gdb: recognize new DWARF attributes: defaulted, deleted, calling conv.
[deliverable/binutils-gdb.git] / gdb / solib-dsbt.c
1 /* Handle TIC6X (DSBT) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2010-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "objfiles.h"
26 #include "symtab.h"
27 #include "language.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "elf-bfd.h"
31 #include "gdb_bfd.h"
32
33 #define GOT_MODULE_OFFSET 4
34
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static unsigned int solib_dsbt_debug = 0;
37
38 /* TIC6X pointers are four bytes wide. */
39 enum { TIC6X_PTR_SIZE = 4 };
40
41 /* Representation of loadmap and related structs for the TIC6X DSBT. */
42
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
49
50 struct ext_elf32_dsbt_loadseg
51 {
52 /* Core address to which the segment is mapped. */
53 ext_Elf32_Addr addr;
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
58 };
59
60 struct ext_elf32_dsbt_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Word version;
63 /* A pointer to the DSBT table; the DSBT size and the index of this
64 module. */
65 ext_Elf32_Word dsbt_table_ptr;
66 ext_Elf32_Word dsbt_size;
67 ext_Elf32_Word dsbt_index;
68 /* Number of segments in this map. */
69 ext_Elf32_Word nsegs;
70 /* The actual memory map. */
71 struct ext_elf32_dsbt_loadseg segs[1 /* nsegs, actually */];
72 };
73
74 /* Internal versions; the types are GDB types and the data in each
75 of the fields is (or will be) decoded from the external struct
76 for ease of consumption. */
77 struct int_elf32_dsbt_loadseg
78 {
79 /* Core address to which the segment is mapped. */
80 CORE_ADDR addr;
81 /* VMA recorded in the program header. */
82 CORE_ADDR p_vaddr;
83 /* Size of this segment in memory. */
84 long p_memsz;
85 };
86
87 struct int_elf32_dsbt_loadmap
88 {
89 /* Protocol version number, must be zero. */
90 int version;
91 CORE_ADDR dsbt_table_ptr;
92 /* A pointer to the DSBT table; the DSBT size and the index of this
93 module. */
94 int dsbt_size, dsbt_index;
95 /* Number of segments in this map. */
96 int nsegs;
97 /* The actual memory map. */
98 struct int_elf32_dsbt_loadseg segs[1 /* nsegs, actually */];
99 };
100
101 /* External link_map and elf32_dsbt_loadaddr struct definitions. */
102
103 typedef gdb_byte ext_ptr[4];
104
105 struct ext_elf32_dsbt_loadaddr
106 {
107 ext_ptr map; /* struct elf32_dsbt_loadmap *map; */
108 };
109
110 struct ext_link_map
111 {
112 struct ext_elf32_dsbt_loadaddr l_addr;
113
114 /* Absolute file name object was found in. */
115 ext_ptr l_name; /* char *l_name; */
116
117 /* Dynamic section of the shared object. */
118 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
119
120 /* Chain of loaded objects. */
121 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
122 };
123
124 /* Link map info to include in an allocated so_list entry */
125
126 struct lm_info_dsbt : public lm_info_base
127 {
128 ~lm_info_dsbt ()
129 {
130 xfree (this->map);
131 }
132
133 /* The loadmap, digested into an easier to use form. */
134 int_elf32_dsbt_loadmap *map = NULL;
135 };
136
137 /* Per pspace dsbt specific data. */
138
139 struct dsbt_info
140 {
141 /* The load map, got value, etc. are not available from the chain
142 of loaded shared objects. ``main_executable_lm_info'' provides
143 a way to get at this information so that it doesn't need to be
144 frequently recomputed. Initialized by dsbt_relocate_main_executable. */
145 struct lm_info_dsbt *main_executable_lm_info = nullptr;
146
147 /* Load maps for the main executable and the interpreter. These are obtained
148 from ptrace. They are the starting point for getting into the program,
149 and are required to find the solib list with the individual load maps for
