Fix indentation of lm_info_frv
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "solib.h"
24 #include "solist.h"
25 #include "frv-tdep.h"
26 #include "objfiles.h"
27 #include "symtab.h"
28 #include "language.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "elf/frv.h"
32 #include "gdb_bfd.h"
33
34 /* Flag which indicates whether internal debug messages should be printed. */
35 static unsigned int solib_frv_debug;
36
37 /* FR-V pointers are four bytes wide. */
38 enum { FRV_PTR_SIZE = 4 };
39
40 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42 /* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
45 typedef gdb_byte ext_Elf32_Half[2];
46 typedef gdb_byte ext_Elf32_Addr[4];
47 typedef gdb_byte ext_Elf32_Word[4];
48
49 struct ext_elf32_fdpic_loadseg
50 {
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57 };
58
59 struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66 };
67
68 /* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71 struct int_elf32_fdpic_loadseg
72 {
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79 };
80
81 struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88 };
89
90 /* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96 static struct int_elf32_fdpic_loadmap *
97 fetch_loadmap (CORE_ADDR ldmaddr)
98 {
99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
128
129 if (nsegs <= 0)
130 return NULL;
131
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
165 int_ldmbuf->segs[seg].p_vaddr
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
169 int_ldmbuf->segs[seg].p_memsz
170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
173 }
174
175 xfree (ext_ldmbuf);
176 return int_ldmbuf;
177 }
178
179 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
181 typedef gdb_byte ext_ptr[4];
182
183 struct ext_elf32_fdpic_loadaddr
184 {
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187 };
188
189 struct ext_link_map
190 {
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201 };
202
203 /* Link map info to include in an allocated so_list entry. */
204
205 struct lm_info_frv : public lm_info_base
206 {
207
208 /* The loadmap, digested into an easier to use form. */
209 struct int_elf32_fdpic_loadmap *map;
210 /* The GOT address for this link map entry. */
211 CORE_ADDR got_value;
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
213 CORE_ADDR lm_addr;
214
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
217
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
225 asymbol **dyn_syms;
226 arelent **dyn_relocs;
227 int dyn_reloc_count; /* Number of dynamic relocs. */
228
229 };
230
231 /* The load map, got value, etc. are not available from the chain
232 of loaded shared objects. ``main_executable_lm_info'' provides
233 a way to get at this information so that it doesn't need to be
234 frequently recomputed. Initialized by frv_relocate_main_executable(). */
235 static lm_info_frv *main_executable_lm_info;
236
237 static void frv_relocate_main_executable (void);
238 static CORE_ADDR main_got (void);
239 static int enable_break2 (void);
240
241 /* Implement the "open_symbol_file_object" target_so_ops method. */
242
243 static int
244 open_symbol_file_object (void *from_ttyp)
245 {
246 /* Unimplemented. */
247 return 0;
248 }
249
250 /* Cached value for lm_base(), below. */
251 static CORE_ADDR lm_base_cache = 0;
252
253 /* Link map address for main module. */
254 static CORE_ADDR main_lm_addr = 0;
255
256 /* Return the address from which the link map chain may be found. On
257 the FR-V, this may be found in a number of ways. Assuming that the
258 main executable has already been relocated, the easiest way to find
259 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
260 pointer to the start of the link map will be located at the word found
261 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
262 reserve area mandated by the ABI.) */
263
264 static CORE_ADDR
265 lm_base (void)
266 {
267 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
268 struct bound_minimal_symbol got_sym;
269 CORE_ADDR addr;
270 gdb_byte buf[FRV_PTR_SIZE];
271
272 /* One of our assumptions is that the main executable has been relocated.
