4c94f9f1b85a30ef6d97c859d652fb73a6ec2997
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "regcache.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36
37 #include "gdb_assert.h"
38
39 #include "solist.h"
40 #include "solib.h"
41 #include "solib-svr4.h"
42
43 #include "bfd-target.h"
44 #include "elf-bfd.h"
45 #include "exec.h"
46 #include "auxv.h"
47 #include "exceptions.h"
48 #include "gdb_bfd.h"
49 #include "probe.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54 static void svr4_free_library_list (void *p_list);
55
56 /* Link map info to include in an allocated so_list entry. */
57
58 struct lm_info
59 {
60 /* Amount by which addresses in the binary should be relocated to
61 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
62 When prelinking is involved and the prelink base address changes,
63 we may need a different offset - the recomputed offset is in L_ADDR.
64 It is commonly the same value. It is cached as we want to warn about
65 the difference and compute it only once. L_ADDR is valid
66 iff L_ADDR_P. */
67 CORE_ADDR l_addr, l_addr_inferior;
68 unsigned int l_addr_p : 1;
69
70 /* The target location of lm. */
71 CORE_ADDR lm_addr;
72
73 /* Values read in from inferior's fields of the same name. */
74 CORE_ADDR l_ld, l_next, l_prev, l_name;
75 };
76
77 /* On SVR4 systems, a list of symbols in the dynamic linker where
78 GDB can try to place a breakpoint to monitor shared library
79 events.
80
81 If none of these symbols are found, or other errors occur, then
82 SVR4 systems will fall back to using a symbol as the "startup
83 mapping complete" breakpoint address. */
84
85 static const char * const solib_break_names[] =
86 {
87 "r_debug_state",
88 "_r_debug_state",
89 "_dl_debug_state",
90 "rtld_db_dlactivity",
91 "__dl_rtld_db_dlactivity",
92 "_rtld_debug_state",
93
94 NULL
95 };
96
97 static const char * const bkpt_names[] =
98 {
99 "_start",
100 "__start",
101 "main",
102 NULL
103 };
104
105 static const char * const main_name_list[] =
106 {
107 "main_$main",
108 NULL
109 };
110
111 /* What to do when a probe stop occurs. */
112
113 enum probe_action
114 {
115 /* Something went seriously wrong. Stop using probes and
116 revert to using the older interface. */
117 PROBES_INTERFACE_FAILED,
118
119 /* No action is required. The shared object list is still
120 valid. */
121 DO_NOTHING,
122
123 /* The shared object list should be reloaded entirely. */
124 FULL_RELOAD,
125
126 /* Attempt to incrementally update the shared object list. If
127 the update fails or is not possible, fall back to reloading
128 the list in full. */
129 UPDATE_OR_RELOAD,
130 };
131
132 /* A probe's name and its associated action. */
133
134 struct probe_info
135 {
136 /* The name of the probe. */
137 const char *name;
138
139 /* What to do when a probe stop occurs. */
140 enum probe_action action;
141 };
142
143 /* A list of named probes and their associated actions. If all
144 probes are present in the dynamic linker then the probes-based
145 interface will be used. */
146
147 static const struct probe_info probe_info[] =
148 {
149 { "init_start", DO_NOTHING },
150 { "init_complete", FULL_RELOAD },
151 { "map_start", DO_NOTHING },
152 { "map_failed", DO_NOTHING },
153 { "reloc_complete", UPDATE_OR_RELOAD },
154 { "unmap_start", DO_NOTHING },
155 { "unmap_complete", FULL_RELOAD },
156 };
157
158 #define NUM_PROBES ARRAY_SIZE (probe_info)
159
160 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
161 the same shared library. */
162
163 static int
164 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
165 {
166 if (strcmp (gdb_so_name, inferior_so_name) == 0)
167 return 1;
168
169 /* On Solaris, when starting inferior we think that dynamic linker is
170 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
171 contains /lib/ld.so.1. Sometimes one file is a link to another, but
172 sometimes they have identical content, but are not linked to each
173 other. We don't restrict this check for Solaris, but the chances
174 of running into this situation elsewhere are very low. */
175 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
176 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
177 return 1;
178
179 /* Similarly, we observed the same issue with sparc64, but with
180 different locations. */
181 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
182 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
183 return 1;
184
185 return 0;
186 }
187
188 static int
189 svr4_same (struct so_list *gdb, struct so_list *inferior)
190 {
191 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
192 }
193
194 static struct lm_info *
195 lm_info_read (CORE_ADDR lm_addr)
196 {
197 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
198 gdb_byte *lm;
199 struct lm_info *lm_info;
200 struct cleanup *back_to;
201
202 lm = xmalloc (lmo->link_map_size);
203 back_to = make_cleanup (xfree, lm);
204
205 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
206 {
207 warning (_("Error reading shared library list entry at %s"),
208 paddress (target_gdbarch (), lm_addr)),
209 lm_info = NULL;
210 }
211 else
212 {
213 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
214
215 lm_info = xzalloc (sizeof (*lm_info));
216 lm_info->lm_addr = lm_addr;
217
218 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
219 ptr_type);
220 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
221 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
222 ptr_type);
223 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
224 ptr_type);
225 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
226 ptr_type);
227 }
228
229 do_cleanups (back_to);
230
231 return lm_info;
232 }
233
234 static int
235 has_lm_dynamic_from_link_map (void)
236 {
237 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
238
239 return lmo->l_ld_offset >= 0;
240 }
241
242 static CORE_ADDR
243 lm_addr_check (const struct so_list *so, bfd *abfd)
244 {
245 if (!so->lm_info->l_addr_p)
246 {
247 struct bfd_section *dyninfo_sect;
248 CORE_ADDR l_addr, l_dynaddr, dynaddr;
249
250 l_addr = so->lm_info->l_addr_inferior;
251
252 if (! abfd || ! has_lm_dynamic_from_link_map ())
253 goto set_addr;
254
255 l_dynaddr = so->lm_info->l_ld;
256
257 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
258 if (dyninfo_sect == NULL)
259 goto set_addr;
260
261 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
262
263 if (dynaddr + l_addr != l_dynaddr)
264 {
265 CORE_ADDR align = 0x1000;
266 CORE_ADDR minpagesize = align;
267
268 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
269 {
270 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
271 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
272 int i;
273
274 align = 1;
275
276 for (i = 0; i < ehdr->e_phnum; i++)
277 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
278 align = phdr[i].p_align;
279
280 minpagesize = get_elf_backend_data (abfd)->minpagesize;
281 }
282
283 /* Turn it into a mask. */
284 align--;
285
286 /* If the changes match the alignment requirements, we
287 assume we're using a core file that was generated by the
288 same binary, just prelinked with a different base offset.