150 each module. */
151 struct int_elf32_dsbt_loadmap *exec_loadmap = nullptr;
152 struct int_elf32_dsbt_loadmap *interp_loadmap = nullptr;
153
154 /* Cached value for lm_base, below. */
155 CORE_ADDR lm_base_cache = 0;
156
157 /* Link map address for main module. */
158 CORE_ADDR main_lm_addr = 0;
159
160 CORE_ADDR interp_text_sect_low = 0;
161 CORE_ADDR interp_text_sect_high = 0;
162 CORE_ADDR interp_plt_sect_low = 0;
163 CORE_ADDR interp_plt_sect_high = 0;
164 };
165
166 /* Per-program-space data key. */
167 static program_space_key<dsbt_info> solib_dsbt_pspace_data;
168
169 /* Get the current dsbt data. If none is found yet, add it now. This
170 function always returns a valid object. */
171
172 static struct dsbt_info *
173 get_dsbt_info (void)
174 {
175 struct dsbt_info *info;
176
177 info = solib_dsbt_pspace_data.get (current_program_space);
178 if (info != NULL)
179 return info;
180
181 return solib_dsbt_pspace_data.emplace (current_program_space);
182 }
183
184
185 static void
186 dsbt_print_loadmap (struct int_elf32_dsbt_loadmap *map)
187 {
188 int i;
189
190 if (map == NULL)
191 printf_filtered ("(null)\n");
192 else if (map->version != 0)
193 printf_filtered (_("Unsupported map version: %d\n"), map->version);
194 else
195 {
196 printf_filtered ("version %d\n", map->version);
197
198 for (i = 0; i < map->nsegs; i++)
199 printf_filtered ("%s:%s -> %s:%s\n",
200 print_core_address (target_gdbarch (),
201 map->segs[i].p_vaddr),
202 print_core_address (target_gdbarch (),
203 map->segs[i].p_vaddr
204 + map->segs[i].p_memsz),
205 print_core_address (target_gdbarch (), map->segs[i].addr),
206 print_core_address (target_gdbarch (), map->segs[i].addr
207 + map->segs[i].p_memsz));
208 }
209 }
210
211 /* Decode int_elf32_dsbt_loadmap from BUF. */
212
213 static struct int_elf32_dsbt_loadmap *
214 decode_loadmap (const gdb_byte *buf)
215 {
216 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
217 const struct ext_elf32_dsbt_loadmap *ext_ldmbuf;
218 struct int_elf32_dsbt_loadmap *int_ldmbuf;
219
220 int version, seg, nsegs;
221 int int_ldmbuf_size;
222
223 ext_ldmbuf = (struct ext_elf32_dsbt_loadmap *) buf;
224
225 /* Extract the version. */
226 version = extract_unsigned_integer (ext_ldmbuf->version,
227 sizeof ext_ldmbuf->version,
228 byte_order);
229 if (version != 0)
230 {
231 /* We only handle version 0. */
232 return NULL;
233 }
234
235 /* Extract the number of segments. */
236 nsegs = extract_unsigned_integer (ext_ldmbuf->nsegs,
237 sizeof ext_ldmbuf->nsegs,
238 byte_order);
239
240 if (nsegs <= 0)
241 return NULL;
242
243 /* Allocate space into which to put information extract from the
244 external loadsegs. I.e, allocate the internal loadsegs. */
245 int_ldmbuf_size = (sizeof (struct int_elf32_dsbt_loadmap)
246 + (nsegs - 1) * sizeof (struct int_elf32_dsbt_loadseg));
247 int_ldmbuf = (struct int_elf32_dsbt_loadmap *) xmalloc (int_ldmbuf_size);
248
249 /* Place extracted information in internal structs. */
250 int_ldmbuf->version = version;
251 int_ldmbuf->nsegs = nsegs;
252 for (seg = 0; seg < nsegs; seg++)
253 {
254 int_ldmbuf->segs[seg].addr
255 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
256 sizeof (ext_ldmbuf->segs[seg].addr),
257 byte_order);
258 int_ldmbuf->segs[seg].p_vaddr
259 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
260 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
261 byte_order);
262 int_ldmbuf->segs[seg].p_memsz
263 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
264 sizeof (ext_ldmbuf->segs[seg].p_memsz),
265 byte_order);
266 }
267
268 return int_ldmbuf;
269 }
270
271
272 static struct dsbt_info *get_dsbt_info (void);
273
274 /* Interrogate the Linux kernel to find out where the program was loaded.
