* read.c (read_a_source_file): Remove md_after_pass_hook.
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Contributed by Steve Chamberlain
23 sac@cygnus.com. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "dis-asm.h"
36 #include "inferior.h"
37 #include "gdb_string.h"
38 #include "gdb_assert.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "valprint.h"
43
44 #include "elf-bfd.h"
45
46 /* sh flags */
47 #include "elf/sh.h"
48 /* Register numbers shared with the simulator. */
49 #include "gdb/sim-sh.h"
50 #include "language.h"
51
52 /* Information that is dependent on the processor variant. */
53 enum sh_abi
54 {
55 SH_ABI_UNKNOWN,
56 SH_ABI_32,
57 SH_ABI_64
58 };
59
60 struct gdbarch_tdep
61 {
62 enum sh_abi sh_abi;
63 };
64
65 struct sh64_frame_cache
66 {
67 /* Base address. */
68 CORE_ADDR base;
69 LONGEST sp_offset;
70 CORE_ADDR pc;
71
72 /* Flag showing that a frame has been created in the prologue code. */
73 int uses_fp;
74
75 int media_mode;
76
77 /* Saved registers. */
78 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
79 CORE_ADDR saved_sp;
80 };
81
82 /* Registers of SH5 */
83 enum
84 {
85 R0_REGNUM = 0,
86 DEFAULT_RETURN_REGNUM = 2,
87 STRUCT_RETURN_REGNUM = 2,
88 ARG0_REGNUM = 2,
89 ARGLAST_REGNUM = 9,
90 FLOAT_ARGLAST_REGNUM = 11,
91 MEDIA_FP_REGNUM = 14,
92 PR_REGNUM = 18,
93 SR_REGNUM = 65,
94 DR0_REGNUM = 141,
95 DR_LAST_REGNUM = 172,
96 /* FPP stands for Floating Point Pair, to avoid confusion with
97 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
98 point register. Unfortunately on the sh5, the floating point
99 registers are called FR, and the floating point pairs are called FP. */
100 FPP0_REGNUM = 173,
101 FPP_LAST_REGNUM = 204,
102 FV0_REGNUM = 205,
103 FV_LAST_REGNUM = 220,
104 R0_C_REGNUM = 221,
105 R_LAST_C_REGNUM = 236,
106 PC_C_REGNUM = 237,
107 GBR_C_REGNUM = 238,
108 MACH_C_REGNUM = 239,
109 MACL_C_REGNUM = 240,
110 PR_C_REGNUM = 241,
111 T_C_REGNUM = 242,
112 FPSCR_C_REGNUM = 243,
113 FPUL_C_REGNUM = 244,
114 FP0_C_REGNUM = 245,
115 FP_LAST_C_REGNUM = 260,
116 DR0_C_REGNUM = 261,
117 DR_LAST_C_REGNUM = 268,
118 FV0_C_REGNUM = 269,
119 FV_LAST_C_REGNUM = 272,
120 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
121 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
122 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
123 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
124 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
125 };
126
127 static const char *
128 sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
129 {
130 static char *register_names[] =
131 {
132 /* SH MEDIA MODE (ISA 32) */
133 /* general registers (64-bit) 0-63 */
134 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
135 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
136 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
137 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
138 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
139 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
140 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
141 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
142
143 /* pc (64-bit) 64 */
144 "pc",
145
146 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
147 "sr", "ssr", "spc",
148
149 /* target registers (64-bit) 68-75 */
150 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
151
152 /* floating point state control register (32-bit) 76 */
153 "fpscr",
154
155 /* single precision floating point registers (32-bit) 77-140 */
156 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
157 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
158 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
159 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
160 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
161 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
162 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
163 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
164
165 /* double precision registers (pseudo) 141-172 */
166 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
167 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
168 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
169 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
170
171 /* floating point pairs (pseudo) 173-204 */
172 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
173 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
174 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
175 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
176
177 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
178 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
179 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
180
181 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
182 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
183 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
184 "pc_c",
185 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
186 "fpscr_c", "fpul_c",
187 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
188 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
190 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
191 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
192 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
193 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
194 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
195 };
196
197 if (reg_nr < 0)
198 return NULL;
199 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
200 return NULL;
201 return register_names[reg_nr];
202 }
203
204 #define NUM_PSEUDO_REGS_SH_MEDIA 80
205 #define NUM_PSEUDO_REGS_SH_COMPACT 51
206
207 /* Macros and functions for setting and testing a bit in a minimal
208 symbol that marks it as 32-bit function. The MSB of the minimal
209 symbol's "info" field is used for this purpose.
210
211 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
212 i.e. refers to a 32-bit function, and sets a "special" bit in a
213 minimal symbol to mark it as a 32-bit function
214 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
215
216 #define MSYMBOL_IS_SPECIAL(msym) \
217 MSYMBOL_TARGET_FLAG_1 (msym)
218
219 static void
220 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
221 {
222 if (msym == NULL)
223 return;
224
225 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
226 {
227 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
228 SYMBOL_VALUE_ADDRESS (msym) |= 1;
229 }
230 }
231
232 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
233 are some macros to test, set, or clear bit 0 of addresses. */
234 #define IS_ISA32_ADDR(addr) ((addr) & 1)
235 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
236 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
237
238 static int
239 pc_is_isa32 (bfd_vma memaddr)
240 {
241 struct minimal_symbol *sym;
242
243 /* If bit 0 of the address is set, assume this is a
244 ISA32 (shmedia) address. */
245 if (IS_ISA32_ADDR (memaddr))
246 return 1;
247
248 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
249 the high bit of the info field. Use this to decide if the function is
250 ISA16 or ISA32. */
251 sym = lookup_minimal_symbol_by_pc (memaddr);
252 if (sym)
253 return MSYMBOL_IS_SPECIAL (sym);
254 else
255 return 0;
256 }
257
258 static const unsigned char *
259 sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
260 CORE_ADDR *pcptr, int *lenptr)
261 {
262 /* The BRK instruction for shmedia is
263 01101111 11110101 11111111 11110000
264 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
265 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
266
267 /* The BRK instruction for shcompact is
268 00000000 00111011
269 which translates in big endian mode to 0x0, 0x3b
270 and in little endian mode to 0x3b, 0x0 */
271
272 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
273 {
274 if (pc_is_isa32 (*pcptr))
275 {
276 static unsigned char big_breakpoint_media[] = {
277 0x6f, 0xf5, 0xff, 0xf0
278 };
279 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
280 *lenptr = sizeof (big_breakpoint_media);
281 return big_breakpoint_media;
282 }
283 else
284 {
285 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
286 *lenptr = sizeof (big_breakpoint_compact);
287 return big_breakpoint_compact;
288 }
289 }
290 else
291 {
292 if (pc_is_isa32 (*pcptr))
293 {
294 static unsigned char little_breakpoint_media[] = {
295 0xf0, 0xff, 0xf5, 0x6f
296 };
297 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
298 *lenptr = sizeof (little_breakpoint_media);
299 return little_breakpoint_media;
300 }
301 else
302 {
303 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
304 *lenptr = sizeof (little_breakpoint_compact);
305 return little_breakpoint_compact;
306 }
307 }
308 }
309
310 /* Prologue looks like
311 [mov.l <regs>,@-r15]...
312 [sts.l pr,@-r15]
313 [mov.l r14,@-r15]
314 [mov r15,r14]
315
316 Actually it can be more complicated than this. For instance, with
317 newer gcc's:
318
319 mov.l r14,@-r15
320 add #-12,r15
321 mov r15,r14
322 mov r4,r1
323 mov r5,r2
324 mov.l r6,@(4,r14)
325 mov.l r7,@(8,r14)
326 mov.b r1,@r14
327 mov r14,r1
328 mov r14,r1
329 add #2,r1
330 mov.w r2,@r1
331
332 */
333
334 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
335 with l=1 and n = 18 0110101111110001010010100aaa0000 */
336 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
337
338 /* STS.L PR,@-r0 0100000000100010
339 r0-4-->r0, PR-->(r0) */
340 #define IS_STS_R0(x) ((x) == 0x4022)
341
342 /* STS PR, Rm 0000mmmm00101010
343 PR-->Rm */
344 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
345
346 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
347 Rm-->(dispx4+r15) */
348 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
349
350 /* MOV.L R14,@(disp,r15) 000111111110dddd
351 R14-->(dispx4+r15) */
352 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
353
354 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
355 R18-->(dispx8+R14) */
356 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
357
358 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
359 R18-->(dispx8+R15) */
360 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
361
362 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
363 R18-->(dispx4+R15) */
364 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
365
366 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
367 R14-->(dispx8+R15) */
368 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
369
370 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
371 R14-->(dispx4+R15) */
372 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
373
374 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
375 R15 + imm --> R15 */
376 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
377
378 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
379 R15 + imm --> R15 */
380 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
381
382 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
383 R15 + R63 --> R14 */
384 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
385
386 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
387 R15 + R63 --> R14 */
388 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
389
390 #define IS_MOV_SP_FP_MEDIA(x) \
391 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
392
393 /* MOV #imm, R0 1110 0000 ssss ssss
394 #imm-->R0 */
395 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
396
397 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
398 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
399
400 /* ADD r15,r0 0011 0000 1111 1100
401 r15+r0-->r0 */
402 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
403
404 /* MOV.L R14 @-R0 0010 0000 1110 0110
405 R14-->(R0-4), R0-4-->R0 */
406 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
407
408 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
409 where Rm is one of r2-r9 which are the argument registers. */
410 /* FIXME: Recognize the float and double register moves too! */
411 #define IS_MEDIA_IND_ARG_MOV(x) \
412 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
413 && (((x) & 0x03f00000) >= 0x00200000 \
414 && ((x) & 0x03f00000) <= 0x00900000))
415
416 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
417 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
418 where Rm is one of r2-r9 which are the argument registers. */
419 #define IS_MEDIA_ARG_MOV(x) \
420 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
421 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
422
423 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
424 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
425 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
426 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
427 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
428 #define IS_MEDIA_MOV_TO_R14(x) \
429 ((((x) & 0xfffffc0f) == 0xa0e00000) \
430 || (((x) & 0xfffffc0f) == 0xa4e00000) \
431 || (((x) & 0xfffffc0f) == 0xa8e00000) \
432 || (((x) & 0xfffffc0f) == 0xb4e00000) \
433 || (((x) & 0xfffffc0f) == 0xbce00000))
434
435 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
436 where Rm is r2-r9 */
437 #define IS_COMPACT_IND_ARG_MOV(x) \
438 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
439 && (((x) & 0x00f0) <= 0x0090))
440
441 /* compact direct arg move!
