1 /* Target-dependent code for Renesas Super-H, for GDB.
3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Contributed by Steve Chamberlain
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
35 #include "gdb_string.h"
36 #include "gdb_assert.h"
37 #include "arch-utils.h"
46 /* Register numbers shared with the simulator. */
47 #include "gdb/sim-sh.h"
50 /* Information that is dependent on the processor variant. */
63 struct sh64_frame_cache
70 /* Flag showing that a frame has been created in the prologue code. */
75 /* Saved registers. */
76 CORE_ADDR saved_regs
[SIM_SH64_NR_REGS
];
80 /* Registers of SH5 */
84 DEFAULT_RETURN_REGNUM
= 2,
85 STRUCT_RETURN_REGNUM
= 2,
88 FLOAT_ARGLAST_REGNUM
= 11,
94 /* FPP stands for Floating Point Pair, to avoid confusion with
95 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
96 point register. Unfortunately on the sh5, the floating point
97 registers are called FR, and the floating point pairs are called FP. */
99 FPP_LAST_REGNUM
= 204,
101 FV_LAST_REGNUM
= 220,
103 R_LAST_C_REGNUM
= 236,
110 FPSCR_C_REGNUM
= 243,
113 FP_LAST_C_REGNUM
= 260,
115 DR_LAST_C_REGNUM
= 268,
117 FV_LAST_C_REGNUM
= 272,
118 FPSCR_REGNUM
= SIM_SH64_FPCSR_REGNUM
,
119 SSR_REGNUM
= SIM_SH64_SSR_REGNUM
,
120 SPC_REGNUM
= SIM_SH64_SPC_REGNUM
,
121 TR7_REGNUM
= SIM_SH64_TR0_REGNUM
+ 7,
122 FP_LAST_REGNUM
= SIM_SH64_FR0_REGNUM
+ SIM_SH64_NR_FP_REGS
- 1
126 sh64_register_name (struct gdbarch
*gdbarch
, int reg_nr
)
128 static char *register_names
[] =
130 /* SH MEDIA MODE (ISA 32) */
131 /* general registers (64-bit) 0-63 */
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
135 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
136 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
137 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
138 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
139 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
144 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
147 /* target registers (64-bit) 68-75 */
148 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
150 /* floating point state control register (32-bit) 76 */
153 /* single precision floating point registers (32-bit) 77-140 */
154 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
155 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
156 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
157 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
158 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
159 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
160 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
161 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
163 /* double precision registers (pseudo) 141-172 */
164 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
165 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
166 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
167 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
169 /* floating point pairs (pseudo) 173-204 */
170 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
171 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
172 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
173 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
175 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
176 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
177 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
179 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
180 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
181 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
183 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
185 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
186 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
187 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
188 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
190 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
197 if (reg_nr
>= (sizeof (register_names
) / sizeof (*register_names
)))
199 return register_names
[reg_nr
];
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 32-bit function
212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214 #define MSYMBOL_IS_SPECIAL(msym) \
215 MSYMBOL_TARGET_FLAG_1 (msym)
218 sh64_elf_make_msymbol_special (asymbol
*sym
, struct minimal_symbol
*msym
)
223 if (((elf_symbol_type
*)(sym
))->internal_elf_sym
.st_other
== STO_SH5_ISA32
)
225 MSYMBOL_TARGET_FLAG_1 (msym
) = 1;
226 SYMBOL_VALUE_ADDRESS (msym
) |= 1;
230 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232 #define IS_ISA32_ADDR(addr) ((addr) & 1)
233 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
237 pc_is_isa32 (bfd_vma memaddr
)
239 struct minimal_symbol
*sym
;
241 /* If bit 0 of the address is set, assume this is a
242 ISA32 (shmedia) address. */
243 if (IS_ISA32_ADDR (memaddr
))
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
249 sym
= lookup_minimal_symbol_by_pc (memaddr
);
251 return MSYMBOL_IS_SPECIAL (sym
);
256 static const unsigned char *
257 sh64_breakpoint_from_pc (struct gdbarch
*gdbarch
,
258 CORE_ADDR
*pcptr
, int *lenptr
)
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
265 /* The BRK instruction for shcompact is
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0 */
270 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
272 if (pc_is_isa32 (*pcptr
))
274 static unsigned char big_breakpoint_media
[] = {
275 0x6f, 0xf5, 0xff, 0xf0
277 *pcptr
= UNMAKE_ISA32_ADDR (*pcptr
);
278 *lenptr
= sizeof (big_breakpoint_media
);
279 return big_breakpoint_media
;
283 static unsigned char big_breakpoint_compact
[] = {0x0, 0x3b};
284 *lenptr
= sizeof (big_breakpoint_compact
);
285 return big_breakpoint_compact
;
290 if (pc_is_isa32 (*pcptr
))
292 static unsigned char little_breakpoint_media
[] = {
293 0xf0, 0xff, 0xf5, 0x6f
295 *pcptr
= UNMAKE_ISA32_ADDR (*pcptr
);
296 *lenptr
= sizeof (little_breakpoint_media
);
297 return little_breakpoint_media
;
301 static unsigned char little_breakpoint_compact
[] = {0x3b, 0x0};
302 *lenptr
= sizeof (little_breakpoint_compact
);
303 return little_breakpoint_compact
;
308 /* Prologue looks like
309 [mov.l <regs>,@-r15]...
314 Actually it can be more complicated than this. For instance, with
332 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
333 with l=1 and n = 18 0110101111110001010010100aaa0000 */
334 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
336 /* STS.L PR,@-r0 0100000000100010
337 r0-4-->r0, PR-->(r0) */
338 #define IS_STS_R0(x) ((x) == 0x4022)
340 /* STS PR, Rm 0000mmmm00101010
342 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
344 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
346 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
348 /* MOV.L R14,@(disp,r15) 000111111110dddd
349 R14-->(dispx4+r15) */
350 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
352 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
353 R18-->(dispx8+R14) */
354 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
356 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
357 R18-->(dispx8+R15) */
358 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
360 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
361 R18-->(dispx4+R15) */
362 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
364 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx8+R15) */
366 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
368 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
369 R14-->(dispx4+R15) */
370 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
372 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
374 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
376 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
378 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
380 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
382 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
384 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
386 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
388 #define IS_MOV_SP_FP_MEDIA(x) \
389 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
391 /* MOV #imm, R0 1110 0000 ssss ssss
393 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
395 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
396 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
398 /* ADD r15,r0 0011 0000 1111 1100
400 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
402 /* MOV.L R14 @-R0 0010 0000 1110 0110
403 R14-->(R0-4), R0-4-->R0 */
404 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
406 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
407 where Rm is one of r2-r9 which are the argument registers. */
408 /* FIXME: Recognize the float and double register moves too! */
409 #define IS_MEDIA_IND_ARG_MOV(x) \
410 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
411 && (((x) & 0x03f00000) >= 0x00200000 \
412 && ((x) & 0x03f00000) <= 0x00900000))
414 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
415 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
416 where Rm is one of r2-r9 which are the argument registers. */
417 #define IS_MEDIA_ARG_MOV(x) \
418 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
419 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
421 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
422 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
423 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
424 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
425 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
426 #define IS_MEDIA_MOV_TO_R14(x) \
427 ((((x) & 0xfffffc0f) == 0xa0e00000) \
428 || (((x) & 0xfffffc0f) == 0xa4e00000) \
429 || (((x) & 0xfffffc0f) == 0xa8e00000) \
430 || (((x) & 0xfffffc0f) == 0xb4e00000) \
431 || (((x) & 0xfffffc0f) == 0xbce00000))
433 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
435 #define IS_COMPACT_IND_ARG_MOV(x) \
436 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
437 && (((x) & 0x00f0) <= 0x0090))
439 /* compact direct arg move!
