long) get_frame_register_unsigned (frame, Y1_REGNUM),
2123 (long) get_frame_register_unsigned (frame, RE_REGNUM));
2124 }
2125
2126 static void
2127 sh_show_regs_command (char *args, int from_tty)
2128 {
2129 if (sh_show_regs)
2130 (*sh_show_regs) (get_current_frame ());
2131 }
2132
2133 static struct type *
2134 sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
2135 {
2136 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2137 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2138 return builtin_type (gdbarch)->builtin_float;
2139 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2140 return builtin_type (gdbarch)->builtin_double;
2141 else
2142 return builtin_type (gdbarch)->builtin_int;
2143 }
2144
2145 /* Return the GDB type object for the "standard" data type
2146 of data in register N. */
2147 static struct type *
2148 sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
2149 {
2150 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2151 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2152 return builtin_type (gdbarch)->builtin_float;
2153 else
2154 return builtin_type (gdbarch)->builtin_int;
2155 }
2156
2157 static struct type *
2158 sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
2159 {
2160 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
2161 0, high);
2162 }
2163
2164 static struct type *
2165 sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
2166 {
2167 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
2168 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
2169 return builtin_type (gdbarch)->builtin_float;
2170 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2171 return builtin_type (gdbarch)->builtin_double;
2172 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2173 return sh_sh4_build_float_register_type (gdbarch, 3);
2174 else
2175 return builtin_type (gdbarch)->builtin_int;
2176 }
2177
2178 static struct type *
2179 sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
2180 {
2181 return builtin_type (gdbarch)->builtin_int;
2182 }
2183
2184 /* Is a register in a reggroup?
2185 The default code in reggroup.c doesn't identify system registers, some
2186 float registers or any of the vector registers.
2187 TODO: sh2a and dsp registers. */
2188 static int
2189 sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2190 struct reggroup *reggroup)
2191 {
2192 if (gdbarch_register_name (gdbarch, regnum) == NULL
2193 || *gdbarch_register_name (gdbarch, regnum) == '\0')
2194 return 0;
2195
2196 if (reggroup == float_reggroup
2197 && (regnum == FPUL_REGNUM
2198 || regnum == FPSCR_REGNUM))
2199 return 1;
2200
2201 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
2202 {
2203 if (reggroup == vector_reggroup || reggroup == float_reggroup)
2204 return 1;
2205 if (reggroup == general_reggroup)
2206 return 0;
2207 }
2208
2209 if (regnum == VBR_REGNUM
2210 || regnum == SR_REGNUM
2211 || regnum == FPSCR_REGNUM
2212 || regnum == SSR_REGNUM
2213 || regnum == SPC_REGNUM)
2214 {
2215 if (reggroup == system_reggroup)
2216 return 1;
2217 if (reggroup == general_reggroup)
2218 return 0;
2219 }
2220
2221 /* The default code can cope with any other registers. */
2222 return default_register_reggroup_p (gdbarch, regnum, reggroup);
2223 }
2224
2225 /* On the sh4, the DRi pseudo registers are problematic if the target
2226 is little endian. When the user writes one of those registers, for
2227 instance with 'ser var $dr0=1', we want the double to be stored
2228 like this:
2229 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
2230 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2231
2232 This corresponds to little endian byte order & big endian word
2233 order. However if we let gdb write the register w/o conversion, it
2234 will write fr0 and fr1 this way:
2235 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2236 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
2237 because it will consider fr0 and fr1 as a single LE stretch of memory.
2238
2239 To achieve what we want we must force gdb to store things in
2240 floatformat_ieee_double_littlebyte_bigword (which is defined in
2241 include/floatformat.h and libiberty/floatformat.c.