442 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
443 #define IS_COMPACT_ARG_MOV(x) \
444 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
445 && ((x) & 0x00f0) <= 0x0090))
446
447 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
448 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
449 #define IS_COMPACT_MOV_TO_R14(x) \
450 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
451
452 #define IS_JSR_R0(x) ((x) == 0x400b)
453 #define IS_NOP(x) ((x) == 0x0009)
454
455
456 /* MOV r15,r14 0110111011110011
457 r15-->r14 */
458 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
459
460 /* ADD #imm,r15 01111111iiiiiiii
461 r15+imm-->r15 */
462 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
463
464 /* Skip any prologue before the guts of a function. */
465
466 /* Skip the prologue using the debug information. If this fails we'll
467 fall back on the 'guess' method below. */
468 static CORE_ADDR
469 after_prologue (CORE_ADDR pc)
470 {
471 struct symtab_and_line sal;
472 CORE_ADDR func_addr, func_end;
473
474 /* If we can not find the symbol in the partial symbol table, then
475 there is no hope we can determine the function's start address
476 with this code. */
477 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
478 return 0;
479
480
481 /* Get the line associated with FUNC_ADDR. */
482 sal = find_pc_line (func_addr, 0);
483
484 /* There are only two cases to consider. First, the end of the source line
485 is within the function bounds. In that case we return the end of the
486 source line. Second is the end of the source line extends beyond the
487 bounds of the current function. We need to use the slow code to
488 examine instructions in that case. */
489 if (sal.end < func_end)
490 return sal.end;
491 else
492 return 0;
493 }
494
495 static CORE_ADDR
496 look_for_args_moves (struct gdbarch *gdbarch,
497 CORE_ADDR start_pc, int media_mode)
498 {
499 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
500 CORE_ADDR here, end;
501 int w;
502 int insn_size = (media_mode ? 4 : 2);
503
504 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
505 {
506 if (media_mode)
507 {
508 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
509 insn_size, byte_order);
510 here += insn_size;
511 if (IS_MEDIA_IND_ARG_MOV (w))
512 {
513 /* This must be followed by a store to r14, so the argument
514 is where the debug info says it is. This can happen after
515 the SP has been saved, unfortunately. */
516
517 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
518 insn_size, byte_order);
519 here += insn_size;
520 if (IS_MEDIA_MOV_TO_R14 (next_insn))
521 start_pc = here;
522 }
523 else if (IS_MEDIA_ARG_MOV (w))
524 {
525 /* These instructions store directly the argument in r14. */
526 start_pc = here;
527 }
528 else
529 break;
530 }
531 else
532 {
533 w = read_memory_integer (here, insn_size, byte_order);
534 w = w & 0xffff;
535 here += insn_size;
536 if (IS_COMPACT_IND_ARG_MOV (w))
537 {
538 /* This must be followed by a store to r14, so the argument
539 is where the debug info says it is. This can happen after
540 the SP has been saved, unfortunately. */
541
542 int next_insn = 0xffff & read_memory_integer (here, insn_size,
543 byte_order);
544 here += insn_size;
545 if (IS_COMPACT_MOV_TO_R14 (next_insn))
546 start_pc = here;
547 }
548 else if (IS_COMPACT_ARG_MOV (w))
549 {
550 /* These instructions store directly the argument in r14. */
551 start_pc = here;
552 }
553 else if (IS_MOVL_R0 (w))
554 {
555 /* There is a function that gcc calls to get the arguments
556 passed correctly to the function. Only after this
557 function call the arguments will be found at the place
558 where they are supposed to be. This happens in case the
559 argument has to be stored into a 64-bit register (for
560 instance doubles, long longs). SHcompact doesn't have
561 access to the full 64-bits, so we store the register in
562 stack slot and store the address of the stack slot in
563 the register, then do a call through a wrapper that
564 loads the memory value into the register. A SHcompact
565 callee calls an argument decoder
566 (GCC_shcompact_incoming_args) that stores the 64-bit
567 value in a stack slot and stores the address of the
568 stack slot in the register. GCC thinks the argument is
569 just passed by transparent reference, but this is only
570 true after the argument decoder is called. Such a call
571 needs to be considered part of the prologue. */
572
573 /* This must be followed by a JSR @r0 instruction and by
574 a NOP instruction. After these, the prologue is over! */
575
576 int next_insn = 0xffff & read_memory_integer (here, insn_size,
577 byte_order);
578 here += insn_size;
579 if (IS_JSR_R0 (next_insn))
580 {
581 next_insn = 0xffff & read_memory_integer (here, insn_size,
582 byte_order);
583 here += insn_size;
584
585 if (IS_NOP (next_insn))
586 start_pc = here;
587 }
588 }
589 else
590 break;
591 }
592 }
593
594 return start_pc;
595 }
596
597 static CORE_ADDR
598 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
599 {
600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
601 CORE_ADDR here, end;
602 int updated_fp = 0;
603 int insn_size = 4;
604 int media_mode = 1;
605
606 if (!start_pc)
607 return 0;
608
609 if (pc_is_isa32 (start_pc) == 0)
610 {
611 insn_size = 2;
612 media_mode = 0;
613 }
614
615 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
616 {
617
618 if (media_mode)
619 {
620 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
621 insn_size, byte_order);
622 here += insn_size;
623 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
624 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
625 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
626 || IS_PTABSL_R18 (w))
627 {
628 start_pc = here;
629 }
630 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
631 {
632 start_pc = here;
633 updated_fp = 1;
634 }
635 else
636 if (updated_fp)
637 {
638 /* Don't bail out yet, we may have arguments stored in
639 registers here, according to the debug info, so that
640 gdb can print the frames correctly. */
641 start_pc = look_for_args_moves (gdbarch,
642 here - insn_size, media_mode);
643 break;
644 }
645 }
646 else
647 {
648 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
649 here += insn_size;
650
651 if (IS_STS_R0 (w) || IS_STS_PR (w)
652 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
653 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
654 {
655 start_pc = here;
656 }
657 else if (IS_MOV_SP_FP (w))
658 {
659 start_pc = here;
660 updated_fp = 1;
661 }
662 else
663 if (updated_fp)
664 {
665 /* Don't bail out yet, we may have arguments stored in
666 registers here, according to the debug info, so that
667 gdb can print the frames correctly. */
668 start_pc = look_for_args_moves (gdbarch,
669 here - insn_size, media_mode);
670 break;
671 }
672 }
673 }
674
675 return start_pc;
676 }
677
678 static CORE_ADDR
679 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
680 {
681 CORE_ADDR post_prologue_pc;
682
683 /* See if we can determine the end of the prologue via the symbol table.