440 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
441 #define IS_COMPACT_ARG_MOV(x) \
442 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
443 && ((x) & 0x00f0) <= 0x0090))
445 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
446 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
447 #define IS_COMPACT_MOV_TO_R14(x) \
448 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
450 #define IS_JSR_R0(x) ((x) == 0x400b)
451 #define IS_NOP(x) ((x) == 0x0009)
454 /* MOV r15,r14 0110111011110011
456 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
458 /* ADD #imm,r15 01111111iiiiiiii
460 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
462 /* Skip any prologue before the guts of a function. */
464 /* Skip the prologue using the debug information. If this fails we'll
465 fall back on the 'guess' method below. */
467 after_prologue (CORE_ADDR pc
)
469 struct symtab_and_line sal
;
470 CORE_ADDR func_addr
, func_end
;
472 /* If we can not find the symbol in the partial symbol table, then
473 there is no hope we can determine the function's start address
475 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
479 /* Get the line associated with FUNC_ADDR. */
480 sal
= find_pc_line (func_addr
, 0);
482 /* There are only two cases to consider. First, the end of the source line
483 is within the function bounds. In that case we return the end of the
484 source line. Second is the end of the source line extends beyond the
485 bounds of the current function. We need to use the slow code to
486 examine instructions in that case. */
487 if (sal
.end
< func_end
)
494 look_for_args_moves (struct gdbarch
*gdbarch
,
495 CORE_ADDR start_pc
, int media_mode
)
497 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
500 int insn_size
= (media_mode
? 4 : 2);
502 for (here
= start_pc
, end
= start_pc
+ (insn_size
* 28); here
< end
;)
506 w
= read_memory_integer (UNMAKE_ISA32_ADDR (here
),
507 insn_size
, byte_order
);
509 if (IS_MEDIA_IND_ARG_MOV (w
))
511 /* This must be followed by a store to r14, so the argument
512 is where the debug info says it is. This can happen after
513 the SP has been saved, unfortunately. */
515 int next_insn
= read_memory_integer (UNMAKE_ISA32_ADDR (here
),
516 insn_size
, byte_order
);
518 if (IS_MEDIA_MOV_TO_R14 (next_insn
))
521 else if (IS_MEDIA_ARG_MOV (w
))
523 /* These instructions store directly the argument in r14. */
531 w
= read_memory_integer (here
, insn_size
, byte_order
);
534 if (IS_COMPACT_IND_ARG_MOV (w
))
536 /* This must be followed by a store to r14, so the argument
537 is where the debug info says it is. This can happen after
538 the SP has been saved, unfortunately. */
540 int next_insn
= 0xffff & read_memory_integer (here
, insn_size
,
543 if (IS_COMPACT_MOV_TO_R14 (next_insn
))
546 else if (IS_COMPACT_ARG_MOV (w
))
548 /* These instructions store directly the argument in r14. */
551 else if (IS_MOVL_R0 (w
))
553 /* There is a function that gcc calls to get the arguments
554 passed correctly to the function. Only after this
555 function call the arguments will be found at the place
556 where they are supposed to be. This happens in case the
557 argument has to be stored into a 64-bit register (for
558 instance doubles, long longs). SHcompact doesn't have
559 access to the full 64-bits, so we store the register in
560 stack slot and store the address of the stack slot in
561 the register, then do a call through a wrapper that
562 loads the memory value into the register. A SHcompact
563 callee calls an argument decoder
564 (GCC_shcompact_incoming_args) that stores the 64-bit
565 value in a stack slot and stores the address of the
566 stack slot in the register. GCC thinks the argument is
567 just passed by transparent reference, but this is only
568 true after the argument decoder is called. Such a call
569 needs to be considered part of the prologue. */
571 /* This must be followed by a JSR @r0 instruction and by
572 a NOP instruction. After these, the prologue is over! */
574 int next_insn
= 0xffff & read_memory_integer (here
, insn_size
,
577 if (IS_JSR_R0 (next_insn
))
579 next_insn
= 0xffff & read_memory_integer (here
, insn_size
,
583 if (IS_NOP (next_insn
))
596 sh64_skip_prologue_hard_way (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
598 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
607 if (pc_is_isa32 (start_pc
) == 0)
613 for (here
= start_pc
, end
= start_pc
+ (insn_size
* 28); here
< end
;)
618 int w
= read_memory_integer (UNMAKE_ISA32_ADDR (here
),
619 insn_size
, byte_order
);
621 if (IS_STQ_R18_R14 (w
) || IS_STQ_R18_R15 (w
) || IS_STQ_R14_R15 (w
)
622 || IS_STL_R14_R15 (w
) || IS_STL_R18_R15 (w
)
623 || IS_ADDIL_SP_MEDIA (w
) || IS_ADDI_SP_MEDIA (w
)
624 || IS_PTABSL_R18 (w
))
628 else if (IS_MOV_SP_FP (w
) || IS_MOV_SP_FP_MEDIA(w
))
636 /* Don't bail out yet, we may have arguments stored in
637 registers here, according to the debug info, so that
638 gdb can print the frames correctly. */
639 start_pc
= look_for_args_moves (gdbarch
,
640 here
- insn_size
, media_mode
);
646 int w
= 0xffff & read_memory_integer (here
, insn_size
, byte_order
);
649 if (IS_STS_R0 (w
) || IS_STS_PR (w
)
650 || IS_MOV_TO_R15 (w
) || IS_MOV_R14 (w
)
651 || IS_MOV_R0 (w
) || IS_ADD_SP_R0 (w
) || IS_MOV_R14_R0 (w
))
655 else if (IS_MOV_SP_FP (w
))
663 /* Don't bail out yet, we may have arguments stored in
664 registers here, according to the debug info, so that
665 gdb can print the frames correctly. */
666 start_pc
= look_for_args_moves (gdbarch
,
667 here
- insn_size
, media_mode
);
677 sh64_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
679 CORE_ADDR post_prologue_pc
;
681 /* See if we can determine the end of the prologue via the symbol table.
682 If so, then return either PC, or the PC after the prologue, whichever
684 post_prologue_pc
= after_prologue (pc
);
686 /* If after_prologue returned a useful address, then use it. Else
687 fall back on the instruction skipping code. */
688 if (post_prologue_pc
!= 0)
689 return max (pc
, post_prologue_pc
);
691 return sh64_skip_prologue_hard_way (gdbarch
, pc
);
694 /* Should call_function allocate stack space for a struct return? */
696 sh64_use_struct_convention (struct type
*type
)
698 return (TYPE_LENGTH (type
) > 8);
701 /* For vectors of 4 floating point registers. */
703 sh64_fv_reg_base_num (struct gdbarch
*gdbarch
, int fv_regnum
)
707 fp_regnum
= gdbarch_fp0_regnum (gdbarch
) + (fv_regnum
- FV0_REGNUM
) * 4;
711 /* For double precision floating point registers, i.e 2 fp regs. */
713 sh64_dr_reg_base_num (struct gdbarch
*gdbarch
, int dr_regnum
)
717 fp_regnum
= gdbarch_fp0_regnum (gdbarch
) + (dr_regnum
- DR0_REGNUM
) * 2;
721 /* For pairs of floating point registers. */
723 sh64_fpp_reg_base_num (struct gdbarch
*gdbarch
, int fpp_regnum
)
727 fp_regnum
= gdbarch_fp0_regnum (gdbarch
) + (fpp_regnum
- FPP0_REGNUM
) * 2;
733 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
734 GDB_REGNUM BASE_REGNUM
794 sh64_compact_reg_base_num (struct gdbarch
*gdbarch
, int reg_nr
)
796 int base_regnum
= reg_nr
;
798 /* general register N maps to general register N */
799 if (reg_nr
>= R0_C_REGNUM
800 && reg_nr
<= R_LAST_C_REGNUM
)
801 base_regnum
= reg_nr
- R0_C_REGNUM
;
803 /* floating point register N maps to floating point register N */
804 else if (reg_nr
>= FP0_C_REGNUM
805 && reg_nr
<= FP_LAST_C_REGNUM
)
806 base_regnum
= reg_nr
- FP0_C_REGNUM
+ gdbarch_fp0_regnum (gdbarch
);
808 /* double prec register N maps to base regnum for double prec register N */
809 else if (reg_nr
>= DR0_C_REGNUM
810 && reg_nr
<= DR_LAST_C_REGNUM
)
811 base_regnum
= sh64_dr_reg_base_num (gdbarch
,
812 DR0_REGNUM
+ reg_nr
- DR0_C_REGNUM
);
814 /* vector N maps to base regnum for vector register N */
815 else if (reg_nr
>= FV0_C_REGNUM
816 && reg_nr
<= FV_LAST_C_REGNUM
)
817 base_regnum
= sh64_fv_reg_base_num (gdbarch
,
818 FV0_REGNUM
+ reg_nr
- FV0_C_REGNUM
);
820 else if (reg_nr
== PC_C_REGNUM
)
821 base_regnum
= gdbarch_pc_regnum (gdbarch
);
823 else if (reg_nr
== GBR_C_REGNUM
)
826 else if (reg_nr
== MACH_C_REGNUM
827 || reg_nr
== MACL_C_REGNUM
)
830 else if (reg_nr
== PR_C_REGNUM
)
831 base_regnum
= PR_REGNUM
;
833 else if (reg_nr
== T_C_REGNUM
)
836 else if (reg_nr
== FPSCR_C_REGNUM
)
837 base_regnum
= FPSCR_REGNUM
; /*???? this register is a mess. */
839 else if (reg_nr
== FPUL_C_REGNUM
)
840 base_regnum
= gdbarch_fp0_regnum (gdbarch
) + 32;
846 sign_extend (int value
, int bits
)
848 value
= value
& ((1 << bits
) - 1);
849 return (value
& (1 << (bits
- 1))
850 ? value
| (~((1 << bits
) - 1))
855 sh64_analyze_prologue (struct gdbarch
*gdbarch
,
856 struct sh64_frame_cache
*cache
,
858 CORE_ADDR current_pc
)
866 int gdb_register_number
;
868 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
869 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
871 cache
->sp_offset
= 0;
873 /* Loop around examining the prologue insns until we find something
874 that does not appear to be part of the prologue. But give up
875 after 20 of them, since we're getting silly then. */
879 if (cache
->media_mode
)
884 opc
= pc
+ (insn_size
* 28);
885 if (opc
> current_pc
)
887 for ( ; pc
<= opc
; pc
+= insn_size
)
889 insn
= read_memory_integer (cache
->media_mode
? UNMAKE_ISA32_ADDR (pc
)
891 insn_size
, byte_order
);
893 if (!cache
->media_mode
)
895 if (IS_STS_PR (insn
))
897 int next_insn
= read_memory_integer (pc
+ insn_size
,
898 insn_size
, byte_order
);
899 if (IS_MOV_TO_R15 (next_insn
))
901 cache
->saved_regs
[PR_REGNUM
]
902 = cache
->sp_offset
- ((((next_insn
& 0xf) ^ 0x8)
908 else if (IS_MOV_R14 (insn
))
909 cache
->saved_regs
[MEDIA_FP_REGNUM
] =
910 cache
->sp_offset
- ((((insn
& 0xf) ^ 0x8) - 0x8) << 2);
912 else if (IS_MOV_R0 (insn
))
914 /* Put in R0 the offset from SP at which to store some
915 registers. We are interested in this value, because it
916 will tell us where the given registers are stored within
918 r0_val
= ((insn
& 0xff) ^ 0x80) - 0x80;
921 else if (IS_ADD_SP_R0 (insn
))
923 /* This instruction still prepares r0, but we don't care.