2242
2243 In case the target is big endian, there is no problem, the
2244 raw bytes will look like:
2245 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
2246 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
2247
2248 The other pseudo registers (the FVs) also don't pose a problem
2249 because they are stored as 4 individual FP elements. */
2250
2251 static void
2252 sh_register_convert_to_virtual (int regnum, struct type *type,
2253 char *from, char *to)
2254 {
2255 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
2256 {
2257 DOUBLEST val;
2258 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
2259 from, &val);
2260 store_typed_floating (to, type, val);
2261 }
2262 else
2263 error
2264 ("sh_register_convert_to_virtual called with non DR register number");
2265 }
2266
2267 static void
2268 sh_register_convert_to_raw (struct type *type, int regnum,
2269 const void *from, void *to)
2270 {
2271 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
2272 {
2273 DOUBLEST val = extract_typed_floating (from, type);
2274 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
2275 &val, to);
2276 }
2277 else
2278 error (_("sh_register_convert_to_raw called with non DR register number"));
2279 }
2280
2281 /* For vectors of 4 floating point registers. */
2282 static int
2283 fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
2284 {
2285 int fp_regnum;
2286
2287 fp_regnum = gdbarch_fp0_regnum (gdbarch)
2288 + (fv_regnum - FV0_REGNUM) * 4;
2289 return fp_regnum;
2290 }
2291
2292 /* For double precision floating point registers, i.e 2 fp regs. */
2293 static int
2294 dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
2295 {
2296 int fp_regnum;
2297
2298 fp_regnum = gdbarch_fp0_regnum (gdbarch)
2299 + (dr_regnum - DR0_REGNUM) * 2;
2300 return fp_regnum;
2301 }
2302
2303 /* Concatenate PORTIONS contiguous raw registers starting at
2304 BASE_REGNUM into BUFFER. */
2305
2306 static enum register_status
2307 pseudo_register_read_portions (struct gdbarch *gdbarch,
2308 struct regcache *regcache,
2309 int portions,
2310 int base_regnum, gdb_byte *buffer)
2311 {
2312 int portion;
2313
2314 for (portion = 0; portion < portions; portion++)
2315 {
2316 enum register_status status;
2317 gdb_byte *b;
2318
2319 b = buffer + register_size (gdbarch, base_regnum) * portion;
2320 status = regcache_raw_read (regcache, base_regnum + portion, b);
2321 if (status != REG_VALID)
2322 return status;
2323 }
2324
2325 return REG_VALID;
2326 }
2327
2328 static enum register_status
2329 sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2330 int reg_nr, gdb_byte *buffer)
2331 {
2332 int base_regnum;
2333 char temp_buffer[MAX_REGISTER_SIZE];
2334 enum register_status status;
2335
2336 if (reg_nr == PSEUDO_BANK_REGNUM)
2337 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
2338 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2339 {
2340 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
2341
2342 /* Build the value in the provided buffer. */
2343 /* Read the real regs for which this one is an alias. */
2344 status = pseudo_register_read_portions (gdbarch, regcache,
2345 2, base_regnum, temp_buffer);
2346 if (status == REG_VALID)
2347 {
2348 /* We must pay attention to the endiannes. */
2349 sh_register_convert_to_virtual (reg_nr,
2350 register_type (gdbarch, reg_nr),
2351 temp_buffer, buffer);
2352 }
2353 return status;
2354 }
2355 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2356 {
2357 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
2358
2359 /* Read the real regs for which this one is an alias. */
2360 return pseudo_register_read_portions (gdbarch, regcache,
2361 4, base_regnum, buffer);
2362 }
2363 else
2364 gdb_assert_not_reached ("invalid pseudo register number");
2365 }
2366
2367 static void
2368 sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2369 int reg_nr, const gdb_byte *buffer)
2370 {
2371 int base_regnum, portion;
2372 char temp_buffer[MAX_REGISTER_SIZE];
2373
2374 if (reg_nr == PSEUDO_BANK_REGNUM)
2375 {
2376 /* When the bank register is written to, the whole register bank
2377 is switched and all values in the bank registers must be read
2378 from the target/sim again. We're just invalidating the regcache
2379 so that a re-read happens next time it's necessary. */
2380 int bregnum;
2381
2382 regcache_raw_write (regcache, BANK_REGNUM, buffer);
2383 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
2384 regcache_invalidate (regcache, bregnum);
2385 }
2386 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
2387 {
2388 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
2389
2390 /* We must pay attention to the endiannes. */
2391 sh_register_convert_to_raw (register_type (gdbarch, reg_nr),
2392 reg_nr, buffer, temp_buffer);
2393
2394 /* Write the real regs for which this one is an alias. */
2395 for (portion = 0; portion < 2; portion++)
2396 regcache_raw_write (regcache, base_regnum + portion,
2397 (temp_buffer
2398 + register_size (gdbarch,
2399 base_regnum) * portion));
