dbab7c007311c2f429c25cdc08069d4d4acbdee1
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
1 /* Target-dependent code for Renesas Super-H, for GDB.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "dwarf2-frame.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "value.h"
38 #include "dis-asm.h"
39 #include "inferior.h"
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "osabi.h"
45
46 #include "elf-bfd.h"
47
48 /* sh flags */
49 #include "elf/sh.h"
50 /* registers numbers shared with the simulator */
51 #include "gdb/sim-sh.h"
52
53 /* Information that is dependent on the processor variant. */
54 enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61 struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
66 struct sh64_frame_cache
67 {
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81 };
82
83 /* Registers of SH5 */
84 enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
92 MEDIA_FP_REGNUM = 14,
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
98 GDB's FP0_REGNUM, which is the number of the first Floating
99 point register. Unfortunately on the sh5, the floating point
100 registers are called FR, and the floating point pairs are called FP. */
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
128 static const char *
129 sh64_register_name (int reg_nr)
130 {
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200 }
201
202 #define NUM_PSEUDO_REGS_SH_MEDIA 80
203 #define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205 /* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
207 symbol's "info" field is used for this purpose.
208
209 ELF_MAKE_MSYMBOL_SPECIAL
210 tests whether an ELF symbol is "special", i.e. refers
211 to a 32-bit function, and sets a "special" bit in a
212 minimal symbol to mark it as a 32-bit function
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
214
215 #define MSYMBOL_IS_SPECIAL(msym) \
216 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
217
218 static void
219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220 {
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
226 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229 }
230
231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233 #define IS_ISA32_ADDR(addr) ((addr) & 1)
234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237 static int
238 pc_is_isa32 (bfd_vma memaddr)
239 {
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
243 ISA32 (shmedia) address. */
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255 }
256
257 static const unsigned char *
258 sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
259 {
260 /* The BRK instruction for shmedia is
261 01101111 11110101 11111111 11110000
262 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
263 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
264
265 /* The BRK instruction for shcompact is
266 00000000 00111011
267 which translates in big endian mode to 0x0, 0x3b
268 and in little endian mode to 0x3b, 0x0*/
269
270 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
271 {
272 if (pc_is_isa32 (*pcptr))
273 {
274 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
275 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
276 *lenptr = sizeof (big_breakpoint_media);
277 return big_breakpoint_media;
278 }
279 else
280 {
281 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
282 *lenptr = sizeof (big_breakpoint_compact);
283 return big_breakpoint_compact;
284 }
285 }
286 else
287 {
288 if (pc_is_isa32 (*pcptr))
289 {
290 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
291 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
292 *lenptr = sizeof (little_breakpoint_media);
293 return little_breakpoint_media;
294 }
295 else
296 {
297 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
298 *lenptr = sizeof (little_breakpoint_compact);
299 return little_breakpoint_compact;
300 }
301 }
302 }
303
304 /* Prologue looks like
305 [mov.l <regs>,@-r15]...
306 [sts.l pr,@-r15]
307 [mov.l r14,@-r15]
308 [mov r15,r14]
309
310 Actually it can be more complicated than this. For instance, with
311 newer gcc's:
312
313 mov.l r14,@-r15
314 add #-12,r15
315 mov r15,r14
316 mov r4,r1
317 mov r5,r2
318 mov.l r6,@(4,r14)
319 mov.l r7,@(8,r14)
320 mov.b r1,@r14
321 mov r14,r1
322 mov r14,r1
323 add #2,r1
324 mov.w r2,@r1
325
326 */
327
328 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
329 with l=1 and n = 18 0110101111110001010010100aaa0000 */
330 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
331
332 /* STS.L PR,@-r0 0100000000100010
333 r0-4-->r0, PR-->(r0) */
334 #define IS_STS_R0(x) ((x) == 0x4022)
335
336 /* STS PR, Rm 0000mmmm00101010
337 PR-->Rm */
338 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
339
340 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
341 Rm-->(dispx4+r15) */
342 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
343
344 /* MOV.L R14,@(disp,r15) 000111111110dddd
345 R14-->(dispx4+r15) */
346 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
347
348 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
349 R18-->(dispx8+R14) */
350 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
351
352 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
353 R18-->(dispx8+R15) */
354 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
355
356 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000
357 R18-->(dispx4+R15) */
358 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
359
360 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
361 R14-->(dispx8+R15) */
362 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
363
364 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
365 R14-->(dispx4+R15) */
366 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
367
368 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
369 R15 + imm --> R15 */
370 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
371
372 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
373 R15 + imm --> R15 */
374 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
375
376 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
377 R15 + R63 --> R14 */
378 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
379
380 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
381 R15 + R63 --> R14 */
382 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
383
384 #define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
385
386 /* MOV #imm, R0 1110 0000 ssss ssss
387 #imm-->R0 */
388 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
389
390 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
391 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
392
393 /* ADD r15,r0 0011 0000 1111 1100
394 r15+r0-->r0 */
395 #define IS_ADD_SP_R0(x) ((x) == 0x30fc)
396
397 /* MOV.L R14 @-R0 0010 0000 1110 0110
398 R14-->(R0-4), R0-4-->R0 */
399 #define IS_MOV_R14_R0(x) ((x) == 0x20e6)
400
401 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
402 where Rm is one of r2-r9 which are the argument registers. */
403 /* FIXME: Recognize the float and double register moves too! */
404 #define IS_MEDIA_IND_ARG_MOV(x) \
405 ((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
406
407 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
408 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
409 where Rm is one of r2-r9 which are the argument registers. */
410 #define IS_MEDIA_ARG_MOV(x) \
411 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
412 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
413
414 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
415 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
416 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
417 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
418 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
419 #define IS_MEDIA_MOV_TO_R14(x) \
420 ((((x) & 0xfffffc0f) == 0xa0e00000) \
421 || (((x) & 0xfffffc0f) == 0xa4e00000) \
422 || (((x) & 0xfffffc0f) == 0xa8e00000) \
423 || (((x) & 0xfffffc0f) == 0xb4e00000) \
424 || (((x) & 0xfffffc0f) == 0xbce00000))
425
426 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
427 where Rm is r2-r9 */
428 #define IS_COMPACT_IND_ARG_MOV(x) \
429 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
430
431 /* compact direct arg move!