924 We already have the offset in r0_val. */
927 else if (IS_STS_R0 (insn
))
929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
930 cache
->saved_regs
[PR_REGNUM
] = cache
->sp_offset
- (r0_val
- 4);
934 else if (IS_MOV_R14_R0 (insn
))
936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
937 cache
->saved_regs
[MEDIA_FP_REGNUM
] = cache
->sp_offset
942 else if (IS_ADD_SP (insn
))
943 cache
->sp_offset
-= ((insn
& 0xff) ^ 0x80) - 0x80;
945 else if (IS_MOV_SP_FP (insn
))
950 if (IS_ADDIL_SP_MEDIA (insn
) || IS_ADDI_SP_MEDIA (insn
))
952 sign_extend ((((insn
& 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
954 else if (IS_STQ_R18_R15 (insn
))
955 cache
->saved_regs
[PR_REGNUM
]
956 = cache
->sp_offset
- (sign_extend ((insn
& 0xffc00) >> 10,
959 else if (IS_STL_R18_R15 (insn
))
960 cache
->saved_regs
[PR_REGNUM
]
961 = cache
->sp_offset
- (sign_extend ((insn
& 0xffc00) >> 10,
964 else if (IS_STQ_R14_R15 (insn
))
965 cache
->saved_regs
[MEDIA_FP_REGNUM
]
966 = cache
->sp_offset
- (sign_extend ((insn
& 0xffc00) >> 10,
969 else if (IS_STL_R14_R15 (insn
))
970 cache
->saved_regs
[MEDIA_FP_REGNUM
]
971 = cache
->sp_offset
- (sign_extend ((insn
& 0xffc00) >> 10,
974 else if (IS_MOV_SP_FP_MEDIA (insn
))
979 if (cache
->saved_regs
[MEDIA_FP_REGNUM
] >= 0)
984 sh64_frame_align (struct gdbarch
*ignore
, CORE_ADDR sp
)
989 /* Function: push_dummy_call
990 Setup the function arguments for calling a function in the inferior.
992 On the Renesas SH architecture, there are four registers (R4 to R7)
993 which are dedicated for passing function arguments. Up to the first
994 four arguments (depending on size) may go into these registers.
995 The rest go on the stack.
997 Arguments that are smaller than 4 bytes will still take up a whole
998 register or a whole 32-bit word on the stack, and will be
999 right-justified in the register or the stack word. This includes
1000 chars, shorts, and small aggregate types.
1002 Arguments that are larger than 4 bytes may be split between two or
1003 more registers. If there are not enough registers free, an argument
1004 may be passed partly in a register (or registers), and partly on the
1005 stack. This includes doubles, long longs, and larger aggregates.
1006 As far as I know, there is no upper limit to the size of aggregates
1007 that will be passed in this way; in other words, the convention of
1008 passing a pointer to a large aggregate instead of a copy is not used.
1010 An exceptional case exists for struct arguments (and possibly other
1011 aggregates such as arrays) if the size is larger than 4 bytes but
1012 not a multiple of 4 bytes. In this case the argument is never split
1013 between the registers and the stack, but instead is copied in its
1014 entirety onto the stack, AND also copied into as many registers as
1015 there is room for. In other words, space in registers permitting,
1016 two copies of the same argument are passed in. As far as I can tell,
1017 only the one on the stack is used, although that may be a function
1018 of the level of compiler optimization. I suspect this is a compiler
1019 bug. Arguments of these odd sizes are left-justified within the
1020 word (as opposed to arguments smaller than 4 bytes, which are
1023 If the function is to return an aggregate type such as a struct, it
1024 is either returned in the normal return value register R0 (if its
1025 size is no greater than one byte), or else the caller must allocate
1026 space into which the callee will copy the return value (if the size
1027 is greater than one byte). In this case, a pointer to the return
1028 value location is passed into the callee in register R2, which does
1029 not displace any of the other arguments passed in via registers R4
1032 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1033 non-scalar (struct, union) elements (even if the elements are
1035 FR0-FR11 for single precision floating point (float)
1036 DR0-DR10 for double precision floating point (double)
1038 If a float is argument number 3 (for instance) and arguments number
1039 1,2, and 4 are integer, the mapping will be:
1040 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1042 If a float is argument number 10 (for instance) and arguments number
1043 1 through 10 are integer, the mapping will be:
1044 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1045 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1046 arg11->stack(16,SP). I.e. there is hole in the stack.
1048 Different rules apply for variable arguments functions, and for functions
1049 for which the prototype is not known. */
1052 sh64_push_dummy_call (struct gdbarch
*gdbarch
,
1053 struct value
*function
,
1054 struct regcache
*regcache
,
1056 int nargs
, struct value
**args
,
1057 CORE_ADDR sp
, int struct_return
,
1058 CORE_ADDR struct_addr
)
1060 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1061 int stack_offset
, stack_alloc
;
1065 int float_arg_index
= 0;
1066 int double_arg_index
= 0;
1077 memset (fp_args
, 0, sizeof (fp_args
));
1079 /* First force sp to a 8-byte alignment. */
1080 sp
= sh64_frame_align (gdbarch
, sp
);
1082 /* The "struct return pointer" pseudo-argument has its own dedicated
1086 regcache_cooked_write_unsigned (regcache
,
1087 STRUCT_RETURN_REGNUM
, struct_addr
);
1089 /* Now make sure there's space on the stack. */
1090 for (argnum
= 0, stack_alloc
= 0; argnum
< nargs
; argnum
++)
1091 stack_alloc
+= ((TYPE_LENGTH (value_type (args
[argnum
])) + 7) & ~7);
1092 sp
-= stack_alloc
; /* Make room on stack for args. */
1094 /* Now load as many as possible of the first arguments into
1095 registers, and push the rest onto the stack. There are 64 bytes
1096 in eight registers available. Loop thru args from first to last. */
1098 int_argreg
= ARG0_REGNUM
;
1099 float_argreg
= gdbarch_fp0_regnum (gdbarch
);
1100 double_argreg
= DR0_REGNUM
;
1102 for (argnum
= 0, stack_offset
= 0; argnum
< nargs
; argnum
++)
1104 type
= value_type (args
[argnum
]);
1105 len
= TYPE_LENGTH (type
);
1106 memset (valbuf
, 0, sizeof (valbuf
));
1108 if (TYPE_CODE (type
) != TYPE_CODE_FLT
)
1110 argreg_size
= register_size (gdbarch
, int_argreg
);
1112 if (len
< argreg_size
)
1114 /* value gets right-justified in the register or stack word. */
1115 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
1116 memcpy (valbuf
+ argreg_size
- len
,
1117 (char *) value_contents (args
[argnum
]), len
);
1119 memcpy (valbuf
, (char *) value_contents (args
[argnum
]), len
);
1124 val
= (char *) value_contents (args
[argnum
]);
1128 if (int_argreg
> ARGLAST_REGNUM
)
1130 /* Must go on the stack. */
1131 write_memory (sp
+ stack_offset
, (const bfd_byte
*) val
,
1133 stack_offset
+= 8;/*argreg_size;*/
1135 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1136 That's because some *&^%$ things get passed on the stack
1137 AND in the registers! */
1138 if (int_argreg
<= ARGLAST_REGNUM
)
1140 /* There's room in a register. */
1141 regval
= extract_unsigned_integer (val
, argreg_size
,
1143 regcache_cooked_write_unsigned (regcache
,
1144 int_argreg
, regval
);
1146 /* Store the value 8 bytes at a time. This means that
1147 things larger than 8 bytes may go partly in registers
1148 and partly on the stack. FIXME: argreg is incremented
1149 before we use its size. */
1157 val
= (char *) value_contents (args
[argnum
]);
1160 /* Where is it going to be stored? */
1161 while (fp_args
[float_arg_index
])
1164 /* Now float_argreg points to the register where it
1165 should be stored. Are we still within the allowed
1167 if (float_arg_index
<= FLOAT_ARGLAST_REGNUM
)
1169 /* Goes in FR0...FR11 */
1170 regcache_cooked_write (regcache
,
1171 gdbarch_fp0_regnum (gdbarch
)
1174 fp_args
[float_arg_index
] = 1;
1175 /* Skip the corresponding general argument register. */
1180 /* Store it as the integers, 8 bytes at the time, if
1181 necessary spilling on the stack. */
1186 /* Where is it going to be stored? */
1187 while (fp_args
[double_arg_index
])
1188 double_arg_index
+= 2;
1189 /* Now double_argreg points to the register
1190 where it should be stored.