273 Bail out if this has not happened. (Note that post_create_inferior()
274 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
275 If we allow this to happen, lm_base_cache will be initialized with
276 a bogus value. */
277 if (main_executable_lm_info == 0)
278 return 0;
279
280 /* If we already have a cached value, return it. */
281 if (lm_base_cache)
282 return lm_base_cache;
283
284 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
285 symfile_objfile);
286 if (got_sym.minsym == 0)
287 {
288 if (solib_frv_debug)
289 fprintf_unfiltered (gdb_stdlog,
290 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
291 return 0;
292 }
293
294 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
295
296 if (solib_frv_debug)
297 fprintf_unfiltered (gdb_stdlog,
298 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
299 hex_string_custom (addr, 8));
300
301 if (target_read_memory (addr, buf, sizeof buf) != 0)
302 return 0;
303 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
304
305 if (solib_frv_debug)
306 fprintf_unfiltered (gdb_stdlog,
307 "lm_base: lm_base_cache = %s\n",
308 hex_string_custom (lm_base_cache, 8));
309
310 return lm_base_cache;
311 }
312
313
314 /* Implement the "current_sos" target_so_ops method. */
315
316 static struct so_list *
317 frv_current_sos (void)
318 {
319 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
320 CORE_ADDR lm_addr, mgot;
321 struct so_list *sos_head = NULL;
322 struct so_list **sos_next_ptr = &sos_head;
323
324 /* Make sure that the main executable has been relocated. This is
325 required in order to find the address of the global offset table,
326 which in turn is used to find the link map info. (See lm_base()
327 for details.)
328
329 Note that the relocation of the main executable is also performed
330 by solib_create_inferior_hook(), however, in the case of core
331 files, this hook is called too late in order to be of benefit to
332 solib_add. solib_add eventually calls this this function,
333 frv_current_sos, and also precedes the call to
334 solib_create_inferior_hook(). (See post_create_inferior() in
335 infcmd.c.) */
336 if (main_executable_lm_info == 0 && core_bfd != NULL)
337 frv_relocate_main_executable ();
338
339 /* Fetch the GOT corresponding to the main executable. */
340 mgot = main_got ();
341
342 /* Locate the address of the first link map struct. */
343 lm_addr = lm_base ();
344
345 /* We have at least one link map entry. Fetch the lot of them,
346 building the solist chain. */
347 while (lm_addr)
348 {
349 struct ext_link_map lm_buf;
350 CORE_ADDR got_addr;
351
352 if (solib_frv_debug)
353 fprintf_unfiltered (gdb_stdlog,
354 "current_sos: reading link_map entry at %s\n",
355 hex_string_custom (lm_addr, 8));
356
357 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
358 sizeof (lm_buf)) != 0)
359 {
360 warning (_("frv_current_sos: Unable to read link map entry. "
361 "Shared object chain may be incomplete."));
362 break;
363 }
364
365 got_addr
366 = extract_unsigned_integer (lm_buf.l_addr.got_value,
367 sizeof (lm_buf.l_addr.got_value),
368 byte_order);
369 /* If the got_addr is the same as mgotr, then we're looking at the
370 entry for the main executable. By convention, we don't include
371 this in the list of shared objects. */
372 if (got_addr != mgot)
373 {
374 int errcode;
375 char *name_buf;
376 struct int_elf32_fdpic_loadmap *loadmap;
377 struct so_list *sop;
378 CORE_ADDR addr;
379
380 /* Fetch the load map address. */
381 addr = extract_unsigned_integer (lm_buf.l_addr.map,
382 sizeof lm_buf.l_addr.map,
383 byte_order);
384 loadmap = fetch_loadmap (addr);
385 if (loadmap == NULL)
386 {
387 warning (_("frv_current_sos: Unable to fetch load map. "
388 "Shared object chain may be incomplete."));
389 break;
390 }
391
392 sop = XCNEW (struct so_list);
393 lm_info_frv *li = XCNEW (lm_info_frv);
394 sop->lm_info = li;
395 li->map = loadmap;
396 li->got_value = got_addr;
397 li->lm_addr = lm_addr;
398 /* Fetch the name. */
399 addr = extract_unsigned_integer (lm_buf.l_name,
400 sizeof (lm_buf.l_name),
401 byte_order);
402 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
403 &errcode);
404
405 if (solib_frv_debug)
406 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
407 name_buf);
408
409 if (errcode != 0)
410 warning (_("Can't read pathname for link map entry: %s."),
411 safe_strerror (errcode));
