7190ef888a8de31b697102f50be02c980e72215b
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "value.h"
38 #include "dis-asm.h"
39 #include "inferior.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "osabi.h"
45
46 #include "elf-bfd.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
52
53 /* Information that is dependent on the processor variant. */
54 enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61 struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
66 struct sh64_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81 };
82
83 /* Registers of SH5 */
84 enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
92 MEDIA_FP_REGNUM = 14,
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
128 static const char *
129 sh64_register_name (int reg_nr)
130 {
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
213
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
216
217 static void
218 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219 {
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
226 SYMBOL_VALUE_ADDRESS (msym) |= 1;
227 }
228 }
229
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236 static int
237 pc_is_isa32 (bfd_vma memaddr)
238 {
239 struct minimal_symbol *sym;
240
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym)
251 return MSYMBOL_IS_SPECIAL (sym);
252 else
253 return 0;
254 }
255
256 static const unsigned char *
257 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
258 {
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0*/
268
269 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
273 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
274 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
275 *lenptr = sizeof (big_breakpoint_media);
276 return big_breakpoint_media;
277 }
278 else
279 {
280 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
281 *lenptr = sizeof (big_breakpoint_compact);
282 return big_breakpoint_compact;
283 }
284 }
285 else
286 {
287 if (pc_is_isa32 (*pcptr))
288 {
289 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
290 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
291 *lenptr = sizeof (little_breakpoint_media);
292 return little_breakpoint_media;
293 }
294 else
295 {
296 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
297 *lenptr = sizeof (little_breakpoint_compact);
298 return little_breakpoint_compact;
299 }
300 }
301 }
302
303 /* Prologue looks like
304 [mov.l <regs>,@-r15]...
305 [sts.l pr,@-r15]
306 [mov.l r14,@-r15]
307 [mov r15,r14]
308
309 Actually it can be more complicated than this. For instance, with
310 newer gcc's:
311
312 mov.l r14,@-r15
313 add #-12,r15
314 mov r15,r14
315 mov r4,r1
316 mov r5,r2
317 mov.l r6,@(4,r14)
318 mov.l r7,@(8,r14)
319 mov.b r1,@r14
320 mov r14,r1
321 mov r14,r1
322 add #2,r1
323 mov.w r2,@r1
324
325 */
326
327 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
328 with l=1 and n = 18 0110101111110001010010100aaa0000 */
329 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
330
331 /* STS.L PR,@-r0 0100000000100010
332 r0-4-->r0, PR-->(r0) */
333 #define IS_STS_R0(x) ((x) == 0x4022)
334
335 /* STS PR, Rm 0000mmmm00101010
336 PR-->Rm */
337 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
338
339 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
340 Rm-->(dispx4+r15) */
341 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
342
343 /* MOV.L R14,@(disp,r15) 000111111110dddd
344 R14-->(dispx4+r15) */
345 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
346
347 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
348 R18-->(dispx8+R14) */
349 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
350
351 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
352 R18-->(dispx8+R15) */
353 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
354
355 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
356 R18-->(dispx4+R15) */
357 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
358
359 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
360 R14-->(dispx8+R15) */
361 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
362
363 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx4+R15) */
365 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
366
367 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
368 R15 + imm --> R15 */
369 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
370
371 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
374
375 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
376 R15 + R63 --> R14 */
377 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
378
379 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
382
383 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
384
385 /* MOV #imm, R0 1110 0000 ssss ssss
386 #imm-->R0 */
387 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
388
389 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
390 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
391
392 /* ADD r15,r0 0011 0000 1111 1100
393 r15+r0-->r0 */
394 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
395
396 /* MOV.L R14 @-R0 0010 0000 1110 0110
397 R14-->(R0-4), R0-4-->R0 */
398 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
399
400 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
401 where Rm is one of r2-r9 which are the argument registers. */
402 /* FIXME: Recognize the float and double register moves too! */
403 #define IS_MEDIA_IND_ARG_MOV(x) \
404 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
405
406 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
407 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
408 where Rm is one of r2-r9 which are the argument registers. */
409 #define IS_MEDIA_ARG_MOV(x) \
410 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
411 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
412
413 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
414 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
416 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
418 #define IS_MEDIA_MOV_TO_R14(x) \
419 ((((x) & 0xfffffc0f) == 0xa0e00000) \
420 || (((x) & 0xfffffc0f) == 0xa4e00000) \
421 || (((x) & 0xfffffc0f) == 0xa8e00000) \
422 || (((x) & 0xfffffc0f) == 0xb4e00000) \
423 || (((x) & 0xfffffc0f) == 0xbce00000))
424
425 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
426 where Rm is r2-r9 */
427 #define IS_COMPACT_IND_ARG_MOV(x) \
428 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
429
430 /* compact direct arg move!
431 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
432 #define IS_COMPACT_ARG_MOV(x) \
433 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
434
435 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
436 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
437 #define IS_COMPACT_MOV_TO_R14(x) \
438 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
439
440 #define IS_JSR_R0(x) ((x) == 0x400b)
441 #define IS_NOP(x) ((x) == 0x0009)
442
443
444 /* MOV r15,r14 0110111011110011
445 r15-->r14 */
446 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
447
448 /* ADD #imm,r15 01111111iiiiiiii
449 r15+imm-->r15 */
450 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
451
452 /* Skip any prologue before the guts of a function */
453
454 /* Skip the prologue using the debug information. If this fails we'll
455 fall back on the 'guess' method below. */
456 static CORE_ADDR
457 after_prologue (CORE_ADDR pc)
458 {
459 struct symtab_and_line sal;
460 CORE_ADDR func_addr, func_end;
461
462 /* If we can not find the symbol in the partial symbol table, then
463 there is no hope we can determine the function's start address
464 with this code. */
465 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
466 return 0;
467
468
469 /* Get the line associated with FUNC_ADDR. */
470 sal = find_pc_line (func_addr, 0);
471
472 /* There are only two cases to consider. First, the end of the source line
473 is within the function bounds. In that case we return the end of the
474 source line. Second is the end of the source line extends beyond the
475 bounds of the current function. We need to use the slow code to
476 examine instructions in that case. */
477 if (sal.end < func_end)
478 return sal.end;
479 else
480 return 0;
481 }
482
483 static CORE_ADDR
484 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
485 {
486 CORE_ADDR here, end;
487 int w;
488 int insn_size = (media_mode ? 4 : 2);
489
490 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
491 {
492 if (media_mode)
493 {
494 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
495 here += insn_size;
496 if (IS_MEDIA_IND_ARG_MOV (w))
497 {
498 /* This must be followed by a store to r14, so the argument
499 is where the debug info says it is. This can happen after
500 the SP has been saved, unfortunately. */
501
502 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
503 insn_size);
504 here += insn_size;
505 if (IS_MEDIA_MOV_TO_R14 (next_insn))
506 start_pc = here;
507 }
508 else if (IS_MEDIA_ARG_MOV (w))
509 {
510 /* These instructions store directly the argument in r14. */
511 start_pc = here;
512 }
513 else
514 break;
515 }
516 else
517 {
518 w = read_memory_integer (here, insn_size);
519 w = w & 0xffff;
520 here += insn_size;
521 if (IS_COMPACT_IND_ARG_MOV (w))
522 {
523 /* This must be followed by a store to r14, so the argument
524 is where the debug info says it is. This can happen after
525 the SP has been saved, unfortunately. */
526
527 int next_insn = 0xffff & read_memory_integer (here, insn_size);
528 here += insn_size;
529 if (IS_COMPACT_MOV_TO_R14 (next_insn))
530 start_pc = here;
531 }