289 If it doesn't match, we may have a different binary, the
290 same binary with the dynamic table loaded at an unrelated
291 location, or anything, really. To avoid regressions,
292 don't adjust the base offset in the latter case, although
293 odds are that, if things really changed, debugging won't
294 quite work.
295
296 One could expect more the condition
297 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
298 but the one below is relaxed for PPC. The PPC kernel supports
299 either 4k or 64k page sizes. To be prepared for 64k pages,
300 PPC ELF files are built using an alignment requirement of 64k.
301 However, when running on a kernel supporting 4k pages, the memory
302 mapping of the library may not actually happen on a 64k boundary!
303
304 (In the usual case where (l_addr & align) == 0, this check is
305 equivalent to the possibly expected check above.)
306
307 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
308
309 l_addr = l_dynaddr - dynaddr;
310
311 if ((l_addr & (minpagesize - 1)) == 0
312 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
313 {
314 if (info_verbose)
315 printf_unfiltered (_("Using PIC (Position Independent Code) "
316 "prelink displacement %s for \"%s\".\n"),
317 paddress (target_gdbarch (), l_addr),
318 so->so_name);
319 }
320 else
321 {
322 /* There is no way to verify the library file matches. prelink
323 can during prelinking of an unprelinked file (or unprelinking
324 of a prelinked file) shift the DYNAMIC segment by arbitrary
325 offset without any page size alignment. There is no way to
326 find out the ELF header and/or Program Headers for a limited
327 verification if it they match. One could do a verification
328 of the DYNAMIC segment. Still the found address is the best
329 one GDB could find. */
330
331 warning (_(".dynamic section for \"%s\" "
332 "is not at the expected address "
333 "(wrong library or version mismatch?)"), so->so_name);
334 }
335 }
336
337 set_addr:
338 so->lm_info->l_addr = l_addr;
339 so->lm_info->l_addr_p = 1;
340 }
341
342 return so->lm_info->l_addr;
343 }
344
345 /* Per pspace SVR4 specific data. */
346
347 struct svr4_info
348 {
349 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
350
351 /* Validity flag for debug_loader_offset. */
352 int debug_loader_offset_p;
353
354 /* Load address for the dynamic linker, inferred. */
355 CORE_ADDR debug_loader_offset;
356
357 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
358 char *debug_loader_name;
359
360 /* Load map address for the main executable. */
361 CORE_ADDR main_lm_addr;
362
363 CORE_ADDR interp_text_sect_low;
364 CORE_ADDR interp_text_sect_high;
365 CORE_ADDR interp_plt_sect_low;
366 CORE_ADDR interp_plt_sect_high;
367
368 /* Nonzero if the list of objects was last obtained from the target
369 via qXfer:libraries-svr4:read. */
370 int using_xfer;
371
372 /* Table of struct probe_and_action instances, used by the
373 probes-based interface to map breakpoint addresses to probes
374 and their associated actions. Lookup is performed using
375 probe_and_action->probe->address. */
376 htab_t probes_table;
377
378 /* List of objects loaded into the inferior, used by the probes-
379 based interface. */
380 struct so_list *solib_list;
381 };
382
383 /* Per-program-space data key. */
384 static const struct program_space_data *solib_svr4_pspace_data;
385
386 /* Free the probes table. */
387
388 static void
389 free_probes_table (struct svr4_info *info)
390 {
391 if (info->probes_table == NULL)
392 return;
393
394 htab_delete (info->probes_table);
395 info->probes_table = NULL;
396 }
397
398 /* Free the solib list. */
399
400 static void
401 free_solib_list (struct svr4_info *info)
402 {
403 svr4_free_library_list (&info->solib_list);
404 info->solib_list = NULL;
405 }
406
407 static void
408 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
409 {
410 struct svr4_info *info = arg;
411
412 free_probes_table (info);
413 free_solib_list (info);
414
415 xfree (info);
416 }
417
418 /* Get the current svr4 data. If none is found yet, add it now. This
419 function always returns a valid object. */
420
421 static struct svr4_info *
422 get_svr4_info (void)
423 {
424 struct svr4_info *info;
425
426 info = program_space_data (current_program_space, solib_svr4_pspace_data);
427 if (info != NULL)
428 return info;
429
430 info = XCNEW (struct svr4_info);
431 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
432 return info;
433 }
434
435 /* Local function prototypes */
436
437 static int match_main (const char *);
438
439 /* Read program header TYPE from inferior memory. The header is found
440 by scanning the OS auxillary vector.
441
442 If TYPE == -1, return the program headers instead of the contents of
443 one program header.
444
445 Return a pointer to allocated memory holding the program header contents,
446 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
447 size of those contents is returned to P_SECT_SIZE. Likewise, the target
448 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
449
450 static gdb_byte *
451 read_program_header (int type, int *p_sect_size, int *p_arch_size)
452 {
453 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
454 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
455 int arch_size, sect_size;
456 CORE_ADDR sect_addr;
457 gdb_byte *buf;
458 int pt_phdr_p = 0;
459
460 /* Get required auxv elements from target. */
461 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
462 return 0;
463 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
464 return 0;
465 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
466 return 0;
467 if (!at_phdr || !at_phnum)
468 return 0;
469
470 /* Determine ELF architecture type. */
471 if (at_phent == sizeof (Elf32_External_Phdr))
472 arch_size = 32;
473 else if (at_phent == sizeof (Elf64_External_Phdr))
474 arch_size = 64;
475 else
476 return 0;
477
478 /* Find the requested segment. */
479 if (type == -1)
480 {
481 sect_addr = at_phdr;
482 sect_size = at_phent * at_phnum;
483 }
484 else if (arch_size == 32)
485 {
486 Elf32_External_Phdr phdr;
487 int i;
488
489 /* Search for requested PHDR. */
490 for (i = 0; i < at_phnum; i++)
491 {
492 int p_type;
493
494 if (target_read_memory (at_phdr + i * sizeof (phdr),
495 (gdb_byte *)&phdr, sizeof (phdr)))
496 return 0;
497
498 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
499 4, byte_order);
500
501 if (p_type == PT_PHDR)
502 {
503 pt_phdr_p = 1;
504 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
505 4, byte_order);
506 }
507
508 if (p_type == type)
509 break;
510 }
511
512 if (i == at_phnum)
513 return 0;
514
515 /* Retrieve address and size. */
516 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
517 4, byte_order);
518 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
519 4, byte_order);
520 }
521 else
522 {
523 Elf64_External_Phdr phdr;
524 int i;
525
526 /* Search for requested PHDR. */
527 for (i = 0; i < at_phnum; i++)
528 {
529 int p_type;
530
531 if (target_read_memory (at_phdr + i * sizeof (phdr),
532 (gdb_byte *)&phdr, sizeof (phdr)))
533 return 0;
534
535 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
536 4, byte_order);
537
538 if (p_type == PT_PHDR)
539 {
540 pt_phdr_p = 1;
541 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
542 8, byte_order);
543 }
544
545 if (p_type == type)
546 break;
547 }
548
549 if (i == at_phnum)
550 return 0;
551
552 /* Retrieve address and size. */
553 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
554 8, byte_order);
555 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
556 8, byte_order);
557 }
558
559 /* PT_PHDR is optional, but we really need it