275 There are two load maps; one for the executable and one for the
276 interpreter (only in the case of a dynamically linked executable). */
277
278 static void
279 dsbt_get_initial_loadmaps (void)
280 {
281 struct dsbt_info *info = get_dsbt_info ();
282 gdb::optional<gdb::byte_vector> buf
283 = target_read_alloc (current_top_target (), TARGET_OBJECT_FDPIC, "exec");
284
285 if (!buf || buf->empty ())
286 {
287 info->exec_loadmap = NULL;
288 error (_("Error reading DSBT exec loadmap"));
289 }
290 info->exec_loadmap = decode_loadmap (buf->data ());
291 if (solib_dsbt_debug)
292 dsbt_print_loadmap (info->exec_loadmap);
293
294 buf = target_read_alloc (current_top_target (), TARGET_OBJECT_FDPIC, "exec");
295 if (!buf || buf->empty ())
296 {
297 info->interp_loadmap = NULL;
298 error (_("Error reading DSBT interp loadmap"));
299 }
300 info->interp_loadmap = decode_loadmap (buf->data ());
301 if (solib_dsbt_debug)
302 dsbt_print_loadmap (info->interp_loadmap);
303 }
304
305 /* Given address LDMADDR, fetch and decode the loadmap at that address.
306 Return NULL if there is a problem reading the target memory or if
307 there doesn't appear to be a loadmap at the given address. The
308 allocated space (representing the loadmap) returned by this
309 function may be freed via a single call to xfree. */
310
311 static struct int_elf32_dsbt_loadmap *
312 fetch_loadmap (CORE_ADDR ldmaddr)
313 {
314 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
315 struct ext_elf32_dsbt_loadmap ext_ldmbuf_partial;
316 struct ext_elf32_dsbt_loadmap *ext_ldmbuf;
317 struct int_elf32_dsbt_loadmap *int_ldmbuf;
318 int ext_ldmbuf_size, int_ldmbuf_size;
319 int version, seg, nsegs;
320
321 /* Fetch initial portion of the loadmap. */
322 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
323 sizeof ext_ldmbuf_partial))
324 {
325 /* Problem reading the target's memory. */
326 return NULL;
327 }
328
329 /* Extract the version. */
330 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
331 sizeof ext_ldmbuf_partial.version,
332 byte_order);
333 if (version != 0)
334 {
335 /* We only handle version 0. */
336 return NULL;
337 }
338
339 /* Extract the number of segments. */
340 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
341 sizeof ext_ldmbuf_partial.nsegs,
342 byte_order);
343
344 if (nsegs <= 0)
345 return NULL;
346
347 /* Allocate space for the complete (external) loadmap. */
348 ext_ldmbuf_size = sizeof (struct ext_elf32_dsbt_loadmap)
349 + (nsegs - 1) * sizeof (struct ext_elf32_dsbt_loadseg);
350 ext_ldmbuf = (struct ext_elf32_dsbt_loadmap *) xmalloc (ext_ldmbuf_size);
351
352 /* Copy over the portion of the loadmap that's already been read. */
353 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
354
355 /* Read the rest of the loadmap from the target. */
356 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
357 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
358 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
359 {
360 /* Couldn't read rest of the loadmap. */
361 xfree (ext_ldmbuf);
362 return NULL;
363 }
364
365 /* Allocate space into which to put information extract from the
366 external loadsegs. I.e, allocate the internal loadsegs. */
367 int_ldmbuf_size = sizeof (struct int_elf32_dsbt_loadmap)
368 + (nsegs - 1) * sizeof (struct int_elf32_dsbt_loadseg);
369 int_ldmbuf = (struct int_elf32_dsbt_loadmap *) xmalloc (int_ldmbuf_size);
370
371 /* Place extracted information in internal structs. */
372 int_ldmbuf->version = version;
373 int_ldmbuf->nsegs = nsegs;
374 for (seg = 0; seg < nsegs; seg++)
375 {
376 int_ldmbuf->segs[seg].addr
377 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
378 sizeof (ext_ldmbuf->segs[seg].addr),
379 byte_order);
380 int_ldmbuf->segs[seg].p_vaddr
381 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
382 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
383 byte_order);
384 int_ldmbuf->segs[seg].p_memsz
385 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
386 sizeof (ext_ldmbuf->segs[seg].p_memsz),
387 byte_order);
388 }
389
390 xfree (ext_ldmbuf);
391 return int_ldmbuf;
392 }
393
394 static void dsbt_relocate_main_executable (void);
395 static int enable_break (void);
396
397 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
398 returned and the corresponding PTR is set. */