532 else if (IS_COMPACT_ARG_MOV (w))
533 {
534 /* These instructions store directly the argument in r14. */
535 start_pc = here;
536 }
537 else if (IS_MOVL_R0 (w))
538 {
539 /* There is a function that gcc calls to get the arguments
540 passed correctly to the function. Only after this
541 function call the arguments will be found at the place
542 where they are supposed to be. This happens in case the
543 argument has to be stored into a 64-bit register (for
544 instance doubles, long longs). SHcompact doesn't have
545 access to the full 64-bits, so we store the register in
546 stack slot and store the address of the stack slot in
547 the register, then do a call through a wrapper that
548 loads the memory value into the register. A SHcompact
549 callee calls an argument decoder
550 (GCC_shcompact_incoming_args) that stores the 64-bit
551 value in a stack slot and stores the address of the
552 stack slot in the register. GCC thinks the argument is
553 just passed by transparent reference, but this is only
554 true after the argument decoder is called. Such a call
555 needs to be considered part of the prologue. */
556
557 /* This must be followed by a JSR @r0 instruction and by
558 a NOP instruction. After these, the prologue is over! */
559
560 int next_insn = 0xffff & read_memory_integer (here, insn_size);
561 here += insn_size;
562 if (IS_JSR_R0 (next_insn))
563 {
564 next_insn = 0xffff & read_memory_integer (here, insn_size);
565 here += insn_size;
566
567 if (IS_NOP (next_insn))
568 start_pc = here;
569 }
570 }
571 else
572 break;
573 }
574 }
575
576 return start_pc;
577 }
578
579 static CORE_ADDR
580 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
581 {
582 CORE_ADDR here, end;
583 int updated_fp = 0;
584 int insn_size = 4;
585 int media_mode = 1;
586
587 if (!start_pc)
588 return 0;
589
590 if (pc_is_isa32 (start_pc) == 0)
591 {
592 insn_size = 2;
593 media_mode = 0;
594 }
595
596 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
597 {
598
599 if (media_mode)
600 {
601 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
602 here += insn_size;
603 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
604 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
605 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
606 {
607 start_pc = here;
608 }
609 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
610 {
611 start_pc = here;
612 updated_fp = 1;
613 }
614 else
615 if (updated_fp)
616 {
617 /* Don't bail out yet, we may have arguments stored in
618 registers here, according to the debug info, so that
619 gdb can print the frames correctly. */
620 start_pc = look_for_args_moves (here - insn_size, media_mode);
621 break;
622 }
623 }
624 else
625 {
626 int w = 0xffff & read_memory_integer (here, insn_size);
627 here += insn_size;
628
629 if (IS_STS_R0 (w) || IS_STS_PR (w)
630 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
631 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
632 {
633 start_pc = here;
634 }
635 else if (IS_MOV_SP_FP (w))
636 {
637 start_pc = here;
638 updated_fp = 1;
639 }
640 else
641 if (updated_fp)
642 {
643 /* Don't bail out yet, we may have arguments stored in
644 registers here, according to the debug info, so that
645 gdb can print the frames correctly. */
646 start_pc = look_for_args_moves (here - insn_size, media_mode);
647 break;
648 }
649 }
650 }
651
652 return start_pc;
653 }
654
655 static CORE_ADDR
656 sh64_skip_prologue (CORE_ADDR pc)
657 {
658 CORE_ADDR post_prologue_pc;
659
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
662 is greater. */
663 post_prologue_pc = after_prologue (pc);
664
665 /* If after_prologue returned a useful address, then use it. Else
666 fall back on the instruction skipping code. */
667 if (post_prologue_pc != 0)
668 return max (pc, post_prologue_pc);
669 else
670 return sh64_skip_prologue_hard_way (pc);
671 }
672
673 /* Should call_function allocate stack space for a struct return? */
674 static int
675 sh64_use_struct_convention (struct type *type)
676 {
677 return (TYPE_LENGTH (type) > 8);
678 }
679
680 /* Disassemble an instruction. */
681 static int
682 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
683 {
684 info->endian = gdbarch_byte_order (current_gdbarch);
685 return print_insn_sh (memaddr, info);
686 }
687
688 /* For vectors of 4 floating point registers. */
689 static int
690 sh64_fv_reg_base_num (int fv_regnum)
691 {
692 int fp_regnum;
693
694 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
695 (fv_regnum - FV0_REGNUM) * 4;
696 return fp_regnum;
697 }
698
699 /* For double precision floating point registers, i.e 2 fp regs.*/
700 static int
701 sh64_dr_reg_base_num (int dr_regnum)
702 {
703 int fp_regnum;
704
705 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
706 (dr_regnum - DR0_REGNUM) * 2;
707 return fp_regnum;
708 }
709
710 /* For pairs of floating point registers */
711 static int
712 sh64_fpp_reg_base_num (int fpp_regnum)
713 {
714 int fp_regnum;
715
716 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
717 (fpp_regnum - FPP0_REGNUM) * 2;
718 return fp_regnum;
719 }
720
721 /* *INDENT-OFF* */
722 /*
723 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
724 GDB_REGNUM BASE_REGNUM
725 r0_c 221 0
726 r1_c 222 1
727 r2_c 223 2
728 r3_c 224 3
729 r4_c 225 4
730 r5_c 226 5
731 r6_c 227 6
732 r7_c 228 7
733 r8_c 229 8
734 r9_c 230 9
735 r10_c 231 10
736 r11_c 232 11
737 r12_c 233 12
738 r13_c 234 13
739 r14_c 235 14
740 r15_c 236 15
741
742 pc_c 237 64
743 gbr_c 238 16
744 mach_c 239 17
745 macl_c 240 17
746 pr_c 241 18
747 t_c 242 19
748 fpscr_c 243 76
749 fpul_c 244 109
750
751 fr0_c 245 77
752 fr1_c 246 78
753 fr2_c 247 79
754 fr3_c 248 80
755 fr4_c 249 81
756 fr5_c 250 82
757 fr6_c 251 83
758 fr7_c 252 84
759 fr8_c 253 85
760 fr9_c 254 86
761 fr10_c 255 87
762 fr11_c 256 88
763 fr12_c 257 89
764 fr13_c 258 90
765 fr14_c 259 91
766 fr15_c 260 92
767
768 dr0_c 261 77
769 dr2_c 262 79
770 dr4_c 263 81
771 dr6_c 264 83
772 dr8_c 265 85
773 dr10_c 266 87
774 dr12_c 267 89
775 dr14_c 268 91
776
777 fv0_c 269 77
778 fv4_c 270 81
779 fv8_c 271 85
780 fv12_c 272 91
781 */
782 /* *INDENT-ON* */
783 static int
784 sh64_compact_reg_base_num (int reg_nr)
785 {
786 int base_regnum = reg_nr;
787
788 /* general register N maps to general register N */
789 if (reg_nr >= R0_C_REGNUM
790 && reg_nr <= R_LAST_C_REGNUM)
791 base_regnum = reg_nr - R0_C_REGNUM;
792
793 /* floating point register N maps to floating point register N */
794 else if (reg_nr >= FP0_C_REGNUM
795 && reg_nr <= FP_LAST_C_REGNUM)
796 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (current_gdbarch);
797
798 /* double prec register N maps to base regnum for double prec register N */
799 else if (reg_nr >= DR0_C_REGNUM
800 && reg_nr <= DR_LAST_C_REGNUM)
801 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
802
803 /* vector N maps to base regnum for vector register N */
804 else if (reg_nr >= FV0_C_REGNUM
805 && reg_nr <= FV_LAST_C_REGNUM)
806 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
807
808 else if (reg_nr == PC_C_REGNUM)
809 base_regnum = gdbarch_pc_regnum (current_gdbarch);
810
811 else if (reg_nr == GBR_C_REGNUM)
812 base_regnum = 16;
813
814 else if (reg_nr == MACH_C_REGNUM
815 || reg_nr == MACL_C_REGNUM)
816 base_regnum = 17;
817
818 else if (reg_nr == PR_C_REGNUM)
819 base_regnum = PR_REGNUM;
820
821 else if (reg_nr == T_C_REGNUM)
822 base_regnum = 19;
823
824 else if (reg_nr == FPSCR_C_REGNUM)
825 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
826
827 else if (reg_nr == FPUL_C_REGNUM)
828 base_regnum = gdbarch_fp0_regnum (current_gdbarch) + 32;
829
830 return base_regnum;
831 }
832
833 static int
834 sign_extend (int value, int bits)
835 {
836 value = value & ((1 << bits) - 1);
837 return (value & (1 << (bits - 1))
838 ? value | (~((1 << bits) - 1))
839 : value);
840 }
841
842 static void
843 sh64_analyze_prologue (struct gdbarch *gdbarch,
844 struct sh64_frame_cache *cache,
845 CORE_ADDR func_pc,
846 CORE_ADDR current_pc)
847 {
848 int reg_nr;
849 int pc;
850 int opc;
851 int insn;
852 int r0_val = 0;
853 int insn_size;
854 int gdb_register_number;
855 int register_number;
856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
857
858 cache->sp_offset = 0;
859
860 /* Loop around examining the prologue insns until we find something
861 that does not appear to be part of the prologue. But give up
862 after 20 of them, since we're getting silly then. */
863
864 pc = func_pc;
865
866 if (cache->media_mode)
867 insn_size = 4;
868 else
869 insn_size = 2;
870
871 opc = pc + (insn_size * 28);
872 if (opc > current_pc)
873 opc = current_pc;
874 for ( ; pc <= opc; pc += insn_size)
875 {
876 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
877 : pc,
878 insn_size);
879
880 if (!cache->media_mode)
881 {
882 if (IS_STS_PR (insn))
883 {
884 int next_insn = read_memory_integer (pc + insn_size, insn_size);
885 if (IS_MOV_TO_R15 (next_insn))
886 {
887 cache->saved_regs[PR_REGNUM] =
888 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
889 pc += insn_size;
890 }
891 }
892
893 else if (IS_MOV_R14 (insn))
894 cache->saved_regs[MEDIA_FP_REGNUM] =
895 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
896
897 else if (IS_MOV_R0 (insn))
898 {
899 /* Put in R0 the offset from SP at which to store some
900 registers. We are interested in this value, because it
901 will tell us where the given registers are stored within
902 the frame. */
903 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
904 }
905
906 else if (IS_ADD_SP_R0 (insn))
907 {
908 /* This instruction still prepares r0, but we don't care.