412 else
413 {
414 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
415 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
416 xfree (name_buf);
417 strcpy (sop->so_original_name, sop->so_name);
418 }
419
420 *sos_next_ptr = sop;
421 sos_next_ptr = &sop->next;
422 }
423 else
424 {
425 main_lm_addr = lm_addr;
426 }
427
428 lm_addr = extract_unsigned_integer (lm_buf.l_next,
429 sizeof (lm_buf.l_next), byte_order);
430 }
431
432 enable_break2 ();
433
434 return sos_head;
435 }
436
437
438 /* Return 1 if PC lies in the dynamic symbol resolution code of the
439 run time loader. */
440
441 static CORE_ADDR interp_text_sect_low;
442 static CORE_ADDR interp_text_sect_high;
443 static CORE_ADDR interp_plt_sect_low;
444 static CORE_ADDR interp_plt_sect_high;
445
446 static int
447 frv_in_dynsym_resolve_code (CORE_ADDR pc)
448 {
449 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
450 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
451 || in_plt_section (pc));
452 }
453
454 /* Given a loadmap and an address, return the displacement needed
455 to relocate the address. */
456
457 static CORE_ADDR
458 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
459 CORE_ADDR addr)
460 {
461 int seg;
462
463 for (seg = 0; seg < map->nsegs; seg++)
464 {
465 if (map->segs[seg].p_vaddr <= addr
466 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
467 {
468 return map->segs[seg].addr - map->segs[seg].p_vaddr;
469 }
470 }
471
472 return 0;
473 }
474
475 /* Print a warning about being unable to set the dynamic linker
476 breakpoint. */
477
478 static void
479 enable_break_failure_warning (void)
480 {
481 warning (_("Unable to find dynamic linker breakpoint function.\n"
482 "GDB will be unable to debug shared library initializers\n"
483 "and track explicitly loaded dynamic code."));
484 }
485
486 /* Helper function for gdb_bfd_lookup_symbol. */
487
488 static int
489 cmp_name (const asymbol *sym, const void *data)
490 {
491 return (strcmp (sym->name, (const char *) data) == 0);
492 }
493
494 /* Arrange for dynamic linker to hit breakpoint.
495
496 The dynamic linkers has, as part of its debugger interface, support
497 for arranging for the inferior to hit a breakpoint after mapping in
498 the shared libraries. This function enables that breakpoint.
499
500 On the FR-V, using the shared library (FDPIC) ABI, the symbol
501 _dl_debug_addr points to the r_debug struct which contains
502 a field called r_brk. r_brk is the address of the function
503 descriptor upon which a breakpoint must be placed. Being a
504 function descriptor, we must extract the entry point in order
505 to set the breakpoint.
506
507 Our strategy will be to get the .interp section from the
508 executable. This section will provide us with the name of the
509 interpreter. We'll open the interpreter and then look up
510 the address of _dl_debug_addr. We then relocate this address
511 using the interpreter's loadmap. Once the relocated address
512 is known, we fetch the value (address) corresponding to r_brk
513 and then use that value to fetch the entry point of the function
514 we're interested in. */
515
516 static int enable_break2_done = 0;
517
518 static int
519 enable_break2 (void)
520 {
521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
522 asection *interp_sect;
523
524 if (enable_break2_done)
525 return 1;
526
527 interp_text_sect_low = interp_text_sect_high = 0;
528 interp_plt_sect_low = interp_plt_sect_high = 0;
529
530 /* Find the .interp section; if not found, warn the user and drop
531 into the old breakpoint at symbol code. */
532 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
533 if (interp_sect)
534 {
535 unsigned int interp_sect_size;
536 char *buf;
537 int status;
538 CORE_ADDR addr, interp_loadmap_addr;
539 gdb_byte addr_buf[FRV_PTR_SIZE];
540 struct int_elf32_fdpic_loadmap *ldm;
541
542 /* Read the contents of the .interp section into a local buffer;
543 the contents specify the dynamic linker this program uses. */
544 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
545 buf = (char *) alloca (interp_sect_size);
546 bfd_get_section_contents (exec_bfd, interp_sect,
547 buf, 0, interp_sect_size);
548
549 /* Now we need to figure out where the dynamic linker was
550 loaded so that we can load its symbols and place a breakpoint
551 in the dynamic linker itself.