2400 }
2401 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
2402 {
2403 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
2404
2405 /* Write the real regs for which this one is an alias. */
2406 for (portion = 0; portion < 4; portion++)
2407 regcache_raw_write (regcache, base_regnum + portion,
2408 ((char *) buffer
2409 + register_size (gdbarch,
2410 base_regnum) * portion));
2411 }
2412 }
2413
2414 static int
2415 sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2416 {
2417 if (legacy_register_sim_regno (gdbarch, nr) < 0)
2418 return legacy_register_sim_regno (gdbarch, nr);
2419 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
2420 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
2421 if (nr == MOD_REGNUM)
2422 return SIM_SH_MOD_REGNUM;
2423 if (nr == RS_REGNUM)
2424 return SIM_SH_RS_REGNUM;
2425 if (nr == RE_REGNUM)
2426 return SIM_SH_RE_REGNUM;
2427 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
2428 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2429 return nr;
2430 }
2431
2432 static int
2433 sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
2434 {
2435 switch (nr)
2436 {
2437 case TBR_REGNUM:
2438 return SIM_SH_TBR_REGNUM;
2439 case IBNR_REGNUM:
2440 return SIM_SH_IBNR_REGNUM;
2441 case IBCR_REGNUM:
2442 return SIM_SH_IBCR_REGNUM;
2443 case BANK_REGNUM:
2444 return SIM_SH_BANK_REGNUM;
2445 case MACLB_REGNUM:
2446 return SIM_SH_BANK_MACL_REGNUM;
2447 case GBRB_REGNUM:
2448 return SIM_SH_BANK_GBR_REGNUM;
2449 case PRB_REGNUM:
2450 return SIM_SH_BANK_PR_REGNUM;
2451 case IVNB_REGNUM:
2452 return SIM_SH_BANK_IVN_REGNUM;
2453 case MACHB_REGNUM:
2454 return SIM_SH_BANK_MACH_REGNUM;
2455 default:
2456 break;
2457 }
2458 return legacy_register_sim_regno (gdbarch, nr);
2459 }
2460
2461 /* Set up the register unwinding such that call-clobbered registers are
2462 not displayed in frames >0 because the true value is not certain.
2463 The 'undefined' registers will show up as 'not available' unless the
2464 CFI says otherwise.
2465
2466 This function is currently set up for SH4 and compatible only. */
2467
2468 static void
2469 sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2470 struct dwarf2_frame_state_reg *reg,
2471 struct frame_info *this_frame)
2472 {
2473 /* Mark the PC as the destination for the return address. */
2474 if (regnum == gdbarch_pc_regnum (gdbarch))
2475 reg->how = DWARF2_FRAME_REG_RA;
2476
2477 /* Mark the stack pointer as the call frame address. */
2478 else if (regnum == gdbarch_sp_regnum (gdbarch))
2479 reg->how = DWARF2_FRAME_REG_CFA;
2480
2481 /* The above was taken from the default init_reg in dwarf2-frame.c
2482 while the below is SH specific. */
2483
2484 /* Caller save registers. */
2485 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
2486 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
2487 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
2488 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
2489 || (regnum == MACH_REGNUM)
2490 || (regnum == MACL_REGNUM)
2491 || (regnum == FPUL_REGNUM)
2492 || (regnum == SR_REGNUM))
2493 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2494
2495 /* Callee save registers. */
2496 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
2497 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
2498 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
2499 || (regnum == FV0_REGNUM+3))
2500 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
2501
2502 /* Other registers. These are not in the ABI and may or may not
2503 mean anything in frames >0 so don't show them. */
2504 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
2505 || (regnum == GBR_REGNUM)
2506 || (regnum == VBR_REGNUM)
2507 || (regnum == FPSCR_REGNUM)
2508 || (regnum == SSR_REGNUM)
2509 || (regnum == SPC_REGNUM))
2510 reg->how = DWARF2_FRAME_REG_UNDEFINED;
2511 }
2512
2513 static struct sh_frame_cache *
2514 sh_alloc_frame_cache (void)
2515 {
2516 struct sh_frame_cache *cache;
2517 int i;
2518
2519 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
2520
2521 /* Base address. */
2522 cache->base = 0;
2523 cache->saved_sp = 0;
2524 cache->sp_offset = 0;
2525 cache->pc = 0;
2526
2527 /* Frameless until proven otherwise. */
2528 cache->uses_fp = 0;
2529
2530 /* Saved registers. We initialize these to -1 since zero is a valid
2531 offset (that's where fp is supposed to be stored). */
2532 for (i = 0; i < SH_NUM_REGS; i++)
2533 {
2534 cache->saved_regs[i] = -1;
2535 }
2536
2537 return cache;
2538 }
2539
2540 static struct sh_frame_cache *
2541 sh_frame_cache (struct frame_info *this_frame, void **this_cache)
2542 {
2543 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2544 struct sh_frame_cache *cache;
2545 CORE_ADDR current_pc;
2546 int i;
2547
2548 if (*this_cache)
2549 return *this_cache;
2550
2551 cache = sh_alloc_frame_cache ();
2552 *this_cache = cache;
2553
2554 /* In principle, for normal frames, fp holds the frame pointer,
2555 which holds the base address for the current stack frame.