909 We already have the offset in r0_val. */
910 }
911
912 else if (IS_STS_R0 (insn))
913 {
914 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
915 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
916 r0_val -= 4;
917 }
918
919 else if (IS_MOV_R14_R0 (insn))
920 {
921 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
922 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
923 - (r0_val - 4);
924 r0_val -= 4;
925 }
926
927 else if (IS_ADD_SP (insn))
928 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
929
930 else if (IS_MOV_SP_FP (insn))
931 break;
932 }
933 else
934 {
935 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
936 cache->sp_offset -=
937 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
938
939 else if (IS_STQ_R18_R15 (insn))
940 cache->saved_regs[PR_REGNUM] =
941 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
942
943 else if (IS_STL_R18_R15 (insn))
944 cache->saved_regs[PR_REGNUM] =
945 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
946
947 else if (IS_STQ_R14_R15 (insn))
948 cache->saved_regs[MEDIA_FP_REGNUM] =
949 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
950
951 else if (IS_STL_R14_R15 (insn))
952 cache->saved_regs[MEDIA_FP_REGNUM] =
953 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
954
955 else if (IS_MOV_SP_FP_MEDIA (insn))
956 break;
957 }
958 }
959
960 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
961 cache->uses_fp = 1;
962 }
963
964 static CORE_ADDR
965 sh64_extract_struct_value_address (struct regcache *regcache)
966 {
967 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
968 address regster is preserved across function calls? Probably
969 not, making this function wrong. */
970 ULONGEST val;
971 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
972 return val;
973 }
974
975 static CORE_ADDR
976 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
977 {
978 return sp & ~7;
979 }
980
981 /* Function: push_dummy_call
982 Setup the function arguments for calling a function in the inferior.
983
984 On the Renesas SH architecture, there are four registers (R4 to R7)
985 which are dedicated for passing function arguments. Up to the first
986 four arguments (depending on size) may go into these registers.
987 The rest go on the stack.
988
989 Arguments that are smaller than 4 bytes will still take up a whole
990 register or a whole 32-bit word on the stack, and will be
991 right-justified in the register or the stack word. This includes
992 chars, shorts, and small aggregate types.
993
994 Arguments that are larger than 4 bytes may be split between two or
995 more registers. If there are not enough registers free, an argument
996 may be passed partly in a register (or registers), and partly on the
997 stack. This includes doubles, long longs, and larger aggregates.
998 As far as I know, there is no upper limit to the size of aggregates
999 that will be passed in this way; in other words, the convention of
1000 passing a pointer to a large aggregate instead of a copy is not used.
1001
1002 An exceptional case exists for struct arguments (and possibly other
1003 aggregates such as arrays) if the size is larger than 4 bytes but
1004 not a multiple of 4 bytes. In this case the argument is never split
1005 between the registers and the stack, but instead is copied in its
1006 entirety onto the stack, AND also copied into as many registers as
1007 there is room for. In other words, space in registers permitting,
1008 two copies of the same argument are passed in. As far as I can tell,
1009 only the one on the stack is used, although that may be a function
1010 of the level of compiler optimization. I suspect this is a compiler
1011 bug. Arguments of these odd sizes are left-justified within the
1012 word (as opposed to arguments smaller than 4 bytes, which are
1013 right-justified).
1014
1015 If the function is to return an aggregate type such as a struct, it
1016 is either returned in the normal return value register R0 (if its
1017 size is no greater than one byte), or else the caller must allocate
1018 space into which the callee will copy the return value (if the size
1019 is greater than one byte). In this case, a pointer to the return
1020 value location is passed into the callee in register R2, which does
1021 not displace any of the other arguments passed in via registers R4
1022 to R7. */
1023
1024 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1025 non-scalar (struct, union) elements (even if the elements are
1026 floats).
1027 FR0-FR11 for single precision floating point (float)
1028 DR0-DR10 for double precision floating point (double)
1029
1030 If a float is argument number 3 (for instance) and arguments number
1031 1,2, and 4 are integer, the mapping will be:
1032 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1033
1034 If a float is argument number 10 (for instance) and arguments number
1035 1 through 10 are integer, the mapping will be:
1036 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1037 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1038 I.e. there is hole in the stack.
1039
1040 Different rules apply for variable arguments functions, and for functions
1041 for which the prototype is not known. */
1042
1043 static CORE_ADDR
1044 sh64_push_dummy_call (struct gdbarch *gdbarch,
1045 struct value *function,
1046 struct regcache *regcache,
1047 CORE_ADDR bp_addr,
1048 int nargs, struct value **args,
1049 CORE_ADDR sp, int struct_return,
1050 CORE_ADDR struct_addr)
1051 {
1052 int stack_offset, stack_alloc;
1053 int int_argreg;
1054 int float_argreg;
1055 int double_argreg;
1056 int float_arg_index = 0;
1057 int double_arg_index = 0;
1058 int argnum;
1059 struct type *type;
1060 CORE_ADDR regval;
1061 char *val;
1062 char valbuf[8];
1063 char valbuf_tmp[8];
1064 int len;
1065 int argreg_size;
1066 int fp_args[12];
1067
1068 memset (fp_args, 0, sizeof (fp_args));
1069
1070 /* first force sp to a 8-byte alignment */
1071 sp = sh64_frame_align (gdbarch, sp);
1072
1073 /* The "struct return pointer" pseudo-argument has its own dedicated
1074 register */
1075
1076 if (struct_return)
1077 regcache_cooked_write_unsigned (regcache,
1078 STRUCT_RETURN_REGNUM, struct_addr);
1079
1080 /* Now make sure there's space on the stack */
1081 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1082 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1083 sp -= stack_alloc; /* make room on stack for args */
1084
1085 /* Now load as many as possible of the first arguments into
1086 registers, and push the rest onto the stack. There are 64 bytes
1087 in eight registers available. Loop thru args from first to last. */
1088
1089 int_argreg = ARG0_REGNUM;
1090 float_argreg = gdbarch_fp0_regnum (current_gdbarch);
1091 double_argreg = DR0_REGNUM;
1092
1093 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1094 {
1095 type = value_type (args[argnum]);
1096 len = TYPE_LENGTH (type);
1097 memset (valbuf, 0, sizeof (valbuf));
1098
1099 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1100 {
1101 argreg_size = register_size (current_gdbarch, int_argreg);
1102
1103 if (len < argreg_size)
1104 {
1105 /* value gets right-justified in the register or stack word */
1106 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1107 memcpy (valbuf + argreg_size - len,
1108 (char *) value_contents (args[argnum]), len);
1109 else
1110 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1111
1112 val = valbuf;
1113 }
1114 else
1115 val = (char *) value_contents (args[argnum]);
1116
1117 while (len > 0)
1118 {
1119 if (int_argreg > ARGLAST_REGNUM)
1120 {
1121 /* must go on the stack */
1122 write_memory (sp + stack_offset, (const bfd_byte *) val,
1123 argreg_size);
1124 stack_offset += 8;/*argreg_size;*/
1125 }
1126 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1127 That's because some *&^%$ things get passed on the stack
1128 AND in the registers! */
1129 if (int_argreg <= ARGLAST_REGNUM)
1130 {
1131 /* there's room in a register */
1132 regval = extract_unsigned_integer (val, argreg_size);
1133 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1134 }
1135 /* Store the value 8 bytes at a time. This means that
1136 things larger than 8 bytes may go partly in registers
1137 and partly on the stack. FIXME: argreg is incremented
1138 before we use its size. */
1139 len -= argreg_size;
1140 val += argreg_size;
1141 int_argreg++;
1142 }
1143 }
1144 else
1145 {
1146 val = (char *) value_contents (args[argnum]);
1147 if (len == 4)
1148 {
1149 /* Where is it going to be stored? */
1150 while (fp_args[float_arg_index])
1151 float_arg_index ++;
1152
1153 /* Now float_argreg points to the register where it
1154 should be stored. Are we still within the allowed
1155 register set? */
1156 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1157 {
1158 /* Goes in FR0...FR11 */
1159 regcache_cooked_write (regcache,
1160 gdbarch_fp0_regnum (current_gdbarch)
1161 + float_arg_index,
1162 val);
1163 fp_args[float_arg_index] = 1;
1164 /* Skip the corresponding general argument register. */
1165 int_argreg ++;
1166 }
1167 else
1168 ;
1169 /* Store it as the integers, 8 bytes at the time, if
1170 necessary spilling on the stack. */
1171
1172 }
1173 else if (len == 8)
1174 {
1175 /* Where is it going to be stored? */
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
1180 Are we still within the allowed register set? */
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1182 {
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
1185 i.e. includes odd numbers. */
1186 int double_register_offset = double_arg_index / 2;
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
1191 /* Skip the corresponding general argument register. */
1192 int_argreg ++;
1193 }
1194 else
1195 ;
1196 /* Store it as the integers, 8 bytes at the time, if