560 for PIE to make this work in general. */
561
562 if (pt_phdr_p)
563 {
564 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
565 Relocation offset is the difference between the two. */
566 sect_addr = sect_addr + (at_phdr - pt_phdr);
567 }
568
569 /* Read in requested program header. */
570 buf = xmalloc (sect_size);
571 if (target_read_memory (sect_addr, buf, sect_size))
572 {
573 xfree (buf);
574 return NULL;
575 }
576
577 if (p_arch_size)
578 *p_arch_size = arch_size;
579 if (p_sect_size)
580 *p_sect_size = sect_size;
581
582 return buf;
583 }
584
585
586 /* Return program interpreter string. */
587 static char *
588 find_program_interpreter (void)
589 {
590 gdb_byte *buf = NULL;
591
592 /* If we have an exec_bfd, use its section table. */
593 if (exec_bfd
594 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
595 {
596 struct bfd_section *interp_sect;
597
598 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
599 if (interp_sect != NULL)
600 {
601 int sect_size = bfd_section_size (exec_bfd, interp_sect);
602
603 buf = xmalloc (sect_size);
604 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
605 }
606 }
607
608 /* If we didn't find it, use the target auxillary vector. */
609 if (!buf)
610 buf = read_program_header (PT_INTERP, NULL, NULL);
611
612 return (char *) buf;
613 }
614
615
616 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
617 returned and the corresponding PTR is set. */
618
619 static int
620 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
621 {
622 int arch_size, step, sect_size;
623 long dyn_tag;
624 CORE_ADDR dyn_ptr, dyn_addr;
625 gdb_byte *bufend, *bufstart, *buf;
626 Elf32_External_Dyn *x_dynp_32;
627 Elf64_External_Dyn *x_dynp_64;
628 struct bfd_section *sect;
629 struct target_section *target_section;
630
631 if (abfd == NULL)
632 return 0;
633
634 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
635 return 0;
636
637 arch_size = bfd_get_arch_size (abfd);
638 if (arch_size == -1)
639 return 0;
640
641 /* Find the start address of the .dynamic section. */
642 sect = bfd_get_section_by_name (abfd, ".dynamic");
643 if (sect == NULL)
644 return 0;
645
646 for (target_section = current_target_sections->sections;
647 target_section < current_target_sections->sections_end;
648 target_section++)
649 if (sect == target_section->the_bfd_section)
650 break;
651 if (target_section < current_target_sections->sections_end)
652 dyn_addr = target_section->addr;
653 else
654 {
655 /* ABFD may come from OBJFILE acting only as a symbol file without being
656 loaded into the target (see add_symbol_file_command). This case is
657 such fallback to the file VMA address without the possibility of
658 having the section relocated to its actual in-memory address. */
659
660 dyn_addr = bfd_section_vma (abfd, sect);
661 }
662
663 /* Read in .dynamic from the BFD. We will get the actual value
664 from memory later. */
665 sect_size = bfd_section_size (abfd, sect);
666 buf = bufstart = alloca (sect_size);
667 if (!bfd_get_section_contents (abfd, sect,
668 buf, 0, sect_size))
669 return 0;
670
671 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
672 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
673 : sizeof (Elf64_External_Dyn);
674 for (bufend = buf + sect_size;
675 buf < bufend;
676 buf += step)
677 {
678 if (arch_size == 32)
679 {
680 x_dynp_32 = (Elf32_External_Dyn *) buf;
681 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
682 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
683 }
684 else
685 {
686 x_dynp_64 = (Elf64_External_Dyn *) buf;
687 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
688 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
689 }
690 if (dyn_tag == DT_NULL)
691 return 0;
692 if (dyn_tag == dyntag)
693 {
694 /* If requested, try to read the runtime value of this .dynamic
695 entry. */
696 if (ptr)
697 {
698 struct type *ptr_type;
699 gdb_byte ptr_buf[8];
700 CORE_ADDR ptr_addr;
701
702 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
703 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
704 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
705 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
706 *ptr = dyn_ptr;
707 }
708 return 1;
709 }
710 }
711
712 return 0;
713 }
714
715 /* Scan for DYNTAG in .dynamic section of the target's main executable,
716 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
717 returned and the corresponding PTR is set. */
718
719 static int
720 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
721 {
722 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
723 int sect_size, arch_size, step;
724 long dyn_tag;
725 CORE_ADDR dyn_ptr;
726 gdb_byte *bufend, *bufstart, *buf;
727
728 /* Read in .dynamic section. */
729 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
730 if (!buf)
731 return 0;
732
733 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
734 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
735 : sizeof (Elf64_External_Dyn);
736 for (bufend = buf + sect_size;
737 buf < bufend;
738 buf += step)
739 {
740 if (arch_size == 32)
741 {
742 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
743
744 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
745 4, byte_order);
746 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
747 4, byte_order);
748 }
749 else
750 {
751 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
752
753 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
754 8, byte_order);
755 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
756 8, byte_order);
757 }
758 if (dyn_tag == DT_NULL)
759 break;
760
761 if (dyn_tag == dyntag)
762 {
763 if (ptr)
764 *ptr = dyn_ptr;
765
766 xfree (bufstart);
767 return 1;
768 }
769 }
770
771 xfree (bufstart);
772 return 0;
773 }
774
775 /* Locate the base address of dynamic linker structs for SVR4 elf
776 targets.
777
778 For SVR4 elf targets the address of the dynamic linker's runtime
779 structure is contained within the dynamic info section in the
780 executable file. The dynamic section is also mapped into the
781 inferior address space. Because the runtime loader fills in the
782 real address before starting the inferior, we have to read in the
783 dynamic info section from the inferior address space.
784 If there are any errors while trying to find the address, we
785 silently return 0, otherwise the found address is returned. */
786
787 static CORE_ADDR
788 elf_locate_base (void)
789 {
790 struct bound_minimal_symbol msymbol;
791 CORE_ADDR dyn_ptr;
792
793 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
794 instead of DT_DEBUG, although they sometimes contain an unused
795 DT_DEBUG. */
796 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
797 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
798 {
799 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
800 gdb_byte *pbuf;
801 int pbuf_size = TYPE_LENGTH (ptr_type);
802
803 pbuf = alloca (pbuf_size);
804 /* DT_MIPS_RLD_MAP contains a pointer to the address
805 of the dynamic link structure. */
806 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
807 return 0;
808 return extract_typed_address (pbuf, ptr_type);
809 }
810
811 /* Find DT_DEBUG. */
812 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
813 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
814 return dyn_ptr;
815
816 /* This may be a static executable. Look for the symbol
817 conventionally named _r_debug, as a last resort. */
818 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
819 if (msymbol.minsym != NULL)
820 return BMSYMBOL_VALUE_ADDRESS (msymbol);
821
822 /* DT_DEBUG entry not found. */
823 return 0;
824 }
825
826 /* Locate the base address of dynamic linker structs.