432 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
433 #define IS_COMPACT_ARG_MOV(x) \
434 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
435
436 /* MOV.B Rm, @R14 0010 1110 mmmm 0000
437 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
438 #define IS_COMPACT_MOV_TO_R14(x) \
439 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
440
441 #define IS_JSR_R0(x) ((x) == 0x400b)
442 #define IS_NOP(x) ((x) == 0x0009)
443
444
445 /* MOV r15,r14 0110111011110011
446 r15-->r14 */
447 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
448
449 /* ADD #imm,r15 01111111iiiiiiii
450 r15+imm-->r15 */
451 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
452
453 /* Skip any prologue before the guts of a function */
454
455 /* Skip the prologue using the debug information. If this fails we'll
456 fall back on the 'guess' method below. */
457 static CORE_ADDR
458 after_prologue (CORE_ADDR pc)
459 {
460 struct symtab_and_line sal;
461 CORE_ADDR func_addr, func_end;
462
463 /* If we can not find the symbol in the partial symbol table, then
464 there is no hope we can determine the function's start address
465 with this code. */
466 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
467 return 0;
468
469
470 /* Get the line associated with FUNC_ADDR. */
471 sal = find_pc_line (func_addr, 0);
472
473 /* There are only two cases to consider. First, the end of the source line
474 is within the function bounds. In that case we return the end of the
475 source line. Second is the end of the source line extends beyond the
476 bounds of the current function. We need to use the slow code to
477 examine instructions in that case. */
478 if (sal.end < func_end)
479 return sal.end;
480 else
481 return 0;
482 }
483
484 static CORE_ADDR
485 look_for_args_moves (CORE_ADDR start_pc, int media_mode)
486 {
487 CORE_ADDR here, end;
488 int w;
489 int insn_size = (media_mode ? 4 : 2);
490
491 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
492 {
493 if (media_mode)
494 {
495 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
496 here += insn_size;
497 if (IS_MEDIA_IND_ARG_MOV (w))
498 {
499 /* This must be followed by a store to r14, so the argument
500 is where the debug info says it is. This can happen after
501 the SP has been saved, unfortunately. */
502
503 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
504 insn_size);
505 here += insn_size;
506 if (IS_MEDIA_MOV_TO_R14 (next_insn))
507 start_pc = here;
508 }
509 else if (IS_MEDIA_ARG_MOV (w))
510 {
511 /* These instructions store directly the argument in r14. */
512 start_pc = here;
513 }
514 else
515 break;
516 }
517 else
518 {
519 w = read_memory_integer (here, insn_size);
520 w = w & 0xffff;
521 here += insn_size;
522 if (IS_COMPACT_IND_ARG_MOV (w))
523 {
524 /* This must be followed by a store to r14, so the argument
525 is where the debug info says it is. This can happen after
526 the SP has been saved, unfortunately. */
527
528 int next_insn = 0xffff & read_memory_integer (here, insn_size);
529 here += insn_size;
530 if (IS_COMPACT_MOV_TO_R14 (next_insn))
531 start_pc = here;
532 }
533 else if (IS_COMPACT_ARG_MOV (w))
534 {
535 /* These instructions store directly the argument in r14. */
536 start_pc = here;
537 }
538 else if (IS_MOVL_R0 (w))
539 {
540 /* There is a function that gcc calls to get the arguments
541 passed correctly to the function. Only after this
542 function call the arguments will be found at the place
543 where they are supposed to be. This happens in case the
544 argument has to be stored into a 64-bit register (for
545 instance doubles, long longs). SHcompact doesn't have
546 access to the full 64-bits, so we store the register in
547 stack slot and store the address of the stack slot in
548 the register, then do a call through a wrapper that
549 loads the memory value into the register. A SHcompact
550 callee calls an argument decoder
551 (GCC_shcompact_incoming_args) that stores the 64-bit
552 value in a stack slot and stores the address of the
553 stack slot in the register. GCC thinks the argument is
554 just passed by transparent reference, but this is only
555 true after the argument decoder is called. Such a call
556 needs to be considered part of the prologue. */
557
558 /* This must be followed by a JSR @r0 instruction and by
559 a NOP instruction. After these, the prologue is over! */
560
561 int next_insn = 0xffff & read_memory_integer (here, insn_size);
562 here += insn_size;
563 if (IS_JSR_R0 (next_insn))
564 {
565 next_insn = 0xffff & read_memory_integer (here, insn_size);
566 here += insn_size;
567
568 if (IS_NOP (next_insn))
569 start_pc = here;
570 }
571 }
572 else
573 break;
574 }
575 }
576
577 return start_pc;
578 }
579
580 static CORE_ADDR
581 sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
582 {
583 CORE_ADDR here, end;
584 int updated_fp = 0;
585 int insn_size = 4;
586 int media_mode = 1;
587
588 if (!start_pc)
589 return 0;
590
591 if (pc_is_isa32 (start_pc) == 0)
592 {
593 insn_size = 2;
594 media_mode = 0;
595 }
596
597 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
598 {
599
600 if (media_mode)
601 {
602 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
603 here += insn_size;
604 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
605 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
606 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
607 {
608 start_pc = here;
609 }
610 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
611 {
612 start_pc = here;
613 updated_fp = 1;
614 }
615 else
616 if (updated_fp)
617 {
618 /* Don't bail out yet, we may have arguments stored in
619 registers here, according to the debug info, so that
620 gdb can print the frames correctly. */
621 start_pc = look_for_args_moves (here - insn_size, media_mode);
622 break;
623 }
624 }
625 else
626 {
627 int w = 0xffff & read_memory_integer (here, insn_size);
628 here += insn_size;
629
630 if (IS_STS_R0 (w) || IS_STS_PR (w)
631 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
632 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
633 {
634 start_pc = here;
635 }
636 else if (IS_MOV_SP_FP (w))
637 {
638 start_pc = here;
639 updated_fp = 1;
640 }
641 else
642 if (updated_fp)
643 {
644 /* Don't bail out yet, we may have arguments stored in
645 registers here, according to the debug info, so that
646 gdb can print the frames correctly. */
647 start_pc = look_for_args_moves (here - insn_size, media_mode);
648 break;
649 }
650 }
651 }
652
653 return start_pc;
654 }
655
656 static CORE_ADDR
657 sh64_skip_prologue (CORE_ADDR pc)
658 {
659 CORE_ADDR post_prologue_pc;
660
661 /* See if we can determine the end of the prologue via the symbol table.
662 If so, then return either PC, or the PC after the prologue, whichever
663 is greater. */
664 post_prologue_pc = after_prologue (pc);
665
666 /* If after_prologue returned a useful address, then use it. Else
667 fall back on the instruction skipping code. */
668 if (post_prologue_pc != 0)
669 return max (pc, post_prologue_pc);
670 else
671 return sh64_skip_prologue_hard_way (pc);
672 }
673
674 /* Should call_function allocate stack space for a struct return? */
675 static int
676 sh64_use_struct_convention (struct type *type)
677 {
678 return (TYPE_LENGTH (type) > 8);
679 }
680
681 /* Disassemble an instruction. */
682 static int
683 gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
684 {
685 info->endian = TARGET_BYTE_ORDER;
686 return print_insn_sh (memaddr, info);
687 }
688
689 /* For vectors of 4 floating point registers. */
690 static int
691 sh64_fv_reg_base_num (int fv_regnum)
692 {
693 int fp_regnum;
694
695 fp_regnum = FP0_REGNUM +
696 (fv_regnum - FV0_REGNUM) * 4;
697 return fp_regnum;
698 }
699
700 /* For double precision floating point registers, i.e 2 fp regs.*/
701 static int
702 sh64_dr_reg_base_num (int dr_regnum)
703 {
704 int fp_regnum;
705
706 fp_regnum = FP0_REGNUM +
707 (dr_regnum - DR0_REGNUM) * 2;
708 return fp_regnum;
709 }
710
711 /* For pairs of floating point registers */
712 static int
713 sh64_fpp_reg_base_num (int fpp_regnum)
714 {
715 int fp_regnum;
716
717 fp_regnum = FP0_REGNUM +
718 (fpp_regnum - FPP0_REGNUM) * 2;
719 return fp_regnum;
720 }
721
722 /* *INDENT-OFF* */
723 /*
724 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
725 GDB_REGNUM BASE_REGNUM
726 r0_c 221 0
727 r1_c 222 1
728 r2_c 223 2
729 r3_c 224 3
730 r4_c 225 4
731 r5_c 226 5
732 r6_c 227 6
733 r7_c 228 7
734 r8_c 229 8
735 r9_c 230 9
736 r10_c 231 10
737 r11_c 232 11
738 r12_c 233 12
739 r13_c 234 13
740 r14_c 235 14
741 r15_c 236 15
742
743 pc_c 237 64
744 gbr_c 238 16
745 mach_c 239 17
746 macl_c 240 17
747 pr_c 241 18
748 t_c 242 19
749 fpscr_c 243 76
750 fpul_c 244 109
751
752 fr0_c 245 77
753 fr1_c 246 78
754 fr2_c 247 79
755 fr3_c 248 80
756 fr4_c 249 81
757 fr5_c 250 82
758 fr6_c 251 83
759 fr7_c 252 84
760 fr8_c 253 85
761 fr9_c 254 86
762 fr10_c 255 87
763 fr11_c 256 88
764 fr12_c 257 89
765 fr13_c 258 90
766 fr14_c 259 91
767 fr15_c 260 92
768
769 dr0_c 261 77
770 dr2_c 262 79
771 dr4_c 263 81
772 dr6_c 264 83
773 dr8_c 265 85
774 dr10_c 266 87
775 dr12_c 267 89
776 dr14_c 268 91
777
778 fv0_c 269 77
779 fv4_c 270 81
780 fv8_c 271 85
781 fv12_c 272 91
782 */
783 /* *INDENT-ON* */
784 static int
785 sh64_compact_reg_base_num (int reg_nr)
786 {
787 int base_regnum = reg_nr;
788
789 /* general register N maps to general register N */
790 if (reg_nr >= R0_C_REGNUM
791 && reg_nr <= R_LAST_C_REGNUM)
792 base_regnum = reg_nr - R0_C_REGNUM;
793
794 /* floating point register N maps to floating point register N */
795 else if (reg_nr >= FP0_C_REGNUM
796 && reg_nr <= FP_LAST_C_REGNUM)
797 base_regnum = reg_nr - FP0_C_REGNUM + FP0_REGNUM;
798
799 /* double prec register N maps to base regnum for double prec register N */
800 else if (reg_nr >= DR0_C_REGNUM
801 && reg_nr <= DR_LAST_C_REGNUM)
802 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
803
804 /* vector N maps to base regnum for vector register N */
805 else if (reg_nr >= FV0_C_REGNUM
806 && reg_nr <= FV_LAST_C_REGNUM)
807 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
808
809 else if (reg_nr == PC_C_REGNUM)
810 base_regnum = PC_REGNUM;
811
812 else if (reg_nr == GBR_C_REGNUM)
813 base_regnum = 16;
814
815 else if (reg_nr == MACH_C_REGNUM
816 || reg_nr == MACL_C_REGNUM)
817 base_regnum = 17;
818
819 else if (reg_nr == PR_C_REGNUM)
820 base_regnum = PR_REGNUM;
821
822 else if (reg_nr == T_C_REGNUM)
823 base_regnum = 19;
824
825 else if (reg_nr == FPSCR_C_REGNUM)
826 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
827
828 else if (reg_nr == FPUL_C_REGNUM)
829 base_regnum = FP0_REGNUM + 32;
830
831 return base_regnum;
832 }
833
834 static int
835 sign_extend (int value, int bits)
836 {
837 value = value & ((1 << bits) - 1);
838 return (value & (1 << (bits - 1))
839 ? value | (~((1 << bits) - 1))
840 : value);
841 }
842
843 static void
844 sh64_analyze_prologue (struct gdbarch *gdbarch,
845 struct sh64_frame_cache *cache,
846 CORE_ADDR func_pc,
847 CORE_ADDR current_pc)
848 {
849 int reg_nr;
850 int pc;
851 int opc;
852 int insn;
853 int r0_val = 0;
854 int insn_size;
855 int gdb_register_number;
856 int register_number;
857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
858
859 cache->sp_offset = 0;
860
861 /* Loop around examining the prologue insns until we find something
862 that does not appear to be part of the prologue. But give up
863 after 20 of them, since we're getting silly then. */
864
865 pc = func_pc;
866
867 if (cache->media_mode)
868 insn_size = 4;
869 else
870 insn_size = 2;
871
872 opc = pc + (insn_size * 28);
873 if (opc > current_pc)
874 opc = current_pc;
875 for ( ; pc <= opc; pc += insn_size)
876 {
877 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
878 : pc,
879 insn_size);
880
881 if (!cache->media_mode)
882 {
883 if (IS_STS_PR (insn))
884 {
885 int next_insn = read_memory_integer (pc + insn_size, insn_size);
886 if (IS_MOV_TO_R15 (next_insn))
887 {
888 cache->saved_regs[PR_REGNUM] =
889 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
890 pc += insn_size;
891 }
892 }
893
894 else if (IS_MOV_R14 (insn))
895 cache->saved_regs[MEDIA_FP_REGNUM] =
896 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
897
898 else if (IS_MOV_R0 (insn))
899 {
900 /* Put in R0 the offset from SP at which to store some
901 registers. We are interested in this value, because it
902 will tell us where the given registers are stored within
903 the frame. */
904 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
905 }
906
907 else if (IS_ADD_SP_R0 (insn))
908 {
909 /* This instruction still prepares r0, but we don't care.