1197 necessary spilling on the stack. */
1198 }
1199 }
1200 }
1201 /* Store return address. */
1202 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1203
1204 /* Update stack pointer. */
1205 regcache_cooked_write_unsigned (regcache,
1206 gdbarch_sp_regnum (current_gdbarch), sp);
1207
1208 return sp;
1209 }
1210
1211 /* Find a function's return value in the appropriate registers (in
1212 regbuf), and copy it into valbuf. Extract from an array REGBUF
1213 containing the (raw) register state a function return value of type
1214 TYPE, and copy that, in virtual format, into VALBUF. */
1215 static void
1216 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1217 void *valbuf)
1218 {
1219 int len = TYPE_LENGTH (type);
1220
1221 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1222 {
1223 if (len == 4)
1224 {
1225 /* Return value stored in gdbarch_fp0_regnum */
1226 regcache_raw_read (regcache,
1227 gdbarch_fp0_regnum (current_gdbarch), valbuf);
1228 }
1229 else if (len == 8)
1230 {
1231 /* return value stored in DR0_REGNUM */
1232 DOUBLEST val;
1233 gdb_byte buf[8];
1234
1235 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1236
1237 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1238 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1239 buf, &val);
1240 else
1241 floatformat_to_doublest (&floatformat_ieee_double_big,
1242 buf, &val);
1243 store_typed_floating (valbuf, type, val);
1244 }
1245 }
1246 else
1247 {
1248 if (len <= 8)
1249 {
1250 int offset;
1251 char buf[8];
1252 /* Result is in register 2. If smaller than 8 bytes, it is padded
1253 at the most significant end. */
1254 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1255
1256 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1257 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1258 - len;
1259 else
1260 offset = 0;
1261 memcpy (valbuf, buf + offset, len);
1262 }
1263 else
1264 error ("bad size for return value");
1265 }
1266 }
1267
1268 /* Write into appropriate registers a function return value
1269 of type TYPE, given in virtual format.
1270 If the architecture is sh4 or sh3e, store a function's return value
1271 in the R0 general register or in the FP0 floating point register,
1272 depending on the type of the return value. In all the other cases
1273 the result is stored in r0, left-justified. */
1274
1275 static void
1276 sh64_store_return_value (struct type *type, struct regcache *regcache,
1277 const void *valbuf)
1278 {
1279 char buf[64]; /* more than enough... */
1280 int len = TYPE_LENGTH (type);
1281
1282 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1283 {
1284 int i, regnum = gdbarch_fp0_regnum (current_gdbarch);
1285 for (i = 0; i < len; i += 4)
1286 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1287 regcache_raw_write (regcache, regnum++,
1288 (char *) valbuf + len - 4 - i);
1289 else
1290 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1291 }
1292 else
1293 {
1294 int return_register = DEFAULT_RETURN_REGNUM;
1295 int offset = 0;
1296
1297 if (len <= register_size (current_gdbarch, return_register))
1298 {
1299 /* Pad with zeros. */
1300 memset (buf, 0, register_size (current_gdbarch, return_register));
1301 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
1302 offset = 0; /*register_size (current_gdbarch,
1303 return_register) - len;*/
1304 else
1305 offset = register_size (current_gdbarch, return_register) - len;
1306
1307 memcpy (buf + offset, valbuf, len);
1308 regcache_raw_write (regcache, return_register, buf);
1309 }
1310 else
1311 regcache_raw_write (regcache, return_register, valbuf);
1312 }
1313 }
1314
1315 static enum return_value_convention
1316 sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1317 struct regcache *regcache,
1318 gdb_byte *readbuf, const gdb_byte *writebuf)
1319 {
1320 if (sh64_use_struct_convention (type))
1321 return RETURN_VALUE_STRUCT_CONVENTION;
1322 if (writebuf)
1323 sh64_store_return_value (type, regcache, writebuf);
1324 else if (readbuf)
1325 sh64_extract_return_value (type, regcache, readbuf);
1326 return RETURN_VALUE_REGISTER_CONVENTION;
1327 }
1328
1329 static void
1330 sh64_show_media_regs (struct frame_info *frame)
1331 {
1332 int i;
1333
1334 printf_filtered
1335 ("PC=%s SR=%016llx \n",
1336 paddr (get_frame_register_unsigned (frame,
1337 gdbarch_pc_regnum (current_gdbarch))),
1338 (long long) get_frame_register_unsigned (frame, SR_REGNUM));
1339
1340 printf_filtered
1341 ("SSR=%016llx SPC=%016llx \n",
1342 (long long) get_frame_register_unsigned (frame, SSR_REGNUM),
1343 (long long) get_frame_register_unsigned (frame, SPC_REGNUM));
1344 printf_filtered
1345 ("FPSCR=%016lx\n ",
1346 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
1347
1348 for (i = 0; i < 64; i = i + 4)
1349 printf_filtered
1350 ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1351 i, i + 3,
1352 (long long) get_frame_register_unsigned (frame, i + 0),
1353 (long long) get_frame_register_unsigned (frame, i + 1),
1354 (long long) get_frame_register_unsigned (frame, i + 2),
1355 (long long) get_frame_register_unsigned (frame, i + 3));
1356
1357 printf_filtered ("\n");
1358
1359 for (i = 0; i < 64; i = i + 8)
1360 printf_filtered
1361 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1362 i, i + 7,
1363 (long) get_frame_register_unsigned
1364 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 0),
1365 (long) get_frame_register_unsigned
1366 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 1),
1367 (long) get_frame_register_unsigned
1368 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 2),
1369 (long) get_frame_register_unsigned
1370 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 3),
1371 (long) get_frame_register_unsigned
1372 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 4),
1373 (long) get_frame_register_unsigned
1374 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 5),
1375 (long) get_frame_register_unsigned
1376 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 6),
1377 (long) get_frame_register_unsigned
1378 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 7));
1379 }
1380
1381 static void
1382 sh64_show_compact_regs (struct frame_info *frame)
1383 {
1384 int i;
1385
1386 printf_filtered
1387 ("PC=%s \n",
1388 paddr (get_frame_register_unsigned (frame, PC_C_REGNUM)));
1389
1390 printf_filtered
1391 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1392 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1393 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1394 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1395 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1396 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1397 printf_filtered
1398 ("FPSCR=%08lx FPUL=%08lx\n",
1399 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1400 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
1401
1402 for (i = 0; i < 16; i = i + 4)
1403 printf_filtered
1404 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1405 i, i + 3,
1406 (long) get_frame_register_unsigned (frame, i + 0),
1407 (long) get_frame_register_unsigned (frame, i + 1),
1408 (long) get_frame_register_unsigned (frame, i + 2),
1409 (long) get_frame_register_unsigned (frame, i + 3));
1410
1411 printf_filtered ("\n");
1412
1413 for (i = 0; i < 16; i = i + 8)
1414 printf_filtered
1415 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1416 i, i + 7,
1417 (long) get_frame_register_unsigned
1418 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 0),
1419 (long) get_frame_register_unsigned
1420 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 1),
1421 (long) get_frame_register_unsigned
1422 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 2),
1423 (long) get_frame_register_unsigned
1424 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 3),
1425 (long) get_frame_register_unsigned
1426 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 4),
1427 (long) get_frame_register_unsigned
1428 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 5),
1429 (long) get_frame_register_unsigned
1430 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 6),
1431 (long) get_frame_register_unsigned
1432 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 7));
1433 }
1434
1435 /* FIXME!!! This only shows the registers for shmedia, excluding the
1436 pseudo registers. */
1437 void
1438 sh64_show_regs (struct frame_info *frame)
1439 {
1440 if (pc_is_isa32 (get_frame_pc (frame)))
1441 sh64_show_media_regs (frame);
1442 else
1443 sh64_show_compact_regs (frame);
1444 }
1445
1446 /* *INDENT-OFF* */
1447 /*
1448 SH MEDIA MODE (ISA 32)
1449 general registers (64-bit) 0-63
1450 0 r0, r1, r2, r3, r4, r5, r6, r7,
1451 64 r8, r9, r10, r11, r12, r13, r14, r15,
1452 128 r16, r17, r18, r19, r20, r21, r22, r23,
1453 192 r24, r25, r26, r27, r28, r29, r30, r31,
1454 256 r32, r33, r34, r35, r36, r37, r38, r39,
1455 320 r40, r41, r42, r43, r44, r45, r46, r47,
1456 384 r48, r49, r50, r51, r52, r53, r54, r55,
1457 448 r56, r57, r58, r59, r60, r61, r62, r63,
1458
1459 pc (64-bit) 64
1460 512 pc,
1461
1462 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1463 520 sr, ssr, spc,
1464
1465 target registers (64-bit) 68-75
1466 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1467
1468 floating point state control register (32-bit) 76
1469 608 fpscr,
1470
1471 single precision floating point registers (32-bit) 77-140
1472 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1473 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1474 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1475 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1476 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1477 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1478 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1479 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1480