827
828 For both the SunOS and SVR4 shared library implementations, if the
829 inferior executable has been linked dynamically, there is a single
830 address somewhere in the inferior's data space which is the key to
831 locating all of the dynamic linker's runtime structures. This
832 address is the value of the debug base symbol. The job of this
833 function is to find and return that address, or to return 0 if there
834 is no such address (the executable is statically linked for example).
835
836 For SunOS, the job is almost trivial, since the dynamic linker and
837 all of it's structures are statically linked to the executable at
838 link time. Thus the symbol for the address we are looking for has
839 already been added to the minimal symbol table for the executable's
840 objfile at the time the symbol file's symbols were read, and all we
841 have to do is look it up there. Note that we explicitly do NOT want
842 to find the copies in the shared library.
843
844 The SVR4 version is a bit more complicated because the address
845 is contained somewhere in the dynamic info section. We have to go
846 to a lot more work to discover the address of the debug base symbol.
847 Because of this complexity, we cache the value we find and return that
848 value on subsequent invocations. Note there is no copy in the
849 executable symbol tables. */
850
851 static CORE_ADDR
852 locate_base (struct svr4_info *info)
853 {
854 /* Check to see if we have a currently valid address, and if so, avoid
855 doing all this work again and just return the cached address. If
856 we have no cached address, try to locate it in the dynamic info
857 section for ELF executables. There's no point in doing any of this
858 though if we don't have some link map offsets to work with. */
859
860 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
861 info->debug_base = elf_locate_base ();
862 return info->debug_base;
863 }
864
865 /* Find the first element in the inferior's dynamic link map, and
866 return its address in the inferior. Return zero if the address
867 could not be determined.
868
869 FIXME: Perhaps we should validate the info somehow, perhaps by
870 checking r_version for a known version number, or r_state for
871 RT_CONSISTENT. */
872
873 static CORE_ADDR
874 solib_svr4_r_map (struct svr4_info *info)
875 {
876 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
877 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
878 CORE_ADDR addr = 0;
879 volatile struct gdb_exception ex;
880
881 TRY_CATCH (ex, RETURN_MASK_ERROR)
882 {
883 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
884 ptr_type);
885 }
886 exception_print (gdb_stderr, ex);
887 return addr;
888 }
889
890 /* Find r_brk from the inferior's debug base. */
891
892 static CORE_ADDR
893 solib_svr4_r_brk (struct svr4_info *info)
894 {
895 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
896 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
897
898 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
899 ptr_type);
900 }
901
902 /* Find the link map for the dynamic linker (if it is not in the
903 normal list of loaded shared objects). */
904
905 static CORE_ADDR
906 solib_svr4_r_ldsomap (struct svr4_info *info)
907 {
908 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
909 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
910 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
911 ULONGEST version;
912
913 /* Check version, and return zero if `struct r_debug' doesn't have
914 the r_ldsomap member. */
915 version
916 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
917 lmo->r_version_size, byte_order);
918 if (version < 2 || lmo->r_ldsomap_offset == -1)
919 return 0;
920
921 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
922 ptr_type);
923 }
924
925 /* On Solaris systems with some versions of the dynamic linker,
926 ld.so's l_name pointer points to the SONAME in the string table
927 rather than into writable memory. So that GDB can find shared
928 libraries when loading a core file generated by gcore, ensure that
929 memory areas containing the l_name string are saved in the core
930 file. */
931
932 static int
933 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
934 {
935 struct svr4_info *info;
936 CORE_ADDR ldsomap;
937 struct so_list *new;
938 struct cleanup *old_chain;
939 CORE_ADDR name_lm;
940
941 info = get_svr4_info ();
942
943 info->debug_base = 0;
944 locate_base (info);
945 if (!info->debug_base)
946 return 0;
947
948 ldsomap = solib_svr4_r_ldsomap (info);
949 if (!ldsomap)
950 return 0;
951
952 new = XCNEW (struct so_list);
953 old_chain = make_cleanup (xfree, new);
954 new->lm_info = lm_info_read (ldsomap);
955 make_cleanup (xfree, new->lm_info);
956 name_lm = new->lm_info ? new->lm_info->l_name : 0;
957 do_cleanups (old_chain);
958
959 return (name_lm >= vaddr && name_lm < vaddr + size);
960 }
961
962 /* Implement the "open_symbol_file_object" target_so_ops method.