910 We already have the offset in r0_val. */
911 }
912
913 else if (IS_STS_R0 (insn))
914 {
915 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
916 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
917 r0_val -= 4;
918 }
919
920 else if (IS_MOV_R14_R0 (insn))
921 {
922 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
923 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
924 - (r0_val - 4);
925 r0_val -= 4;
926 }
927
928 else if (IS_ADD_SP (insn))
929 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
930
931 else if (IS_MOV_SP_FP (insn))
932 break;
933 }
934 else
935 {
936 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
937 cache->sp_offset -=
938 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
939
940 else if (IS_STQ_R18_R15 (insn))
941 cache->saved_regs[PR_REGNUM] =
942 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
943
944 else if (IS_STL_R18_R15 (insn))
945 cache->saved_regs[PR_REGNUM] =
946 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
947
948 else if (IS_STQ_R14_R15 (insn))
949 cache->saved_regs[MEDIA_FP_REGNUM] =
950 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
951
952 else if (IS_STL_R14_R15 (insn))
953 cache->saved_regs[MEDIA_FP_REGNUM] =
954 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
955
956 else if (IS_MOV_SP_FP_MEDIA (insn))
957 break;
958 }
959 }
960
961 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
962 cache->uses_fp = 1;
963 }
964
965 static CORE_ADDR
966 sh64_extract_struct_value_address (struct regcache *regcache)
967 {
968 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
969 address regster is preserved across function calls? Probably
970 not, making this function wrong. */
971 ULONGEST val;
972 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
973 return val;
974 }
975
976 static CORE_ADDR
977 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
978 {
979 return sp & ~7;
980 }
981
982 /* Function: push_dummy_call
983 Setup the function arguments for calling a function in the inferior.
984
985 On the Renesas SH architecture, there are four registers (R4 to R7)
986 which are dedicated for passing function arguments. Up to the first
987 four arguments (depending on size) may go into these registers.
988 The rest go on the stack.
989
990 Arguments that are smaller than 4 bytes will still take up a whole
991 register or a whole 32-bit word on the stack, and will be
992 right-justified in the register or the stack word. This includes
993 chars, shorts, and small aggregate types.
994
995 Arguments that are larger than 4 bytes may be split between two or
996 more registers. If there are not enough registers free, an argument
997 may be passed partly in a register (or registers), and partly on the
998 stack. This includes doubles, long longs, and larger aggregates.
999 As far as I know, there is no upper limit to the size of aggregates
1000 that will be passed in this way; in other words, the convention of
1001 passing a pointer to a large aggregate instead of a copy is not used.
1002
1003 An exceptional case exists for struct arguments (and possibly other
1004 aggregates such as arrays) if the size is larger than 4 bytes but
1005 not a multiple of 4 bytes. In this case the argument is never split
1006 between the registers and the stack, but instead is copied in its
1007 entirety onto the stack, AND also copied into as many registers as
1008 there is room for. In other words, space in registers permitting,
1009 two copies of the same argument are passed in. As far as I can tell,
1010 only the one on the stack is used, although that may be a function
1011 of the level of compiler optimization. I suspect this is a compiler
1012 bug. Arguments of these odd sizes are left-justified within the
1013 word (as opposed to arguments smaller than 4 bytes, which are
1014 right-justified).
1015
1016 If the function is to return an aggregate type such as a struct, it
1017 is either returned in the normal return value register R0 (if its
1018 size is no greater than one byte), or else the caller must allocate
1019 space into which the callee will copy the return value (if the size
1020 is greater than one byte). In this case, a pointer to the return
1021 value location is passed into the callee in register R2, which does
1022 not displace any of the other arguments passed in via registers R4
1023 to R7. */
1024
1025 /* R2-R9 for integer types and integer equivalent (char, pointers) and
1026 non-scalar (struct, union) elements (even if the elements are
1027 floats).
1028 FR0-FR11 for single precision floating point (float)
1029 DR0-DR10 for double precision floating point (double)
1030
1031 If a float is argument number 3 (for instance) and arguments number
1032 1,2, and 4 are integer, the mapping will be:
1033 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1034
1035 If a float is argument number 10 (for instance) and arguments number
1036 1 through 10 are integer, the mapping will be:
1037 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1038 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1039 I.e. there is hole in the stack.