399
400 static int
401 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
402 {
403 int arch_size, step, sect_size;
404 long dyn_tag;
405 CORE_ADDR dyn_ptr, dyn_addr;
406 gdb_byte *bufend, *bufstart, *buf;
407 Elf32_External_Dyn *x_dynp_32;
408 Elf64_External_Dyn *x_dynp_64;
409 struct bfd_section *sect;
410 struct target_section *target_section;
411
412 if (abfd == NULL)
413 return 0;
414
415 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
416 return 0;
417
418 arch_size = bfd_get_arch_size (abfd);
419 if (arch_size == -1)
420 return 0;
421
422 /* Find the start address of the .dynamic section. */
423 sect = bfd_get_section_by_name (abfd, ".dynamic");
424 if (sect == NULL)
425 return 0;
426
427 for (target_section = current_target_sections->sections;
428 target_section < current_target_sections->sections_end;
429 target_section++)
430 if (sect == target_section->the_bfd_section)
431 break;
432 if (target_section < current_target_sections->sections_end)
433 dyn_addr = target_section->addr;
434 else
435 {
436 /* ABFD may come from OBJFILE acting only as a symbol file without being
437 loaded into the target (see add_symbol_file_command). This case is
438 such fallback to the file VMA address without the possibility of
439 having the section relocated to its actual in-memory address. */
440
441 dyn_addr = bfd_section_vma (sect);
442 }
443
444 /* Read in .dynamic from the BFD. We will get the actual value
445 from memory later. */
446 sect_size = bfd_section_size (sect);
447 buf = bufstart = (gdb_byte *) alloca (sect_size);
448 if (!bfd_get_section_contents (abfd, sect,
449 buf, 0, sect_size))
450 return 0;
451
452 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
453 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
454 : sizeof (Elf64_External_Dyn);
455 for (bufend = buf + sect_size;
456 buf < bufend;
457 buf += step)
458 {
459 if (arch_size == 32)
460 {
461 x_dynp_32 = (Elf32_External_Dyn *) buf;
462 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
463 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
464 }
465 else
466 {
467 x_dynp_64 = (Elf64_External_Dyn *) buf;
468 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
469 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
470 }
471 if (dyn_tag == DT_NULL)
472 return 0;
473 if (dyn_tag == dyntag)
474 {
475 /* If requested, try to read the runtime value of this .dynamic
476 entry. */
477 if (ptr)
478 {
479 struct type *ptr_type;
480 gdb_byte ptr_buf[8];
481 CORE_ADDR ptr_addr;
482
483 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
484 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
485 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
486 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
487 *ptr = dyn_ptr;
488 }
489 return 1;
490 }
491 }
492
493 return 0;
494 }
495
496 /* See solist.h. */
497
498 static int
499 open_symbol_file_object (int from_tty)
500 {
501 /* Unimplemented. */
502 return 0;
503 }
504
505 /* Given a loadmap and an address, return the displacement needed
506 to relocate the address. */
507
508 static CORE_ADDR
509 displacement_from_map (struct int_elf32_dsbt_loadmap *map,
510 CORE_ADDR addr)
511 {
512 int seg;
513
514 for (seg = 0; seg < map->nsegs; seg++)
515 if (map->segs[seg].p_vaddr <= addr
516 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
517 return map->segs[seg].addr - map->segs[seg].p_vaddr;
518
519 return 0;
520 }
521
522 /* Return the address from which the link map chain may be found. On
523 DSBT, a pointer to the start of the link map will be located at the
524 word found at base of GOT + GOT_MODULE_OFFSET.
525
526 The base of GOT may be found in a number of ways. Assuming that the
527 main executable has already been relocated,
528 1 The easiest way to find this value is to look up the address of
529 _GLOBAL_OFFSET_TABLE_.
530 2 The other way is to look for tag DT_PLTGOT, which contains the virtual
531 address of Global Offset Table. .*/
532
533 static CORE_ADDR
534 lm_base (void)
535 {
536 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
537 struct bound_minimal_symbol got_sym;
538 CORE_ADDR addr;
539 gdb_byte buf[TIC6X_PTR_SIZE];
540 struct dsbt_info *info = get_dsbt_info ();
541
542 /* One of our assumptions is that the main executable has been relocated.