963
964 If no open symbol file, attempt to locate and open the main symbol
965 file. On SVR4 systems, this is the first link map entry. If its
966 name is here, we can open it. Useful when attaching to a process
967 without first loading its symbol file. */
968
969 static int
970 open_symbol_file_object (void *from_ttyp)
971 {
972 CORE_ADDR lm, l_name;
973 char *filename;
974 int errcode;
975 int from_tty = *(int *)from_ttyp;
976 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
977 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
978 int l_name_size = TYPE_LENGTH (ptr_type);
979 gdb_byte *l_name_buf = xmalloc (l_name_size);
980 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
981 struct svr4_info *info = get_svr4_info ();
982
983 if (symfile_objfile)
984 if (!query (_("Attempt to reload symbols from process? ")))
985 {
986 do_cleanups (cleanups);
987 return 0;
988 }
989
990 /* Always locate the debug struct, in case it has moved. */
991 info->debug_base = 0;
992 if (locate_base (info) == 0)
993 {
994 do_cleanups (cleanups);
995 return 0; /* failed somehow... */
996 }
997
998 /* First link map member should be the executable. */
999 lm = solib_svr4_r_map (info);
1000 if (lm == 0)
1001 {
1002 do_cleanups (cleanups);
1003 return 0; /* failed somehow... */
1004 }
1005
1006 /* Read address of name from target memory to GDB. */
1007 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1008
1009 /* Convert the address to host format. */
1010 l_name = extract_typed_address (l_name_buf, ptr_type);
1011
1012 if (l_name == 0)
1013 {
1014 do_cleanups (cleanups);
1015 return 0; /* No filename. */
1016 }
1017
1018 /* Now fetch the filename from target memory. */
1019 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1020 make_cleanup (xfree, filename);
1021
1022 if (errcode)
1023 {
1024 warning (_("failed to read exec filename from attached file: %s"),
1025 safe_strerror (errcode));
1026 do_cleanups (cleanups);
1027 return 0;
1028 }
1029
1030 /* Have a pathname: read the symbol file. */
1031 symbol_file_add_main (filename, from_tty);
1032
1033 do_cleanups (cleanups);
1034 return 1;
1035 }
1036
1037 /* Data exchange structure for the XML parser as returned by
1038 svr4_current_sos_via_xfer_libraries. */
1039
1040 struct svr4_library_list
1041 {
1042 struct so_list *head, **tailp;
1043
1044 /* Inferior address of struct link_map used for the main executable. It is
1045 NULL if not known. */
1046 CORE_ADDR main_lm;
1047 };
1048
1049 /* Implementation for target_so_ops.free_so. */
1050
1051 static void
1052 svr4_free_so (struct so_list *so)
1053 {
1054 xfree (so->lm_info);
1055 }
1056
1057 /* Implement target_so_ops.clear_so. */
1058
1059 static void
1060 svr4_clear_so (struct so_list *so)
1061 {
1062 if (so->lm_info != NULL)
1063 so->lm_info->l_addr_p = 0;
1064 }
1065
1066 /* Free so_list built so far (called via cleanup). */
1067
1068 static void
1069 svr4_free_library_list (void *p_list)
1070 {
1071 struct so_list *list = *(struct so_list **) p_list;
1072
1073 while (list != NULL)
1074 {
1075 struct so_list *next = list->next;
1076
1077 free_so (list);
1078 list = next;
1079 }
1080 }
1081
1082 /* Copy library list. */
1083
1084 static struct so_list *
1085 svr4_copy_library_list (struct so_list *src)
1086 {
1087 struct so_list *dst = NULL;
1088 struct so_list **link = &dst;
1089
1090 while (src != NULL)
1091 {
1092 struct so_list *new;
1093
1094 new = xmalloc (sizeof (struct so_list));
1095 memcpy (new, src, sizeof (struct so_list));
1096
1097 new->lm_info = xmalloc (sizeof (struct lm_info));
1098 memcpy (new->lm_info, src->lm_info, sizeof (struct lm_info));
1099
1100 new->next = NULL;
1101 *link = new;
1102 link = &new->next;
1103
1104 src = src->next;
1105 }
1106
1107 return dst;
1108 }
1109
1110 #ifdef HAVE_LIBEXPAT
1111
1112 #include "xml-support.h"
1113
1114 /* Handle the start of a <library> element. Note: new elements are added
1115 at the tail of the list, keeping the list in order. */
1116
1117 static void
1118 library_list_start_library (struct gdb_xml_parser *parser,
1119 const struct gdb_xml_element *element,
1120 void *user_data, VEC(gdb_xml_value_s) *attributes)
1121 {
1122 struct svr4_library_list *list = user_data;
1123 const char *name = xml_find_attribute (attributes, "name")->value;
1124 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1125 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1126 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1127 struct so_list *new_elem;
1128
1129 new_elem = XCNEW (struct so_list);
1130 new_elem->lm_info = XCNEW (struct lm_info);
1131 new_elem->lm_info->lm_addr = *lmp;
1132 new_elem->lm_info->l_addr_inferior = *l_addrp;
1133 new_elem->lm_info->l_ld = *l_ldp;
1134
1135 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1136 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1137 strcpy (new_elem->so_original_name, new_elem->so_name);
1138
1139 *list->tailp = new_elem;
1140 list->tailp = &new_elem->next;
1141 }
1142
1143 /* Handle the start of a <library-list-svr4> element. */
1144
1145 static void
1146 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1147 const struct gdb_xml_element *element,
1148 void *user_data, VEC(gdb_xml_value_s) *attributes)
1149 {
1150 struct svr4_library_list *list = user_data;
1151 const char *version = xml_find_attribute (attributes, "version")->value;
1152 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1153
1154 if (strcmp (version, "1.0") != 0)
1155 gdb_xml_error (parser,
1156 _("SVR4 Library list has unsupported version \"%s\""),
1157 version);
1158
1159 if (main_lm)
1160 list->main_lm = *(ULONGEST *) main_lm->value;
1161 }
1162
1163 /* The allowed elements and attributes for an XML library list.
1164 The root element is a <library-list>. */
1165
1166 static const struct gdb_xml_attribute svr4_library_attributes[] =
1167 {
1168 { "name", GDB_XML_AF_NONE, NULL, NULL },
1169 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1170 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1171 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1172 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1173 };
1174
1175 static const struct gdb_xml_element svr4_library_list_children[] =
1176 {
1177 {
1178 "library", svr4_library_attributes, NULL,
1179 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1180 library_list_start_library, NULL
1181 },
1182 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1183 };
1184
1185 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1186 {
1187 { "version", GDB_XML_AF_NONE, NULL, NULL },
1188 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1189 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1190 };
1191
1192 static const struct gdb_xml_element svr4_library_list_elements[] =
1193 {
1194 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1195 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1196 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1197 };
1198
1199 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1200
1201 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1202 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1203 empty, caller is responsible for freeing all its entries. */
1204
1205 static int
1206 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1207 {
1208 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1209 &list->head);
1210
1211 memset (list, 0, sizeof (*list));
1212 list->tailp = &list->head;
1213 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1214 svr4_library_list_elements, document, list) == 0)
1215 {
1216 /* Parsed successfully, keep the result. */
1217 discard_cleanups (back_to);
1218 return 1;
1219 }
1220
1221 do_cleanups (back_to);
1222 return 0;
1223 }
1224
1225 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1226
1227 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1228 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1229 empty, caller is responsible for freeing all its entries.
1230
1231 Note that ANNEX must be NULL if the remote does not explicitly allow
1232 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1233 this can be checked using target_augmented_libraries_svr4_read (). */
1234
1235 static int
1236 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1237 const char *annex)
1238 {
1239 char *svr4_library_document;
1240 int result;
1241 struct cleanup *back_to;
1242
1243 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1244
1245 /* Fetch the list of shared libraries. */
1246 svr4_library_document = target_read_stralloc (&current_target,
1247 TARGET_OBJECT_LIBRARIES_SVR4,
1248 annex);
1249 if (svr4_library_document == NULL)
1250 return 0;
1251
1252 back_to = make_cleanup (xfree, svr4_library_document);
1253 result = svr4_parse_libraries (svr4_library_document, list);
1254 do_cleanups (back_to);
1255
1256 return result;
1257 }
1258
1259 #else
1260
1261 static int
1262 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1263 const char *annex)
1264 {
1265 return 0;
1266 }
1267
1268 #endif
1269
1270 /* If no shared library information is available from the dynamic
1271 linker, build a fallback list from other sources. */
1272
1273 static struct so_list *
1274 svr4_default_sos (void)
1275 {
1276 struct svr4_info *info = get_svr4_info ();
1277 struct so_list *new;
1278
1279 if (!info->debug_loader_offset_p)
1280 return NULL;
1281
1282 new = XCNEW (struct so_list);
1283
1284 new->lm_info = xzalloc (sizeof (struct lm_info));
1285
1286 /* Nothing will ever check the other fields if we set l_addr_p. */
1287 new->lm_info->l_addr = info->debug_loader_offset;
1288 new->lm_info->l_addr_p = 1;
1289
1290 strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1291 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1292 strcpy (new->so_original_name, new->so_name);
1293
1294 return new;
1295 }
1296
1297 /* Read the whole inferior libraries chain starting at address LM.