552
553 This address is stored on the stack. However, I've been unable
554 to find any magic formula to find it for Solaris (appears to
555 be trivial on GNU/Linux). Therefore, we have to try an alternate
556 mechanism to find the dynamic linker's base address. */
557
558 gdb_bfd_ref_ptr tmp_bfd;
559 TRY
560 {
561 tmp_bfd = solib_bfd_open (buf);
562 }
563 CATCH (ex, RETURN_MASK_ALL)
564 {
565 }
566 END_CATCH
567
568 if (tmp_bfd == NULL)
569 {
570 enable_break_failure_warning ();
571 return 0;
572 }
573
574 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
575 &interp_loadmap_addr, 0);
576 if (status < 0)
577 {
578 warning (_("Unable to determine dynamic linker loadmap address."));
579 enable_break_failure_warning ();
580 return 0;
581 }
582
583 if (solib_frv_debug)
584 fprintf_unfiltered (gdb_stdlog,
585 "enable_break: interp_loadmap_addr = %s\n",
586 hex_string_custom (interp_loadmap_addr, 8));
587
588 ldm = fetch_loadmap (interp_loadmap_addr);
589 if (ldm == NULL)
590 {
591 warning (_("Unable to load dynamic linker loadmap at address %s."),
592 hex_string_custom (interp_loadmap_addr, 8));
593 enable_break_failure_warning ();
594 return 0;
595 }
596
597 /* Record the relocated start and end address of the dynamic linker
598 text and plt section for svr4_in_dynsym_resolve_code. */
599 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
600 if (interp_sect)
601 {
602 interp_text_sect_low
603 = bfd_section_vma (tmp_bfd.get (), interp_sect);
604 interp_text_sect_low
605 += displacement_from_map (ldm, interp_text_sect_low);
606 interp_text_sect_high
607 = interp_text_sect_low + bfd_section_size (tmp_bfd.get (),
608 interp_sect);
609 }
610 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
611 if (interp_sect)
612 {
613 interp_plt_sect_low =
614 bfd_section_vma (tmp_bfd.get (), interp_sect);
615 interp_plt_sect_low
616 += displacement_from_map (ldm, interp_plt_sect_low);
617 interp_plt_sect_high =
618 interp_plt_sect_low + bfd_section_size (tmp_bfd.get (),
619 interp_sect);
620 }
621
622 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
623
624 if (addr == 0)
625 {
626 warning (_("Could not find symbol _dl_debug_addr "
627 "in dynamic linker"));
628 enable_break_failure_warning ();
629 return 0;
630 }
631
632 if (solib_frv_debug)
633 fprintf_unfiltered (gdb_stdlog,
634 "enable_break: _dl_debug_addr "
635 "(prior to relocation) = %s\n",
636 hex_string_custom (addr, 8));
637
638 addr += displacement_from_map (ldm, addr);
639
640 if (solib_frv_debug)
641 fprintf_unfiltered (gdb_stdlog,
642 "enable_break: _dl_debug_addr "
643 "(after relocation) = %s\n",
644 hex_string_custom (addr, 8));
645
646 /* Fetch the address of the r_debug struct. */
647 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
648 {
649 warning (_("Unable to fetch contents of _dl_debug_addr "
650 "(at address %s) from dynamic linker"),
651 hex_string_custom (addr, 8));
652 }
653 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
654
655 if (solib_frv_debug)
656 fprintf_unfiltered (gdb_stdlog,
657 "enable_break: _dl_debug_addr[0..3] = %s\n",
658 hex_string_custom (addr, 8));
659
660 /* If it's zero, then the ldso hasn't initialized yet, and so
661 there are no shared libs yet loaded. */
662 if (addr == 0)
663 {
664 if (solib_frv_debug)
665 fprintf_unfiltered (gdb_stdlog,
666 "enable_break: ldso not yet initialized\n");
667 /* Do not warn, but mark to run again. */
668 return 0;
669 }
670
671 /* Fetch the r_brk field. It's 8 bytes from the start of
672 _dl_debug_addr. */
673 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
674 {
675 warning (_("Unable to fetch _dl_debug_addr->r_brk "
676 "(at address %s) from dynamic linker"),