543 Bail out if this has not happened. (Note that post_create_inferior
544 in infcmd.c will call solib_add prior to solib_create_inferior_hook.
545 If we allow this to happen, lm_base_cache will be initialized with
546 a bogus value. */
547 if (info->main_executable_lm_info == 0)
548 return 0;
549
550 /* If we already have a cached value, return it. */
551 if (info->lm_base_cache)
552 return info->lm_base_cache;
553
554 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
555 symfile_objfile);
556
557 if (got_sym.minsym != 0)
558 {
559 addr = BMSYMBOL_VALUE_ADDRESS (got_sym);
560 if (solib_dsbt_debug)
561 fprintf_unfiltered (gdb_stdlog,
562 "lm_base: get addr %x by _GLOBAL_OFFSET_TABLE_.\n",
563 (unsigned int) addr);
564 }
565 else if (scan_dyntag (DT_PLTGOT, exec_bfd, &addr))
566 {
567 struct int_elf32_dsbt_loadmap *ldm;
568
569 dsbt_get_initial_loadmaps ();
570 ldm = info->exec_loadmap;
571 addr += displacement_from_map (ldm, addr);
572 if (solib_dsbt_debug)
573 fprintf_unfiltered (gdb_stdlog,
574 "lm_base: get addr %x by DT_PLTGOT.\n",
575 (unsigned int) addr);
576 }
577 else
578 {
579 if (solib_dsbt_debug)
580 fprintf_unfiltered (gdb_stdlog,
581 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
582 return 0;
583 }
584 addr += GOT_MODULE_OFFSET;
585
586 if (solib_dsbt_debug)
587 fprintf_unfiltered (gdb_stdlog,
588 "lm_base: _GLOBAL_OFFSET_TABLE_ + %d = %s\n",
589 GOT_MODULE_OFFSET, hex_string_custom (addr, 8));
590
591 if (target_read_memory (addr, buf, sizeof buf) != 0)
592 return 0;
593 info->lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
594
595 if (solib_dsbt_debug)
596 fprintf_unfiltered (gdb_stdlog,
597 "lm_base: lm_base_cache = %s\n",
598 hex_string_custom (info->lm_base_cache, 8));
599
600 return info->lm_base_cache;
601 }
602
603
604 /* Build a list of `struct so_list' objects describing the shared
605 objects currently loaded in the inferior. This list does not
606 include an entry for the main executable file.
607
608 Note that we only gather information directly available from the
609 inferior --- we don't examine any of the shared library files
610 themselves. The declaration of `struct so_list' says which fields
611 we provide values for. */
612
613 static struct so_list *
614 dsbt_current_sos (void)
615 {
616 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
617 CORE_ADDR lm_addr;
618 struct so_list *sos_head = NULL;
619 struct so_list **sos_next_ptr = &sos_head;
620 struct dsbt_info *info = get_dsbt_info ();
621
622 /* Make sure that the main executable has been relocated. This is
623 required in order to find the address of the global offset table,
624 which in turn is used to find the link map info. (See lm_base
625 for details.)
626
627 Note that the relocation of the main executable is also performed
628 by solib_create_inferior_hook, however, in the case of core
629 files, this hook is called too late in order to be of benefit to
630 solib_add. solib_add eventually calls this function,
631 dsbt_current_sos, and also precedes the call to
632 solib_create_inferior_hook. (See post_create_inferior in
633 infcmd.c.) */
634 if (info->main_executable_lm_info == 0 && core_bfd != NULL)
635 dsbt_relocate_main_executable ();
636
637 /* Locate the address of the first link map struct. */
638 lm_addr = lm_base ();
639
640 /* We have at least one link map entry. Fetch the lot of them,
641 building the solist chain. */
642 while (lm_addr)
643 {
644 struct ext_link_map lm_buf;
645 ext_Elf32_Word indexword;
646 CORE_ADDR map_addr;
647 int dsbt_index;
648 int ret;
649
650 if (solib_dsbt_debug)
651 fprintf_unfiltered (gdb_stdlog,
652 "current_sos: reading link_map entry at %s\n",
653 hex_string_custom (lm_addr, 8));
654
655 ret = target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf));
656 if (ret)
657 {
658 warning (_("dsbt_current_sos: Unable to read link map entry."