1298 Expect the first entry in the chain's previous entry to be PREV_LM.
1299 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1300 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1301 to it. Returns nonzero upon success. If zero is returned the
1302 entries stored to LINK_PTR_PTR are still valid although they may
1303 represent only part of the inferior library list. */
1304
1305 static int
1306 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1307 struct so_list ***link_ptr_ptr, int ignore_first)
1308 {
1309 CORE_ADDR first_l_name = 0;
1310 CORE_ADDR next_lm;
1311
1312 for (; lm != 0; prev_lm = lm, lm = next_lm)
1313 {
1314 struct so_list *new;
1315 struct cleanup *old_chain;
1316 int errcode;
1317 char *buffer;
1318
1319 new = XCNEW (struct so_list);
1320 old_chain = make_cleanup_free_so (new);
1321
1322 new->lm_info = lm_info_read (lm);
1323 if (new->lm_info == NULL)
1324 {
1325 do_cleanups (old_chain);
1326 return 0;
1327 }
1328
1329 next_lm = new->lm_info->l_next;
1330
1331 if (new->lm_info->l_prev != prev_lm)
1332 {
1333 warning (_("Corrupted shared library list: %s != %s"),
1334 paddress (target_gdbarch (), prev_lm),
1335 paddress (target_gdbarch (), new->lm_info->l_prev));
1336 do_cleanups (old_chain);
1337 return 0;
1338 }
1339
1340 /* For SVR4 versions, the first entry in the link map is for the
1341 inferior executable, so we must ignore it. For some versions of
1342 SVR4, it has no name. For others (Solaris 2.3 for example), it
1343 does have a name, so we can no longer use a missing name to
1344 decide when to ignore it. */
1345 if (ignore_first && new->lm_info->l_prev == 0)
1346 {
1347 struct svr4_info *info = get_svr4_info ();
1348
1349 first_l_name = new->lm_info->l_name;
1350 info->main_lm_addr = new->lm_info->lm_addr;
1351 do_cleanups (old_chain);
1352 continue;
1353 }
1354
1355 /* Extract this shared object's name. */
1356 target_read_string (new->lm_info->l_name, &buffer,
1357 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1358 if (errcode != 0)
1359 {
1360 /* If this entry's l_name address matches that of the
1361 inferior executable, then this is not a normal shared
1362 object, but (most likely) a vDSO. In this case, silently
1363 skip it; otherwise emit a warning. */
1364 if (first_l_name == 0 || new->lm_info->l_name != first_l_name)
1365 warning (_("Can't read pathname for load map: %s."),
1366 safe_strerror (errcode));
1367 do_cleanups (old_chain);
1368 continue;
1369 }
1370
1371 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1372 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1373 strcpy (new->so_original_name, new->so_name);
1374 xfree (buffer);
1375
1376 /* If this entry has no name, or its name matches the name
1377 for the main executable, don't include it in the list. */
1378 if (! new->so_name[0] || match_main (new->so_name))
1379 {
1380 do_cleanups (old_chain);
1381 continue;
1382 }
1383
1384 discard_cleanups (old_chain);
1385 new->next = 0;
1386 **link_ptr_ptr = new;
1387 *link_ptr_ptr = &new->next;
1388 }
1389
1390 return 1;
1391 }
1392
1393 /* Read the full list of currently loaded shared objects directly
1394 from the inferior, without referring to any libraries read and
1395 stored by the probes interface. Handle special cases relating
1396 to the first elements of the list. */
1397
1398 static struct so_list *
1399 svr4_current_sos_direct (struct svr4_info *info)
1400 {
1401 CORE_ADDR lm;
1402 struct so_list *head = NULL;
1403 struct so_list **link_ptr = &head;
1404 struct cleanup *back_to;
1405 int ignore_first;
1406 struct svr4_library_list library_list;
1407
1408 /* Fall back to manual examination of the target if the packet is not
1409 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1410 tests a case where gdbserver cannot find the shared libraries list while
1411 GDB itself is able to find it via SYMFILE_OBJFILE.
1412
1413 Unfortunately statically linked inferiors will also fall back through this
1414 suboptimal code path. */
1415
1416 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1417 NULL);
1418 if (info->using_xfer)
1419 {
1420 if (library_list.main_lm)
1421 info->main_lm_addr = library_list.main_lm;
1422
1423 return library_list.head ? library_list.head : svr4_default_sos ();
1424 }
1425
1426 /* Always locate the debug struct, in case it has moved. */
1427 info->debug_base = 0;
1428 locate_base (info);
1429
1430 /* If we can't find the dynamic linker's base structure, this
1431 must not be a dynamically linked executable. Hmm. */
1432 if (! info->debug_base)
1433 return svr4_default_sos ();
1434
1435 /* Assume that everything is a library if the dynamic loader was loaded
1436 late by a static executable. */
1437 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1438 ignore_first = 0;
1439 else
1440 ignore_first = 1;
1441
1442 back_to = make_cleanup (svr4_free_library_list, &head);
1443
1444 /* Walk the inferior's link map list, and build our list of
1445 `struct so_list' nodes. */
1446 lm = solib_svr4_r_map (info);
1447 if (lm)
1448 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1449
1450 /* On Solaris, the dynamic linker is not in the normal list of
1451 shared objects, so make sure we pick it up too. Having
1452 symbol information for the dynamic linker is quite crucial
1453 for skipping dynamic linker resolver code. */
1454 lm = solib_svr4_r_ldsomap (info);
1455 if (lm)
1456 svr4_read_so_list (lm, 0, &link_ptr, 0);
1457
1458 discard_cleanups (back_to);
1459
1460 if (head == NULL)
1461 return svr4_default_sos ();
1462
1463 return head;
1464 }
1465
1466 /* Implement the "current_sos" target_so_ops method. */
1467
1468 static struct so_list *
1469 svr4_current_sos (void)
1470 {
1471 struct svr4_info *info = get_svr4_info ();