1191 Are we still within the allowed register set? */
1192 if (double_arg_index
< FLOAT_ARGLAST_REGNUM
)
1194 /* Goes in DR0...DR10 */
1195 /* The numbering of the DRi registers is consecutive,
1196 i.e. includes odd numbers. */
1197 int double_register_offset
= double_arg_index
/ 2;
1198 int regnum
= DR0_REGNUM
+ double_register_offset
;
1199 regcache_cooked_write (regcache
, regnum
, val
);
1200 fp_args
[double_arg_index
] = 1;
1201 fp_args
[double_arg_index
+ 1] = 1;
1202 /* Skip the corresponding general argument register. */
1207 /* Store it as the integers, 8 bytes at the time, if
1208 necessary spilling on the stack. */
1212 /* Store return address. */
1213 regcache_cooked_write_unsigned (regcache
, PR_REGNUM
, bp_addr
);
1215 /* Update stack pointer. */
1216 regcache_cooked_write_unsigned (regcache
,
1217 gdbarch_sp_regnum (gdbarch
), sp
);
1222 /* Find a function's return value in the appropriate registers (in
1223 regbuf), and copy it into valbuf. Extract from an array REGBUF
1224 containing the (raw) register state a function return value of type
1225 TYPE, and copy that, in virtual format, into VALBUF. */
1227 sh64_extract_return_value (struct type
*type
, struct regcache
*regcache
,
1230 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1231 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1232 int len
= TYPE_LENGTH (type
);
1234 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1238 /* Return value stored in gdbarch_fp0_regnum. */
1239 regcache_raw_read (regcache
,
1240 gdbarch_fp0_regnum (gdbarch
), valbuf
);
1244 /* return value stored in DR0_REGNUM. */
1248 regcache_cooked_read (regcache
, DR0_REGNUM
, buf
);
1250 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1251 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1254 floatformat_to_doublest (&floatformat_ieee_double_big
,
1256 store_typed_floating (valbuf
, type
, val
);
1265 /* Result is in register 2. If smaller than 8 bytes, it is padded
1266 at the most significant end. */
1267 regcache_raw_read (regcache
, DEFAULT_RETURN_REGNUM
, buf
);
1269 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
1270 offset
= register_size (gdbarch
, DEFAULT_RETURN_REGNUM
)
1274 memcpy (valbuf
, buf
+ offset
, len
);
1277 error (_("bad size for return value"));
1281 /* Write into appropriate registers a function return value
1282 of type TYPE, given in virtual format.
1283 If the architecture is sh4 or sh3e, store a function's return value
1284 in the R0 general register or in the FP0 floating point register,
1285 depending on the type of the return value. In all the other cases
1286 the result is stored in r0, left-justified. */
1289 sh64_store_return_value (struct type
*type
, struct regcache
*regcache
,
1292 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1293 char buf
[64]; /* more than enough... */
1294 int len
= TYPE_LENGTH (type
);
1296 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
1298 int i
, regnum
= gdbarch_fp0_regnum (gdbarch
);
1299 for (i
= 0; i
< len
; i
+= 4)
1300 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1301 regcache_raw_write (regcache
, regnum
++,
1302 (char *) valbuf
+ len
- 4 - i
);
1304 regcache_raw_write (regcache
, regnum
++, (char *) valbuf
+ i
);
1308 int return_register
= DEFAULT_RETURN_REGNUM
;
1311 if (len
<= register_size (gdbarch
, return_register
))
1313 /* Pad with zeros. */
1314 memset (buf
, 0, register_size (gdbarch
, return_register
));
1315 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_LITTLE
)
1316 offset
= 0; /*register_size (gdbarch,
1317 return_register) - len;*/
1319 offset
= register_size (gdbarch
, return_register
) - len
;
1321 memcpy (buf
+ offset
, valbuf
, len
);
1322 regcache_raw_write (regcache
, return_register
, buf
);
1325 regcache_raw_write (regcache
, return_register
, valbuf
);
1329 static enum return_value_convention
1330 sh64_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
1331 struct type
*type
, struct regcache
*regcache
,
1332 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1334 if (sh64_use_struct_convention (type
))
1335 return RETURN_VALUE_STRUCT_CONVENTION
;
1337 sh64_store_return_value (type
, regcache
, writebuf
);
1339 sh64_extract_return_value (type
, regcache
, readbuf
);
1340 return RETURN_VALUE_REGISTER_CONVENTION
;
1344 sh64_show_media_regs (struct frame_info
*frame
)
1346 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1351 phex (get_frame_register_unsigned (frame
,
1352 gdbarch_pc_regnum (gdbarch
)), 8),
1353 phex (get_frame_register_unsigned (frame
, SR_REGNUM
), 8));
1357 phex (get_frame_register_unsigned (frame
, SSR_REGNUM
), 8),
1358 phex (get_frame_register_unsigned (frame
, SPC_REGNUM
), 8));
1361 phex (get_frame_register_unsigned (frame
, FPSCR_REGNUM
), 8));
1363 for (i
= 0; i
< 64; i
= i
+ 4)
1365 ("\nR%d-R%d %s %s %s %s\n",
1367 phex (get_frame_register_unsigned (frame
, i
+ 0), 8),
1368 phex (get_frame_register_unsigned (frame
, i
+ 1), 8),
1369 phex (get_frame_register_unsigned (frame
, i
+ 2), 8),
1370 phex (get_frame_register_unsigned (frame
, i
+ 3), 8));
1372 printf_filtered ("\n");
1374 for (i
= 0; i
< 64; i
= i
+ 8)
1376 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1378 (long) get_frame_register_unsigned
1379 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 0),
1380 (long) get_frame_register_unsigned
1381 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 1),
1382 (long) get_frame_register_unsigned
1383 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 2),
1384 (long) get_frame_register_unsigned
1385 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 3),
1386 (long) get_frame_register_unsigned
1387 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 4),
1388 (long) get_frame_register_unsigned
1389 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 5),
1390 (long) get_frame_register_unsigned
1391 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 6),
1392 (long) get_frame_register_unsigned
1393 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 7));
1397 sh64_show_compact_regs (struct frame_info
*frame
)
1399 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1404 phex (get_frame_register_unsigned (frame
, PC_C_REGNUM
), 8));
1407 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1408 (long) get_frame_register_unsigned (frame
, GBR_C_REGNUM
),
1409 (long) get_frame_register_unsigned (frame
, MACH_C_REGNUM
),
1410 (long) get_frame_register_unsigned (frame
, MACL_C_REGNUM
),
1411 (long) get_frame_register_unsigned (frame
, PR_C_REGNUM
),
1412 (long) get_frame_register_unsigned (frame
, T_C_REGNUM
));
1414 ("FPSCR=%08lx FPUL=%08lx\n",
1415 (long) get_frame_register_unsigned (frame
, FPSCR_C_REGNUM
),
1416 (long) get_frame_register_unsigned (frame
, FPUL_C_REGNUM
));
1418 for (i
= 0; i
< 16; i
= i
+ 4)
1420 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1422 (long) get_frame_register_unsigned (frame
, i
+ 0),
1423 (long) get_frame_register_unsigned (frame
, i
+ 1),
1424 (long) get_frame_register_unsigned (frame
, i
+ 2),
1425 (long) get_frame_register_unsigned (frame
, i
+ 3));
1427 printf_filtered ("\n");
1429 for (i
= 0; i
< 16; i
= i
+ 8)
1431 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1433 (long) get_frame_register_unsigned
1434 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 0),
1435 (long) get_frame_register_unsigned
1436 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 1),
1437 (long) get_frame_register_unsigned
1438 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 2),
1439 (long) get_frame_register_unsigned
1440 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 3),
1441 (long) get_frame_register_unsigned
1442 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 4),
1443 (long) get_frame_register_unsigned
1444 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 5),
1445 (long) get_frame_register_unsigned
1446 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 6),
1447 (long) get_frame_register_unsigned
1448 (frame
, gdbarch_fp0_regnum (gdbarch
) + i
+ 7));
1451 /* FIXME!!! This only shows the registers for shmedia, excluding the
1452 pseudo registers. */
1454 sh64_show_regs (struct frame_info
*frame
)
1456 if (pc_is_isa32 (get_frame_pc (frame
)))
1457 sh64_show_media_regs (frame
);
1459 sh64_show_compact_regs (frame
);
1464 SH MEDIA MODE (ISA 32)
1465 general registers (64-bit) 0-63
1466 0 r0, r1, r2, r3, r4, r5, r6, r7,
1467 64 r8, r9, r10, r11, r12, r13, r14, r15,
1468 128 r16, r17, r18, r19, r20, r21, r22, r23,
1469 192 r24, r25, r26, r27, r28, r29, r30, r31,
1470 256 r32, r33, r34, r35, r36, r37, r38, r39,
1471 320 r40, r41, r42, r43, r44, r45, r46, r47,
1472 384 r48, r49, r50, r51, r52, r53, r54, r55,
1473 448 r56, r57, r58, r59, r60, r61, r62, r63,
1478 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1481 target registers (64-bit) 68-75
1482 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1484 floating point state control register (32-bit) 76
1487 single precision floating point registers (32-bit) 77-140
1488 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1489 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1490 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1491 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1492 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1493 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1494 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1495 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1497 TOTAL SPACE FOR REGISTERS: 868 bytes