684 If so, then return either PC, or the PC after the prologue, whichever
685 is greater. */
686 post_prologue_pc = after_prologue (pc);
687
688 /* If after_prologue returned a useful address, then use it. Else
689 fall back on the instruction skipping code. */
690 if (post_prologue_pc != 0)
691 return max (pc, post_prologue_pc);
692 else
693 return sh64_skip_prologue_hard_way (gdbarch, pc);
694 }
695
696 /* Should call_function allocate stack space for a struct return? */
697 static int
698 sh64_use_struct_convention (struct type *type)
699 {
700 return (TYPE_LENGTH (type) > 8);
701 }
702
703 /* For vectors of 4 floating point registers. */
704 static int
705 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
706 {
707 int fp_regnum;
708
709 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
710 return fp_regnum;
711 }
712
713 /* For double precision floating point registers, i.e 2 fp regs. */
714 static int
715 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
716 {
717 int fp_regnum;
718
719 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
720 return fp_regnum;
721 }
722
723 /* For pairs of floating point registers. */
724 static int
725 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
726 {
727 int fp_regnum;
728
729 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
730 return fp_regnum;
731 }
732
733 /* *INDENT-OFF* */
734 /*
735 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
736 GDB_REGNUM BASE_REGNUM
737 r0_c 221 0
738 r1_c 222 1
739 r2_c 223 2
740 r3_c 224 3
741 r4_c 225 4
742 r5_c 226 5
743 r6_c 227 6
744 r7_c 228 7
745 r8_c 229 8
746 r9_c 230 9
747 r10_c 231 10
748 r11_c 232 11
749 r12_c 233 12
750 r13_c 234 13
751 r14_c 235 14
752 r15_c 236 15
753
754 pc_c 237 64
755 gbr_c 238 16
756 mach_c 239 17
757 macl_c 240 17
758 pr_c 241 18
759 t_c 242 19
760 fpscr_c 243 76
761 fpul_c 244 109
762
763 fr0_c 245 77
764 fr1_c 246 78
765 fr2_c 247 79
766 fr3_c 248 80
767 fr4_c 249 81
768 fr5_c 250 82
769 fr6_c 251 83
770 fr7_c 252 84
771 fr8_c 253 85
772 fr9_c 254 86
773 fr10_c 255 87
774 fr11_c 256 88
775 fr12_c 257 89
776 fr13_c 258 90
777 fr14_c 259 91
778 fr15_c 260 92
779
780 dr0_c 261 77
781 dr2_c 262 79
782 dr4_c 263 81
783 dr6_c 264 83
784 dr8_c 265 85
785 dr10_c 266 87
786 dr12_c 267 89
787 dr14_c 268 91
788
789 fv0_c 269 77
790 fv4_c 270 81
791 fv8_c 271 85
792 fv12_c 272 91
793 */
794 /* *INDENT-ON* */
795 static int
796 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
797 {
798 int base_regnum = reg_nr;
799
800 /* general register N maps to general register N */
801 if (reg_nr >= R0_C_REGNUM
802 && reg_nr <= R_LAST_C_REGNUM)
803 base_regnum = reg_nr - R0_C_REGNUM;
804
805 /* floating point register N maps to floating point register N */
806 else if (reg_nr >= FP0_C_REGNUM
807 && reg_nr <= FP_LAST_C_REGNUM)
808 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
809
810 /* double prec register N maps to base regnum for double prec register N */
811 else if (reg_nr >= DR0_C_REGNUM
812 && reg_nr <= DR_LAST_C_REGNUM)
813 base_regnum = sh64_dr_reg_base_num (gdbarch,
814 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
815
816 /* vector N maps to base regnum for vector register N */
817 else if (reg_nr >= FV0_C_REGNUM
818 && reg_nr <= FV_LAST_C_REGNUM)
819 base_regnum = sh64_fv_reg_base_num (gdbarch,
820 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
821
822 else if (reg_nr == PC_C_REGNUM)
823 base_regnum = gdbarch_pc_regnum (gdbarch);
824
825 else if (reg_nr == GBR_C_REGNUM)
826 base_regnum = 16;
827
828 else if (reg_nr == MACH_C_REGNUM
829 || reg_nr == MACL_C_REGNUM)
830 base_regnum = 17;
831
832 else if (reg_nr == PR_C_REGNUM)
833 base_regnum = PR_REGNUM;
834
835 else if (reg_nr == T_C_REGNUM)
836 base_regnum = 19;
837
838 else if (reg_nr == FPSCR_C_REGNUM)
839 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
840
841 else if (reg_nr == FPUL_C_REGNUM)
842 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
843
844 return base_regnum;
845 }
846
847 static int
848 sign_extend (int value, int bits)
849 {
850 value = value & ((1 << bits) - 1);
851 return (value & (1 << (bits - 1))
852 ? value | (~((1 << bits) - 1))
853 : value);
854 }
855
856 static void
857 sh64_analyze_prologue (struct gdbarch *gdbarch,
858 struct sh64_frame_cache *cache,
859 CORE_ADDR func_pc,
860 CORE_ADDR current_pc)
861 {
862 int reg_nr;
863 int pc;
864 int opc;
865 int insn;
866 int r0_val = 0;
867 int insn_size;
868 int gdb_register_number;
869 int register_number;
870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
872
873 cache->sp_offset = 0;
874
875 /* Loop around examining the prologue insns until we find something
876 that does not appear to be part of the prologue. But give up
877 after 20 of them, since we're getting silly then. */
878
879 pc = func_pc;
880
881 if (cache->media_mode)
882 insn_size = 4;
883 else
884 insn_size = 2;
885
886 opc = pc + (insn_size * 28);
887 if (opc > current_pc)
888 opc = current_pc;
889 for ( ; pc <= opc; pc += insn_size)
890 {
891 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
892 : pc,
893 insn_size, byte_order);
894
895 if (!cache->media_mode)
896 {
897 if (IS_STS_PR (insn))
898 {
899 int next_insn = read_memory_integer (pc + insn_size,
900 insn_size, byte_order);
901 if (IS_MOV_TO_R15 (next_insn))
902 {
903 cache->saved_regs[PR_REGNUM]
904 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
905 - 0x8) << 2);
906 pc += insn_size;
907 }
908 }
909
910 else if (IS_MOV_R14 (insn))
911 cache->saved_regs[MEDIA_FP_REGNUM] =
912 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
913
914 else if (IS_MOV_R0 (insn))
915 {
916 /* Put in R0 the offset from SP at which to store some
917 registers. We are interested in this value, because it
918 will tell us where the given registers are stored within
919 the frame. */
920 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
921 }
922
923 else if (IS_ADD_SP_R0 (insn))
924 {
925 /* This instruction still prepares r0, but we don't care.
926 We already have the offset in r0_val. */
927 }
928
929 else if (IS_STS_R0 (insn))
930 {
931 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
932 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
933 r0_val -= 4;
934 }
935
936 else if (IS_MOV_R14_R0 (insn))
937 {
938 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
939 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
940 - (r0_val - 4);
941 r0_val -= 4;
942 }
943
944 else if (IS_ADD_SP (insn))
945 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
946
947 else if (IS_MOV_SP_FP (insn))
948 break;
949 }
950 else
951 {
952 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
953 cache->sp_offset -=
954 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
955
956 else if (IS_STQ_R18_R15 (insn))
957 cache->saved_regs[PR_REGNUM]
958 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
959 9) << 3);
960
961 else if (IS_STL_R18_R15 (insn))
962 cache->saved_regs[PR_REGNUM]
963 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
964 9) << 2);
965
966 else if (IS_STQ_R14_R15 (insn))
967 cache->saved_regs[MEDIA_FP_REGNUM]
968 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
969 9) << 3);
970
971 else if (IS_STL_R14_R15 (insn))
972 cache->saved_regs[MEDIA_FP_REGNUM]
973 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
974 9) << 2);
975
976 else if (IS_MOV_SP_FP_MEDIA (insn))
977 break;
978 }
979 }
980
981 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
982 cache->uses_fp = 1;
983 }
984
985 static CORE_ADDR
986 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
987 {
988 return sp & ~7;
989 }
990
991 /* Function: push_dummy_call
992 Setup the function arguments for calling a function in the inferior.
993
994 On the Renesas SH architecture, there are four registers (R4 to R7)
995 which are dedicated for passing function arguments. Up to the first
996 four arguments (depending on size) may go into these registers.
997 The rest go on the stack.
998
999 Arguments that are smaller than 4 bytes will still take up a whole
1000 register or a whole 32-bit word on the stack, and will be
1001 right-justified in the register or the stack word. This includes
1002 chars, shorts, and small aggregate types.
1003
1004 Arguments that are larger than 4 bytes may be split between two or
1005 more registers. If there are not enough registers free, an argument
1006 may be passed partly in a register (or registers), and partly on the
1007 stack. This includes doubles, long longs, and larger aggregates.
1008 As far as I know, there is no upper limit to the size of aggregates
1009 that will be passed in this way; in other words, the convention of
1010 passing a pointer to a large aggregate instead of a copy is not used.
1011
1012 An exceptional case exists for struct arguments (and possibly other
1013 aggregates such as arrays) if the size is larger than 4 bytes but
1014 not a multiple of 4 bytes. In this case the argument is never split
1015 between the registers and the stack, but instead is copied in its
1016 entirety onto the stack, AND also copied into as many registers as
1017 there is room for. In other words, space in registers permitting,
1018 two copies of the same argument are passed in. As far as I can tell,
1019 only the one on the stack is used, although that may be a function
1020 of the level of compiler optimization. I suspect this is a compiler
1021 bug. Arguments of these odd sizes are left-justified within the
1022 word (as opposed to arguments smaller than 4 bytes, which are
1023 right-justified).
1024
1025 If the function is to return an aggregate type such as a struct, it
1026 is either returned in the normal return value register R0 (if its
1027 size is no greater than one byte), or else the caller must allocate
1028 space into which the callee will copy the return value (if the size
1029 is greater than one byte). In this case, a pointer to the return
1030 value location is passed into the callee in register R2, which does
1031 not displace any of the other arguments passed in via registers R4
1032 to R7. */
1033
1034 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1035 non-scalar (struct, union) elements (even if the elements are
1036 floats).