677 hex_string_custom (addr + 8, 8));
678 enable_break_failure_warning ();
679 return 0;
680 }
681 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
682
683 /* Now fetch the function entry point. */
684 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
685 {
686 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
687 "(at address %s) from dynamic linker"),
688 hex_string_custom (addr, 8));
689 enable_break_failure_warning ();
690 return 0;
691 }
692 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
693
694 /* We're done with the loadmap. */
695 xfree (ldm);
696
697 /* Remove all the solib event breakpoints. Their addresses
698 may have changed since the last time we ran the program. */
699 remove_solib_event_breakpoints ();
700
701 /* Now (finally!) create the solib breakpoint. */
702 create_solib_event_breakpoint (target_gdbarch (), addr);
703
704 enable_break2_done = 1;
705
706 return 1;
707 }
708
709 /* Tell the user we couldn't set a dynamic linker breakpoint. */
710 enable_break_failure_warning ();
711
712 /* Failure return. */
713 return 0;
714 }
715
716 static int
717 enable_break (void)
718 {
719 asection *interp_sect;
720 CORE_ADDR entry_point;
721
722 if (symfile_objfile == NULL)
723 {
724 if (solib_frv_debug)
725 fprintf_unfiltered (gdb_stdlog,
726 "enable_break: No symbol file found.\n");
727 return 0;
728 }
729
730 if (!entry_point_address_query (&entry_point))
731 {
732 if (solib_frv_debug)
733 fprintf_unfiltered (gdb_stdlog,
734 "enable_break: Symbol file has no entry point.\n");
735 return 0;
736 }
737
738 /* Check for the presence of a .interp section. If there is no
739 such section, the executable is statically linked. */
740
741 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
742
743 if (interp_sect == NULL)
744 {
745 if (solib_frv_debug)
746 fprintf_unfiltered (gdb_stdlog,
747 "enable_break: No .interp section found.\n");
748 return 0;
749 }
750
751 create_solib_event_breakpoint (target_gdbarch (), entry_point);
752
753 if (solib_frv_debug)
754 fprintf_unfiltered (gdb_stdlog,
755 "enable_break: solib event breakpoint "
756 "placed at entry point: %s\n",
757 hex_string_custom (entry_point, 8));
758 return 1;
759 }
760
761 static void
762 frv_relocate_main_executable (void)
763 {
764 int status;
765 CORE_ADDR exec_addr, interp_addr;
766 struct int_elf32_fdpic_loadmap *ldm;
767 struct cleanup *old_chain;
768 struct section_offsets *new_offsets;
769 int changed;
770 struct obj_section *osect;
771
772 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
773 &interp_addr, &exec_addr);
774
775 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
776 {
777 /* Not using FDPIC ABI, so do nothing. */
778 return;
779 }
780
781 /* Fetch the loadmap located at ``exec_addr''. */
782 ldm = fetch_loadmap (exec_addr);
783 if (ldm == NULL)
784 error (_("Unable to load the executable's loadmap."));
785
786 if (main_executable_lm_info)
787 xfree (main_executable_lm_info);
788 main_executable_lm_info = XCNEW (lm_info_frv);
789 main_executable_lm_info->map = ldm;
790
791 new_offsets = XCNEWVEC (struct section_offsets,
792 symfile_objfile->num_sections);
793 old_chain = make_cleanup (xfree, new_offsets);
794 changed = 0;
795
796 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
797 {
798 CORE_ADDR orig_addr, addr, offset;
799 int osect_idx;
800 int seg;
801
802 osect_idx = osect - symfile_objfile->sections;
803
804 /* Current address of section. */
805 addr = obj_section_addr (osect);
806 /* Offset from where this section started. */
807 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
808 /* Original address prior to any past relocations. */
809 orig_addr = addr - offset;
810