2556 However, for functions that don't need it, the frame pointer is
2557 optional. For these "frameless" functions the frame pointer is
2558 actually the frame pointer of the calling frame. */
2559 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
2560 if (cache->base == 0)
2561 return cache;
2562
2563 cache->pc = get_frame_func (this_frame);
2564 current_pc = get_frame_pc (this_frame);
2565 if (cache->pc != 0)
2566 {
2567 ULONGEST fpscr;
2568 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
2569 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
2570 }
2571
2572 if (!cache->uses_fp)
2573 {
2574 /* We didn't find a valid frame, which means that CACHE->base
2575 currently holds the frame pointer for our calling frame. If
2576 we're at the start of a function, or somewhere half-way its
2577 prologue, the function's frame probably hasn't been fully
2578 setup yet. Try to reconstruct the base address for the stack
2579 frame by looking at the stack pointer. For truly "frameless"
2580 functions this might work too. */
2581 cache->base = get_frame_register_unsigned
2582 (this_frame, gdbarch_sp_regnum (gdbarch));
2583 }
2584
2585 /* Now that we have the base address for the stack frame we can
2586 calculate the value of sp in the calling frame. */
2587 cache->saved_sp = cache->base + cache->sp_offset;
2588
2589 /* Adjust all the saved registers such that they contain addresses
2590 instead of offsets. */
2591 for (i = 0; i < SH_NUM_REGS; i++)
2592 if (cache->saved_regs[i] != -1)
2593 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
2594
2595 return cache;
2596 }
2597
2598 static struct value *
2599 sh_frame_prev_register (struct frame_info *this_frame,
2600 void **this_cache, int regnum)
2601 {
2602 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2603 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2604
2605 gdb_assert (regnum >= 0);
2606
2607 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2608 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2609
2610 /* The PC of the previous frame is stored in the PR register of
2611 the current frame. Frob regnum so that we pull the value from
2612 the correct place. */
2613 if (regnum == gdbarch_pc_regnum (gdbarch))
2614 regnum = PR_REGNUM;
2615
2616 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
2617 return frame_unwind_got_memory (this_frame, regnum,
2618 cache->saved_regs[regnum]);
2619
2620 return frame_unwind_got_register (this_frame, regnum, regnum);
2621 }
2622
2623 static void
2624 sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
2625 struct frame_id *this_id)
2626 {
2627 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2628
2629 /* This marks the outermost frame. */
2630 if (cache->base == 0)
2631 return;
2632
2633 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2634 }
2635
2636 static const struct frame_unwind sh_frame_unwind = {
2637 NORMAL_FRAME,
2638 default_frame_unwind_stop_reason,
2639 sh_frame_this_id,
2640 sh_frame_prev_register,
2641 NULL,
2642 default_frame_sniffer
2643 };
2644
2645 static CORE_ADDR
2646 sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2647 {
2648 return frame_unwind_register_unsigned (next_frame,
2649 gdbarch_sp_regnum (gdbarch));
2650 }
2651
2652 static CORE_ADDR
2653 sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2654 {
2655 return frame_unwind_register_unsigned (next_frame,
2656 gdbarch_pc_regnum (gdbarch));
2657 }
2658
2659 static struct frame_id
2660 sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2661 {
2662 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2663 gdbarch_sp_regnum (gdbarch));
2664 return frame_id_build (sp, get_frame_pc (this_frame));
2665 }
2666
2667 static CORE_ADDR
2668 sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
2669 {
2670 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