1481 TOTAL SPACE FOR REGISTERS: 868 bytes
1482
1483 From here on they are all pseudo registers: no memory allocated.
1484 REGISTER_BYTE returns the register byte for the base register.
1485
1486 double precision registers (pseudo) 141-172
1487 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1488 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1489 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1490 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1491
1492 floating point pairs (pseudo) 173-204
1493 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1494 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1495 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1496 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1497
1498 floating point vectors (4 floating point regs) (pseudo) 205-220
1499 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1500 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1501
1502 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1503 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1504 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1505 pc_c,
1506 gbr_c, mach_c, macl_c, pr_c, t_c,
1507 fpscr_c, fpul_c,
1508 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1509 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1510 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1511 fv0_c, fv4_c, fv8_c, fv12_c
1512 */
1513
1514 static struct type *
1515 sh64_build_float_register_type (int high)
1516 {
1517 struct type *temp;
1518
1519 temp = create_range_type (NULL, builtin_type_int, 0, high);
1520 return create_array_type (NULL, builtin_type_float, temp);
1521 }
1522
1523 /* Return the GDB type object for the "standard" data type
1524 of data in register REG_NR. */
1525 static struct type *
1526 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1527 {
1528 if ((reg_nr >= gdbarch_fp0_regnum (current_gdbarch)
1529 && reg_nr <= FP_LAST_REGNUM)
1530 || (reg_nr >= FP0_C_REGNUM
1531 && reg_nr <= FP_LAST_C_REGNUM))
1532 return builtin_type_float;
1533 else if ((reg_nr >= DR0_REGNUM
1534 && reg_nr <= DR_LAST_REGNUM)
1535 || (reg_nr >= DR0_C_REGNUM
1536 && reg_nr <= DR_LAST_C_REGNUM))
1537 return builtin_type_double;
1538 else if (reg_nr >= FPP0_REGNUM
1539 && reg_nr <= FPP_LAST_REGNUM)
1540 return sh64_build_float_register_type (1);
1541 else if ((reg_nr >= FV0_REGNUM
1542 && reg_nr <= FV_LAST_REGNUM)
1543 ||(reg_nr >= FV0_C_REGNUM
1544 && reg_nr <= FV_LAST_C_REGNUM))
1545 return sh64_build_float_register_type (3);
1546 else if (reg_nr == FPSCR_REGNUM)
1547 return builtin_type_int;
1548 else if (reg_nr >= R0_C_REGNUM
1549 && reg_nr < FP0_C_REGNUM)
1550 return builtin_type_int;
1551 else
1552 return builtin_type_long_long;
1553 }
1554
1555 static void
1556 sh64_register_convert_to_virtual (int regnum, struct type *type,
1557 char *from, char *to)
1558 {
1559 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_LITTLE)
1560 {
1561 /* It is a no-op. */
1562 memcpy (to, from, register_size (current_gdbarch, regnum));
1563 return;
1564 }
1565
1566 if ((regnum >= DR0_REGNUM
1567 && regnum <= DR_LAST_REGNUM)
1568 || (regnum >= DR0_C_REGNUM
1569 && regnum <= DR_LAST_C_REGNUM))
1570 {
1571 DOUBLEST val;
1572 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1573 from, &val);
1574 store_typed_floating (to, type, val);
1575 }
1576 else
1577 error ("sh64_register_convert_to_virtual called with non DR register number");
1578 }
1579
1580 static void
1581 sh64_register_convert_to_raw (struct type *type, int regnum,
1582 const void *from, void *to)
1583 {
1584 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_LITTLE)
1585 {
1586 /* It is a no-op. */
1587 memcpy (to, from, register_size (current_gdbarch, regnum));
1588 return;
1589 }
1590
1591 if ((regnum >= DR0_REGNUM
1592 && regnum <= DR_LAST_REGNUM)
1593 || (regnum >= DR0_C_REGNUM
1594 && regnum <= DR_LAST_C_REGNUM))
1595 {
1596 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1597 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1598 &val, to);
1599 }
1600 else
1601 error ("sh64_register_convert_to_raw called with non DR register number");
1602 }
1603
1604 static void
1605 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1606 int reg_nr, gdb_byte *buffer)
1607 {
1608 int base_regnum;
1609 int portion;
1610 int offset = 0;
1611 char temp_buffer[MAX_REGISTER_SIZE];
1612
1613 if (reg_nr >= DR0_REGNUM
1614 && reg_nr <= DR_LAST_REGNUM)
1615 {
1616 base_regnum = sh64_dr_reg_base_num (reg_nr);
1617
1618 /* Build the value in the provided buffer. */
1619 /* DR regs are double precision registers obtained by
1620 concatenating 2 single precision floating point registers. */
1621 for (portion = 0; portion < 2; portion++)
1622 regcache_raw_read (regcache, base_regnum + portion,
1623 (temp_buffer
1624 + register_size (gdbarch, base_regnum) * portion));
1625
1626 /* We must pay attention to the endianness. */
1627 sh64_register_convert_to_virtual (reg_nr,
1628 register_type (gdbarch, reg_nr),
1629 temp_buffer, buffer);
1630
1631 }
1632
1633 else if (reg_nr >= FPP0_REGNUM
1634 && reg_nr <= FPP_LAST_REGNUM)
1635 {
1636 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1637
1638 /* Build the value in the provided buffer. */
1639 /* FPP regs are pairs of single precision registers obtained by
1640 concatenating 2 single precision floating point registers. */
1641 for (portion = 0; portion < 2; portion++)
1642 regcache_raw_read (regcache, base_regnum + portion,
1643 ((char *) buffer
1644 + register_size (gdbarch, base_regnum) * portion));
1645 }
1646
1647 else if (reg_nr >= FV0_REGNUM
1648 && reg_nr <= FV_LAST_REGNUM)
1649 {
1650 base_regnum = sh64_fv_reg_base_num (reg_nr);
1651
1652 /* Build the value in the provided buffer. */
1653 /* FV regs are vectors of single precision registers obtained by
1654 concatenating 4 single precision floating point registers. */
1655 for (portion = 0; portion < 4; portion++)
1656 regcache_raw_read (regcache, base_regnum + portion,
1657 ((char *) buffer
1658 + register_size (gdbarch, base_regnum) * portion));
1659 }
1660
1661 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1662 else if (reg_nr >= R0_C_REGNUM
1663 && reg_nr <= T_C_REGNUM)
1664 {
1665 base_regnum = sh64_compact_reg_base_num (reg_nr);
1666
1667 /* Build the value in the provided buffer. */
1668 regcache_raw_read (regcache, base_regnum, temp_buffer);
1669 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1670 offset = 4;
1671 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1672 }
1673
1674 else if (reg_nr >= FP0_C_REGNUM
1675 && reg_nr <= FP_LAST_C_REGNUM)
1676 {
1677 base_regnum = sh64_compact_reg_base_num (reg_nr);
1678
1679 /* Build the value in the provided buffer. */
1680 /* Floating point registers map 1-1 to the media fp regs,
1681 they have the same size and endianness. */
1682 regcache_raw_read (regcache, base_regnum, buffer);
1683 }
1684
1685 else if (reg_nr >= DR0_C_REGNUM
1686 && reg_nr <= DR_LAST_C_REGNUM)
1687 {
1688 base_regnum = sh64_compact_reg_base_num (reg_nr);
1689
1690 /* DR_C regs are double precision registers obtained by
1691 concatenating 2 single precision floating point registers. */
1692 for (portion = 0; portion < 2; portion++)
1693 regcache_raw_read (regcache, base_regnum + portion,
1694 (temp_buffer
1695 + register_size (gdbarch, base_regnum) * portion));
1696
1697 /* We must pay attention to the endianness. */
1698 sh64_register_convert_to_virtual (reg_nr,
1699 register_type (gdbarch, reg_nr),
1700 temp_buffer, buffer);
1701 }
1702
1703 else if (reg_nr >= FV0_C_REGNUM
1704 && reg_nr <= FV_LAST_C_REGNUM)
1705 {
1706 base_regnum = sh64_compact_reg_base_num (reg_nr);
1707
1708 /* Build the value in the provided buffer. */
1709 /* FV_C regs are vectors of single precision registers obtained by
1710 concatenating 4 single precision floating point registers. */
1711 for (portion = 0; portion < 4; portion++)
1712 regcache_raw_read (regcache, base_regnum + portion,
1713 ((char *) buffer
1714 + register_size (gdbarch, base_regnum) * portion));
1715 }
1716
1717 else if (reg_nr == FPSCR_C_REGNUM)
1718 {
1719 int fpscr_base_regnum;
1720 int sr_base_regnum;
1721 unsigned int fpscr_value;
1722 unsigned int sr_value;
1723 unsigned int fpscr_c_value;
1724 unsigned int fpscr_c_part1_value;
1725 unsigned int fpscr_c_part2_value;
1726
1727 fpscr_base_regnum = FPSCR_REGNUM;
1728 sr_base_regnum = SR_REGNUM;
1729
1730 /* Build the value in the provided buffer. */
1731 /* FPSCR_C is a very weird register that contains sparse bits
1732 from the FPSCR and the SR architectural registers.