811 for (seg = 0; seg < ldm->nsegs; seg++)
812 {
813 if (ldm->segs[seg].p_vaddr <= orig_addr
814 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
815 {
816 new_offsets->offsets[osect_idx]
817 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
818
819 if (new_offsets->offsets[osect_idx] != offset)
820 changed = 1;
821 break;
822 }
823 }
824 }
825
826 if (changed)
827 objfile_relocate (symfile_objfile, new_offsets);
828
829 do_cleanups (old_chain);
830
831 /* Now that symfile_objfile has been relocated, we can compute the
832 GOT value and stash it away. */
833 main_executable_lm_info->got_value = main_got ();
834 }
835
836 /* Implement the "create_inferior_hook" target_solib_ops method.
837
838 For the FR-V shared library ABI (FDPIC), the main executable needs
839 to be relocated. The shared library breakpoints also need to be
840 enabled. */
841
842 static void
843 frv_solib_create_inferior_hook (int from_tty)
844 {
845 /* Relocate main executable. */
846 frv_relocate_main_executable ();
847
848 /* Enable shared library breakpoints. */
849 if (!enable_break ())
850 {
851 warning (_("shared library handler failed to enable breakpoint"));
852 return;
853 }
854 }
855
856 static void
857 frv_clear_solib (void)
858 {
859 lm_base_cache = 0;
860 enable_break2_done = 0;
861 main_lm_addr = 0;
862 if (main_executable_lm_info != 0)
863 {
864 xfree (main_executable_lm_info->map);
865 xfree (main_executable_lm_info->dyn_syms);
866 xfree (main_executable_lm_info->dyn_relocs);
867 xfree (main_executable_lm_info);
868 main_executable_lm_info = 0;
869 }
870 }
871
872 static void
873 frv_free_so (struct so_list *so)
874 {
875 lm_info_frv *li = (lm_info_frv *) so->lm_info;
876
877 xfree (li->map);
878 xfree (li->dyn_syms);
879 xfree (li->dyn_relocs);
880 xfree (li);
881 }
882
883 static void
884 frv_relocate_section_addresses (struct so_list *so,
885 struct target_section *sec)
886 {
887 int seg;
888 lm_info_frv *li = (lm_info_frv *) so->lm_info;
889 int_elf32_fdpic_loadmap *map = li->map;
890
891 for (seg = 0; seg < map->nsegs; seg++)
892 {
893 if (map->segs[seg].p_vaddr <= sec->addr
894 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
895 {
896 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
897
898 sec->addr += displ;
899 sec->endaddr += displ;
900 break;
901 }
902 }
903 }
904
905 /* Return the GOT address associated with the main executable. Return
906 0 if it can't be found. */
907
908 static CORE_ADDR
909 main_got (void)
910 {
911 struct bound_minimal_symbol got_sym;
912
913 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
914 NULL, symfile_objfile);
915 if (got_sym.minsym == 0)
916 return 0;
917
918 return BMSYMBOL_VALUE_ADDRESS (got_sym);
919 }
920
921 /* Find the global pointer for the given function address ADDR. */
922
923 CORE_ADDR
924 frv_fdpic_find_global_pointer (CORE_ADDR addr)
925 {
926 struct so_list *so;
927
928 so = master_so_list ();
929 while (so)
930 {
931 int seg;
932 lm_info_frv *li = (lm_info_frv *) so->lm_info;
933 int_elf32_fdpic_loadmap *map = li->map;
934
935 for (seg = 0; seg < map->nsegs; seg++)
936 {
937 if (map->segs[seg].addr <= addr
938 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
939 return li->got_value;
940 }
941
942 so = so->next;
943 }
944
945 /* Didn't find it in any of the shared objects. So assume it's in the
946 main executable. */
947 return main_got ();
948 }
949
950 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
951 static CORE_ADDR find_canonical_descriptor_in_load_object
952 (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);
953
954 /* Given a function entry point, attempt to find the canonical descriptor
955 associated with that entry point. Return 0 if no canonical descriptor