2671
2672 return cache->base;
2673 }
2674
2675 static const struct frame_base sh_frame_base = {
2676 &sh_frame_unwind,
2677 sh_frame_base_address,
2678 sh_frame_base_address,
2679 sh_frame_base_address
2680 };
2681
2682 /* The epilogue is defined here as the area at the end of a function,
2683 either on the `ret' instruction itself or after an instruction which
2684 destroys the function's stack frame. */
2685 static int
2686 sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2687 {
2688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2689 CORE_ADDR func_addr = 0, func_end = 0;
2690
2691 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2692 {
2693 ULONGEST inst;
2694 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2695 for a nop and some fixed data (e.g. big offsets) which are
2696 unfortunately also treated as part of the function (which
2697 means, they are below func_end. */
2698 CORE_ADDR addr = func_end - 28;
2699 if (addr < func_addr + 4)
2700 addr = func_addr + 4;
2701 if (pc < addr)
2702 return 0;
2703
2704 /* First search forward until hitting an rts. */
2705 while (addr < func_end
2706 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
2707 addr += 2;
2708 if (addr >= func_end)
2709 return 0;
2710
2711 /* At this point we should find a mov.l @r15+,r14 instruction,
2712 either before or after the rts. If not, then the function has
2713 probably no "normal" epilogue and we bail out here. */
2714 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2715 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2716 byte_order)))
2717 addr -= 2;
2718 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2719 byte_order)))
2720 return 0;
2721
2722 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2723
2724 /* Step over possible lds.l @r15+,macl. */
2725 if (IS_MACL_LDS (inst))
2726 {
2727 addr -= 2;
2728 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2729 }
2730
2731 /* Step over possible lds.l @r15+,pr. */
2732 if (IS_LDS (inst))
2733 {
2734 addr -= 2;
2735 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2736 }
2737
2738 /* Step over possible mov r14,r15. */
2739 if (IS_MOV_FP_SP (inst))
2740 {
2741 addr -= 2;
2742 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2743 }
2744
2745 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2746 instructions. */
2747 while (addr > func_addr + 4
2748 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
2749 {
2750 addr -= 2;
2751 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2752 }
2753
2754 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2755 That's allowed for the epilogue. */
2756 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2757 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2758 && addr > func_addr + 6
2759 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2760 byte_order)))
2761 addr -= 4;
2762
2763 if (pc >= addr)
2764 return 1;
2765 }
2766 return 0;
2767 }
2768
2769
2770 /* Supply register REGNUM from the buffer specified by REGS and LEN
2771 in the register set REGSET to register cache REGCACHE.
2772 REGTABLE specifies where each register can be found in REGS.
2773 If REGNUM is -1, do this for all registers in REGSET. */
2774
2775 void
2776 sh_corefile_supply_regset (const struct regset *regset,
2777 struct regcache *regcache,
2778 int regnum, const void *regs, size_t len)
2779 {
2780 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2782 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2783 ? tdep->core_gregmap
2784 : tdep->core_fpregmap);
2785 int i;
2786
2787 for (i = 0; regmap[i].regnum != -1; i++)
2788 {
2789 if ((regnum == -1 || regnum == regmap[i].regnum)
2790 && regmap[i].offset + 4 <= len)
2791 regcache_raw_supply (regcache, regmap[i].regnum,
2792 (char *)regs + regmap[i].offset);