1040
1041 Different rules apply for variable arguments functions, and for functions
1042 for which the prototype is not known. */
1043
1044 static CORE_ADDR
1045 sh64_push_dummy_call (struct gdbarch *gdbarch,
1046 struct value *function,
1047 struct regcache *regcache,
1048 CORE_ADDR bp_addr,
1049 int nargs, struct value **args,
1050 CORE_ADDR sp, int struct_return,
1051 CORE_ADDR struct_addr)
1052 {
1053 int stack_offset, stack_alloc;
1054 int int_argreg;
1055 int float_argreg;
1056 int double_argreg;
1057 int float_arg_index = 0;
1058 int double_arg_index = 0;
1059 int argnum;
1060 struct type *type;
1061 CORE_ADDR regval;
1062 char *val;
1063 char valbuf[8];
1064 char valbuf_tmp[8];
1065 int len;
1066 int argreg_size;
1067 int fp_args[12];
1068
1069 memset (fp_args, 0, sizeof (fp_args));
1070
1071 /* first force sp to a 8-byte alignment */
1072 sp = sh64_frame_align (gdbarch, sp);
1073
1074 /* The "struct return pointer" pseudo-argument has its own dedicated
1075 register */
1076
1077 if (struct_return)
1078 regcache_cooked_write_unsigned (regcache,
1079 STRUCT_RETURN_REGNUM, struct_addr);
1080
1081 /* Now make sure there's space on the stack */
1082 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1083 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
1084 sp -= stack_alloc; /* make room on stack for args */
1085
1086 /* Now load as many as possible of the first arguments into
1087 registers, and push the rest onto the stack. There are 64 bytes
1088 in eight registers available. Loop thru args from first to last. */
1089
1090 int_argreg = ARG0_REGNUM;
1091 float_argreg = FP0_REGNUM;
1092 double_argreg = DR0_REGNUM;
1093
1094 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1095 {
1096 type = value_type (args[argnum]);
1097 len = TYPE_LENGTH (type);
1098 memset (valbuf, 0, sizeof (valbuf));
1099
1100 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1101 {
1102 argreg_size = register_size (current_gdbarch, int_argreg);
1103
1104 if (len < argreg_size)
1105 {
1106 /* value gets right-justified in the register or stack word */
1107 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1108 memcpy (valbuf + argreg_size - len,
1109 (char *) value_contents (args[argnum]), len);
1110 else
1111 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
1112
1113 val = valbuf;
1114 }
1115 else
1116 val = (char *) value_contents (args[argnum]);
1117
1118 while (len > 0)
1119 {
1120 if (int_argreg > ARGLAST_REGNUM)
1121 {
1122 /* must go on the stack */
1123 write_memory (sp + stack_offset, (const bfd_byte *) val,
1124 argreg_size);
1125 stack_offset += 8;/*argreg_size;*/
1126 }
1127 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1128 That's because some *&^%$ things get passed on the stack
1129 AND in the registers! */
1130 if (int_argreg <= ARGLAST_REGNUM)
1131 {
1132 /* there's room in a register */
1133 regval = extract_unsigned_integer (val, argreg_size);
1134 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
1135 }
1136 /* Store the value 8 bytes at a time. This means that
1137 things larger than 8 bytes may go partly in registers
1138 and partly on the stack. FIXME: argreg is incremented
1139 before we use its size. */
1140 len -= argreg_size;
1141 val += argreg_size;
1142 int_argreg++;
1143 }
1144 }
1145 else
1146 {
1147 val = (char *) value_contents (args[argnum]);
1148 if (len == 4)
1149 {
1150 /* Where is it going to be stored? */
1151 while (fp_args[float_arg_index])
1152 float_arg_index ++;
1153
1154 /* Now float_argreg points to the register where it
1155 should be stored. Are we still within the allowed
1156 register set? */
1157 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1158 {
1159 /* Goes in FR0...FR11 */
1160 regcache_cooked_write (regcache,
1161 FP0_REGNUM + float_arg_index,
1162 val);
1163 fp_args[float_arg_index] = 1;
1164 /* Skip the corresponding general argument register. */
1165 int_argreg ++;
1166 }
1167 else
1168 ;
1169 /* Store it as the integers, 8 bytes at the time, if
1170 necessary spilling on the stack. */
1171
1172 }
1173 else if (len == 8)
1174 {
1175 /* Where is it going to be stored? */
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
1180 Are we still within the allowed register set? */
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1182 {
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
1185 i.e. includes odd numbers. */
1186 int double_register_offset = double_arg_index / 2;
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
1191 /* Skip the corresponding general argument register. */
1192 int_argreg ++;
1193 }
1194 else
1195 ;
1196 /* Store it as the integers, 8 bytes at the time, if
1197 necessary spilling on the stack. */
1198 }
1199 }
1200 }
1201 /* Store return address. */
1202 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
1203
1204 /* Update stack pointer. */
1205 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1206
1207 return sp;
1208 }
1209
1210 /* Find a function's return value in the appropriate registers (in
1211 regbuf), and copy it into valbuf. Extract from an array REGBUF
1212 containing the (raw) register state a function return value of type
1213 TYPE, and copy that, in virtual format, into VALBUF. */
1214 static void
1215 sh64_extract_return_value (struct type *type, struct regcache *regcache,
1216 void *valbuf)
1217 {
1218 int len = TYPE_LENGTH (type);
1219
1220 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1221 {
1222 if (len == 4)
1223 {
1224 /* Return value stored in FP0_REGNUM */
1225 regcache_raw_read (regcache, FP0_REGNUM, valbuf);
1226 }
1227 else if (len == 8)
1228 {
1229 /* return value stored in DR0_REGNUM */
1230 DOUBLEST val;
1231 gdb_byte buf[8];
1232
1233 regcache_cooked_read (regcache, DR0_REGNUM, buf);
1234
1235 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1236 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1237 buf, &val);
1238 else
1239 floatformat_to_doublest (&floatformat_ieee_double_big,
1240 buf, &val);
1241 store_typed_floating (valbuf, type, val);
1242 }
1243 }
1244 else
1245 {
1246 if (len <= 8)
1247 {
1248 int offset;
1249 char buf[8];
1250 /* Result is in register 2. If smaller than 8 bytes, it is padded
1251 at the most significant end. */
1252 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1253
1254 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1255 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1256 - len;
1257 else
1258 offset = 0;
1259 memcpy (valbuf, buf + offset, len);
1260 }
1261 else
1262 error ("bad size for return value");
1263 }
1264 }
1265
1266 /* Write into appropriate registers a function return value
1267 of type TYPE, given in virtual format.
1268 If the architecture is sh4 or sh3e, store a function's return value
1269 in the R0 general register or in the FP0 floating point register,
1270 depending on the type of the return value. In all the other cases
1271 the result is stored in r0, left-justified. */
1272
1273 static void
1274 sh64_store_return_value (struct type *type, struct regcache *regcache,
1275 const void *valbuf)
1276 {
1277 char buf[64]; /* more than enough... */
1278 int len = TYPE_LENGTH (type);
1279
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281 {
1282 int i, regnum = FP0_REGNUM;
1283 for (i = 0; i < len; i += 4)
1284 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1285 regcache_raw_write (regcache, regnum++,
1286 (char *) valbuf + len - 4 - i);
1287 else
1288 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
1289 }
1290 else
1291 {
1292 int return_register = DEFAULT_RETURN_REGNUM;
1293 int offset = 0;
1294
1295 if (len <= register_size (current_gdbarch, return_register))
1296 {
1297 /* Pad with zeros. */
1298 memset (buf, 0, register_size (current_gdbarch, return_register));
1299 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1300 offset = 0; /*register_size (current_gdbarch,
1301 return_register) - len;*/
1302 else
1303 offset = register_size (current_gdbarch, return_register) - len;
1304
1305 memcpy (buf + offset, valbuf, len);
1306 regcache_raw_write (regcache, return_register, buf);
1307 }
1308 else
1309 regcache_raw_write (regcache, return_register, valbuf);
1310 }
1311 }
1312
1313 static enum return_value_convention
1314 sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1315 struct regcache *regcache,
1316 gdb_byte *readbuf, const gdb_byte *writebuf)
1317 {
1318 if (sh64_use_struct_convention (type))
1319 return RETURN_VALUE_STRUCT_CONVENTION;
1320 if (writebuf)
1321 sh64_store_return_value (type, regcache, writebuf);
1322 else if (readbuf)
1323 sh64_extract_return_value (type, regcache, readbuf);
1324 return RETURN_VALUE_REGISTER_CONVENTION;
1325 }
1326
1327 static void
1328 sh64_show_media_regs (void)
1329 {
1330 int i;
1331
1332 printf_filtered ("PC=%s SR=%016llx \n",
1333 paddr (read_register (PC_REGNUM)),
1334 (long long) read_register (SR_REGNUM));
1335
1336 printf_filtered ("SSR=%016llx SPC=%016llx \n",