1037 FR0-FR11 for single precision floating point (float)
1038 DR0-DR10 for double precision floating point (double)
1039
1040 If a float is argument number 3 (for instance) and arguments number
1041 1,2, and 4 are integer, the mapping will be:
1042 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1043
1044 If a float is argument number 10 (for instance) and arguments number
1045 1 through 10 are integer, the mapping will be:
1046 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1047 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1048 arg11->stack(16,SP). I.e. there is hole in the stack.
1049
1050 Different rules apply for variable arguments functions, and for functions
1051 for which the prototype is not known. */
1052
1053 static CORE_ADDR
1054 sh64_push_dummy_call (struct gdbarch *gdbarch,
1055 struct value *function,
1056 struct regcache *regcache,
1057 CORE_ADDR bp_addr,
1058 int nargs, struct value **args,
1059 CORE_ADDR sp, int struct_return,
1060 CORE_ADDR struct_addr)
1061 {
1062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1063 int stack_offset, stack_alloc;
1064 int int_argreg;
1065 int float_argreg;
1066 int double_argreg;
1067 int float_arg_index = 0;
1068 int double_arg_index = 0;
1069 int argnum;
1070 struct type *type;
1071 CORE_ADDR regval;
1072 char *val;
1073 char valbuf[8];
1074 char valbuf_tmp[8];
1075 int len;
1076 int argreg_size;
1077 int fp_args[12];
1078
1079 memset (fp_args, 0, sizeof (fp_args));
1080
1081 /* First force sp to a 8-byte alignment. */
1082 sp = sh64_frame_align (gdbarch, sp);
1083
1084 /* The "struct return pointer" pseudo-argument has its own dedicated
1085 register. */
1086
1087 if (struct_return)
1088 regcache_cooked_write_unsigned (regcache,
1089 STRUCT_RETURN_REGNUM, struct_addr);
1090
1091 /* Now make sure there's space on the stack. */
1092 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1093 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1094 sp -= stack_alloc; /* Make room on stack for args. */
1095
1096 /* Now load as many as possible of the first arguments into
1097 registers, and push the rest onto the stack. There are 64 bytes
1098 in eight registers available. Loop thru args from first to last. */
1099
1100 int_argreg = ARG0_REGNUM;
1101 float_argreg = gdbarch_fp0_regnum (gdbarch);
1102 double_argreg = DR0_REGNUM;
1103
1104 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1105 {
1106 type = value_type (args[argnum]);
1107 len = TYPE_LENGTH (type);
1108 memset (valbuf, 0, sizeof (valbuf));
1109
1110 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1111 {
1112 argreg_size = register_size (gdbarch, int_argreg);
1113
1114 if (len < argreg_size)
1115 {
1116 /* value gets right-justified in the register or stack word. */
1117 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1118 memcpy (valbuf + argreg_size - len,
1119 (char *) value_contents (args[argnum]), len);
1120 else
1121 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1122
1123 val = valbuf;
1124 }
1125 else
1126 val = (char *) value_contents (args[argnum]);
1127
1128 while (len > 0)
1129 {
1130 if (int_argreg > ARGLAST_REGNUM)
1131 {
1132 /* Must go on the stack. */
1133 write_memory (sp + stack_offset, (const bfd_byte *) val,
1134 argreg_size);
1135 stack_offset += 8;/*argreg_size;*/
1136 }
1137 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1138 That's because some *&^%$ things get passed on the stack
1139 AND in the registers! */
1140 if (int_argreg <= ARGLAST_REGNUM)
1141 {
1142 /* There's room in a register. */
1143 regval = extract_unsigned_integer (val, argreg_size,
1144 byte_order);
1145 regcache_cooked_write_unsigned (regcache,
1146 int_argreg, regval);
1147 }
1148 /* Store the value 8 bytes at a time. This means that
1149 things larger than 8 bytes may go partly in registers
1150 and partly on the stack. FIXME: argreg is incremented
1151 before we use its size. */
1152 len -= argreg_size;
1153 val += argreg_size;
1154 int_argreg++;
1155 }
1156 }
1157 else
1158 {
1159 val = (char *) value_contents (args[argnum]);
1160 if (len == 4)
1161 {
1162 /* Where is it going to be stored? */
1163 while (fp_args[float_arg_index])
1164 float_arg_index ++;
1165
1166 /* Now float_argreg points to the register where it
1167 should be stored. Are we still within the allowed
1168 register set? */
1169 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1170 {
1171 /* Goes in FR0...FR11 */
1172 regcache_cooked_write (regcache,
1173 gdbarch_fp0_regnum (gdbarch)
1174 + float_arg_index,
1175 val);
1176 fp_args[float_arg_index] = 1;
1177 /* Skip the corresponding general argument register. */
1178 int_argreg ++;
1179 }
1180 else
1181 ;
1182 /* Store it as the integers, 8 bytes at the time, if
1183 necessary spilling on the stack. */
1184
1185 }
1186 else if (len == 8)
1187 {
1188 /* Where is it going to be stored? */
1189 while (fp_args[double_arg_index])
1190 double_arg_index += 2;
1191 /* Now double_argreg points to the register
1192 where it should be stored.
1193 Are we still within the allowed register set? */
1194 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1195 {
1196 /* Goes in DR0...DR10 */
1197 /* The numbering of the DRi registers is consecutive,
1198 i.e. includes odd numbers. */
1199 int double_register_offset = double_arg_index / 2;
1200 int regnum = DR0_REGNUM + double_register_offset;
1201 regcache_cooked_write (regcache, regnum, val);
1202 fp_args[double_arg_index] = 1;
1203 fp_args[double_arg_index + 1] = 1;
1204 /* Skip the corresponding general argument register. */
1205 int_argreg ++;
1206 }
1207 else
1208 ;
1209 /* Store it as the integers, 8 bytes at the time, if
1210 necessary spilling on the stack. */
1211 }
1212 }
1213 }
1214 /* Store return address. */
1215 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1216
1217 /* Update stack pointer. */
1218 regcache_cooked_write_unsigned (regcache,
1219 gdbarch_sp_regnum (gdbarch), sp);
1220
1221 return sp;
1222 }
1223
1224 /* Find a function's return value in the appropriate registers (in
1225 regbuf), and copy it into valbuf. Extract from an array REGBUF
1226 containing the (raw) register state a function return value of type
1227 TYPE, and copy that, in virtual format, into VALBUF. */
1228 static void
1229 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1230 void *valbuf)
1231 {
1232 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1234 int len = TYPE_LENGTH (type);
1235
1236 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1237 {
1238 if (len == 4)
1239 {
1240 /* Return value stored in gdbarch_fp0_regnum. */
1241 regcache_raw_read (regcache,
1242 gdbarch_fp0_regnum (gdbarch), valbuf);
1243 }
1244 else if (len == 8)
1245 {
1246 /* return value stored in DR0_REGNUM. */
1247 DOUBLEST val;
1248 gdb_byte buf[8];
1249
1250 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1251
1252 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1253 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1254 buf, &val);
1255 else
1256 floatformat_to_doublest (&floatformat_ieee_double_big,
1257 buf, &val);
1258 store_typed_floating (valbuf, type, val);
1259 }
1260 }
1261 else
1262 {
1263 if (len <= 8)
1264 {
1265 int offset;
1266 char buf[8];
1267 /* Result is in register 2. If smaller than 8 bytes, it is padded
1268 at the most significant end. */
1269 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1270
1271 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1272 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
1273 - len;
1274 else
1275 offset = 0;
1276 memcpy (valbuf, buf + offset, len);
1277 }
1278 else
1279 error (_("bad size for return value"));
1280 }
1281 }
1282
1283 /* Write into appropriate registers a function return value
1284 of type TYPE, given in virtual format.