2793 }
2794 }
2795
2796 /* Collect register REGNUM in the register set REGSET from register cache
2797 REGCACHE into the buffer specified by REGS and LEN.
2798 REGTABLE specifies where each register can be found in REGS.
2799 If REGNUM is -1, do this for all registers in REGSET. */
2800
2801 void
2802 sh_corefile_collect_regset (const struct regset *regset,
2803 const struct regcache *regcache,
2804 int regnum, void *regs, size_t len)
2805 {
2806 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2808 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2809 ? tdep->core_gregmap
2810 : tdep->core_fpregmap);
2811 int i;
2812
2813 for (i = 0; regmap[i].regnum != -1; i++)
2814 {
2815 if ((regnum == -1 || regnum == regmap[i].regnum)
2816 && regmap[i].offset + 4 <= len)
2817 regcache_raw_collect (regcache, regmap[i].regnum,
2818 (char *)regs + regmap[i].offset);
2819 }
2820 }
2821
2822 /* The following two regsets have the same contents, so it is tempting to
2823 unify them, but they are distiguished by their address, so don't. */
2824
2825 struct regset sh_corefile_gregset =
2826 {
2827 NULL,
2828 sh_corefile_supply_regset,
2829 sh_corefile_collect_regset
2830 };
2831
2832 static struct regset sh_corefile_fpregset =
2833 {
2834 NULL,
2835 sh_corefile_supply_regset,
2836 sh_corefile_collect_regset
2837 };
2838
2839 static const struct regset *
2840 sh_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name,
2841 size_t sect_size)
2842 {
2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2844
2845 if (tdep->core_gregmap && strcmp (sect_name, ".reg") == 0)
2846 return &sh_corefile_gregset;
2847
2848 if (tdep->core_fpregmap && strcmp (sect_name, ".reg2") == 0)
2849 return &sh_corefile_fpregset;
2850
2851 return NULL;
2852 }
2853 \f
2854
2855 static struct gdbarch *
2856 sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2857 {
2858 struct gdbarch *gdbarch;
2859 struct gdbarch_tdep *tdep;
2860
2861 sh_show_regs = sh_generic_show_regs;
2862 switch (info.bfd_arch_info->mach)
2863 {
2864 case bfd_mach_sh2e:
2865 sh_show_regs = sh2e_show_regs;
2866 break;
2867 case bfd_mach_sh2a:
2868 sh_show_regs = sh2a_show_regs;
2869 break;
2870 case bfd_mach_sh2a_nofpu:
2871 sh_show_regs = sh2a_nofpu_show_regs;
2872 break;
2873 case bfd_mach_sh_dsp:
2874 sh_show_regs = sh_dsp_show_regs;
2875 break;
2876
2877 case bfd_mach_sh3:
2878 case bfd_mach_sh3_nommu:
2879 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
2880 sh_show_regs = sh3_show_regs;
2881 break;
2882
2883 case bfd_mach_sh3e:
2884 case bfd_mach_sh2a_or_sh3e:
2885 sh_show_regs = sh3e_show_regs;
2886 break;
2887
2888 case bfd_mach_sh3_dsp:
2889 case bfd_mach_sh4al_dsp:
2890 sh_show_regs = sh3_dsp_show_regs;
2891 break;
2892
2893 case bfd_mach_sh4:
2894 case bfd_mach_sh4a:
2895 case bfd_mach_sh2a_or_sh4:
2896 sh_show_regs = sh4_show_regs;
2897 break;
2898
2899 case bfd_mach_sh4_nofpu:
2900 case bfd_mach_sh4_nommu_nofpu:
2901 case bfd_mach_sh4a_nofpu:
2902 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
2903 sh_show_regs = sh4_nofpu_show_regs;
2904 break;
2905
2906 case bfd_mach_sh5:
2907 sh_show_regs = sh64_show_regs;
2908 /* SH5 is handled entirely in sh64-tdep.c. */
2909 return sh64_gdbarch_init (info, arches);
2910 }
2911
2912 /* If there is already a candidate, use it. */
2913 arches = gdbarch_list_lookup_by_info (arches, &info);
2914 if (arches != NULL)
2915 return arches->gdbarch;
2916
2917 /* None found, create a new architecture from the information
2918 provided. */
2919 tdep = XZALLOC (struct gdbarch_tdep);
2920 gdbarch = gdbarch_alloc (&info, tdep);
2921
2922 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2923 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2924 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2925 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2926 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2927 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2928 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2929 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2930
2931 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
2932 set_gdbarch_sp_regnum (gdbarch, 15);
2933 set_gdbarch_pc_regnum (gdbarch, 16);
2934 set_gdbarch_fp0_regnum (gdbarch, -1);
2935 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2936
2937 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2938 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
2939
2940 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
2941
2942 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2943 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2944
2945 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2946
2947 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2948 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2949
2950 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2951
2952 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2953
2954 set_gdbarch_frame_align (gdbarch, sh_frame_align);
2955 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2956 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2957 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
2958 frame_base_set_default (gdbarch, &sh_frame_base);
2959
2960 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
2961
2962 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2963