956 could be found. */
957
958 CORE_ADDR
959 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
960 {
961 const char *name;
962 CORE_ADDR addr;
963 CORE_ADDR got_value;
964 struct symbol *sym;
965
966 /* Fetch the corresponding global pointer for the entry point. */
967 got_value = frv_fdpic_find_global_pointer (entry_point);
968
969 /* Attempt to find the name of the function. If the name is available,
970 it'll be used as an aid in finding matching functions in the dynamic
971 symbol table. */
972 sym = find_pc_function (entry_point);
973 if (sym == 0)
974 name = 0;
975 else
976 name = SYMBOL_LINKAGE_NAME (sym);
977
978 /* Check the main executable. */
979 addr = find_canonical_descriptor_in_load_object
980 (entry_point, got_value, name, symfile_objfile->obfd,
981 main_executable_lm_info);
982
983 /* If descriptor not found via main executable, check each load object
984 in list of shared objects. */
985 if (addr == 0)
986 {
987 struct so_list *so;
988
989 so = master_so_list ();
990 while (so)
991 {
992 lm_info_frv *li = (lm_info_frv *) so->lm_info;
993
994 addr = find_canonical_descriptor_in_load_object
995 (entry_point, got_value, name, so->abfd, li);
996
997 if (addr != 0)
998 break;
999
1000 so = so->next;
1001 }
1002 }
1003
1004 return addr;
1005 }
1006
1007 static CORE_ADDR
1008 find_canonical_descriptor_in_load_object
1009 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
1010 lm_info_frv *lm)
1011 {
1012 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1013 arelent *rel;
1014 unsigned int i;
1015 CORE_ADDR addr = 0;
1016
1017 /* Nothing to do if no bfd. */
1018 if (abfd == 0)
1019 return 0;
1020
1021 /* Nothing to do if no link map. */
1022 if (lm == 0)
1023 return 0;
1024
1025 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1026 (More about this later.) But in order to fetch the relocs, we
1027 need to first fetch the dynamic symbols. These symbols need to
1028 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1029 works. (See the comments in the declaration of struct lm_info
1030 for more information.) */
1031 if (lm->dyn_syms == NULL)
1032 {
1033 long storage_needed;
1034 unsigned int number_of_symbols;
1035
1036 /* Determine amount of space needed to hold the dynamic symbol table. */
1037 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1038
1039 /* If there are no dynamic symbols, there's nothing to do. */
1040 if (storage_needed <= 0)
1041 return 0;
1042
1043 /* Allocate space for the dynamic symbol table. */
1044 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1045
1046 /* Fetch the dynamic symbol table. */
1047 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1048
1049 if (number_of_symbols == 0)
1050 return 0;
1051 }
1052
1053 /* Fetch the dynamic relocations if not already cached. */
1054 if (lm->dyn_relocs == NULL)
1055 {
1056 long storage_needed;
1057
1058 /* Determine amount of space needed to hold the dynamic relocs. */
1059 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1060
1061 /* Bail out if there are no dynamic relocs. */
1062 if (storage_needed <= 0)
1063 return 0;
1064
1065 /* Allocate space for the relocs. */
1066 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1067
1068 /* Fetch the dynamic relocs. */
1069 lm->dyn_reloc_count
1070 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1071 }
1072
1073 /* Search the dynamic relocs. */
1074 for (i = 0; i < lm->dyn_reloc_count; i++)
1075 {
1076 rel = lm->dyn_relocs[i];
1077
1078 /* Relocs of interest are those which meet the following
1079 criteria:
1080
1081 - the names match (assuming the caller could provide
1082 a name which matches ``entry_point'').