1337 (long long) read_register (SSR_REGNUM),
1338 (long long) read_register (SPC_REGNUM));
1339 printf_filtered ("FPSCR=%016lx\n ",
1340 (long) read_register (FPSCR_REGNUM));
1341
1342 for (i = 0; i < 64; i = i + 4)
1343 printf_filtered ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1344 i, i + 3,
1345 (long long) read_register (i + 0),
1346 (long long) read_register (i + 1),
1347 (long long) read_register (i + 2),
1348 (long long) read_register (i + 3));
1349
1350 printf_filtered ("\n");
1351
1352 for (i = 0; i < 64; i = i + 8)
1353 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1354 i, i + 7,
1355 (long) read_register (FP0_REGNUM + i + 0),
1356 (long) read_register (FP0_REGNUM + i + 1),
1357 (long) read_register (FP0_REGNUM + i + 2),
1358 (long) read_register (FP0_REGNUM + i + 3),
1359 (long) read_register (FP0_REGNUM + i + 4),
1360 (long) read_register (FP0_REGNUM + i + 5),
1361 (long) read_register (FP0_REGNUM + i + 6),
1362 (long) read_register (FP0_REGNUM + i + 7));
1363 }
1364
1365 static void
1366 sh64_show_compact_regs (void)
1367 {
1368 int i;
1369
1370 printf_filtered ("PC=%s \n",
1371 paddr (read_register (PC_C_REGNUM)));
1372
1373 printf_filtered ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1374 (long) read_register (GBR_C_REGNUM),
1375 (long) read_register (MACH_C_REGNUM),
1376 (long) read_register (MACL_C_REGNUM),
1377 (long) read_register (PR_C_REGNUM),
1378 (long) read_register (T_C_REGNUM));
1379 printf_filtered ("FPSCR=%08lx FPUL=%08lx\n",
1380 (long) read_register (FPSCR_C_REGNUM),
1381 (long) read_register (FPUL_C_REGNUM));
1382
1383 for (i = 0; i < 16; i = i + 4)
1384 printf_filtered ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1385 i, i + 3,
1386 (long) read_register (i + 0),
1387 (long) read_register (i + 1),
1388 (long) read_register (i + 2),
1389 (long) read_register (i + 3));
1390
1391 printf_filtered ("\n");
1392
1393 for (i = 0; i < 16; i = i + 8)
1394 printf_filtered ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1395 i, i + 7,
1396 (long) read_register (FP0_REGNUM + i + 0),
1397 (long) read_register (FP0_REGNUM + i + 1),
1398 (long) read_register (FP0_REGNUM + i + 2),
1399 (long) read_register (FP0_REGNUM + i + 3),
1400 (long) read_register (FP0_REGNUM + i + 4),
1401 (long) read_register (FP0_REGNUM + i + 5),
1402 (long) read_register (FP0_REGNUM + i + 6),
1403 (long) read_register (FP0_REGNUM + i + 7));
1404 }
1405
1406 /* FIXME!!! This only shows the registers for shmedia, excluding the
1407 pseudo registers. */
1408 void
1409 sh64_show_regs (void)
1410 {
1411 if (deprecated_selected_frame
1412 && pc_is_isa32 (get_frame_pc (deprecated_selected_frame)))
1413 sh64_show_media_regs ();
1414 else
1415 sh64_show_compact_regs ();
1416 }
1417
1418 /* *INDENT-OFF* */
1419 /*
1420 SH MEDIA MODE (ISA 32)
1421 general registers (64-bit) 0-63
1422 0 r0, r1, r2, r3, r4, r5, r6, r7,
1423 64 r8, r9, r10, r11, r12, r13, r14, r15,
1424 128 r16, r17, r18, r19, r20, r21, r22, r23,
1425 192 r24, r25, r26, r27, r28, r29, r30, r31,
1426 256 r32, r33, r34, r35, r36, r37, r38, r39,
1427 320 r40, r41, r42, r43, r44, r45, r46, r47,
1428 384 r48, r49, r50, r51, r52, r53, r54, r55,
1429 448 r56, r57, r58, r59, r60, r61, r62, r63,
1430
1431 pc (64-bit) 64
1432 512 pc,
1433
1434 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1435 520 sr, ssr, spc,
1436
1437 target registers (64-bit) 68-75
1438 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1439
1440 floating point state control register (32-bit) 76
1441 608 fpscr,
1442
1443 single precision floating point registers (32-bit) 77-140
1444 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1445 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1446 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1447 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1448 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1449 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1450 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1451 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1452
1453 TOTAL SPACE FOR REGISTERS: 868 bytes
1454
1455 From here on they are all pseudo registers: no memory allocated.
1456 REGISTER_BYTE returns the register byte for the base register.
1457
1458 double precision registers (pseudo) 141-172
1459 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1460 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1461 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1462 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1463
1464 floating point pairs (pseudo) 173-204
1465 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1466 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1467 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1468 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1469
1470 floating point vectors (4 floating point regs) (pseudo) 205-220
1471 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1472 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1473
1474 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1475 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1476 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1477 pc_c,
1478 gbr_c, mach_c, macl_c, pr_c, t_c,
1479 fpscr_c, fpul_c,
1480 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1481 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1482 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1483 fv0_c, fv4_c, fv8_c, fv12_c
1484 */
1485
1486 static struct type *
1487 sh64_build_float_register_type (int high)
1488 {
1489 struct type *temp;
1490
1491 temp = create_range_type (NULL, builtin_type_int, 0, high);
1492 return create_array_type (NULL, builtin_type_float, temp);
1493 }
1494
1495 /* Return the GDB type object for the "standard" data type
1496 of data in register REG_NR. */
1497 static struct type *
1498 sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
1499 {
1500 if ((reg_nr >= FP0_REGNUM
1501 && reg_nr <= FP_LAST_REGNUM)
1502 || (reg_nr >= FP0_C_REGNUM
1503 && reg_nr <= FP_LAST_C_REGNUM))
1504 return builtin_type_float;
1505 else if ((reg_nr >= DR0_REGNUM
1506 && reg_nr <= DR_LAST_REGNUM)
1507 || (reg_nr >= DR0_C_REGNUM
1508 && reg_nr <= DR_LAST_C_REGNUM))
1509 return builtin_type_double;
1510 else if (reg_nr >= FPP0_REGNUM
1511 && reg_nr <= FPP_LAST_REGNUM)
1512 return sh64_build_float_register_type (1);
1513 else if ((reg_nr >= FV0_REGNUM
1514 && reg_nr <= FV_LAST_REGNUM)
1515 ||(reg_nr >= FV0_C_REGNUM
1516 && reg_nr <= FV_LAST_C_REGNUM))
1517 return sh64_build_float_register_type (3);
1518 else if (reg_nr == FPSCR_REGNUM)
1519 return builtin_type_int;
1520 else if (reg_nr >= R0_C_REGNUM
1521 && reg_nr < FP0_C_REGNUM)
1522 return builtin_type_int;
1523 else
1524 return builtin_type_long_long;
1525 }
1526
1527 static void
1528 sh64_register_convert_to_virtual (int regnum, struct type *type,
1529 char *from, char *to)
1530 {
1531 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1532 {
1533 /* It is a no-op. */
1534 memcpy (to, from, register_size (current_gdbarch, regnum));
1535 return;
1536 }
1537
1538 if ((regnum >= DR0_REGNUM
1539 && regnum <= DR_LAST_REGNUM)
1540 || (regnum >= DR0_C_REGNUM
1541 && regnum <= DR_LAST_C_REGNUM))
1542 {
1543 DOUBLEST val;
1544 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1545 from, &val);
1546 store_typed_floating (to, type, val);
1547 }
1548 else
1549 error ("sh64_register_convert_to_virtual called with non DR register number");
1550 }
1551
1552 static void
1553 sh64_register_convert_to_raw (struct type *type, int regnum,
1554 const void *from, void *to)
1555 {
1556 if (TARGET_BYTE_ORDER != BFD_ENDIAN_LITTLE)
1557 {
1558 /* It is a no-op. */
1559 memcpy (to, from, register_size (current_gdbarch, regnum));
1560 return;
1561 }
1562
1563 if ((regnum >= DR0_REGNUM
1564 && regnum <= DR_LAST_REGNUM)
1565 || (regnum >= DR0_C_REGNUM
1566 && regnum <= DR_LAST_C_REGNUM))
1567 {
1568 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
1569 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1570 &val, to);
1571 }
1572 else
1573 error ("sh64_register_convert_to_raw called with non DR register number");
1574 }
1575
1576 static void
1577 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1578 int reg_nr, gdb_byte *buffer)
1579 {
1580 int base_regnum;
1581 int portion;
1582 int offset = 0;
1583 char temp_buffer[MAX_REGISTER_SIZE];
1584
1585 if (reg_nr >= DR0_REGNUM
1586 && reg_nr <= DR_LAST_REGNUM)
1587 {
1588 base_regnum = sh64_dr_reg_base_num (reg_nr);
1589
1590 /* Build the value in the provided buffer. */
1591 /* DR regs are double precision registers obtained by
1592 concatenating 2 single precision floating point registers. */
1593 for (portion = 0; portion < 2; portion++)
1594 regcache_raw_read (regcache, base_regnum + portion,
1595 (temp_buffer
1596 + register_size (gdbarch, base_regnum) * portion));
1597
1598 /* We must pay attention to the endianness. */