1733 Specifically: */
1734 /* *INDENT-OFF* */
1735 /*
1736 FPSRC_C bit
1737 0 Bit 0 of FPSCR
1738 1 reserved
1739 2-17 Bit 2-18 of FPSCR
1740 18-20 Bits 12,13,14 of SR
1741 21-31 reserved
1742 */
1743 /* *INDENT-ON* */
1744 /* Get FPSCR into a local buffer */
1745 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1746 /* Get value as an int. */
1747 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1748 /* Get SR into a local buffer */
1749 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1750 /* Get value as an int. */
1751 sr_value = extract_unsigned_integer (temp_buffer, 4);
1752 /* Build the new value. */
1753 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1754 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1755 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1756 /* Store that in out buffer!!! */
1757 store_unsigned_integer (buffer, 4, fpscr_c_value);
1758 /* FIXME There is surely an endianness gotcha here. */
1759 }
1760
1761 else if (reg_nr == FPUL_C_REGNUM)
1762 {
1763 base_regnum = sh64_compact_reg_base_num (reg_nr);
1764
1765 /* FPUL_C register is floating point register 32,
1766 same size, same endianness. */
1767 regcache_raw_read (regcache, base_regnum, buffer);
1768 }
1769 }
1770
1771 static void
1772 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1773 int reg_nr, const gdb_byte *buffer)
1774 {
1775 int base_regnum, portion;
1776 int offset;
1777 char temp_buffer[MAX_REGISTER_SIZE];
1778
1779 if (reg_nr >= DR0_REGNUM
1780 && reg_nr <= DR_LAST_REGNUM)
1781 {
1782 base_regnum = sh64_dr_reg_base_num (reg_nr);
1783 /* We must pay attention to the endianness. */
1784 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1785 reg_nr,
1786 buffer, temp_buffer);
1787
1788 /* Write the real regs for which this one is an alias. */
1789 for (portion = 0; portion < 2; portion++)
1790 regcache_raw_write (regcache, base_regnum + portion,
1791 (temp_buffer
1792 + register_size (gdbarch,
1793 base_regnum) * portion));
1794 }
1795
1796 else if (reg_nr >= FPP0_REGNUM
1797 && reg_nr <= FPP_LAST_REGNUM)
1798 {
1799 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1800
1801 /* Write the real regs for which this one is an alias. */
1802 for (portion = 0; portion < 2; portion++)
1803 regcache_raw_write (regcache, base_regnum + portion,
1804 ((char *) buffer
1805 + register_size (gdbarch,
1806 base_regnum) * portion));
1807 }
1808
1809 else if (reg_nr >= FV0_REGNUM
1810 && reg_nr <= FV_LAST_REGNUM)
1811 {
1812 base_regnum = sh64_fv_reg_base_num (reg_nr);
1813
1814 /* Write the real regs for which this one is an alias. */
1815 for (portion = 0; portion < 4; portion++)
1816 regcache_raw_write (regcache, base_regnum + portion,
1817 ((char *) buffer
1818 + register_size (gdbarch,
1819 base_regnum) * portion));
1820 }
1821
1822 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1823 register but only 4 bytes of it. */
1824 else if (reg_nr >= R0_C_REGNUM
1825 && reg_nr <= T_C_REGNUM)
1826 {
1827 base_regnum = sh64_compact_reg_base_num (reg_nr);
1828 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1829 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1830 offset = 4;
1831 else
1832 offset = 0;
1833 /* Let's read the value of the base register into a temporary
1834 buffer, so that overwriting the last four bytes with the new
1835 value of the pseudo will leave the upper 4 bytes unchanged. */
1836 regcache_raw_read (regcache, base_regnum, temp_buffer);
1837 /* Write as an 8 byte quantity */
1838 memcpy (temp_buffer + offset, buffer, 4);
1839 regcache_raw_write (regcache, base_regnum, temp_buffer);
1840 }
1841
1842 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1843 registers. Both are 4 bytes. */
1844 else if (reg_nr >= FP0_C_REGNUM
1845 && reg_nr <= FP_LAST_C_REGNUM)
1846 {
1847 base_regnum = sh64_compact_reg_base_num (reg_nr);
1848 regcache_raw_write (regcache, base_regnum, buffer);
1849 }
1850
1851 else if (reg_nr >= DR0_C_REGNUM
1852 && reg_nr <= DR_LAST_C_REGNUM)
1853 {
1854 base_regnum = sh64_compact_reg_base_num (reg_nr);
1855 for (portion = 0; portion < 2; portion++)
1856 {
1857 /* We must pay attention to the endianness. */
1858 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1859 reg_nr,
1860 buffer, temp_buffer);
1861
1862 regcache_raw_write (regcache, base_regnum + portion,
1863 (temp_buffer
1864 + register_size (gdbarch,
1865 base_regnum) * portion));
1866 }
1867 }
1868
1869 else if (reg_nr >= FV0_C_REGNUM
1870 && reg_nr <= FV_LAST_C_REGNUM)
1871 {
1872 base_regnum = sh64_compact_reg_base_num (reg_nr);
1873
1874 for (portion = 0; portion < 4; portion++)
1875 {
1876 regcache_raw_write (regcache, base_regnum + portion,
1877 ((char *) buffer
1878 + register_size (gdbarch,
1879 base_regnum) * portion));
1880 }
1881 }
1882
1883 else if (reg_nr == FPSCR_C_REGNUM)
1884 {
1885 int fpscr_base_regnum;
1886 int sr_base_regnum;
1887 unsigned int fpscr_value;
1888 unsigned int sr_value;
1889 unsigned int old_fpscr_value;
1890 unsigned int old_sr_value;
1891 unsigned int fpscr_c_value;
1892 unsigned int fpscr_mask;
1893 unsigned int sr_mask;
1894
1895 fpscr_base_regnum = FPSCR_REGNUM;
1896 sr_base_regnum = SR_REGNUM;
1897
1898 /* FPSCR_C is a very weird register that contains sparse bits
1899 from the FPSCR and the SR architectural registers.