659 " Shared object chain may be incomplete."));
660 break;
661 }
662
663 /* Fetch the load map address. */
664 map_addr = extract_unsigned_integer (lm_buf.l_addr.map,
665 sizeof lm_buf.l_addr.map,
666 byte_order);
667
668 ret = target_read_memory (map_addr + 12, (gdb_byte *) &indexword,
669 sizeof indexword);
670 if (ret)
671 {
672 warning (_("dsbt_current_sos: Unable to read dsbt index."
673 " Shared object chain may be incomplete."));
674 break;
675 }
676 dsbt_index = extract_unsigned_integer (indexword, sizeof indexword,
677 byte_order);
678
679 /* If the DSBT index is zero, then we're looking at the entry
680 for the main executable. By convention, we don't include
681 this in the list of shared objects. */
682 if (dsbt_index != 0)
683 {
684 int errcode;
685 gdb::unique_xmalloc_ptr<char> name_buf;
686 struct int_elf32_dsbt_loadmap *loadmap;
687 struct so_list *sop;
688 CORE_ADDR addr;
689
690 loadmap = fetch_loadmap (map_addr);
691 if (loadmap == NULL)
692 {
693 warning (_("dsbt_current_sos: Unable to fetch load map."
694 " Shared object chain may be incomplete."));
695 break;
696 }
697
698 sop = XCNEW (struct so_list);
699 lm_info_dsbt *li = new lm_info_dsbt;
700 sop->lm_info = li;
701 li->map = loadmap;
702 /* Fetch the name. */
703 addr = extract_unsigned_integer (lm_buf.l_name,
704 sizeof (lm_buf.l_name),
705 byte_order);
706 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
707 &errcode);
708
709 if (errcode != 0)
710 warning (_("Can't read pathname for link map entry: %s."),
711 safe_strerror (errcode));
712 else
713 {
714 if (solib_dsbt_debug)
715 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
716 name_buf.get ());
717
718 strncpy (sop->so_name, name_buf.get (), SO_NAME_MAX_PATH_SIZE - 1);
719 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
720 strcpy (sop->so_original_name, sop->so_name);
721 }
722
723 *sos_next_ptr = sop;
724 sos_next_ptr = &sop->next;
725 }
726 else
727 {
728 info->main_lm_addr = lm_addr;
729 }
730
731 lm_addr = extract_unsigned_integer (lm_buf.l_next,
732 sizeof (lm_buf.l_next), byte_order);
733 }
734
735 return sos_head;
736 }
737
738 /* Return 1 if PC lies in the dynamic symbol resolution code of the
739 run time loader. */
740
741 static int
742 dsbt_in_dynsym_resolve_code (CORE_ADDR pc)
743 {
744 struct dsbt_info *info = get_dsbt_info ();
745
746 return ((pc >= info->interp_text_sect_low && pc < info->interp_text_sect_high)
747 || (pc >= info->interp_plt_sect_low && pc < info->interp_plt_sect_high)
748 || in_plt_section (pc));
749 }
750
751 /* Print a warning about being unable to set the dynamic linker
752 breakpoint. */
753
754 static void
755 enable_break_failure_warning (void)
756 {
757 warning (_("Unable to find dynamic linker breakpoint function.\n"
758 "GDB will be unable to debug shared library initializers\n"
759 "and track explicitly loaded dynamic code."));
760 }
761
762 /* Helper function for gdb_bfd_lookup_symbol. */
763
764 static int
765 cmp_name (const asymbol *sym, const void *data)
766 {
767 return (strcmp (sym->name, (const char *) data) == 0);
768 }
769
770 /* The dynamic linkers has, as part of its debugger interface, support
771 for arranging for the inferior to hit a breakpoint after mapping in
772 the shared libraries. This function enables that breakpoint.