1599 sh64_register_convert_to_virtual (reg_nr,
1600 register_type (gdbarch, reg_nr),
1601 temp_buffer, buffer);
1602
1603 }
1604
1605 else if (reg_nr >= FPP0_REGNUM
1606 && reg_nr <= FPP_LAST_REGNUM)
1607 {
1608 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1609
1610 /* Build the value in the provided buffer. */
1611 /* FPP regs are pairs of single precision registers obtained by
1612 concatenating 2 single precision floating point registers. */
1613 for (portion = 0; portion < 2; portion++)
1614 regcache_raw_read (regcache, base_regnum + portion,
1615 ((char *) buffer
1616 + register_size (gdbarch, base_regnum) * portion));
1617 }
1618
1619 else if (reg_nr >= FV0_REGNUM
1620 && reg_nr <= FV_LAST_REGNUM)
1621 {
1622 base_regnum = sh64_fv_reg_base_num (reg_nr);
1623
1624 /* Build the value in the provided buffer. */
1625 /* FV regs are vectors of single precision registers obtained by
1626 concatenating 4 single precision floating point registers. */
1627 for (portion = 0; portion < 4; portion++)
1628 regcache_raw_read (regcache, base_regnum + portion,
1629 ((char *) buffer
1630 + register_size (gdbarch, base_regnum) * portion));
1631 }
1632
1633 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1634 else if (reg_nr >= R0_C_REGNUM
1635 && reg_nr <= T_C_REGNUM)
1636 {
1637 base_regnum = sh64_compact_reg_base_num (reg_nr);
1638
1639 /* Build the value in the provided buffer. */
1640 regcache_raw_read (regcache, base_regnum, temp_buffer);
1641 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1642 offset = 4;
1643 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1644 }
1645
1646 else if (reg_nr >= FP0_C_REGNUM
1647 && reg_nr <= FP_LAST_C_REGNUM)
1648 {
1649 base_regnum = sh64_compact_reg_base_num (reg_nr);
1650
1651 /* Build the value in the provided buffer. */
1652 /* Floating point registers map 1-1 to the media fp regs,
1653 they have the same size and endianness. */
1654 regcache_raw_read (regcache, base_regnum, buffer);
1655 }
1656
1657 else if (reg_nr >= DR0_C_REGNUM
1658 && reg_nr <= DR_LAST_C_REGNUM)
1659 {
1660 base_regnum = sh64_compact_reg_base_num (reg_nr);
1661
1662 /* DR_C regs are double precision registers obtained by
1663 concatenating 2 single precision floating point registers. */
1664 for (portion = 0; portion < 2; portion++)
1665 regcache_raw_read (regcache, base_regnum + portion,
1666 (temp_buffer
1667 + register_size (gdbarch, base_regnum) * portion));
1668
1669 /* We must pay attention to the endianness. */
1670 sh64_register_convert_to_virtual (reg_nr,
1671 register_type (gdbarch, reg_nr),
1672 temp_buffer, buffer);
1673 }
1674
1675 else if (reg_nr >= FV0_C_REGNUM
1676 && reg_nr <= FV_LAST_C_REGNUM)
1677 {
1678 base_regnum = sh64_compact_reg_base_num (reg_nr);
1679
1680 /* Build the value in the provided buffer. */
1681 /* FV_C regs are vectors of single precision registers obtained by
1682 concatenating 4 single precision floating point registers. */
1683 for (portion = 0; portion < 4; portion++)
1684 regcache_raw_read (regcache, base_regnum + portion,
1685 ((char *) buffer
1686 + register_size (gdbarch, base_regnum) * portion));
1687 }
1688
1689 else if (reg_nr == FPSCR_C_REGNUM)
1690 {
1691 int fpscr_base_regnum;
1692 int sr_base_regnum;
1693 unsigned int fpscr_value;
1694 unsigned int sr_value;
1695 unsigned int fpscr_c_value;
1696 unsigned int fpscr_c_part1_value;
1697 unsigned int fpscr_c_part2_value;
1698
1699 fpscr_base_regnum = FPSCR_REGNUM;
1700 sr_base_regnum = SR_REGNUM;
1701
1702 /* Build the value in the provided buffer. */
1703 /* FPSCR_C is a very weird register that contains sparse bits
1704 from the FPSCR and the SR architectural registers.
1705 Specifically: */
1706 /* *INDENT-OFF* */
1707 /*
1708 FPSRC_C bit
1709 0 Bit 0 of FPSCR
1710 1 reserved
1711 2-17 Bit 2-18 of FPSCR
1712 18-20 Bits 12,13,14 of SR
1713 21-31 reserved
1714 */
1715 /* *INDENT-ON* */
1716 /* Get FPSCR into a local buffer */
1717 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1718 /* Get value as an int. */
1719 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1720 /* Get SR into a local buffer */
1721 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1722 /* Get value as an int. */
1723 sr_value = extract_unsigned_integer (temp_buffer, 4);
1724 /* Build the new value. */
1725 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1726 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1727 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1728 /* Store that in out buffer!!! */
1729 store_unsigned_integer (buffer, 4, fpscr_c_value);
1730 /* FIXME There is surely an endianness gotcha here. */
1731 }
1732
1733 else if (reg_nr == FPUL_C_REGNUM)
1734 {
1735 base_regnum = sh64_compact_reg_base_num (reg_nr);
1736
1737 /* FPUL_C register is floating point register 32,
1738 same size, same endianness. */
1739 regcache_raw_read (regcache, base_regnum, buffer);
1740 }
1741 }
1742
1743 static void
1744 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1745 int reg_nr, const gdb_byte *buffer)
1746 {
1747 int base_regnum, portion;
1748 int offset;
1749 char temp_buffer[MAX_REGISTER_SIZE];
1750
1751 if (reg_nr >= DR0_REGNUM
1752 && reg_nr <= DR_LAST_REGNUM)
1753 {
1754 base_regnum = sh64_dr_reg_base_num (reg_nr);
1755 /* We must pay attention to the endianness. */
1756 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1757 reg_nr,
1758 buffer, temp_buffer);
1759
1760 /* Write the real regs for which this one is an alias. */
1761 for (portion = 0; portion < 2; portion++)
1762 regcache_raw_write (regcache, base_regnum + portion,
1763 (temp_buffer
1764 + register_size (gdbarch,
1765 base_regnum) * portion));
1766 }
1767
1768 else if (reg_nr >= FPP0_REGNUM
1769 && reg_nr <= FPP_LAST_REGNUM)
1770 {
1771 base_regnum = sh64_fpp_reg_base_num (reg_nr);
1772
1773 /* Write the real regs for which this one is an alias. */
1774 for (portion = 0; portion < 2; portion++)
1775 regcache_raw_write (regcache, base_regnum + portion,
1776 ((char *) buffer
1777 + register_size (gdbarch,
1778 base_regnum) * portion));
1779 }
1780
1781 else if (reg_nr >= FV0_REGNUM
1782 && reg_nr <= FV_LAST_REGNUM)
1783 {
1784 base_regnum = sh64_fv_reg_base_num (reg_nr);
1785
1786 /* Write the real regs for which this one is an alias. */
1787 for (portion = 0; portion < 4; portion++)
1788 regcache_raw_write (regcache, base_regnum + portion,
1789 ((char *) buffer
1790 + register_size (gdbarch,
1791 base_regnum) * portion));
1792 }
1793
1794 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1795 register but only 4 bytes of it. */
1796 else if (reg_nr >= R0_C_REGNUM
1797 && reg_nr <= T_C_REGNUM)
1798 {
1799 base_regnum = sh64_compact_reg_base_num (reg_nr);
1800 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1801 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1802 offset = 4;
1803 else
1804 offset = 0;
1805 /* Let's read the value of the base register into a temporary
1806 buffer, so that overwriting the last four bytes with the new
1807 value of the pseudo will leave the upper 4 bytes unchanged. */
1808 regcache_raw_read (regcache, base_regnum, temp_buffer);
1809 /* Write as an 8 byte quantity */
1810 memcpy (temp_buffer + offset, buffer, 4);
1811 regcache_raw_write (regcache, base_regnum, temp_buffer);
1812 }
1813
1814 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1815 registers. Both are 4 bytes. */
1816 else if (reg_nr >= FP0_C_REGNUM
1817 && reg_nr <= FP_LAST_C_REGNUM)
1818 {
1819 base_regnum = sh64_compact_reg_base_num (reg_nr);
1820 regcache_raw_write (regcache, base_regnum, buffer);
1821 }
1822
1823 else if (reg_nr >= DR0_C_REGNUM
1824 && reg_nr <= DR_LAST_C_REGNUM)
1825 {
1826 base_regnum = sh64_compact_reg_base_num (reg_nr);
1827 for (portion = 0; portion < 2; portion++)
1828 {
1829 /* We must pay attention to the endianness. */
1830 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
1831 reg_nr,
1832 buffer, temp_buffer);
1833
1834 regcache_raw_write (regcache, base_regnum + portion,
1835 (temp_buffer
1836 + register_size (gdbarch,
1837 base_regnum) * portion));
1838 }
1839 }
1840
1841 else if (reg_nr >= FV0_C_REGNUM
1842 && reg_nr <= FV_LAST_C_REGNUM)
1843 {
1844 base_regnum = sh64_compact_reg_base_num (reg_nr);
1845
1846 for (portion = 0; portion < 4; portion++)
1847 {
1848 regcache_raw_write (regcache, base_regnum + portion,
1849 ((char *) buffer
1850 + register_size (gdbarch,
1851 base_regnum) * portion));
1852 }
1853 }
1854
1855 else if (reg_nr == FPSCR_C_REGNUM)
1856 {
1857 int fpscr_base_regnum;
1858 int sr_base_regnum;
1859 unsigned int fpscr_value;
1860 unsigned int sr_value;
1861 unsigned int old_fpscr_value;
1862 unsigned int old_sr_value;
1863 unsigned int fpscr_c_value;
1864 unsigned int fpscr_mask;
1865 unsigned int sr_mask;
1866
1867 fpscr_base_regnum = FPSCR_REGNUM;
1868 sr_base_regnum = SR_REGNUM;
1869
1870 /* FPSCR_C is a very weird register that contains sparse bits
1871 from the FPSCR and the SR architectural registers.