1472
1473 /* If the solib list has been read and stored by the probes
1474 interface then we return a copy of the stored list. */
1475 if (info->solib_list != NULL)
1476 return svr4_copy_library_list (info->solib_list);
1477
1478 /* Otherwise obtain the solib list directly from the inferior. */
1479 return svr4_current_sos_direct (info);
1480 }
1481
1482 /* Get the address of the link_map for a given OBJFILE. */
1483
1484 CORE_ADDR
1485 svr4_fetch_objfile_link_map (struct objfile *objfile)
1486 {
1487 struct so_list *so;
1488 struct svr4_info *info = get_svr4_info ();
1489
1490 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1491 if (info->main_lm_addr == 0)
1492 solib_add (NULL, 0, &current_target, auto_solib_add);
1493
1494 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1495 if (objfile == symfile_objfile)
1496 return info->main_lm_addr;
1497
1498 /* The other link map addresses may be found by examining the list
1499 of shared libraries. */
1500 for (so = master_so_list (); so; so = so->next)
1501 if (so->objfile == objfile)
1502 return so->lm_info->lm_addr;
1503
1504 /* Not found! */
1505 return 0;
1506 }
1507
1508 /* On some systems, the only way to recognize the link map entry for
1509 the main executable file is by looking at its name. Return
1510 non-zero iff SONAME matches one of the known main executable names. */
1511
1512 static int
1513 match_main (const char *soname)
1514 {
1515 const char * const *mainp;
1516
1517 for (mainp = main_name_list; *mainp != NULL; mainp++)
1518 {
1519 if (strcmp (soname, *mainp) == 0)
1520 return (1);
1521 }
1522
1523 return (0);
1524 }
1525
1526 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1527 SVR4 run time loader. */
1528
1529 int
1530 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1531 {
1532 struct svr4_info *info = get_svr4_info ();
1533
1534 return ((pc >= info->interp_text_sect_low
1535 && pc < info->interp_text_sect_high)
1536 || (pc >= info->interp_plt_sect_low
1537 && pc < info->interp_plt_sect_high)
1538 || in_plt_section (pc)
1539 || in_gnu_ifunc_stub (pc));
1540 }
1541
1542 /* Given an executable's ABFD and target, compute the entry-point
1543 address. */
1544
1545 static CORE_ADDR
1546 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1547 {
1548 CORE_ADDR addr;
1549
1550 /* KevinB wrote ... for most targets, the address returned by
1551 bfd_get_start_address() is the entry point for the start
1552 function. But, for some targets, bfd_get_start_address() returns
1553 the address of a function descriptor from which the entry point
1554 address may be extracted. This address is extracted by
1555 gdbarch_convert_from_func_ptr_addr(). The method
1556 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1557 function for targets which don't use function descriptors. */
1558 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1559 bfd_get_start_address (abfd),
1560 targ);
1561 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1562 }
1563
1564 /* A probe and its associated action. */
1565
1566 struct probe_and_action
1567 {
1568 /* The probe. */
1569 struct probe *probe;
1570
1571 /* The action. */
1572 enum probe_action action;
1573 };
1574
1575 /* Returns a hash code for the probe_and_action referenced by p. */
1576
1577 static hashval_t
1578 hash_probe_and_action (const void *p)
1579 {
1580 const struct probe_and_action *pa = p;
1581
1582 return (hashval_t) pa->probe->address;
1583 }
1584
1585 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1586 are equal. */
1587
1588 static int
1589 equal_probe_and_action (const void *p1, const void *p2)
1590 {
1591 const struct probe_and_action *pa1 = p1;
1592 const struct probe_and_action *pa2 = p2;
1593
1594 return pa1->probe->address == pa2->probe->address;
1595 }
1596
1597 /* Register a solib event probe and its associated action in the
1598 probes table. */
1599
1600 static void
1601 register_solib_event_probe (struct probe *probe, enum probe_action action)
1602 {
1603 struct svr4_info *info = get_svr4_info ();
1604 struct probe_and_action lookup, *pa;
1605 void **slot;
1606
1607 /* Create the probes table, if necessary. */
1608 if (info->probes_table == NULL)
1609 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1610 equal_probe_and_action,
1611 xfree, xcalloc, xfree);
1612
1613 lookup.probe = probe;
1614 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1615 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1616
1617 pa = XCNEW (struct probe_and_action);
1618 pa->probe = probe;
1619 pa->action = action;
1620
1621 *slot = pa;
1622 }
1623
1624 /* Get the solib event probe at the specified location, and the
1625 action associated with it. Returns NULL if no solib event probe
1626 was found. */
1627
1628 static struct probe_and_action *
1629 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1630 {
1631 struct probe lookup_probe;
1632 struct probe_and_action lookup;
1633 void **slot;
1634
1635 lookup_probe.address = address;
1636 lookup.probe = &lookup_probe;
1637 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1638
1639 if (slot == NULL)
1640 return NULL;
1641
1642 return (struct probe_and_action *) *slot;
1643 }
1644
1645 /* Decide what action to take when the specified solib event probe is
1646 hit. */
1647
1648 static enum probe_action
1649 solib_event_probe_action (struct probe_and_action *pa)
1650 {
1651 enum probe_action action;
1652 unsigned probe_argc;
1653 struct frame_info *frame = get_current_frame ();
1654
1655 action = pa->action;
1656 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1657 return action;
1658
1659 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1660
1661 /* Check that an appropriate number of arguments has been supplied.