1285 If the architecture is sh4 or sh3e, store a function's return value
1286 in the R0 general register or in the FP0 floating point register,
1287 depending on the type of the return value. In all the other cases
1288 the result is stored in r0, left-justified. */
1289
1290 static void
1291 sh64_store_return_value (struct type *type, struct regcache *regcache,
1292 const void *valbuf)
1293 {
1294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1295 char buf[64]; /* more than enough... */
1296 int len = TYPE_LENGTH (type);
1297
1298 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1299 {
1300 int i, regnum = gdbarch_fp0_regnum (gdbarch);
1301 for (i = 0; i < len; i += 4)
1302 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1303 regcache_raw_write (regcache, regnum++,
1304 (char *) valbuf + len - 4 - i);
1305 else
1306 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1307 }
1308 else
1309 {
1310 int return_register = DEFAULT_RETURN_REGNUM;
1311 int offset = 0;
1312
1313 if (len <= register_size (gdbarch, return_register))
1314 {
1315 /* Pad with zeros. */
1316 memset (buf, 0, register_size (gdbarch, return_register));
1317 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1318 offset = 0; /*register_size (gdbarch,
1319 return_register) - len;*/
1320 else
1321 offset = register_size (gdbarch, return_register) - len;
1322
1323 memcpy (buf + offset, valbuf, len);
1324 regcache_raw_write (regcache, return_register, buf);
1325 }
1326 else
1327 regcache_raw_write (regcache, return_register, valbuf);
1328 }
1329 }
1330
1331 static enum return_value_convention
1332 sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1333 struct type *type, struct regcache *regcache,
1334 gdb_byte *readbuf, const gdb_byte *writebuf)
1335 {
1336 if (sh64_use_struct_convention (type))
1337 return RETURN_VALUE_STRUCT_CONVENTION;
1338 if (writebuf)
1339 sh64_store_return_value (type, regcache, writebuf);
1340 else if (readbuf)
1341 sh64_extract_return_value (type, regcache, readbuf);
1342 return RETURN_VALUE_REGISTER_CONVENTION;
1343 }
1344
1345 static void
1346 sh64_show_media_regs (struct frame_info *frame)
1347 {
1348 struct gdbarch *gdbarch = get_frame_arch (frame);
1349 int i;
1350
1351 printf_filtered
1352 ("PC=%s SR=%s\n",
1353 phex (get_frame_register_unsigned (frame,
1354 gdbarch_pc_regnum (gdbarch)), 8),
1355 phex (get_frame_register_unsigned (frame, SR_REGNUM), 8));
1356
1357 printf_filtered
1358 ("SSR=%s SPC=%s\n",
1359 phex (get_frame_register_unsigned (frame, SSR_REGNUM), 8),
1360 phex (get_frame_register_unsigned (frame, SPC_REGNUM), 8));
1361 printf_filtered
1362 ("FPSCR=%s\n ",
1363 phex (get_frame_register_unsigned (frame, FPSCR_REGNUM), 8));
1364
1365 for (i = 0; i < 64; i = i + 4)
1366 printf_filtered
1367 ("\nR%d-R%d %s %s %s %s\n",
1368 i, i + 3,
1369 phex (get_frame_register_unsigned (frame, i + 0), 8),
1370 phex (get_frame_register_unsigned (frame, i + 1), 8),
1371 phex (get_frame_register_unsigned (frame, i + 2), 8),
1372 phex (get_frame_register_unsigned (frame, i + 3), 8));
1373
1374 printf_filtered ("\n");
1375
1376 for (i = 0; i < 64; i = i + 8)
1377 printf_filtered
1378 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1379 i, i + 7,
1380 (long) get_frame_register_unsigned
1381 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1382 (long) get_frame_register_unsigned
1383 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1384 (long) get_frame_register_unsigned
1385 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1386 (long) get_frame_register_unsigned
1387 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1388 (long) get_frame_register_unsigned
1389 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1390 (long) get_frame_register_unsigned
1391 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1392 (long) get_frame_register_unsigned
1393 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1394 (long) get_frame_register_unsigned
1395 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1396 }
1397
1398 static void
1399 sh64_show_compact_regs (struct frame_info *frame)
1400 {
1401 struct gdbarch *gdbarch = get_frame_arch (frame);
1402 int i;
1403
1404 printf_filtered
1405 ("PC=%s\n",
1406 phex (get_frame_register_unsigned (frame, PC_C_REGNUM), 8));
1407
1408 printf_filtered
1409 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1410 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1411 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1412 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1413 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1414 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1415 printf_filtered
1416 ("FPSCR=%08lx FPUL=%08lx\n",
1417 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1418 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1419
1420 for (i = 0; i < 16; i = i + 4)
1421 printf_filtered
1422 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1423 i, i + 3,
1424 (long) get_frame_register_unsigned (frame, i + 0),
1425 (long) get_frame_register_unsigned (frame, i + 1),
1426 (long) get_frame_register_unsigned (frame, i + 2),
1427 (long) get_frame_register_unsigned (frame, i + 3));
1428
1429 printf_filtered ("\n");
1430
1431 for (i = 0; i < 16; i = i + 8)
1432 printf_filtered
1433 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1434 i, i + 7,
1435 (long) get_frame_register_unsigned
1436 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
1437 (long) get_frame_register_unsigned
1438 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
1439 (long) get_frame_register_unsigned
1440 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
1441 (long) get_frame_register_unsigned
1442 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
1443 (long) get_frame_register_unsigned
1444 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
1445 (long) get_frame_register_unsigned
1446 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
1447 (long) get_frame_register_unsigned
1448 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
1449 (long) get_frame_register_unsigned
1450 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
1451 }
1452
1453 /* FIXME!!! This only shows the registers for shmedia, excluding the
1454 pseudo registers. */
1455 void
1456 sh64_show_regs (struct frame_info *frame)
1457 {
1458 if (pc_is_isa32 (get_frame_pc (frame)))
1459 sh64_show_media_regs (frame);
1460 else
1461 sh64_show_compact_regs (frame);
1462 }
1463
1464 /* *INDENT-OFF* */
1465 /*
1466 SH MEDIA MODE (ISA 32)
1467 general registers (64-bit) 0-63
1468 0 r0, r1, r2, r3, r4, r5, r6, r7,
1469 64 r8, r9, r10, r11, r12, r13, r14, r15,
1470 128 r16, r17, r18, r19, r20, r21, r22, r23,
1471 192 r24, r25, r26, r27, r28, r29, r30, r31,
1472 256 r32, r33, r34, r35, r36, r37, r38, r39,
1473 320 r40, r41, r42, r43, r44, r45, r46, r47,
1474 384 r48, r49, r50, r51, r52, r53, r54, r55,
1475 448 r56, r57, r58, r59, r60, r61, r62, r63,
1476
1477 pc (64-bit) 64
1478 512 pc,
1479
1480 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1481 520 sr, ssr, spc,
1482
1483 target registers (64-bit) 68-75
1484 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1485
1486 floating point state control register (32-bit) 76
1487 608 fpscr,
1488
1489 single precision floating point registers (32-bit) 77-140
1490 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1491 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1492 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1493 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1494 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1495 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1496 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1497 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1498
1499 TOTAL SPACE FOR REGISTERS: 868 bytes
1500
1501 From here on they are all pseudo registers: no memory allocated.
1502 REGISTER_BYTE returns the register byte for the base register.
1503
1504 double precision registers (pseudo) 141-172
1505 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1506 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1507 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1508 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1509
1510 floating point pairs (pseudo) 173-204
1511 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1512 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1513 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1514 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1515
1516 floating point vectors (4 floating point regs) (pseudo) 205-220
1517 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1518 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1519
1520 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1521 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1522 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1523 pc_c,
1524 gbr_c, mach_c, macl_c, pr_c, t_c,
1525 fpscr_c, fpul_c,
1526 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1527 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1528 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1529 fv0_c, fv4_c, fv8_c, fv12_c
1530 */
1531
1532 static struct type *
1533 sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
1534 {
1535 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1536 0, high);
1537 }
1538
1539 /* Return the GDB type object for the "standard" data type
1540 of data in register REG_NR. */
1541 static struct type *
1542 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1543 {
1544 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
1545 && reg_nr <= FP_LAST_REGNUM)
1546 || (reg_nr >= FP0_C_REGNUM
1547 && reg_nr <= FP_LAST_C_REGNUM))
1548 return builtin_type (gdbarch)->builtin_float;
1549 else if ((reg_nr >= DR0_REGNUM
1550 && reg_nr <= DR_LAST_REGNUM)
1551 || (reg_nr >= DR0_C_REGNUM
1552 && reg_nr <= DR_LAST_C_REGNUM))
1553 return builtin_type (gdbarch)->builtin_double;
1554 else if (reg_nr >= FPP0_REGNUM
1555 && reg_nr <= FPP_LAST_REGNUM)
1556 return sh64_build_float_register_type (gdbarch, 1);
1557 else if ((reg_nr >= FV0_REGNUM
1558 && reg_nr <= FV_LAST_REGNUM)
1559 ||(reg_nr >= FV0_C_REGNUM
1560 && reg_nr <= FV_LAST_C_REGNUM))
1561 return sh64_build_float_register_type (gdbarch, 3);
1562 else if (reg_nr == FPSCR_REGNUM)
1563 return builtin_type (gdbarch)->builtin_int;
1564 else if (reg_nr >= R0_C_REGNUM
1565 && reg_nr < FP0_C_REGNUM)
1566 return builtin_type (gdbarch)->builtin_int;
1567 else
1568 return builtin_type (gdbarch)->builtin_long_long;
1569 }
1570
1571 static void
1572 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1573 struct type *type, char *from, char *to)
1574 {
1575 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1576 {
1577 /* It is a no-op. */
1578 memcpy (to, from, register_size (gdbarch, regnum));
1579 return;
1580 }
1581
1582 if ((regnum >= DR0_REGNUM
1583 && regnum <= DR_LAST_REGNUM)
1584 || (regnum >= DR0_C_REGNUM