1083 - the relocation type must be R_FRV_FUNCDESC. Relocs
1084 of this type are used (by the dynamic linker) to
1085 look up the address of a canonical descriptor (allocating
1086 it if need be) and initializing the GOT entry referred
1087 to by the offset to the address of the descriptor.
1088
1089 These relocs of interest may be used to obtain a
1090 candidate descriptor by first adjusting the reloc's
1091 address according to the link map and then dereferencing
1092 this address (which is a GOT entry) to obtain a descriptor
1093 address. */
1094 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1095 && rel->howto->type == R_FRV_FUNCDESC)
1096 {
1097 gdb_byte buf [FRV_PTR_SIZE];
1098
1099 /* Compute address of address of candidate descriptor. */
1100 addr = rel->address + displacement_from_map (lm->map, rel->address);
1101
1102 /* Fetch address of candidate descriptor. */
1103 if (target_read_memory (addr, buf, sizeof buf) != 0)
1104 continue;
1105 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1106
1107 /* Check for matching entry point. */
1108 if (target_read_memory (addr, buf, sizeof buf) != 0)
1109 continue;
1110 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1111 != entry_point)
1112 continue;
1113
1114 /* Check for matching got value. */
1115 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1116 continue;
1117 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1118 != got_value)
1119 continue;
1120
1121 /* Match was successful! Exit loop. */
1122 break;
1123 }
1124 }
1125
1126 return addr;
1127 }
1128
1129 /* Given an objfile, return the address of its link map. This value is
1130 needed for TLS support. */
1131 CORE_ADDR
1132 frv_fetch_objfile_link_map (struct objfile *objfile)
1133 {
1134 struct so_list *so;
1135
1136 /* Cause frv_current_sos() to be run if it hasn't been already. */
1137 if (main_lm_addr == 0)
1138 solib_add (0, 0, 1);
1139
1140 /* frv_current_sos() will set main_lm_addr for the main executable. */
1141 if (objfile == symfile_objfile)
1142 return main_lm_addr;
1143
1144 /* The other link map addresses may be found by examining the list
1145 of shared libraries. */
1146 for (so = master_so_list (); so; so = so->next)
1147 {
1148 lm_info_frv *li = (lm_info_frv *) so->lm_info;
1149
1150 if (so->objfile == objfile)
1151 return li->lm_addr;
1152 }
1153
1154 /* Not found! */
1155 return 0;
1156 }
1157
1158 struct target_so_ops frv_so_ops;
1159
1160 /* Provide a prototype to silence -Wmissing-prototypes. */
1161 extern initialize_file_ftype _initialize_frv_solib;
1162
1163 void
1164 _initialize_frv_solib (void)
1165 {
1166 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1167 frv_so_ops.free_so = frv_free_so;
1168 frv_so_ops.clear_solib = frv_clear_solib;
1169 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1170 frv_so_ops.current_sos = frv_current_sos;
1171 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1172 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1173 frv_so_ops.bfd_open = solib_bfd_open;
1174
1175 /* Debug this file's internals. */
1176 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1177 &solib_frv_debug, _("\
1178 Set internal debugging of shared library code for FR-V."), _("\
1179 Show internal debugging of shared library code for FR-V."), _("\
1180 When non-zero, FR-V solib specific internal debugging is enabled."),
1181 NULL,
1182 NULL, /* FIXME: i18n: */
1183 &setdebuglist, &showdebuglist);
1184 }
This page took 0.057517 seconds and 5 git commands to generate.