1872 Specifically: */
1873 /* *INDENT-OFF* */
1874 /*
1875 FPSRC_C bit
1876 0 Bit 0 of FPSCR
1877 1 reserved
1878 2-17 Bit 2-18 of FPSCR
1879 18-20 Bits 12,13,14 of SR
1880 21-31 reserved
1881 */
1882 /* *INDENT-ON* */
1883 /* Get value as an int. */
1884 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1885
1886 /* Build the new values. */
1887 fpscr_mask = 0x0003fffd;
1888 sr_mask = 0x001c0000;
1889
1890 fpscr_value = fpscr_c_value & fpscr_mask;
1891 sr_value = (fpscr_value & sr_mask) >> 6;
1892
1893 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1894 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1895 old_fpscr_value &= 0xfffc0002;
1896 fpscr_value |= old_fpscr_value;
1897 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1898 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1899
1900 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1901 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1902 old_sr_value &= 0xffff8fff;
1903 sr_value |= old_sr_value;
1904 store_unsigned_integer (temp_buffer, 4, sr_value);
1905 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1906 }
1907
1908 else if (reg_nr == FPUL_C_REGNUM)
1909 {
1910 base_regnum = sh64_compact_reg_base_num (reg_nr);
1911 regcache_raw_write (regcache, base_regnum, buffer);
1912 }
1913 }
1914
1915 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
1916 shmedia REGISTERS. */
1917 /* Control registers, compact mode. */
1918 static void
1919 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1920 int cr_c_regnum)
1921 {
1922 switch (cr_c_regnum)
1923 {
1924 case PC_C_REGNUM:
1925 fprintf_filtered (file, "pc_c\t0x%08x\n",
1926 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1927 break;
1928 case GBR_C_REGNUM:
1929 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1930 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1931 break;
1932 case MACH_C_REGNUM:
1933 fprintf_filtered (file, "mach_c\t0x%08x\n",
1934 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1935 break;
1936 case MACL_C_REGNUM:
1937 fprintf_filtered (file, "macl_c\t0x%08x\n",
1938 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1939 break;
1940 case PR_C_REGNUM:
1941 fprintf_filtered (file, "pr_c\t0x%08x\n",
1942 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1943 break;
1944 case T_C_REGNUM:
1945 fprintf_filtered (file, "t_c\t0x%08x\n",
1946 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1947 break;
1948 case FPSCR_C_REGNUM:
1949 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1950 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1951 break;
1952 case FPUL_C_REGNUM:
1953 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
1955 break;
1956 }
1957 }
1958
1959 static void
1960 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1961 struct frame_info *frame, int regnum)
1962 { /* do values for FP (float) regs */
1963 unsigned char *raw_buffer;
1964 double flt; /* double extracted from raw hex data */
1965 int inv;
1966 int j;
1967
1968 /* Allocate space for the float. */
1969 raw_buffer = (unsigned char *) alloca (register_size (gdbarch, FP0_REGNUM));
1970
1971 /* Get the data in raw format. */
1972 if (!frame_register_read (frame, regnum, raw_buffer))
1973 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1974
1975 /* Get the register as a number */
1976 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1977
1978 /* Print the name and some spaces. */
1979 fputs_filtered (REGISTER_NAME (regnum), file);
1980 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
1981
1982 /* Print the value. */
1983 if (inv)
1984 fprintf_filtered (file, "<invalid float>");
1985 else
1986 fprintf_filtered (file, "%-10.9g", flt);
1987
1988 /* Print the fp register as hex. */
1989 fprintf_filtered (file, "\t(raw 0x");
1990 for (j = 0; j < register_size (gdbarch, regnum); j++)
1991 {
1992 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1993 : register_size (gdbarch, regnum) - 1 - j;
1994 fprintf_filtered (file, "%02x", raw_buffer[idx]);
1995 }
1996 fprintf_filtered (file, ")");
1997 fprintf_filtered (file, "\n");
1998 }
1999
2000 static void
2001 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2002 struct frame_info *frame, int regnum)
2003 {
2004 /* All the sh64-compact mode registers are pseudo registers. */
2005
2006 if (regnum < NUM_REGS
2007 || regnum >= NUM_REGS + NUM_PSEUDO_REGS_SH_MEDIA
2008 + NUM_PSEUDO_REGS_SH_COMPACT)
2009 internal_error (__FILE__, __LINE__,
2010 _("Invalid pseudo register number %d\n"), regnum);
2011
2012 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2013 {
2014 int fp_regnum = sh64_dr_reg_base_num (regnum);
2015 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2016 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2017 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2018 }
2019
2020 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2021 {
2022 int fp_regnum = sh64_compact_reg_base_num (regnum);
2023 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2024 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2025 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2026 }
2027
2028 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2029 {
2030 int fp_regnum = sh64_fv_reg_base_num (regnum);
2031 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2032 regnum - FV0_REGNUM,
2033 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2034 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2035 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2036 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2037 }
2038
2039 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2040 {
2041 int fp_regnum = sh64_compact_reg_base_num (regnum);
2042 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2043 regnum - FV0_C_REGNUM,
2044 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2045 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2046 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2047 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2048 }
2049
2050 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2051 {
2052 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2053 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2054 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2055 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2056 }
2057
2058 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2059 {
2060 int c_regnum = sh64_compact_reg_base_num (regnum);
2061 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2062 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2063 }
2064 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
2065 /* This should work also for pseudoregs. */
2066 sh64_do_fp_register (gdbarch, file, frame, regnum);
2067 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2068 sh64_do_cr_c_register_info (file, frame, regnum);
2069 }
2070
2071 static void
2072 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2073 struct frame_info *frame, int regnum)
2074 {
2075 unsigned char raw_buffer[MAX_REGISTER_SIZE];
2076
2077 fputs_filtered (REGISTER_NAME (regnum), file);
2078 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
2079
2080 /* Get the data in raw format. */
2081 if (!frame_register_read (frame, regnum, raw_buffer))
2082 fprintf_filtered (file, "*value not available*\n");
2083
2084 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2085 file, 'x', 1, 0, Val_pretty_default);
2086 fprintf_filtered (file, "\t");
2087 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
2088 file, 0, 1, 0, Val_pretty_default);
2089 fprintf_filtered (file, "\n");
2090 }
2091
2092 static void
2093 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2094 struct frame_info *frame, int regnum)
2095 {
2096 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
2097 internal_error (__FILE__, __LINE__,
2098 _("Invalid register number %d\n"), regnum);
2099
2100 else if (regnum >= 0 && regnum < NUM_REGS)
2101 {
2102 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
2103 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
2104 else
2105 sh64_do_register (gdbarch, file, frame, regnum);
2106 }
2107
2108 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2109 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2110 }
2111
2112 static void
2113 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2114 struct frame_info *frame, int regnum,
2115 int fpregs)
2116 {
2117 if (regnum != -1) /* do one specified register */
2118 {
2119 if (*(REGISTER_NAME (regnum)) == '\0')
2120 error ("Not a valid register for the current processor type");
2121
2122 sh64_print_register (gdbarch, file, frame, regnum);
2123 }
2124 else
2125 /* do all (or most) registers */
2126 {
2127 regnum = 0;
2128 while (regnum < NUM_REGS)
2129 {
2130 /* If the register name is empty, it is undefined for this
2131 processor, so don't display anything. */
2132 if (REGISTER_NAME (regnum) == NULL
2133 || *(REGISTER_NAME (regnum)) == '\0')
2134 {
2135 regnum++;
2136 continue;
2137 }
2138
2139 if (TYPE_CODE (register_type (gdbarch, regnum))
2140 == TYPE_CODE_FLT)
2141 {
2142 if (fpregs)
2143 {
2144 /* true for "INFO ALL-REGISTERS" command */
2145 sh64_do_fp_register (gdbarch, file, frame, regnum);
2146 regnum ++;
2147 }
2148 else
2149 regnum += FP_LAST_REGNUM - FP0_REGNUM; /* skip FP regs */
2150 }
2151 else
2152 {
2153 sh64_do_register (gdbarch, file, frame, regnum);
2154 regnum++;
2155 }
2156 }
2157
2158 if (fpregs)
2159 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2160 {
2161 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2162 regnum++;
2163 }
2164 }
2165 }
2166
2167 static void
2168 sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2169 struct ui_file *file,
2170 struct frame_info *frame, int regnum,
2171 int fpregs)
2172 {
2173 if (regnum != -1) /* do one specified register */
2174 {
2175 if (*(REGISTER_NAME (regnum)) == '\0')
2176 error ("Not a valid register for the current processor type");
2177
2178 if (regnum >= 0 && regnum < R0_C_REGNUM)
2179 error ("Not a valid register for the current processor mode.");
2180
2181 sh64_print_register (gdbarch, file, frame, regnum);
2182 }
2183 else
2184 /* do all compact registers */
2185 {
2186 regnum = R0_C_REGNUM;
2187 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2188 {
2189 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
2190 regnum++;
2191 }
2192 }
2193 }
2194
2195 static void
2196 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2197 struct frame_info *frame, int regnum, int fpregs)
2198 {
2199 if (pc_is_isa32 (get_frame_pc (frame)))
2200 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2201 else
2202 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
2203 }
2204
2205 static struct sh64_frame_cache *
2206 sh64_alloc_frame_cache (void)
2207 {
2208 struct sh64_frame_cache *cache;
2209 int i;
2210
2211 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2212
2213 /* Base address. */
2214 cache->base = 0;
2215 cache->saved_sp = 0;
2216 cache->sp_offset = 0;
2217 cache->pc = 0;
2218
2219 /* Frameless until proven otherwise. */
2220 cache->uses_fp = 0;
2221
2222 /* Saved registers. We initialize these to -1 since zero is a valid
2223 offset (that's where fp is supposed to be stored). */
2224 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2225 {
2226 cache->saved_regs[i] = -1;
2227 }
2228
2229 return cache;
2230 }
2231
2232 static struct sh64_frame_cache *
2233 sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
2234 {
2235 struct sh64_frame_cache *cache;
2236 CORE_ADDR current_pc;
2237 int i;
2238
2239 if (*this_cache)
2240 return *this_cache;
2241
2242 cache = sh64_alloc_frame_cache ();
2243 *this_cache = cache;
2244
2245 current_pc = frame_pc_unwind (next_frame);
2246 cache->media_mode = pc_is_isa32 (current_pc);
2247
2248 /* In principle, for normal frames, fp holds the frame pointer,
2249 which holds the base address for the current stack frame.