1499 From here on they are all pseudo registers: no memory allocated.
1500 REGISTER_BYTE returns the register byte for the base register.
1502 double precision registers (pseudo) 141-172
1503 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1504 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1505 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1506 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1508 floating point pairs (pseudo) 173-204
1509 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1510 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1511 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1512 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1514 floating point vectors (4 floating point regs) (pseudo) 205-220
1515 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1516 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1518 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1519 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1520 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1522 gbr_c, mach_c, macl_c, pr_c, t_c,
1524 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1525 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1526 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1527 fv0_c, fv4_c, fv8_c, fv12_c
1530 static struct type
*
1531 sh64_build_float_register_type (struct gdbarch
*gdbarch
, int high
)
1533 return lookup_array_range_type (builtin_type (gdbarch
)->builtin_float
,
1537 /* Return the GDB type object for the "standard" data type
1538 of data in register REG_NR. */
1539 static struct type
*
1540 sh64_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1542 if ((reg_nr
>= gdbarch_fp0_regnum (gdbarch
)
1543 && reg_nr
<= FP_LAST_REGNUM
)
1544 || (reg_nr
>= FP0_C_REGNUM
1545 && reg_nr
<= FP_LAST_C_REGNUM
))
1546 return builtin_type (gdbarch
)->builtin_float
;
1547 else if ((reg_nr
>= DR0_REGNUM
1548 && reg_nr
<= DR_LAST_REGNUM
)
1549 || (reg_nr
>= DR0_C_REGNUM
1550 && reg_nr
<= DR_LAST_C_REGNUM
))
1551 return builtin_type (gdbarch
)->builtin_double
;
1552 else if (reg_nr
>= FPP0_REGNUM
1553 && reg_nr
<= FPP_LAST_REGNUM
)
1554 return sh64_build_float_register_type (gdbarch
, 1);
1555 else if ((reg_nr
>= FV0_REGNUM
1556 && reg_nr
<= FV_LAST_REGNUM
)
1557 ||(reg_nr
>= FV0_C_REGNUM
1558 && reg_nr
<= FV_LAST_C_REGNUM
))
1559 return sh64_build_float_register_type (gdbarch
, 3);
1560 else if (reg_nr
== FPSCR_REGNUM
)
1561 return builtin_type (gdbarch
)->builtin_int
;
1562 else if (reg_nr
>= R0_C_REGNUM
1563 && reg_nr
< FP0_C_REGNUM
)
1564 return builtin_type (gdbarch
)->builtin_int
;
1566 return builtin_type (gdbarch
)->builtin_long_long
;
1570 sh64_register_convert_to_virtual (struct gdbarch
*gdbarch
, int regnum
,
1571 struct type
*type
, char *from
, char *to
)
1573 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_LITTLE
)
1575 /* It is a no-op. */
1576 memcpy (to
, from
, register_size (gdbarch
, regnum
));
1580 if ((regnum
>= DR0_REGNUM
1581 && regnum
<= DR_LAST_REGNUM
)
1582 || (regnum
>= DR0_C_REGNUM
1583 && regnum
<= DR_LAST_C_REGNUM
))
1586 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1588 store_typed_floating (to
, type
, val
);
1591 error (_("sh64_register_convert_to_virtual "
1592 "called with non DR register number"));
1596 sh64_register_convert_to_raw (struct gdbarch
*gdbarch
, struct type
*type
,
1597 int regnum
, const void *from
, void *to
)
1599 if (gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_LITTLE
)
1601 /* It is a no-op. */
1602 memcpy (to
, from
, register_size (gdbarch
, regnum
));
1606 if ((regnum
>= DR0_REGNUM
1607 && regnum
<= DR_LAST_REGNUM
)
1608 || (regnum
>= DR0_C_REGNUM
1609 && regnum
<= DR_LAST_C_REGNUM
))
1611 DOUBLEST val
= extract_typed_floating (from
, type
);
1612 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword
,
1616 error (_("sh64_register_convert_to_raw called "
1617 "with non DR register number"));
1620 /* Concatenate PORTIONS contiguous raw registers starting at
1621 BASE_REGNUM into BUFFER. */
1623 static enum register_status
1624 pseudo_register_read_portions (struct gdbarch
*gdbarch
,
1625 struct regcache
*regcache
,
1627 int base_regnum
, gdb_byte
*buffer
)
1631 for (portion
= 0; portion
< portions
; portion
++)
1633 enum register_status status
;
1636 b
= buffer
+ register_size (gdbarch
, base_regnum
) * portion
;
1637 status
= regcache_raw_read (regcache
, base_regnum
+ portion
, b
);
1638 if (status
!= REG_VALID
)
1645 static enum register_status
1646 sh64_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1647 int reg_nr
, gdb_byte
*buffer
)
1649 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1652 char temp_buffer
[MAX_REGISTER_SIZE
];
1653 enum register_status status
;
1655 if (reg_nr
>= DR0_REGNUM
1656 && reg_nr
<= DR_LAST_REGNUM
)
1658 base_regnum
= sh64_dr_reg_base_num (gdbarch
, reg_nr
);
1660 /* Build the value in the provided buffer. */
1661 /* DR regs are double precision registers obtained by
1662 concatenating 2 single precision floating point registers. */
1663 status
= pseudo_register_read_portions (gdbarch
, regcache
,
1664 2, base_regnum
, temp_buffer
);
1665 if (status
== REG_VALID
)
1667 /* We must pay attention to the endianness. */
1668 sh64_register_convert_to_virtual (gdbarch
, reg_nr
,
1669 register_type (gdbarch
, reg_nr
),
1670 temp_buffer
, buffer
);
1676 else if (reg_nr
>= FPP0_REGNUM
1677 && reg_nr
<= FPP_LAST_REGNUM
)
1679 base_regnum
= sh64_fpp_reg_base_num (gdbarch
, reg_nr
);
1681 /* Build the value in the provided buffer. */
1682 /* FPP regs are pairs of single precision registers obtained by
1683 concatenating 2 single precision floating point registers. */
1684 return pseudo_register_read_portions (gdbarch
, regcache
,
1685 2, base_regnum
, buffer
);
1688 else if (reg_nr
>= FV0_REGNUM
1689 && reg_nr
<= FV_LAST_REGNUM
)
1691 base_regnum
= sh64_fv_reg_base_num (gdbarch
, reg_nr
);
1693 /* Build the value in the provided buffer. */
1694 /* FV regs are vectors of single precision registers obtained by
1695 concatenating 4 single precision floating point registers. */
1696 return pseudo_register_read_portions (gdbarch
, regcache
,
1697 4, base_regnum
, buffer
);
1700 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
1701 else if (reg_nr
>= R0_C_REGNUM
1702 && reg_nr
<= T_C_REGNUM
)
1704 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1706 /* Build the value in the provided buffer. */
1707 status
= regcache_raw_read (regcache
, base_regnum
, temp_buffer
);
1708 if (status
!= REG_VALID
)
1710 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
1713 temp_buffer
+ offset
, 4); /* get LOWER 32 bits only???? */
1717 else if (reg_nr
>= FP0_C_REGNUM
1718 && reg_nr
<= FP_LAST_C_REGNUM
)
1720 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1722 /* Build the value in the provided buffer. */
1723 /* Floating point registers map 1-1 to the media fp regs,
1724 they have the same size and endianness. */
1725 return regcache_raw_read (regcache
, base_regnum
, buffer
);
1728 else if (reg_nr
>= DR0_C_REGNUM
1729 && reg_nr
<= DR_LAST_C_REGNUM
)
1731 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1733 /* DR_C regs are double precision registers obtained by
1734 concatenating 2 single precision floating point registers. */
1735 status
= pseudo_register_read_portions (gdbarch
, regcache
,
1736 2, base_regnum
, temp_buffer
);
1737 if (status
== REG_VALID
)
1739 /* We must pay attention to the endianness. */
1740 sh64_register_convert_to_virtual (gdbarch
, reg_nr
,
1741 register_type (gdbarch
, reg_nr
),
1742 temp_buffer
, buffer
);
1747 else if (reg_nr
>= FV0_C_REGNUM
1748 && reg_nr
<= FV_LAST_C_REGNUM
)
1750 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1752 /* Build the value in the provided buffer. */
1753 /* FV_C regs are vectors of single precision registers obtained by
1754 concatenating 4 single precision floating point registers. */
1755 return pseudo_register_read_portions (gdbarch
, regcache
,
1756 4, base_regnum
, buffer
);
1759 else if (reg_nr
== FPSCR_C_REGNUM
)
1761 int fpscr_base_regnum
;
1763 unsigned int fpscr_value
;
1764 unsigned int sr_value
;
1765 unsigned int fpscr_c_value
;
1766 unsigned int fpscr_c_part1_value
;
1767 unsigned int fpscr_c_part2_value
;
1769 fpscr_base_regnum
= FPSCR_REGNUM
;
1770 sr_base_regnum
= SR_REGNUM
;
1772 /* Build the value in the provided buffer. */
1773 /* FPSCR_C is a very weird register that contains sparse bits
1774 from the FPSCR and the SR architectural registers.