1900 Specifically: */
1901 /* *INDENT-OFF* */
1902 /*
1903 FPSRC_C bit
1904 0 Bit 0 of FPSCR
1905 1 reserved
1906 2-17 Bit 2-18 of FPSCR
1907 18-20 Bits 12,13,14 of SR
1908 21-31 reserved
1909 */
1910 /* *INDENT-ON* */
1911 /* Get value as an int. */
1912 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1913
1914 /* Build the new values. */
1915 fpscr_mask = 0x0003fffd;
1916 sr_mask = 0x001c0000;
1917
1918 fpscr_value = fpscr_c_value & fpscr_mask;
1919 sr_value = (fpscr_value & sr_mask) >> 6;
1920
1921 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1922 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1923 old_fpscr_value &= 0xfffc0002;
1924 fpscr_value |= old_fpscr_value;
1925 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1926 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1927
1928 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1929 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1930 old_sr_value &= 0xffff8fff;
1931 sr_value |= old_sr_value;
1932 store_unsigned_integer (temp_buffer, 4, sr_value);
1933 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1934 }
1935
1936 else if (reg_nr == FPUL_C_REGNUM)
1937 {
1938 base_regnum = sh64_compact_reg_base_num (reg_nr);
1939 regcache_raw_write (regcache, base_regnum, buffer);
1940 }
1941 }
1942
1943 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1944 shmedia REGISTERS. */
1945 /* Control registers, compact mode. */
1946 static void
1947 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1948 int cr_c_regnum)
1949 {
1950 switch (cr_c_regnum)
1951 {
1952 case PC_C_REGNUM:
1953 fprintf_filtered (file, "pc_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1955 break;
1956 case GBR_C_REGNUM:
1957 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1958 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1959 break;
1960 case MACH_C_REGNUM:
1961 fprintf_filtered (file, "mach_c\t0x%08x\n",
1962 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1963 break;
1964 case MACL_C_REGNUM:
1965 fprintf_filtered (file, "macl_c\t0x%08x\n",
1966 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1967 break;
1968 case PR_C_REGNUM:
1969 fprintf_filtered (file, "pr_c\t0x%08x\n",
1970 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1971 break;
1972 case T_C_REGNUM:
1973 fprintf_filtered (file, "t_c\t0x%08x\n",
1974 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1975 break;
1976 case FPSCR_C_REGNUM:
1977 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1978 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1979 break;
1980 case FPUL_C_REGNUM:
1981 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1982 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1983 break;
1984 }
1985 }
1986
1987 static void
1988 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1989 struct frame_info *frame, int regnum)
1990 { /* do values for FP (float) regs */
1991 unsigned char *raw_buffer;
1992 double flt; /* double extracted from raw hex data */
1993 int inv;
1994 int j;
1995
1996 /* Allocate space for the float. */
1997 raw_buffer = (unsigned char *) alloca
1998 (register_size (gdbarch,
1999 gdbarch_fp0_regnum
2000 (current_gdbarch)));
2001
2002 /* Get the data in raw format. */
2003 if (!frame_register_read (frame, regnum, raw_buffer))
2004 error ("can't read register %d (%s)",
2005 regnum, gdbarch_register_name (current_gdbarch, regnum));
2006
2007 /* Get the register as a number */
2008 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2009
2010 /* Print the name and some spaces. */
2011 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
2012 print_spaces_filtered (15 - strlen (gdbarch_register_name
2013 (current_gdbarch, regnum)), file);
2014
2015 /* Print the value. */
2016 if (inv)
2017 fprintf_filtered (file, "<invalid float>");
2018 else
2019 fprintf_filtered (file, "%-10.9g", flt);
2020
2021 /* Print the fp register as hex. */
2022 fprintf_filtered (file, "\t(raw 0x");
2023 for (j = 0; j < register_size (gdbarch, regnum); j++)
2024 {
2025 int idx = gdbarch_byte_order (current_gdbarch)
2026 == BFD_ENDIAN_BIG ? j : register_size
2027 (gdbarch, regnum) - 1 - j;
2028 fprintf_filtered (file, "%02x", raw_buffer[idx]);
2029 }
2030 fprintf_filtered (file, ")");
2031 fprintf_filtered (file, "\n");
2032 }
2033
2034 static void
2035 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2036 struct frame_info *frame, int regnum)
2037 {
2038 /* All the sh64-compact mode registers are pseudo registers. */
2039
2040 if (regnum < gdbarch_num_regs (current_gdbarch)
2041 || regnum >= gdbarch_num_regs (current_gdbarch)
2042 + NUM_PSEUDO_REGS_SH_MEDIA
2043 + NUM_PSEUDO_REGS_SH_COMPACT)
2044 internal_error (__FILE__, __LINE__,
2045 _("Invalid pseudo register number %d\n"), regnum);
2046
2047 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2048 {
2049 int fp_regnum = sh64_dr_reg_base_num (regnum);
2050 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2051 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2052 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2053 }
2054
2055 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2056 {
2057 int fp_regnum = sh64_compact_reg_base_num (regnum);
2058 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2059 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2061 }
2062
2063 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2064 {
2065 int fp_regnum = sh64_fv_reg_base_num (regnum);
2066 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2067 regnum - FV0_REGNUM,
2068 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2069 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2070 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2072 }
2073
2074 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2075 {
2076 int fp_regnum = sh64_compact_reg_base_num (regnum);
2077 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2078 regnum - FV0_C_REGNUM,
2079 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2080 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2083 }
2084
2085 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2086 {
2087 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2088 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2090 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2091 }
2092
2093 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2094 {
2095 int c_regnum = sh64_compact_reg_base_num (regnum);
2096 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2097 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2098 }
2099 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2100 /* This should work also for pseudoregs. */
2101 sh64_do_fp_register (gdbarch, file, frame, regnum);
2102 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2103 sh64_do_cr_c_register_info (file, frame, regnum);
2104 }
2105
2106 static void
2107 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2108 struct frame_info *frame, int regnum)
2109 {
2110 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2111
2112 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
2113 print_spaces_filtered (15 - strlen (gdbarch_register_name
2114 (current_gdbarch, regnum)), file);
2115
2116 /* Get the data in raw format. */
2117 if (!frame_register_read (frame, regnum, raw_buffer))
2118 fprintf_filtered (file, "*value not available*\n");
2119
2120 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2121 file, 'x', 1, 0, Val_pretty_default);
2122 fprintf_filtered (file, "\t");
2123 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2124 file, 0, 1, 0, Val_pretty_default);
2125 fprintf_filtered (file, "\n");
2126 }
2127
2128 static void
2129 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2130 struct frame_info *frame, int regnum)
2131 {
2132 if (regnum < 0 || regnum >= gdbarch_num_regs (current_gdbarch)
2133 + gdbarch_num_pseudo_regs (current_gdbarch))
2134 internal_error (__FILE__, __LINE__,
2135 _("Invalid register number %d\n"), regnum);
2136
2137 else if (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch))
2138 {
2139 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2140 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2141 else
2142 sh64_do_register (gdbarch, file, frame, regnum);
2143 }
2144
2145 else if (regnum < gdbarch_num_regs (current_gdbarch)
2146 + gdbarch_num_pseudo_regs (current_gdbarch))
2147 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2148 }
2149
2150 static void
2151 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2152 struct frame_info *frame, int regnum,
2153 int fpregs)
2154 {
2155 if (regnum != -1) /* do one specified register */
2156 {
2157 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2158 error ("Not a valid register for the current processor type");
2159
2160 sh64_print_register (gdbarch, file, frame, regnum);
2161 }
2162 else
2163 /* do all (or most) registers */
2164 {
2165 regnum = 0;
2166 while (regnum < gdbarch_num_regs (current_gdbarch))
2167 {
2168 /* If the register name is empty, it is undefined for this
2169 processor, so don't display anything. */
2170 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2171 || *(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2172 {
2173 regnum++;
2174 continue;
2175 }
2176
2177 if (TYPE_CODE (register_type (gdbarch, regnum))
2178 == TYPE_CODE_FLT)
2179 {
2180 if (fpregs)
2181 {
2182 /* true for "INFO ALL-REGISTERS" command */
2183 sh64_do_fp_register (gdbarch, file, frame, regnum);
2184 regnum ++;
2185 }
2186 else
2187 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (current_gdbarch);
2188 /* skip FP regs */
2189 }
2190 else
2191 {
2192 sh64_do_register (gdbarch, file, frame, regnum);
2193 regnum++;
2194 }
2195 }
2196
2197 if (fpregs)
2198 while (regnum < gdbarch_num_regs (current_gdbarch)
2199 + gdbarch_num_pseudo_regs (current_gdbarch))
2200 {
2201 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2202 regnum++;
2203 }
2204 }
2205 }
2206
2207 static void
2208 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2209 struct ui_file *file,
2210 struct frame_info *frame, int regnum,
2211 int fpregs)
2212 {
2213 if (regnum != -1) /* do one specified register */
2214 {
2215 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
2216 error ("Not a valid register for the current processor type");
2217
2218 if (regnum >= 0 && regnum < R0_C_REGNUM)
2219 error ("Not a valid register for the current processor mode.");
2220
2221 sh64_print_register (gdbarch, file, frame, regnum);
2222 }
2223 else
2224 /* do all compact registers */
2225 {
2226 regnum = R0_C_REGNUM;
2227 while (regnum < gdbarch_num_regs (current_gdbarch)
2228 + gdbarch_num_pseudo_regs (current_gdbarch))
2229 {
2230 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2231 regnum++;
2232 }
2233 }
2234 }
2235
2236 static void
2237 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2238 struct frame_info *frame, int regnum, int fpregs)
2239 {
2240 if (pc_is_isa32 (get_frame_pc (frame)))
2241 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2242 else
2243 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2244 }
2245
2246 static struct sh64_frame_cache *
2247 sh64_alloc_frame_cache (void)
2248 {
2249 struct sh64_frame_cache *cache;
2250 int i;
2251
2252 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2253
2254 /* Base address. */
2255 cache->base = 0;
2256 cache->saved_sp = 0;
2257 cache->sp_offset = 0;
2258 cache->pc = 0;
2259
2260 /* Frameless until proven otherwise. */
2261 cache->uses_fp = 0;
2262
2263 /* Saved registers. We initialize these to -1 since zero is a valid
2264 offset (that's where fp is supposed to be stored). */
2265 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2266 {
2267 cache->saved_regs[i] = -1;
2268 }
2269
2270 return cache;
2271 }
2272
2273 static struct sh64_frame_cache *
2274 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2275 {
2276 struct sh64_frame_cache *cache;
2277 CORE_ADDR current_pc;
2278 int i;
2279
2280 if (*this_cache)
2281 return *this_cache;
2282
2283 cache = sh64_alloc_frame_cache ();
2284 *this_cache = cache;
2285
2286 current_pc = frame_pc_unwind (next_frame);
2287 cache->media_mode = pc_is_isa32 (current_pc);
2288
2289 /* In principle, for normal frames, fp holds the frame pointer,
2290 which holds the base address for the current stack frame.