1585 && regnum <= DR_LAST_C_REGNUM))
1586 {
1587 DOUBLEST val;
1588 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1589 from, &val);
1590 store_typed_floating (to, type, val);
1591 }
1592 else
1593 error (_("sh64_register_convert_to_virtual "
1594 "called with non DR register number"));
1595 }
1596
1597 static void
1598 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1599 int regnum, const void *from, void *to)
1600 {
1601 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1602 {
1603 /* It is a no-op. */
1604 memcpy (to, from, register_size (gdbarch, regnum));
1605 return;
1606 }
1607
1608 if ((regnum >= DR0_REGNUM
1609 && regnum <= DR_LAST_REGNUM)
1610 || (regnum >= DR0_C_REGNUM
1611 && regnum <= DR_LAST_C_REGNUM))
1612 {
1613 DOUBLEST val = extract_typed_floating (from, type);
1614 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1615 &val, to);
1616 }
1617 else
1618 error (_("sh64_register_convert_to_raw called "
1619 "with non DR register number"));
1620 }
1621
1622 static void
1623 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1624 int reg_nr, gdb_byte *buffer)
1625 {
1626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1627 int base_regnum;
1628 int portion;
1629 int offset = 0;
1630 char temp_buffer[MAX_REGISTER_SIZE];
1631
1632 if (reg_nr >= DR0_REGNUM
1633 && reg_nr <= DR_LAST_REGNUM)
1634 {
1635 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1636
1637 /* Build the value in the provided buffer. */
1638 /* DR regs are double precision registers obtained by
1639 concatenating 2 single precision floating point registers. */
1640 for (portion = 0; portion < 2; portion++)
1641 regcache_raw_read (regcache, base_regnum + portion,
1642 (temp_buffer
1643 + register_size (gdbarch, base_regnum) * portion));
1644
1645 /* We must pay attention to the endianness. */
1646 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1647 register_type (gdbarch, reg_nr),
1648 temp_buffer, buffer);
1649
1650 }
1651
1652 else if (reg_nr >= FPP0_REGNUM
1653 && reg_nr <= FPP_LAST_REGNUM)
1654 {
1655 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1656
1657 /* Build the value in the provided buffer. */
1658 /* FPP regs are pairs of single precision registers obtained by
1659 concatenating 2 single precision floating point registers. */
1660 for (portion = 0; portion < 2; portion++)
1661 regcache_raw_read (regcache, base_regnum + portion,
1662 ((char *) buffer
1663 + register_size (gdbarch, base_regnum) * portion));
1664 }
1665
1666 else if (reg_nr >= FV0_REGNUM
1667 && reg_nr <= FV_LAST_REGNUM)
1668 {
1669 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1670
1671 /* Build the value in the provided buffer. */
1672 /* FV regs are vectors of single precision registers obtained by
1673 concatenating 4 single precision floating point registers. */
1674 for (portion = 0; portion < 4; portion++)
1675 regcache_raw_read (regcache, base_regnum + portion,
1676 ((char *) buffer
1677 + register_size (gdbarch, base_regnum) * portion));
1678 }
1679
1680 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1681 else if (reg_nr >= R0_C_REGNUM
1682 && reg_nr <= T_C_REGNUM)
1683 {
1684 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1685
1686 /* Build the value in the provided buffer. */
1687 regcache_raw_read (regcache, base_regnum, temp_buffer);
1688 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1689 offset = 4;
1690 memcpy (buffer,
1691 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
1692 }
1693
1694 else if (reg_nr >= FP0_C_REGNUM
1695 && reg_nr <= FP_LAST_C_REGNUM)
1696 {
1697 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1698
1699 /* Build the value in the provided buffer. */
1700 /* Floating point registers map 1-1 to the media fp regs,
1701 they have the same size and endianness. */
1702 regcache_raw_read (regcache, base_regnum, buffer);
1703 }
1704
1705 else if (reg_nr >= DR0_C_REGNUM
1706 && reg_nr <= DR_LAST_C_REGNUM)
1707 {
1708 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1709
1710 /* DR_C regs are double precision registers obtained by
1711 concatenating 2 single precision floating point registers. */
1712 for (portion = 0; portion < 2; portion++)
1713 regcache_raw_read (regcache, base_regnum + portion,
1714 (temp_buffer
1715 + register_size (gdbarch, base_regnum) * portion));
1716
1717 /* We must pay attention to the endianness. */
1718 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1719 register_type (gdbarch, reg_nr),
1720 temp_buffer, buffer);
1721 }
1722
1723 else if (reg_nr >= FV0_C_REGNUM
1724 && reg_nr <= FV_LAST_C_REGNUM)
1725 {
1726 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1727
1728 /* Build the value in the provided buffer. */
1729 /* FV_C regs are vectors of single precision registers obtained by
1730 concatenating 4 single precision floating point registers. */
1731 for (portion = 0; portion < 4; portion++)
1732 regcache_raw_read (regcache, base_regnum + portion,
1733 ((char *) buffer
1734 + register_size (gdbarch, base_regnum) * portion));
1735 }
1736
1737 else if (reg_nr == FPSCR_C_REGNUM)
1738 {
1739 int fpscr_base_regnum;
1740 int sr_base_regnum;
1741 unsigned int fpscr_value;
1742 unsigned int sr_value;
1743 unsigned int fpscr_c_value;
1744 unsigned int fpscr_c_part1_value;
1745 unsigned int fpscr_c_part2_value;
1746
1747 fpscr_base_regnum = FPSCR_REGNUM;
1748 sr_base_regnum = SR_REGNUM;
1749
1750 /* Build the value in the provided buffer. */
1751 /* FPSCR_C is a very weird register that contains sparse bits
1752 from the FPSCR and the SR architectural registers.
1753 Specifically: */
1754 /* *INDENT-OFF* */
1755 /*
1756 FPSRC_C bit
1757 0 Bit 0 of FPSCR
1758 1 reserved
1759 2-17 Bit 2-18 of FPSCR
1760 18-20 Bits 12,13,14 of SR
1761 21-31 reserved
1762 */
1763 /* *INDENT-ON* */
1764 /* Get FPSCR into a local buffer. */
1765 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1766 /* Get value as an int. */
1767 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1768 /* Get SR into a local buffer */
1769 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1770 /* Get value as an int. */
1771 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1772 /* Build the new value. */
1773 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1774 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1775 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1776 /* Store that in out buffer!!! */
1777 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
1778 /* FIXME There is surely an endianness gotcha here. */
1779 }
1780
1781 else if (reg_nr == FPUL_C_REGNUM)
1782 {
1783 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1784
1785 /* FPUL_C register is floating point register 32,
1786 same size, same endianness. */
1787 regcache_raw_read (regcache, base_regnum, buffer);
1788 }
1789 }
1790
1791 static void
1792 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1793 int reg_nr, const gdb_byte *buffer)
1794 {
1795 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1796 int base_regnum, portion;
1797 int offset;
1798 char temp_buffer[MAX_REGISTER_SIZE];
1799
1800 if (reg_nr >= DR0_REGNUM
1801 && reg_nr <= DR_LAST_REGNUM)
1802 {
1803 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
1804 /* We must pay attention to the endianness. */
1805 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
1806 reg_nr,
1807 buffer, temp_buffer);
1808
1809 /* Write the real regs for which this one is an alias. */
1810 for (portion = 0; portion < 2; portion++)
1811 regcache_raw_write (regcache, base_regnum + portion,
1812 (temp_buffer
1813 + register_size (gdbarch,
1814 base_regnum) * portion));
1815 }
1816
1817 else if (reg_nr >= FPP0_REGNUM
1818 && reg_nr <= FPP_LAST_REGNUM)
1819 {
1820 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
1821
1822 /* Write the real regs for which this one is an alias. */
1823 for (portion = 0; portion < 2; portion++)
1824 regcache_raw_write (regcache, base_regnum + portion,
1825 ((char *) buffer
1826 + register_size (gdbarch,
1827 base_regnum) * portion));
1828 }
1829
1830 else if (reg_nr >= FV0_REGNUM
1831 && reg_nr <= FV_LAST_REGNUM)
1832 {
1833 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
1834
1835 /* Write the real regs for which this one is an alias. */
1836 for (portion = 0; portion < 4; portion++)
1837 regcache_raw_write (regcache, base_regnum + portion,
1838 ((char *) buffer
1839 + register_size (gdbarch,
1840 base_regnum) * portion));
1841 }
1842
1843 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1844 register but only 4 bytes of it. */
1845 else if (reg_nr >= R0_C_REGNUM
1846 && reg_nr <= T_C_REGNUM)
1847 {
1848 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1849 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1850 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1851 offset = 4;
1852 else
1853 offset = 0;
1854 /* Let's read the value of the base register into a temporary
1855 buffer, so that overwriting the last four bytes with the new
1856 value of the pseudo will leave the upper 4 bytes unchanged. */
1857 regcache_raw_read (regcache, base_regnum, temp_buffer);
1858 /* Write as an 8 byte quantity. */
1859 memcpy (temp_buffer + offset, buffer, 4);
1860 regcache_raw_write (regcache, base_regnum, temp_buffer);
1861 }
1862
1863 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1864 registers. Both are 4 bytes. */
1865 else if (reg_nr >= FP0_C_REGNUM
1866 && reg_nr <= FP_LAST_C_REGNUM)
1867 {
1868 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1869 regcache_raw_write (regcache, base_regnum, buffer);
1870 }
1871
1872 else if (reg_nr >= DR0_C_REGNUM
1873 && reg_nr <= DR_LAST_C_REGNUM)
1874 {
1875 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1876 for (portion = 0; portion < 2; portion++)
1877 {
1878 /* We must pay attention to the endianness. */
1879 sh64_register_convert_to_raw (gdbarch,
1880 register_type (gdbarch, reg_nr),
1881 reg_nr,
1882 buffer, temp_buffer);
1883
1884 regcache_raw_write (regcache, base_regnum + portion,
1885 (temp_buffer
1886 + register_size (gdbarch,
1887 base_regnum) * portion));
1888 }
1889 }
1890
1891 else if (reg_nr >= FV0_C_REGNUM
1892 && reg_nr <= FV_LAST_C_REGNUM)
1893 {
1894 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1895
1896 for (portion = 0; portion < 4; portion++)
1897 {
1898 regcache_raw_write (regcache, base_regnum + portion,
1899 ((char *) buffer
1900 + register_size (gdbarch,
1901 base_regnum) * portion));
1902 }
1903 }
1904
1905 else if (reg_nr == FPSCR_C_REGNUM)
1906 {
1907 int fpscr_base_regnum;
1908 int sr_base_regnum;
1909 unsigned int fpscr_value;
1910 unsigned int sr_value;
1911 unsigned int old_fpscr_value;
1912 unsigned int old_sr_value;
1913 unsigned int fpscr_c_value;
1914 unsigned int fpscr_mask;
1915 unsigned int sr_mask;
1916
1917 fpscr_base_regnum = FPSCR_REGNUM;
1918 sr_base_regnum = SR_REGNUM;
1919
1920 /* FPSCR_C is a very weird register that contains sparse bits
1921 from the FPSCR and the SR architectural registers.