2964 set_gdbarch_regset_from_core_section (gdbarch, sh_regset_from_core_section);
2965
2966 switch (info.bfd_arch_info->mach)
2967 {
2968 case bfd_mach_sh:
2969 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2970 break;
2971
2972 case bfd_mach_sh2:
2973 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
2974 break;
2975
2976 case bfd_mach_sh2e:
2977 /* doubles on sh2e and sh3e are actually 4 byte. */
2978 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2979
2980 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
2981 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2982 set_gdbarch_fp0_regnum (gdbarch, 25);
2983 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2984 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2985 break;
2986
2987 case bfd_mach_sh2a:
2988 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2989 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2990 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2991
2992 set_gdbarch_fp0_regnum (gdbarch, 25);
2993 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2994 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2995 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2996 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
2997 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2998 break;
2999
3000 case bfd_mach_sh2a_nofpu:
3001 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
3002 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
3003
3004 set_gdbarch_num_pseudo_regs (gdbarch, 1);
3005 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
3006 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
3007 break;
3008
3009 case bfd_mach_sh_dsp:
3010 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
3011 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
3012 break;
3013
3014 case bfd_mach_sh3:
3015 case bfd_mach_sh3_nommu:
3016 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
3017 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
3018 break;
3019
3020 case bfd_mach_sh3e:
3021 case bfd_mach_sh2a_or_sh3e:
3022 /* doubles on sh2e and sh3e are actually 4 byte. */
3023 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3024
3025 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
3026 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
3027 set_gdbarch_fp0_regnum (gdbarch, 25);
3028 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
3029 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
3030 break;
3031
3032 case bfd_mach_sh3_dsp:
3033 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
3034 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
3035 break;
3036
3037 case bfd_mach_sh4:
3038 case bfd_mach_sh4a:
3039 case bfd_mach_sh2a_or_sh4:
3040 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
3041 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
3042 set_gdbarch_fp0_regnum (gdbarch, 25);
3043 set_gdbarch_num_pseudo_regs (gdbarch, 13);
3044 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
3045 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
3046 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
3047 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
3048 break;
3049
3050 case bfd_mach_sh4_nofpu:
3051 case bfd_mach_sh4a_nofpu:
3052 case bfd_mach_sh4_nommu_nofpu:
3053 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
3054 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
3055 break;
3056
3057 case bfd_mach_sh4al_dsp:
3058 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
3059 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
3060 break;
3061
3062 default:
3063 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
3064 break;
3065 }
3066
3067 /* Hook in ABI-specific overrides, if they have been registered. */
3068 gdbarch_init_osabi (info, gdbarch);
3069
3070 dwarf2_append_unwinders (gdbarch);
3071 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
3072
3073 return gdbarch;
3074 }
3075
3076 static void
3077 show_sh_command (char *args, int from_tty)
3078 {
3079 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
3080 }
3081
3082 static void
3083 set_sh_command (char *args, int from_tty)
3084 {
3085 printf_unfiltered
3086 ("\"set sh\" must be followed by an appropriate subcommand.\n");
3087 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
3088 }
3089
3090 extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
3091
3092 void
3093 _initialize_sh_tdep (void)
3094 {
3095 struct cmd_list_element *c;
3096
3097 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
3098
3099 add_com ("regs", class_vars, sh_show_regs_command, _("Print all registers"));
3100
3101 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
3102 &setshcmdlist, "set sh ", 0, &setlist);
3103 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
3104 &showshcmdlist, "show sh ", 0, &showlist);
3105
3106 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
3107 &sh_active_calling_convention,
3108 _("Set calling convention used when calling target "
3109 "functions from GDB."),
3110 _("Show calling convention used when calling target "
3111 "functions from GDB."),
3112 _("gcc - Use GCC calling convention (default).\n"
3113 "renesas - Enforce Renesas calling convention."),
3114 NULL, NULL,
3115 &setshcmdlist, &showshcmdlist);
3116 }
This page took 0.101435 seconds and 5 git commands to generate.