2291 However, for functions that don't need it, the frame pointer is
2292 optional. For these "frameless" functions the frame pointer is
2293 actually the frame pointer of the calling frame. */
2294 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2295 if (cache->base == 0)
2296 return cache;
2297
2298 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2299 if (cache->pc != 0)
2300 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2301
2302 if (!cache->uses_fp)
2303 {
2304 /* We didn't find a valid frame, which means that CACHE->base
2305 currently holds the frame pointer for our calling frame. If
2306 we're at the start of a function, or somewhere half-way its
2307 prologue, the function's frame probably hasn't been fully
2308 setup yet. Try to reconstruct the base address for the stack
2309 frame by looking at the stack pointer. For truly "frameless"
2310 functions this might work too. */
2311 cache->base = frame_unwind_register_unsigned
2312 (next_frame, gdbarch_sp_regnum (current_gdbarch));
2313 }
2314
2315 /* Now that we have the base address for the stack frame we can
2316 calculate the value of sp in the calling frame. */
2317 cache->saved_sp = cache->base + cache->sp_offset;
2318
2319 /* Adjust all the saved registers such that they contain addresses
2320 instead of offsets. */
2321 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2322 if (cache->saved_regs[i] != -1)
2323 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2324
2325 return cache;
2326 }
2327
2328 static void
2329 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2330 int regnum, int *optimizedp,
2331 enum lval_type *lvalp, CORE_ADDR *addrp,
2332 int *realnump, gdb_byte *valuep)
2333 {
2334 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2335
2336 gdb_assert (regnum >= 0);
2337
2338 if (regnum == gdbarch_sp_regnum (current_gdbarch) && cache->saved_sp)
2339 {
2340 *optimizedp = 0;
2341 *lvalp = not_lval;
2342 *addrp = 0;
2343 *realnump = -1;
2344 if (valuep)
2345 {
2346 /* Store the value. */
2347 store_unsigned_integer (valuep,
2348 register_size (current_gdbarch,
2349 gdbarch_sp_regnum (current_gdbarch)),
2350 cache->saved_sp);
2351 }
2352 return;
2353 }
2354
2355 /* The PC of the previous frame is stored in the PR register of
2356 the current frame. Frob regnum so that we pull the value from
2357 the correct place. */
2358 if (regnum == gdbarch_pc_regnum (current_gdbarch))
2359 regnum = PR_REGNUM;
2360
2361 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2362 {
2363 int reg_size = register_size (current_gdbarch, regnum);
2364 int size;
2365
2366 *optimizedp = 0;
2367 *lvalp = lval_memory;
2368 *addrp = cache->saved_regs[regnum];
2369 *realnump = -1;
2370 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2371 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2372 size = 4;
2373 else
2374 size = reg_size;
2375 if (valuep)
2376 {
2377 memset (valuep, 0, reg_size);
2378 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
2379 read_memory (*addrp, valuep, size);
2380 else
2381 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2382 }
2383 return;
2384 }
2385
2386 *optimizedp = 0;
2387 *lvalp = lval_register;
2388 *addrp = 0;
2389 *realnump = regnum;
2390 if (valuep)
2391 frame_unwind_register (next_frame, (*realnump), valuep);
2392 }
2393
2394 static void
2395 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2396 struct frame_id *this_id)
2397 {
2398 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2399
2400 /* This marks the outermost frame. */
2401 if (cache->base == 0)
2402 return;
2403
2404 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2405 }
2406
2407 static const struct frame_unwind sh64_frame_unwind = {
2408 NORMAL_FRAME,
2409 sh64_frame_this_id,
2410 sh64_frame_prev_register
2411 };
2412
2413 static const struct frame_unwind *
2414 sh64_frame_sniffer (struct frame_info *next_frame)
2415 {
2416 return &sh64_frame_unwind;
2417 }
2418
2419 static CORE_ADDR
2420 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2421 {
2422 return frame_unwind_register_unsigned (next_frame,
2423 gdbarch_sp_regnum (current_gdbarch));
2424 }
2425
2426 static CORE_ADDR
2427 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2428 {
2429 return frame_unwind_register_unsigned (next_frame,
2430 gdbarch_pc_regnum (current_gdbarch));
2431 }
2432
2433 static struct frame_id
2434 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2435 {
2436 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2437 frame_pc_unwind (next_frame));
2438 }
2439
2440 static CORE_ADDR
2441 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2442 {
2443 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2444
2445 return cache->base;
2446 }
2447
2448 static const struct frame_base sh64_frame_base = {
2449 &sh64_frame_unwind,
2450 sh64_frame_base_address,
2451 sh64_frame_base_address,
2452 sh64_frame_base_address
2453 };
2454
2455
2456 struct gdbarch *
2457 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2458 {
2459 struct gdbarch *gdbarch;
2460 struct gdbarch_tdep *tdep;
2461
2462 /* If there is already a candidate, use it. */
2463 arches = gdbarch_list_lookup_by_info (arches, &info);
2464 if (arches != NULL)
2465 return arches->gdbarch;
2466
2467 /* None found, create a new architecture from the information
2468 provided. */
2469 tdep = XMALLOC (struct gdbarch_tdep);
2470 gdbarch = gdbarch_alloc (&info, tdep);
2471
2472 /* Determine the ABI */
2473 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2474 {
2475 /* If the ABI is the 64-bit one, it can only be sh-media. */
2476 tdep->sh_abi = SH_ABI_64;
2477 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2478 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2479 }
2480 else
2481 {
2482 /* If the ABI is the 32-bit one it could be either media or
2483 compact. */
2484 tdep->sh_abi = SH_ABI_32;
2485 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2486 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2487 }
2488
2489 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2490 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2491 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2492 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2493 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2494 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2495 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2496
2497 /* The number of real registers is the same whether we are in
2498 ISA16(compact) or ISA32(media). */
2499 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2500 set_gdbarch_sp_regnum (gdbarch, 15);
2501 set_gdbarch_pc_regnum (gdbarch, 64);
2502 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2503 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2504 + NUM_PSEUDO_REGS_SH_COMPACT);
2505
2506 set_gdbarch_register_name (gdbarch, sh64_register_name);
2507 set_gdbarch_register_type (gdbarch, sh64_register_type);
2508
2509 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2510 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2511
2512 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2513
2514 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2515 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2516
2517 set_gdbarch_return_value (gdbarch, sh64_return_value);
2518 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2519 sh64_extract_struct_value_address);
2520
2521 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2522 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2523
2524 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2525
2526 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2527
2528 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2529 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2530 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2531 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2532 frame_base_set_default (gdbarch, &sh64_frame_base);
2533
2534 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2535
2536 set_gdbarch_elf_make_msymbol_special (gdbarch,
2537 sh64_elf_make_msymbol_special);
2538
2539 /* Hook in ABI-specific overrides, if they have been registered. */
2540 gdbarch_init_osabi (info, gdbarch);
2541
2542 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2543 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2544
2545 return gdbarch;
2546 }
This page took 0.083982 seconds and 4 git commands to generate.