1922 Specifically: */
1923 /* *INDENT-OFF* */
1924 /*
1925 FPSRC_C bit
1926 0 Bit 0 of FPSCR
1927 1 reserved
1928 2-17 Bit 2-18 of FPSCR
1929 18-20 Bits 12,13,14 of SR
1930 21-31 reserved
1931 */
1932 /* *INDENT-ON* */
1933 /* Get value as an int. */
1934 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
1935
1936 /* Build the new values. */
1937 fpscr_mask = 0x0003fffd;
1938 sr_mask = 0x001c0000;
1939
1940 fpscr_value = fpscr_c_value & fpscr_mask;
1941 sr_value = (fpscr_value & sr_mask) >> 6;
1942
1943 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1944 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1945 old_fpscr_value &= 0xfffc0002;
1946 fpscr_value |= old_fpscr_value;
1947 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
1948 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1949
1950 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1951 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
1952 old_sr_value &= 0xffff8fff;
1953 sr_value |= old_sr_value;
1954 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
1955 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1956 }
1957
1958 else if (reg_nr == FPUL_C_REGNUM)
1959 {
1960 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
1961 regcache_raw_write (regcache, base_regnum, buffer);
1962 }
1963 }
1964
1965 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1966 shmedia REGISTERS. */
1967 /* Control registers, compact mode. */
1968 static void
1969 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1970 int cr_c_regnum)
1971 {
1972 switch (cr_c_regnum)
1973 {
1974 case PC_C_REGNUM:
1975 fprintf_filtered (file, "pc_c\t0x%08x\n",
1976 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1977 break;
1978 case GBR_C_REGNUM:
1979 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1980 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1981 break;
1982 case MACH_C_REGNUM:
1983 fprintf_filtered (file, "mach_c\t0x%08x\n",
1984 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1985 break;
1986 case MACL_C_REGNUM:
1987 fprintf_filtered (file, "macl_c\t0x%08x\n",
1988 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1989 break;
1990 case PR_C_REGNUM:
1991 fprintf_filtered (file, "pr_c\t0x%08x\n",
1992 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1993 break;
1994 case T_C_REGNUM:
1995 fprintf_filtered (file, "t_c\t0x%08x\n",
1996 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1997 break;
1998 case FPSCR_C_REGNUM:
1999 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
2000 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2001 break;
2002 case FPUL_C_REGNUM:
2003 fprintf_filtered (file, "fpul_c\t0x%08x\n",
2004 (int) get_frame_register_unsigned (frame, cr_c_regnum));
2005 break;
2006 }
2007 }
2008
2009 static void
2010 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
2011 struct frame_info *frame, int regnum)
2012 { /* Do values for FP (float) regs. */
2013 unsigned char *raw_buffer;
2014 double flt; /* Double extracted from raw hex data. */
2015 int inv;
2016 int j;
2017
2018 /* Allocate space for the float. */
2019 raw_buffer = (unsigned char *)
2020 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
2021
2022 /* Get the data in raw format. */
2023 if (!frame_register_read (frame, regnum, raw_buffer))
2024 error (_("can't read register %d (%s)"),
2025 regnum, gdbarch_register_name (gdbarch, regnum));
2026
2027 /* Get the register as a number. */
2028 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
2029 raw_buffer, &inv);
2030
2031 /* Print the name and some spaces. */
2032 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2033 print_spaces_filtered (15 - strlen (gdbarch_register_name
2034 (gdbarch, regnum)), file);
2035
2036 /* Print the value. */
2037 if (inv)
2038 fprintf_filtered (file, "<invalid float>");
2039 else
2040 fprintf_filtered (file, "%-10.9g", flt);
2041
2042 /* Print the fp register as hex. */
2043 fprintf_filtered (file, "\t(raw 0x");
2044 for (j = 0; j < register_size (gdbarch, regnum); j++)
2045 {
2046 int idx = gdbarch_byte_order (gdbarch)
2047 == BFD_ENDIAN_BIG ? j : register_size
2048 (gdbarch, regnum) - 1 - j;
2049 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2050 }
2051 fprintf_filtered (file, ")");
2052 fprintf_filtered (file, "\n");
2053 }
2054
2055 static void
2056 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2057 struct frame_info *frame, int regnum)
2058 {
2059 /* All the sh64-compact mode registers are pseudo registers. */
2060
2061 if (regnum < gdbarch_num_regs (gdbarch)
2062 || regnum >= gdbarch_num_regs (gdbarch)
2063 + NUM_PSEUDO_REGS_SH_MEDIA
2064 + NUM_PSEUDO_REGS_SH_COMPACT)
2065 internal_error (__FILE__, __LINE__,
2066 _("Invalid pseudo register number %d\n"), regnum);
2067
2068 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2069 {
2070 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
2071 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2072 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2073 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2074 }
2075
2076 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2077 {
2078 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2079 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2080 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2082 }
2083
2084 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2085 {
2086 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
2087 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2088 regnum - FV0_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2090 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2091 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2092 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2093 }
2094
2095 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2096 {
2097 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2098 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2099 regnum - FV0_C_REGNUM,
2100 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2101 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2102 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2103 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2104 }
2105
2106 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2107 {
2108 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
2109 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2110 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2111 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2112 }
2113
2114 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2115 {
2116 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
2117 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2118 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2119 }
2120 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2121 /* This should work also for pseudoregs. */
2122 sh64_do_fp_register (gdbarch, file, frame, regnum);
2123 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2124 sh64_do_cr_c_register_info (file, frame, regnum);
2125 }
2126
2127 static void
2128 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2129 struct frame_info *frame, int regnum)
2130 {
2131 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2132 struct value_print_options opts;
2133
2134 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
2135 print_spaces_filtered (15 - strlen (gdbarch_register_name
2136 (gdbarch, regnum)), file);
2137
2138 /* Get the data in raw format. */
2139 if (!frame_register_read (frame, regnum, raw_buffer))
2140 fprintf_filtered (file, "*value not available*\n");
2141
2142 get_formatted_print_options (&opts, 'x');
2143 opts.deref_ref = 1;
2144 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2145 file, 0, NULL, &opts, current_language);
2146 fprintf_filtered (file, "\t");
2147 get_formatted_print_options (&opts, 0);
2148 opts.deref_ref = 1;
2149 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2150 file, 0, NULL, &opts, current_language);
2151 fprintf_filtered (file, "\n");
2152 }
2153
2154 static void
2155 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2156 struct frame_info *frame, int regnum)
2157 {
2158 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2159 + gdbarch_num_pseudo_regs (gdbarch))
2160 internal_error (__FILE__, __LINE__,
2161 _("Invalid register number %d\n"), regnum);
2162
2163 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
2164 {
2165 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2166 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2167 else
2168 sh64_do_register (gdbarch, file, frame, regnum);
2169 }
2170
2171 else if (regnum < gdbarch_num_regs (gdbarch)
2172 + gdbarch_num_pseudo_regs (gdbarch))
2173 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2174 }
2175
2176 static void
2177 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2178 struct frame_info *frame, int regnum,
2179 int fpregs)
2180 {
2181 if (regnum != -1) /* Do one specified register. */
2182 {
2183 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2184 error (_("Not a valid register for the current processor type"));
2185
2186 sh64_print_register (gdbarch, file, frame, regnum);
2187 }
2188 else
2189 /* Do all (or most) registers. */
2190 {
2191 regnum = 0;
2192 while (regnum < gdbarch_num_regs (gdbarch))
2193 {
2194 /* If the register name is empty, it is undefined for this
2195 processor, so don't display anything. */
2196 if (gdbarch_register_name (gdbarch, regnum) == NULL
2197 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2198 {
2199 regnum++;
2200 continue;
2201 }
2202
2203 if (TYPE_CODE (register_type (gdbarch, regnum))
2204 == TYPE_CODE_FLT)
2205 {
2206 if (fpregs)
2207 {
2208 /* true for "INFO ALL-REGISTERS" command. */
2209 sh64_do_fp_register (gdbarch, file, frame, regnum);
2210 regnum ++;
2211 }
2212 else
2213 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
2214 /* skip FP regs */
2215 }
2216 else
2217 {
2218 sh64_do_register (gdbarch, file, frame, regnum);
2219 regnum++;
2220 }
2221 }
2222
2223 if (fpregs)
2224 while (regnum < gdbarch_num_regs (gdbarch)
2225 + gdbarch_num_pseudo_regs (gdbarch))
2226 {
2227 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2228 regnum++;