773
774 On the TIC6X, using the shared library (DSBT), GDB can try to place
775 a breakpoint on '_dl_debug_state' to monitor the shared library
776 event. */
777
778 static int
779 enable_break (void)
780 {
781 asection *interp_sect;
782 struct dsbt_info *info;
783
784 if (exec_bfd == NULL)
785 return 0;
786
787 if (!target_has_execution)
788 return 0;
789
790 info = get_dsbt_info ();
791
792 info->interp_text_sect_low = 0;
793 info->interp_text_sect_high = 0;
794 info->interp_plt_sect_low = 0;
795 info->interp_plt_sect_high = 0;
796
797 /* Find the .interp section; if not found, warn the user and drop
798 into the old breakpoint at symbol code. */
799 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
800 if (interp_sect)
801 {
802 unsigned int interp_sect_size;
803 char *buf;
804 CORE_ADDR addr;
805 struct int_elf32_dsbt_loadmap *ldm;
806 int ret;
807
808 /* Read the contents of the .interp section into a local buffer;
809 the contents specify the dynamic linker this program uses. */
810 interp_sect_size = bfd_section_size (interp_sect);
811 buf = (char *) alloca (interp_sect_size);
812 bfd_get_section_contents (exec_bfd, interp_sect,
813 buf, 0, interp_sect_size);
814
815 /* Now we need to figure out where the dynamic linker was
816 loaded so that we can load its symbols and place a breakpoint
817 in the dynamic linker itself. */
818
819 gdb_bfd_ref_ptr tmp_bfd;
820 try
821 {
822 tmp_bfd = solib_bfd_open (buf);
823 }
824 catch (const gdb_exception &ex)
825 {
826 }
827
828 if (tmp_bfd == NULL)
829 {
830 enable_break_failure_warning ();
831 return 0;
832 }
833
834 dsbt_get_initial_loadmaps ();
835 ldm = info->interp_loadmap;
836
837 /* Record the relocated start and end address of the dynamic linker
838 text and plt section for dsbt_in_dynsym_resolve_code. */
839 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
840 if (interp_sect)
841 {
842 info->interp_text_sect_low = bfd_section_vma (interp_sect);
843 info->interp_text_sect_low
844 += displacement_from_map (ldm, info->interp_text_sect_low);
845 info->interp_text_sect_high
846 = info->interp_text_sect_low + bfd_section_size (interp_sect);
847 }
848 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
849 if (interp_sect)
850 {
851 info->interp_plt_sect_low = bfd_section_vma (interp_sect);
852 info->interp_plt_sect_low
853 += displacement_from_map (ldm, info->interp_plt_sect_low);
854 info->interp_plt_sect_high
855 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
856 }
857
858 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name,
859 "_dl_debug_state");
860 if (addr != 0)
861 {
862 if (solib_dsbt_debug)
863 fprintf_unfiltered (gdb_stdlog,
864 "enable_break: _dl_debug_state (prior to relocation) = %s\n",
865 hex_string_custom (addr, 8));
866 addr += displacement_from_map (ldm, addr);
867
868 if (solib_dsbt_debug)
869 fprintf_unfiltered (gdb_stdlog,
870 "enable_break: _dl_debug_state (after relocation) = %s\n",
871 hex_string_custom (addr, 8));
872
873 /* Now (finally!) create the solib breakpoint. */
874 create_solib_event_breakpoint (target_gdbarch (), addr);
875
876 ret = 1;
877 }
878 else
879 {
880 if (solib_dsbt_debug)
881 fprintf_unfiltered (gdb_stdlog,
882 "enable_break: _dl_debug_state is not found\n");
883 ret = 0;
884 }
885
886 /* We're done with the loadmap. */
887 xfree (ldm);
888
889 return ret;
890 }
891
892 /* Tell the user we couldn't set a dynamic linker breakpoint. */
893 enable_break_failure_warning ();
894
895 /* Failure return. */
896 return 0;
897 }
898
899 static void
900 dsbt_relocate_main_executable (void)
901 {
902 struct int_elf32_dsbt_loadmap *ldm;
903 int changed;
904 struct obj_section *osect;
905 struct dsbt_info *info = get_dsbt_info ();
906
907 dsbt_get_initial_loadmaps ();
908 ldm = info->exec_loadmap;
909
910 delete info->main_executable_lm_info;
911 info->main_executable_lm_info = new lm_info_dsbt;
912 info->main_executable_lm_info->map = ldm;
913
914 gdb::unique_xmalloc_ptr<struct section_offsets> new_offsets
915 (XCNEWVEC (struct section_offsets, symfile_objfile->num_sections));
916 changed = 0;
917
918 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
919 {
920 CORE_ADDR orig_addr, addr, offset;
921 int osect_idx;
922 int seg;
923
924 osect_idx = osect - symfile_objfile->sections;
925
926 /* Current address of section. */
927 addr = obj_section_addr (osect);
928 /* Offset from where this section started. */
929 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
930 /* Original address prior to any past relocations. */
931 orig_addr = addr - offset;
932
933 for (seg = 0; seg < ldm->nsegs; seg++)
934 {
935 if (ldm->segs[seg].p_vaddr <= orig_addr
936 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
937 {
938 new_offsets->offsets[osect_idx]
939 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
940
941 if (new_offsets->offsets[osect_idx] != offset)
942 changed = 1;
943 break;
944 }
945 }
946 }
947
948 if (changed)
949 objfile_relocate (symfile_objfile, new_offsets.get ());
950
951 /* Now that symfile_objfile has been relocated, we can compute the
952 GOT value and stash it away. */
953 }
954
955 /* When gdb starts up the inferior, it nurses it along (through the
956 shell) until it is ready to execute it's first instruction. At this
957 point, this function gets called via solib_create_inferior_hook.