1781 2-17 Bit 2-18 of FPSCR
1782 18-20 Bits 12,13,14 of SR
1786 /* Get FPSCR into a local buffer. */
1787 status
= regcache_raw_read (regcache
, fpscr_base_regnum
, temp_buffer
);
1788 if (status
!= REG_VALID
)
1790 /* Get value as an int. */
1791 fpscr_value
= extract_unsigned_integer (temp_buffer
, 4, byte_order
);
1792 /* Get SR into a local buffer */
1793 status
= regcache_raw_read (regcache
, sr_base_regnum
, temp_buffer
);
1794 if (status
!= REG_VALID
)
1796 /* Get value as an int. */
1797 sr_value
= extract_unsigned_integer (temp_buffer
, 4, byte_order
);
1798 /* Build the new value. */
1799 fpscr_c_part1_value
= fpscr_value
& 0x3fffd;
1800 fpscr_c_part2_value
= (sr_value
& 0x7000) << 6;
1801 fpscr_c_value
= fpscr_c_part1_value
| fpscr_c_part2_value
;
1802 /* Store that in out buffer!!! */
1803 store_unsigned_integer (buffer
, 4, byte_order
, fpscr_c_value
);
1804 /* FIXME There is surely an endianness gotcha here. */
1809 else if (reg_nr
== FPUL_C_REGNUM
)
1811 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1813 /* FPUL_C register is floating point register 32,
1814 same size, same endianness. */
1815 return regcache_raw_read (regcache
, base_regnum
, buffer
);
1818 gdb_assert_not_reached ("invalid pseudo register number");
1822 sh64_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1823 int reg_nr
, const gdb_byte
*buffer
)
1825 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1826 int base_regnum
, portion
;
1828 char temp_buffer
[MAX_REGISTER_SIZE
];
1830 if (reg_nr
>= DR0_REGNUM
1831 && reg_nr
<= DR_LAST_REGNUM
)
1833 base_regnum
= sh64_dr_reg_base_num (gdbarch
, reg_nr
);
1834 /* We must pay attention to the endianness. */
1835 sh64_register_convert_to_raw (gdbarch
, register_type (gdbarch
, reg_nr
),
1837 buffer
, temp_buffer
);
1839 /* Write the real regs for which this one is an alias. */
1840 for (portion
= 0; portion
< 2; portion
++)
1841 regcache_raw_write (regcache
, base_regnum
+ portion
,
1843 + register_size (gdbarch
,
1844 base_regnum
) * portion
));
1847 else if (reg_nr
>= FPP0_REGNUM
1848 && reg_nr
<= FPP_LAST_REGNUM
)
1850 base_regnum
= sh64_fpp_reg_base_num (gdbarch
, reg_nr
);
1852 /* Write the real regs for which this one is an alias. */
1853 for (portion
= 0; portion
< 2; portion
++)
1854 regcache_raw_write (regcache
, base_regnum
+ portion
,
1856 + register_size (gdbarch
,
1857 base_regnum
) * portion
));
1860 else if (reg_nr
>= FV0_REGNUM
1861 && reg_nr
<= FV_LAST_REGNUM
)
1863 base_regnum
= sh64_fv_reg_base_num (gdbarch
, reg_nr
);
1865 /* Write the real regs for which this one is an alias. */
1866 for (portion
= 0; portion
< 4; portion
++)
1867 regcache_raw_write (regcache
, base_regnum
+ portion
,
1869 + register_size (gdbarch
,
1870 base_regnum
) * portion
));
1873 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1874 register but only 4 bytes of it. */
1875 else if (reg_nr
>= R0_C_REGNUM
1876 && reg_nr
<= T_C_REGNUM
)
1878 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1879 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1880 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
1884 /* Let's read the value of the base register into a temporary
1885 buffer, so that overwriting the last four bytes with the new
1886 value of the pseudo will leave the upper 4 bytes unchanged. */
1887 regcache_raw_read (regcache
, base_regnum
, temp_buffer
);
1888 /* Write as an 8 byte quantity. */
1889 memcpy (temp_buffer
+ offset
, buffer
, 4);
1890 regcache_raw_write (regcache
, base_regnum
, temp_buffer
);
1893 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1894 registers. Both are 4 bytes. */
1895 else if (reg_nr
>= FP0_C_REGNUM
1896 && reg_nr
<= FP_LAST_C_REGNUM
)
1898 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1899 regcache_raw_write (regcache
, base_regnum
, buffer
);
1902 else if (reg_nr
>= DR0_C_REGNUM
1903 && reg_nr
<= DR_LAST_C_REGNUM
)
1905 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1906 for (portion
= 0; portion
< 2; portion
++)
1908 /* We must pay attention to the endianness. */
1909 sh64_register_convert_to_raw (gdbarch
,
1910 register_type (gdbarch
, reg_nr
),
1912 buffer
, temp_buffer
);
1914 regcache_raw_write (regcache
, base_regnum
+ portion
,
1916 + register_size (gdbarch
,
1917 base_regnum
) * portion
));
1921 else if (reg_nr
>= FV0_C_REGNUM
1922 && reg_nr
<= FV_LAST_C_REGNUM
)
1924 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1926 for (portion
= 0; portion
< 4; portion
++)
1928 regcache_raw_write (regcache
, base_regnum
+ portion
,
1930 + register_size (gdbarch
,
1931 base_regnum
) * portion
));
1935 else if (reg_nr
== FPSCR_C_REGNUM
)
1937 int fpscr_base_regnum
;
1939 unsigned int fpscr_value
;
1940 unsigned int sr_value
;
1941 unsigned int old_fpscr_value
;
1942 unsigned int old_sr_value
;
1943 unsigned int fpscr_c_value
;
1944 unsigned int fpscr_mask
;
1945 unsigned int sr_mask
;
1947 fpscr_base_regnum
= FPSCR_REGNUM
;
1948 sr_base_regnum
= SR_REGNUM
;
1950 /* FPSCR_C is a very weird register that contains sparse bits
1951 from the FPSCR and the SR architectural registers.
1958 2-17 Bit 2-18 of FPSCR
1959 18-20 Bits 12,13,14 of SR
1963 /* Get value as an int. */
1964 fpscr_c_value
= extract_unsigned_integer (buffer
, 4, byte_order
);
1966 /* Build the new values. */
1967 fpscr_mask
= 0x0003fffd;
1968 sr_mask
= 0x001c0000;
1970 fpscr_value
= fpscr_c_value
& fpscr_mask
;
1971 sr_value
= (fpscr_value
& sr_mask
) >> 6;
1973 regcache_raw_read (regcache
, fpscr_base_regnum
, temp_buffer
);
1974 old_fpscr_value
= extract_unsigned_integer (temp_buffer
, 4, byte_order
);
1975 old_fpscr_value
&= 0xfffc0002;
1976 fpscr_value
|= old_fpscr_value
;
1977 store_unsigned_integer (temp_buffer
, 4, byte_order
, fpscr_value
);
1978 regcache_raw_write (regcache
, fpscr_base_regnum
, temp_buffer
);
1980 regcache_raw_read (regcache
, sr_base_regnum
, temp_buffer
);
1981 old_sr_value
= extract_unsigned_integer (temp_buffer
, 4, byte_order
);
1982 old_sr_value
&= 0xffff8fff;
1983 sr_value
|= old_sr_value
;
1984 store_unsigned_integer (temp_buffer
, 4, byte_order
, sr_value
);
1985 regcache_raw_write (regcache
, sr_base_regnum
, temp_buffer
);
1988 else if (reg_nr
== FPUL_C_REGNUM
)
1990 base_regnum
= sh64_compact_reg_base_num (gdbarch
, reg_nr
);
1991 regcache_raw_write (regcache
, base_regnum
, buffer
);
1995 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1996 shmedia REGISTERS. */
1997 /* Control registers, compact mode. */
1999 sh64_do_cr_c_register_info (struct ui_file
*file
, struct frame_info
*frame
,
2002 switch (cr_c_regnum
)
2005 fprintf_filtered (file
, "pc_c\t0x%08x\n",
2006 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
2009 fprintf_filtered (file
, "gbr_c\t0x%08x\n",
2010 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
2013 fprintf_filtered (file
, "mach_c\t0x%08x\n",
2014 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
2017 fprintf_filtered (file
, "macl_c\t0x%08x\n",
2018 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
2021 fprintf_filtered (file
, "pr_c\t0x%08x\n",
2022 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
2025 fprintf_filtered (file
, "t_c\t0x%08x\n",
2026 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
2028 case FPSCR_C_REGNUM
:
2029 fprintf_filtered (file
, "fpscr_c\t0x%08x\n",
2030 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
2033 fprintf_filtered (file
, "fpul_c\t0x%08x\n",
2034 (int) get_frame_register_unsigned (frame
, cr_c_regnum
));
2040 sh64_do_fp_register (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2041 struct frame_info
*frame
, int regnum
)
2042 { /* Do values for FP (float) regs. */
2043 unsigned char *raw_buffer
;
2044 double flt
; /* Double extracted from raw hex data. */
2048 /* Allocate space for the float. */
2049 raw_buffer
= (unsigned char *)
2050 alloca (register_size (gdbarch
, gdbarch_fp0_regnum (gdbarch
)));
2052 /* Get the data in raw format. */
2053 if (!frame_register_read (frame
, regnum
, raw_buffer
))
2054 error (_("can't read register %d (%s)"),
2055 regnum
, gdbarch_register_name (gdbarch
, regnum
));
2057 /* Get the register as a number. */
2058 flt
= unpack_double (builtin_type (gdbarch
)->builtin_float
,
2061 /* Print the name and some spaces. */
2062 fputs_filtered (gdbarch_register_name (gdbarch
, regnum
), file
);
2063 print_spaces_filtered (15 - strlen (gdbarch_register_name
2064 (gdbarch
, regnum
)), file
);
2066 /* Print the value. */
2068 fprintf_filtered (file
, "<invalid float>");