2229 }
2230 }
2231 }
2232
2233 static void
2234 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2235 struct ui_file *file,
2236 struct frame_info *frame, int regnum,
2237 int fpregs)
2238 {
2239 if (regnum != -1) /* Do one specified register. */
2240 {
2241 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
2242 error (_("Not a valid register for the current processor type"));
2243
2244 if (regnum >= 0 && regnum < R0_C_REGNUM)
2245 error (_("Not a valid register for the current processor mode."));
2246
2247 sh64_print_register (gdbarch, file, frame, regnum);
2248 }
2249 else
2250 /* Do all compact registers. */
2251 {
2252 regnum = R0_C_REGNUM;
2253 while (regnum < gdbarch_num_regs (gdbarch)
2254 + gdbarch_num_pseudo_regs (gdbarch))
2255 {
2256 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2257 regnum++;
2258 }
2259 }
2260 }
2261
2262 static void
2263 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2264 struct frame_info *frame, int regnum, int fpregs)
2265 {
2266 if (pc_is_isa32 (get_frame_pc (frame)))
2267 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2268 else
2269 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2270 }
2271
2272 static struct sh64_frame_cache *
2273 sh64_alloc_frame_cache (void)
2274 {
2275 struct sh64_frame_cache *cache;
2276 int i;
2277
2278 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2279
2280 /* Base address. */
2281 cache->base = 0;
2282 cache->saved_sp = 0;
2283 cache->sp_offset = 0;
2284 cache->pc = 0;
2285
2286 /* Frameless until proven otherwise. */
2287 cache->uses_fp = 0;
2288
2289 /* Saved registers. We initialize these to -1 since zero is a valid
2290 offset (that's where fp is supposed to be stored). */
2291 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2292 {
2293 cache->saved_regs[i] = -1;
2294 }
2295
2296 return cache;
2297 }
2298
2299 static struct sh64_frame_cache *
2300 sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
2301 {
2302 struct gdbarch *gdbarch;
2303 struct sh64_frame_cache *cache;
2304 CORE_ADDR current_pc;
2305 int i;
2306
2307 if (*this_cache)
2308 return *this_cache;
2309
2310 gdbarch = get_frame_arch (this_frame);
2311 cache = sh64_alloc_frame_cache ();
2312 *this_cache = cache;
2313
2314 current_pc = get_frame_pc (this_frame);
2315 cache->media_mode = pc_is_isa32 (current_pc);
2316
2317 /* In principle, for normal frames, fp holds the frame pointer,
2318 which holds the base address for the current stack frame.
2319 However, for functions that don't need it, the frame pointer is
2320 optional. For these "frameless" functions the frame pointer is
2321 actually the frame pointer of the calling frame. */
2322 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
2323 if (cache->base == 0)
2324 return cache;
2325
2326 cache->pc = get_frame_func (this_frame);
2327 if (cache->pc != 0)
2328 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
2329
2330 if (!cache->uses_fp)
2331 {
2332 /* We didn't find a valid frame, which means that CACHE->base
2333 currently holds the frame pointer for our calling frame. If
2334 we're at the start of a function, or somewhere half-way its
2335 prologue, the function's frame probably hasn't been fully
2336 setup yet. Try to reconstruct the base address for the stack
2337 frame by looking at the stack pointer. For truly "frameless"
2338 functions this might work too. */
2339 cache->base = get_frame_register_unsigned
2340 (this_frame, gdbarch_sp_regnum (gdbarch));
2341 }
2342
2343 /* Now that we have the base address for the stack frame we can
2344 calculate the value of sp in the calling frame. */
2345 cache->saved_sp = cache->base + cache->sp_offset;
2346
2347 /* Adjust all the saved registers such that they contain addresses
2348 instead of offsets. */
2349 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2350 if (cache->saved_regs[i] != -1)
2351 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2352
2353 return cache;
2354 }
2355
2356 static struct value *
2357 sh64_frame_prev_register (struct frame_info *this_frame,
2358 void **this_cache, int regnum)
2359 {
2360 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2361 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2362 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2363
2364 gdb_assert (regnum >= 0);
2365
2366 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2367 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2368
2369 /* The PC of the previous frame is stored in the PR register of
2370 the current frame. Frob regnum so that we pull the value from
2371 the correct place. */
2372 if (regnum == gdbarch_pc_regnum (gdbarch))
2373 regnum = PR_REGNUM;
2374
2375 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2376 {
2377 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
2378 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2379 {
2380 CORE_ADDR val;
2381 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2382 4, byte_order);
2383 return frame_unwind_got_constant (this_frame, regnum, val);
2384 }
2385
2386 return frame_unwind_got_memory (this_frame, regnum,
2387 cache->saved_regs[regnum]);
2388 }
2389
2390 return frame_unwind_got_register (this_frame, regnum, regnum);
2391 }
2392
2393 static void
2394 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2395 struct frame_id *this_id)
2396 {
2397 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2398
2399 /* This marks the outermost frame. */
2400 if (cache->base == 0)
2401 return;
2402
2403 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2404 }
2405
2406 static const struct frame_unwind sh64_frame_unwind = {
2407 NORMAL_FRAME,
2408 sh64_frame_this_id,
2409 sh64_frame_prev_register,
2410 NULL,
2411 default_frame_sniffer
2412 };
2413
2414 static CORE_ADDR
2415 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2416 {
2417 return frame_unwind_register_unsigned (next_frame,
2418 gdbarch_sp_regnum (gdbarch));
2419 }
2420
2421 static CORE_ADDR
2422 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2423 {
2424 return frame_unwind_register_unsigned (next_frame,
2425 gdbarch_pc_regnum (gdbarch));
2426 }
2427
2428 static struct frame_id
2429 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2430 {
2431 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2432 gdbarch_sp_regnum (gdbarch));
2433 return frame_id_build (sp, get_frame_pc (this_frame));
2434 }
2435
2436 static CORE_ADDR
2437 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2438 {
2439 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2440
2441 return cache->base;
2442 }
2443
2444 static const struct frame_base sh64_frame_base = {
2445 &sh64_frame_unwind,
2446 sh64_frame_base_address,
2447 sh64_frame_base_address,
2448 sh64_frame_base_address
2449 };
2450
2451
2452 struct gdbarch *
2453 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2454 {
2455 struct gdbarch *gdbarch;
2456 struct gdbarch_tdep *tdep;
2457
2458 /* If there is already a candidate, use it. */
2459 arches = gdbarch_list_lookup_by_info (arches, &info);
2460 if (arches != NULL)
2461 return arches->gdbarch;
2462
2463 /* None found, create a new architecture from the information
2464 provided. */
2465 tdep = XMALLOC (struct gdbarch_tdep);
2466 gdbarch = gdbarch_alloc (&info, tdep);
2467
2468 /* Determine the ABI */
2469 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2470 {
2471 /* If the ABI is the 64-bit one, it can only be sh-media. */
2472 tdep->sh_abi = SH_ABI_64;
2473 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2474 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2475 }
2476 else
2477 {
2478 /* If the ABI is the 32-bit one it could be either media or
2479 compact. */
2480 tdep->sh_abi = SH_ABI_32;
2481 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2482 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2483 }
2484
2485 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2486 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2487 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2488 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2489 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2490 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2491 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2492
2493 /* The number of real registers is the same whether we are in
2494 ISA16(compact) or ISA32(media). */
2495 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2496 set_gdbarch_sp_regnum (gdbarch, 15);
2497 set_gdbarch_pc_regnum (gdbarch, 64);
2498 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2499 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2500 + NUM_PSEUDO_REGS_SH_COMPACT);
2501
2502 set_gdbarch_register_name (gdbarch, sh64_register_name);
2503 set_gdbarch_register_type (gdbarch, sh64_register_type);
2504
2505 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2506 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2507
2508 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2509
2510 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2511 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2512
2513 set_gdbarch_return_value (gdbarch, sh64_return_value);
2514
2515 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2516 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2517
2518 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2519
2520 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2521
2522 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2523 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2524 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2525 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
2526 frame_base_set_default (gdbarch, &sh64_frame_base);
2527
2528 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2529
2530 set_gdbarch_elf_make_msymbol_special (gdbarch,
2531 sh64_elf_make_msymbol_special);
2532
2533 /* Hook in ABI-specific overrides, if they have been registered. */
2534 gdbarch_init_osabi (info, gdbarch);
2535
2536 dwarf2_append_unwinders (gdbarch);
2537 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
2538
2539 return gdbarch;
2540 }
This page took 0.126756 seconds and 4 git commands to generate.