2250 However, for functions that don't need it, the frame pointer is
2251 optional. For these "frameless" functions the frame pointer is
2252 actually the frame pointer of the calling frame. */
2253 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2254 if (cache->base == 0)
2255 return cache;
2256
2257 cache->pc = frame_func_unwind (next_frame);
2258 if (cache->pc != 0)
2259 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2260
2261 if (!cache->uses_fp)
2262 {
2263 /* We didn't find a valid frame, which means that CACHE->base
2264 currently holds the frame pointer for our calling frame. If
2265 we're at the start of a function, or somewhere half-way its
2266 prologue, the function's frame probably hasn't been fully
2267 setup yet. Try to reconstruct the base address for the stack
2268 frame by looking at the stack pointer. For truly "frameless"
2269 functions this might work too. */
2270 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2271 }
2272
2273 /* Now that we have the base address for the stack frame we can
2274 calculate the value of sp in the calling frame. */
2275 cache->saved_sp = cache->base + cache->sp_offset;
2276
2277 /* Adjust all the saved registers such that they contain addresses
2278 instead of offsets. */
2279 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2280 if (cache->saved_regs[i] != -1)
2281 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
2282
2283 return cache;
2284 }
2285
2286 static void
2287 sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2288 int regnum, int *optimizedp,
2289 enum lval_type *lvalp, CORE_ADDR *addrp,
2290 int *realnump, gdb_byte *valuep)
2291 {
2292 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2293
2294 gdb_assert (regnum >= 0);
2295
2296 if (regnum == SP_REGNUM && cache->saved_sp)
2297 {
2298 *optimizedp = 0;
2299 *lvalp = not_lval;
2300 *addrp = 0;
2301 *realnump = -1;
2302 if (valuep)
2303 {
2304 /* Store the value. */
2305 store_unsigned_integer (valuep,
2306 register_size (current_gdbarch, SP_REGNUM),
2307 cache->saved_sp);
2308 }
2309 return;
2310 }
2311
2312 /* The PC of the previous frame is stored in the PR register of
2313 the current frame. Frob regnum so that we pull the value from
2314 the correct place. */
2315 if (regnum == PC_REGNUM)
2316 regnum = PR_REGNUM;
2317
2318 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2319 {
2320 int reg_size = register_size (current_gdbarch, regnum);
2321 int size;
2322
2323 *optimizedp = 0;
2324 *lvalp = lval_memory;
2325 *addrp = cache->saved_regs[regnum];
2326 *realnump = -1;
2327 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2328 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2329 size = 4;
2330 else
2331 size = reg_size;
2332 if (valuep)
2333 {
2334 memset (valuep, 0, reg_size);
2335 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
2336 read_memory (*addrp, valuep, size);
2337 else
2338 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2339 }
2340 return;
2341 }
2342
2343 *optimizedp = 0;
2344 *lvalp = lval_register;
2345 *addrp = 0;
2346 *realnump = regnum;
2347 if (valuep)
2348 frame_unwind_register (next_frame, (*realnump), valuep);
2349 }
2350
2351 static void
2352 sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2353 struct frame_id *this_id)
2354 {
2355 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2356
2357 /* This marks the outermost frame. */
2358 if (cache->base == 0)
2359 return;
2360
2361 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2362 }
2363
2364 static const struct frame_unwind sh64_frame_unwind = {
2365 NORMAL_FRAME,
2366 sh64_frame_this_id,
2367 sh64_frame_prev_register
2368 };
2369
2370 static const struct frame_unwind *
2371 sh64_frame_sniffer (struct frame_info *next_frame)
2372 {
2373 return &sh64_frame_unwind;
2374 }
2375
2376 static CORE_ADDR
2377 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2378 {
2379 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2380 }
2381
2382 static CORE_ADDR
2383 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2384 {
2385 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2386 }
2387
2388 static struct frame_id
2389 sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2390 {
2391 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2392 frame_pc_unwind (next_frame));
2393 }
2394
2395 static CORE_ADDR
2396 sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2397 {
2398 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2399
2400 return cache->base;
2401 }
2402
2403 static const struct frame_base sh64_frame_base = {
2404 &sh64_frame_unwind,
2405 sh64_frame_base_address,
2406 sh64_frame_base_address,
2407 sh64_frame_base_address
2408 };
2409
2410
2411 struct gdbarch *
2412 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2413 {
2414 struct gdbarch *gdbarch;
2415 struct gdbarch_tdep *tdep;
2416
2417 /* If there is already a candidate, use it. */
2418 arches = gdbarch_list_lookup_by_info (arches, &info);
2419 if (arches != NULL)
2420 return arches->gdbarch;
2421
2422 /* None found, create a new architecture from the information
2423 provided. */
2424 tdep = XMALLOC (struct gdbarch_tdep);
2425 gdbarch = gdbarch_alloc (&info, tdep);
2426
2427 /* Determine the ABI */
2428 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2429 {
2430 /* If the ABI is the 64-bit one, it can only be sh-media. */
2431 tdep->sh_abi = SH_ABI_64;
2432 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2433 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2434 }
2435 else
2436 {
2437 /* If the ABI is the 32-bit one it could be either media or
2438 compact. */
2439 tdep->sh_abi = SH_ABI_32;
2440 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2441 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2442 }
2443
2444 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2445 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2446 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2447 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2448 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2449 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2450 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2451
2452 /* The number of real registers is the same whether we are in
2453 ISA16(compact) or ISA32(media). */
2454 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
2455 set_gdbarch_sp_regnum (gdbarch, 15);
2456 set_gdbarch_pc_regnum (gdbarch, 64);
2457 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2458 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2459 + NUM_PSEUDO_REGS_SH_COMPACT);
2460
2461 set_gdbarch_register_name (gdbarch, sh64_register_name);
2462 set_gdbarch_register_type (gdbarch, sh64_register_type);
2463
2464 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2465 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2466
2467 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2468
2469 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
2470 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2471
2472 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2473
2474 set_gdbarch_return_value (gdbarch, sh64_return_value);
2475 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2476 sh64_extract_struct_value_address);
2477
2478 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2479 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2480
2481 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
2482
2483 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2484
2485 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2486 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2487 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2488 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2489 frame_base_set_default (gdbarch, &sh64_frame_base);
2490
2491 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
2492
2493 set_gdbarch_elf_make_msymbol_special (gdbarch,
2494 sh64_elf_make_msymbol_special);
2495
2496 /* Hook in ABI-specific overrides, if they have been registered. */
2497 gdbarch_init_osabi (info, gdbarch);
2498
2499 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2500 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2501
2502 return gdbarch;
2503 }
This page took 0.081849 seconds and 4 git commands to generate.