2070 fprintf_filtered (file
, "%-10.9g", flt
);
2072 /* Print the fp register as hex. */
2073 fprintf_filtered (file
, "\t(raw 0x");
2074 for (j
= 0; j
< register_size (gdbarch
, regnum
); j
++)
2076 int idx
= gdbarch_byte_order (gdbarch
)
2077 == BFD_ENDIAN_BIG
? j
: register_size
2078 (gdbarch
, regnum
) - 1 - j
;
2079 fprintf_filtered (file
, "%02x", raw_buffer
[idx
]);
2081 fprintf_filtered (file
, ")");
2082 fprintf_filtered (file
, "\n");
2086 sh64_do_pseudo_register (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2087 struct frame_info
*frame
, int regnum
)
2089 /* All the sh64-compact mode registers are pseudo registers. */
2091 if (regnum
< gdbarch_num_regs (gdbarch
)
2092 || regnum
>= gdbarch_num_regs (gdbarch
)
2093 + NUM_PSEUDO_REGS_SH_MEDIA
2094 + NUM_PSEUDO_REGS_SH_COMPACT
)
2095 internal_error (__FILE__
, __LINE__
,
2096 _("Invalid pseudo register number %d\n"), regnum
);
2098 else if ((regnum
>= DR0_REGNUM
&& regnum
<= DR_LAST_REGNUM
))
2100 int fp_regnum
= sh64_dr_reg_base_num (gdbarch
, regnum
);
2101 fprintf_filtered (file
, "dr%d\t0x%08x%08x\n", regnum
- DR0_REGNUM
,
2102 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
2103 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1));
2106 else if ((regnum
>= DR0_C_REGNUM
&& regnum
<= DR_LAST_C_REGNUM
))
2108 int fp_regnum
= sh64_compact_reg_base_num (gdbarch
, regnum
);
2109 fprintf_filtered (file
, "dr%d_c\t0x%08x%08x\n", regnum
- DR0_C_REGNUM
,
2110 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
2111 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1));
2114 else if ((regnum
>= FV0_REGNUM
&& regnum
<= FV_LAST_REGNUM
))
2116 int fp_regnum
= sh64_fv_reg_base_num (gdbarch
, regnum
);
2117 fprintf_filtered (file
, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2118 regnum
- FV0_REGNUM
,
2119 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
2120 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1),
2121 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 2),
2122 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 3));
2125 else if ((regnum
>= FV0_C_REGNUM
&& regnum
<= FV_LAST_C_REGNUM
))
2127 int fp_regnum
= sh64_compact_reg_base_num (gdbarch
, regnum
);
2128 fprintf_filtered (file
, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2129 regnum
- FV0_C_REGNUM
,
2130 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
2131 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1),
2132 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 2),
2133 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 3));
2136 else if (regnum
>= FPP0_REGNUM
&& regnum
<= FPP_LAST_REGNUM
)
2138 int fp_regnum
= sh64_fpp_reg_base_num (gdbarch
, regnum
);
2139 fprintf_filtered (file
, "fpp%d\t0x%08x\t0x%08x\n", regnum
- FPP0_REGNUM
,
2140 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
),
2141 (unsigned) get_frame_register_unsigned (frame
, fp_regnum
+ 1));
2144 else if (regnum
>= R0_C_REGNUM
&& regnum
<= R_LAST_C_REGNUM
)
2146 int c_regnum
= sh64_compact_reg_base_num (gdbarch
, regnum
);
2147 fprintf_filtered (file
, "r%d_c\t0x%08x\n", regnum
- R0_C_REGNUM
,
2148 (unsigned) get_frame_register_unsigned (frame
, c_regnum
));
2150 else if (regnum
>= FP0_C_REGNUM
&& regnum
<= FP_LAST_C_REGNUM
)
2151 /* This should work also for pseudoregs. */
2152 sh64_do_fp_register (gdbarch
, file
, frame
, regnum
);
2153 else if (regnum
>= PC_C_REGNUM
&& regnum
<= FPUL_C_REGNUM
)
2154 sh64_do_cr_c_register_info (file
, frame
, regnum
);
2158 sh64_do_register (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2159 struct frame_info
*frame
, int regnum
)
2161 unsigned char raw_buffer
[MAX_REGISTER_SIZE
];
2162 struct value_print_options opts
;
2164 fputs_filtered (gdbarch_register_name (gdbarch
, regnum
), file
);
2165 print_spaces_filtered (15 - strlen (gdbarch_register_name
2166 (gdbarch
, regnum
)), file
);
2168 /* Get the data in raw format. */
2169 if (!frame_register_read (frame
, regnum
, raw_buffer
))
2170 fprintf_filtered (file
, "*value not available*\n");
2172 get_formatted_print_options (&opts
, 'x');
2174 val_print (register_type (gdbarch
, regnum
), raw_buffer
, 0, 0,
2175 file
, 0, NULL
, &opts
, current_language
);
2176 fprintf_filtered (file
, "\t");
2177 get_formatted_print_options (&opts
, 0);
2179 val_print (register_type (gdbarch
, regnum
), raw_buffer
, 0, 0,
2180 file
, 0, NULL
, &opts
, current_language
);
2181 fprintf_filtered (file
, "\n");
2185 sh64_print_register (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2186 struct frame_info
*frame
, int regnum
)
2188 if (regnum
< 0 || regnum
>= gdbarch_num_regs (gdbarch
)
2189 + gdbarch_num_pseudo_regs (gdbarch
))
2190 internal_error (__FILE__
, __LINE__
,
2191 _("Invalid register number %d\n"), regnum
);
2193 else if (regnum
>= 0 && regnum
< gdbarch_num_regs (gdbarch
))
2195 if (TYPE_CODE (register_type (gdbarch
, regnum
)) == TYPE_CODE_FLT
)
2196 sh64_do_fp_register (gdbarch
, file
, frame
, regnum
); /* FP regs */
2198 sh64_do_register (gdbarch
, file
, frame
, regnum
);
2201 else if (regnum
< gdbarch_num_regs (gdbarch
)
2202 + gdbarch_num_pseudo_regs (gdbarch
))
2203 sh64_do_pseudo_register (gdbarch
, file
, frame
, regnum
);
2207 sh64_media_print_registers_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2208 struct frame_info
*frame
, int regnum
,
2211 if (regnum
!= -1) /* Do one specified register. */
2213 if (*(gdbarch_register_name (gdbarch
, regnum
)) == '\0')
2214 error (_("Not a valid register for the current processor type"));
2216 sh64_print_register (gdbarch
, file
, frame
, regnum
);
2219 /* Do all (or most) registers. */
2222 while (regnum
< gdbarch_num_regs (gdbarch
))
2224 /* If the register name is empty, it is undefined for this
2225 processor, so don't display anything. */
2226 if (gdbarch_register_name (gdbarch
, regnum
) == NULL
2227 || *(gdbarch_register_name (gdbarch
, regnum
)) == '\0')
2233 if (TYPE_CODE (register_type (gdbarch
, regnum
))
2238 /* true for "INFO ALL-REGISTERS" command. */
2239 sh64_do_fp_register (gdbarch
, file
, frame
, regnum
);
2243 regnum
+= FP_LAST_REGNUM
- gdbarch_fp0_regnum (gdbarch
);
2248 sh64_do_register (gdbarch
, file
, frame
, regnum
);
2254 while (regnum
< gdbarch_num_regs (gdbarch
)
2255 + gdbarch_num_pseudo_regs (gdbarch
))
2257 sh64_do_pseudo_register (gdbarch
, file
, frame
, regnum
);
2264 sh64_compact_print_registers_info (struct gdbarch
*gdbarch
,
2265 struct ui_file
*file
,
2266 struct frame_info
*frame
, int regnum
,
2269 if (regnum
!= -1) /* Do one specified register. */
2271 if (*(gdbarch_register_name (gdbarch
, regnum
)) == '\0')
2272 error (_("Not a valid register for the current processor type"));
2274 if (regnum
>= 0 && regnum
< R0_C_REGNUM
)
2275 error (_("Not a valid register for the current processor mode."));
2277 sh64_print_register (gdbarch
, file
, frame
, regnum
);
2280 /* Do all compact registers. */
2282 regnum
= R0_C_REGNUM
;
2283 while (regnum
< gdbarch_num_regs (gdbarch
)
2284 + gdbarch_num_pseudo_regs (gdbarch
))
2286 sh64_do_pseudo_register (gdbarch
, file
, frame
, regnum
);
2293 sh64_print_registers_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
2294 struct frame_info
*frame
, int regnum
, int fpregs
)
2296 if (pc_is_isa32 (get_frame_pc (frame
)))
2297 sh64_media_print_registers_info (gdbarch
, file
, frame
, regnum
, fpregs
);
2299 sh64_compact_print_registers_info (gdbarch
, file
, frame
, regnum
, fpregs
);
2302 static struct sh64_frame_cache
*
2303 sh64_alloc_frame_cache (void)
2305 struct sh64_frame_cache
*cache
;
2308 cache
= FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache
);
2312 cache
->saved_sp
= 0;
2313 cache
->sp_offset
= 0;
2316 /* Frameless until proven otherwise. */
2319 /* Saved registers. We initialize these to -1 since zero is a valid
2320 offset (that's where fp is supposed to be stored). */
2321 for (i
= 0; i
< SIM_SH64_NR_REGS
; i
++)
2323 cache
->saved_regs
[i
] = -1;
2329 static struct sh64_frame_cache
*
2330 sh64_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2332 struct gdbarch
*gdbarch
;
2333 struct sh64_frame_cache
*cache
;
2334 CORE_ADDR current_pc
;
2340 gdbarch
= get_frame_arch (this_frame
);
2341 cache
= sh64_alloc_frame_cache ();
2342 *this_cache
= cache
;
2344 current_pc
= get_frame_pc (this_frame
);
2345 cache
->media_mode
= pc_is_isa32 (current_pc
);
2347 /* In principle, for normal frames, fp holds the frame pointer,
2348 which holds the base address for the current stack frame.