958
959 For the DSBT shared library, the main executable needs to be relocated.
960 The shared library breakpoints also need to be enabled. */
961
962 static void
963 dsbt_solib_create_inferior_hook (int from_tty)
964 {
965 /* Relocate main executable. */
966 dsbt_relocate_main_executable ();
967
968 /* Enable shared library breakpoints. */
969 if (!enable_break ())
970 {
971 warning (_("shared library handler failed to enable breakpoint"));
972 return;
973 }
974 }
975
976 static void
977 dsbt_clear_solib (void)
978 {
979 struct dsbt_info *info = get_dsbt_info ();
980
981 info->lm_base_cache = 0;
982 info->main_lm_addr = 0;
983
984 delete info->main_executable_lm_info;
985 info->main_executable_lm_info = NULL;
986 }
987
988 static void
989 dsbt_free_so (struct so_list *so)
990 {
991 lm_info_dsbt *li = (lm_info_dsbt *) so->lm_info;
992
993 delete li;
994 }
995
996 static void
997 dsbt_relocate_section_addresses (struct so_list *so,
998 struct target_section *sec)
999 {
1000 int seg;
1001 lm_info_dsbt *li = (lm_info_dsbt *) so->lm_info;
1002 int_elf32_dsbt_loadmap *map = li->map;
1003
1004 for (seg = 0; seg < map->nsegs; seg++)
1005 {
1006 if (map->segs[seg].p_vaddr <= sec->addr
1007 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1008 {
1009 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1010
1011 sec->addr += displ;
1012 sec->endaddr += displ;
1013 break;
1014 }
1015 }
1016 }
1017 static void
1018 show_dsbt_debug (struct ui_file *file, int from_tty,
1019 struct cmd_list_element *c, const char *value)
1020 {
1021 fprintf_filtered (file, _("solib-dsbt debugging is %s.\n"), value);
1022 }
1023
1024 struct target_so_ops dsbt_so_ops;
1025
1026 void
1027 _initialize_dsbt_solib (void)
1028 {
1029 dsbt_so_ops.relocate_section_addresses = dsbt_relocate_section_addresses;
1030 dsbt_so_ops.free_so = dsbt_free_so;
1031 dsbt_so_ops.clear_solib = dsbt_clear_solib;
1032 dsbt_so_ops.solib_create_inferior_hook = dsbt_solib_create_inferior_hook;
1033 dsbt_so_ops.current_sos = dsbt_current_sos;
1034 dsbt_so_ops.open_symbol_file_object = open_symbol_file_object;
1035 dsbt_so_ops.in_dynsym_resolve_code = dsbt_in_dynsym_resolve_code;
1036 dsbt_so_ops.bfd_open = solib_bfd_open;
1037
1038 /* Debug this file's internals. */
1039 add_setshow_zuinteger_cmd ("solib-dsbt", class_maintenance,
1040 &solib_dsbt_debug, _("\
1041 Set internal debugging of shared library code for DSBT ELF."), _("\
1042 Show internal debugging of shared library code for DSBT ELF."), _("\
1043 When non-zero, DSBT solib specific internal debugging is enabled."),
1044 NULL,
1045 show_dsbt_debug,
1046 &setdebuglist, &showdebuglist);
1047 }
This page took 0.05437 seconds and 4 git commands to generate.