2349 However, for functions that don't need it, the frame pointer is
2350 optional. For these "frameless" functions the frame pointer is
2351 actually the frame pointer of the calling frame. */
2352 cache
->base
= get_frame_register_unsigned (this_frame
, MEDIA_FP_REGNUM
);
2353 if (cache
->base
== 0)
2356 cache
->pc
= get_frame_func (this_frame
);
2358 sh64_analyze_prologue (gdbarch
, cache
, cache
->pc
, current_pc
);
2360 if (!cache
->uses_fp
)
2362 /* We didn't find a valid frame, which means that CACHE->base
2363 currently holds the frame pointer for our calling frame. If
2364 we're at the start of a function, or somewhere half-way its
2365 prologue, the function's frame probably hasn't been fully
2366 setup yet. Try to reconstruct the base address for the stack
2367 frame by looking at the stack pointer. For truly "frameless"
2368 functions this might work too. */
2369 cache
->base
= get_frame_register_unsigned
2370 (this_frame
, gdbarch_sp_regnum (gdbarch
));
2373 /* Now that we have the base address for the stack frame we can
2374 calculate the value of sp in the calling frame. */
2375 cache
->saved_sp
= cache
->base
+ cache
->sp_offset
;
2377 /* Adjust all the saved registers such that they contain addresses
2378 instead of offsets. */
2379 for (i
= 0; i
< SIM_SH64_NR_REGS
; i
++)
2380 if (cache
->saved_regs
[i
] != -1)
2381 cache
->saved_regs
[i
] = cache
->saved_sp
- cache
->saved_regs
[i
];
2386 static struct value
*
2387 sh64_frame_prev_register (struct frame_info
*this_frame
,
2388 void **this_cache
, int regnum
)
2390 struct sh64_frame_cache
*cache
= sh64_frame_cache (this_frame
, this_cache
);
2391 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2392 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2394 gdb_assert (regnum
>= 0);
2396 if (regnum
== gdbarch_sp_regnum (gdbarch
) && cache
->saved_sp
)
2397 frame_unwind_got_constant (this_frame
, regnum
, cache
->saved_sp
);
2399 /* The PC of the previous frame is stored in the PR register of
2400 the current frame. Frob regnum so that we pull the value from
2401 the correct place. */
2402 if (regnum
== gdbarch_pc_regnum (gdbarch
))
2405 if (regnum
< SIM_SH64_NR_REGS
&& cache
->saved_regs
[regnum
] != -1)
2407 if (gdbarch_tdep (gdbarch
)->sh_abi
== SH_ABI_32
2408 && (regnum
== MEDIA_FP_REGNUM
|| regnum
== PR_REGNUM
))
2411 val
= read_memory_unsigned_integer (cache
->saved_regs
[regnum
],
2413 return frame_unwind_got_constant (this_frame
, regnum
, val
);
2416 return frame_unwind_got_memory (this_frame
, regnum
,
2417 cache
->saved_regs
[regnum
]);
2420 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
2424 sh64_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2425 struct frame_id
*this_id
)
2427 struct sh64_frame_cache
*cache
= sh64_frame_cache (this_frame
, this_cache
);
2429 /* This marks the outermost frame. */
2430 if (cache
->base
== 0)
2433 *this_id
= frame_id_build (cache
->saved_sp
, cache
->pc
);
2436 static const struct frame_unwind sh64_frame_unwind
= {
2438 default_frame_unwind_stop_reason
,
2440 sh64_frame_prev_register
,
2442 default_frame_sniffer
2446 sh64_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2448 return frame_unwind_register_unsigned (next_frame
,
2449 gdbarch_sp_regnum (gdbarch
));
2453 sh64_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2455 return frame_unwind_register_unsigned (next_frame
,
2456 gdbarch_pc_regnum (gdbarch
));
2459 static struct frame_id
2460 sh64_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2462 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
,
2463 gdbarch_sp_regnum (gdbarch
));
2464 return frame_id_build (sp
, get_frame_pc (this_frame
));
2468 sh64_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
2470 struct sh64_frame_cache
*cache
= sh64_frame_cache (this_frame
, this_cache
);
2475 static const struct frame_base sh64_frame_base
= {
2477 sh64_frame_base_address
,
2478 sh64_frame_base_address
,
2479 sh64_frame_base_address
2484 sh64_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2486 struct gdbarch
*gdbarch
;
2487 struct gdbarch_tdep
*tdep
;
2489 /* If there is already a candidate, use it. */
2490 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2492 return arches
->gdbarch
;
2494 /* None found, create a new architecture from the information
2496 tdep
= XMALLOC (struct gdbarch_tdep
);
2497 gdbarch
= gdbarch_alloc (&info
, tdep
);
2499 /* Determine the ABI */
2500 if (info
.abfd
&& bfd_get_arch_size (info
.abfd
) == 64)
2502 /* If the ABI is the 64-bit one, it can only be sh-media. */
2503 tdep
->sh_abi
= SH_ABI_64
;
2504 set_gdbarch_ptr_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2505 set_gdbarch_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2509 /* If the ABI is the 32-bit one it could be either media or
2511 tdep
->sh_abi
= SH_ABI_32
;
2512 set_gdbarch_ptr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2513 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2516 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
2517 set_gdbarch_int_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2518 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2519 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2520 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
2521 set_gdbarch_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2522 set_gdbarch_long_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
2524 /* The number of real registers is the same whether we are in
2525 ISA16(compact) or ISA32(media). */
2526 set_gdbarch_num_regs (gdbarch
, SIM_SH64_NR_REGS
);
2527 set_gdbarch_sp_regnum (gdbarch
, 15);
2528 set_gdbarch_pc_regnum (gdbarch
, 64);
2529 set_gdbarch_fp0_regnum (gdbarch
, SIM_SH64_FR0_REGNUM
);
2530 set_gdbarch_num_pseudo_regs (gdbarch
, NUM_PSEUDO_REGS_SH_MEDIA
2531 + NUM_PSEUDO_REGS_SH_COMPACT
);
2533 set_gdbarch_register_name (gdbarch
, sh64_register_name
);
2534 set_gdbarch_register_type (gdbarch
, sh64_register_type
);
2536 set_gdbarch_pseudo_register_read (gdbarch
, sh64_pseudo_register_read
);
2537 set_gdbarch_pseudo_register_write (gdbarch
, sh64_pseudo_register_write
);
2539 set_gdbarch_breakpoint_from_pc (gdbarch
, sh64_breakpoint_from_pc
);
2541 set_gdbarch_print_insn (gdbarch
, print_insn_sh
);
2542 set_gdbarch_register_sim_regno (gdbarch
, legacy_register_sim_regno
);
2544 set_gdbarch_return_value (gdbarch
, sh64_return_value
);
2546 set_gdbarch_skip_prologue (gdbarch
, sh64_skip_prologue
);
2547 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2549 set_gdbarch_push_dummy_call (gdbarch
, sh64_push_dummy_call
);
2551 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
2553 set_gdbarch_frame_align (gdbarch
, sh64_frame_align
);
2554 set_gdbarch_unwind_sp (gdbarch
, sh64_unwind_sp
);
2555 set_gdbarch_unwind_pc (gdbarch
, sh64_unwind_pc
);
2556 set_gdbarch_dummy_id (gdbarch
, sh64_dummy_id
);
2557 frame_base_set_default (gdbarch
, &sh64_frame_base
);
2559 set_gdbarch_print_registers_info (gdbarch
, sh64_print_registers_info
);
2561 set_gdbarch_elf_make_msymbol_special (gdbarch
,
2562 sh64_elf_make_msymbol_special
);
2564 /* Hook in ABI-specific overrides, if they have been registered. */
2565 gdbarch_init_osabi (info
, gdbarch
);
2567 dwarf2_append_unwinders (gdbarch
);
2568 frame_unwind_append_unwinder (gdbarch
, &sh64_frame_unwind
);