1662 We expect:
1663 arg0: Lmid_t lmid (mandatory)
1664 arg1: struct r_debug *debug_base (mandatory)
1665 arg2: struct link_map *new (optional, for incremental updates) */
1666 probe_argc = get_probe_argument_count (pa->probe, frame);
1667 if (probe_argc == 2)
1668 action = FULL_RELOAD;
1669 else if (probe_argc < 2)
1670 action = PROBES_INTERFACE_FAILED;
1671
1672 return action;
1673 }
1674
1675 /* Populate the shared object list by reading the entire list of
1676 shared objects from the inferior. Handle special cases relating
1677 to the first elements of the list. Returns nonzero on success. */
1678
1679 static int
1680 solist_update_full (struct svr4_info *info)
1681 {
1682 free_solib_list (info);
1683 info->solib_list = svr4_current_sos_direct (info);
1684
1685 return 1;
1686 }
1687
1688 /* Update the shared object list starting from the link-map entry
1689 passed by the linker in the probe's third argument. Returns
1690 nonzero if the list was successfully updated, or zero to indicate
1691 failure. */
1692
1693 static int
1694 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1695 {
1696 struct so_list *tail;
1697 CORE_ADDR prev_lm;
1698
1699 /* svr4_current_sos_direct contains logic to handle a number of
1700 special cases relating to the first elements of the list. To
1701 avoid duplicating this logic we defer to solist_update_full
1702 if the list is empty. */
1703 if (info->solib_list == NULL)
1704 return 0;
1705
1706 /* Fall back to a full update if we are using a remote target
1707 that does not support incremental transfers. */
1708 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1709 return 0;
1710
1711 /* Walk to the end of the list. */
1712 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1713 /* Nothing. */;
1714 prev_lm = tail->lm_info->lm_addr;
1715
1716 /* Read the new objects. */
1717 if (info->using_xfer)
1718 {
1719 struct svr4_library_list library_list;
1720 char annex[64];
1721
1722 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1723 phex_nz (lm, sizeof (lm)),
1724 phex_nz (prev_lm, sizeof (prev_lm)));
1725 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1726 return 0;
1727
1728 tail->next = library_list.head;
1729 }
1730 else
1731 {
1732 struct so_list **link = &tail->next;
1733
1734 /* IGNORE_FIRST may safely be set to zero here because the
1735 above check and deferral to solist_update_full ensures
1736 that this call to svr4_read_so_list will never see the
1737 first element. */
1738 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1739 return 0;
1740 }
1741
1742 return 1;
1743 }
1744
1745 /* Disable the probes-based linker interface and revert to the
1746 original interface. We don't reset the breakpoints as the
1747 ones set up for the probes-based interface are adequate. */
1748
1749 static void
1750 disable_probes_interface_cleanup (void *arg)
1751 {
1752 struct svr4_info *info = get_svr4_info ();
1753
1754 warning (_("Probes-based dynamic linker interface failed.\n"
1755 "Reverting to original interface.\n"));
1756
1757 free_probes_table (info);
1758 free_solib_list (info);
1759 }
1760
1761 /* Update the solib list as appropriate when using the
1762 probes-based linker interface. Do nothing if using the
1763 standard interface. */
1764
1765 static void
1766 svr4_handle_solib_event (void)
1767 {
1768 struct svr4_info *info = get_svr4_info ();
1769 struct probe_and_action *pa;
1770 enum probe_action action;
1771 struct cleanup *old_chain, *usm_chain;
1772 struct value *val;
1773 CORE_ADDR pc, debug_base, lm = 0;
1774 int is_initial_ns;
1775 struct frame_info *frame = get_current_frame ();
1776
1777 /* Do nothing if not using the probes interface. */
1778 if (info->probes_table == NULL)
1779 return;
1780
1781 /* If anything goes wrong we revert to the original linker
1782 interface. */
1783 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1784
1785 pc = regcache_read_pc (get_current_regcache ());
1786 pa = solib_event_probe_at (info, pc);
1787 if (pa == NULL)
1788 {
1789 do_cleanups (old_chain);
1790 return;
1791 }
1792
1793 action = solib_event_probe_action (pa);
1794 if (action == PROBES_INTERFACE_FAILED)
1795 {
1796 do_cleanups (old_chain);
1797 return;
1798 }
1799
1800 if (action == DO_NOTHING)
1801 {
1802 discard_cleanups (old_chain);
1803 return;
1804 }
1805
1806 /* evaluate_probe_argument looks up symbols in the dynamic linker
1807 using find_pc_section. find_pc_section is accelerated by a cache
1808 called the section map. The section map is invalidated every
1809 time a shared library is loaded or unloaded, and if the inferior
1810 is generating a lot of shared library events then the section map
1811 will be updated every time svr4_handle_solib_event is called.
1812 We called find_pc_section in svr4_create_solib_event_breakpoints,
1813 so we can guarantee that the dynamic linker's sections are in the
1814 section map. We can therefore inhibit section map updates across
1815 these calls to evaluate_probe_argument and save a lot of time. */
1816 inhibit_section_map_updates (current_program_space);
1817 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1818 current_program_space);
1819
1820 val = evaluate_probe_argument (pa->probe, 1, frame);
1821 if (val == NULL)
1822 {
1823 do_cleanups (old_chain);
1824 return;
1825 }
1826
1827 debug_base = value_as_address (val);
1828 if (debug_base == 0)
1829 {
1830 do_cleanups (old_chain);
1831 return;
1832 }
1833
1834 /* Always locate the debug struct, in case it moved. */
1835 info->debug_base = 0;
1836 if (locate_base (info) == 0)
1837 {
1838 do_cleanups (old_chain);
1839 return;
1840 }
1841
1842 /* GDB does not currently support libraries loaded via dlmopen
1843 into namespaces other than the initial one. We must ignore
1844 any namespace other than the initial namespace here until
1845 support for this is added to GDB. */
1846 if (debug_base != info->debug_base)
1847 action = DO_NOTHING;
1848
1849 if (action == UPDATE_OR_RELOAD)
1850 {
1851 val = evaluate_probe_argument (pa->probe, 2, frame);
1852 if (val != NULL)
1853 lm = value_as_address (val);
1854
1855 if (lm == 0)
1856 action = FULL_RELOAD;
1857 }
1858
1859 /* Resume section map updates. */
1860 do_cleanups (usm_chain);
1861
1862 if (action == UPDATE_OR_RELOAD)
1863 {
1864 if (!solist_update_incremental (info, lm))
1865 action = FULL_RELOAD;
1866 }
1867
1868 if (action == FULL_RELOAD)
1869 {
1870 if (!solist_update_full (info))
1871 {
1872 do_cleanups (old_chain);
1873 return;
1874 }
1875 }
1876
1877 discard_cleanups (old_chain);
1878 }
1879
1880 /* Helper function for svr4_update_solib_event_breakpoints. */
1881
1882 static int
1883 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1884 {
1885 struct bp_location *loc;
1886
1887 if (b->type != bp_shlib_event)
1888 {
1889 /* Continue iterating. */
1890 return 0;
1891 }
1892
1893 for (loc = b->loc; loc != NULL; loc = loc->next)
1894 {
1895 struct svr4_info *info;
1896 struct probe_and_action *pa;
1897
1898 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
1899 if (info == NULL || info->probes_table == NULL)
1900 continue;
1901
1902 pa = solib_event_probe_at (info, loc->address);
1903 if (pa == NULL)
1904 continue;
1905
1906 if (pa->action == DO_NOTHING)
1907 {
1908 if (b->enable_state == bp_disabled && stop_on_solib_events)
1909 enable_breakpoint (b);
1910 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
1911 disable_breakpoint (b);
1912 }
1913
1914 break;
1915 }
1916
1917 /* Continue iterating. */
1918 return 0;
1919 }
1920
1921 /* Enable or disable optional solib event breakpoints as appropriate.
1922 Called whenever stop_on_solib_events is changed. */
1923
1924 static void
1925 svr4_update_solib_event_breakpoints (void)
1926 {
1927 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
1928 }
1929
1930 /* Create and register solib event breakpoints. PROBES is an array
1931 of NUM_PROBES elements, each of which is vector of probes. A
1932 solib event breakpoint will be created and registered for each
1933 probe. */
1934
1935 static void
1936 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
1937 VEC (probe_p) **probes)
1938 {
1939 int i;
1940
1941 for (i = 0; i < NUM_PROBES; i++)
1942 {
1943 enum probe_action action = probe_info[i].action;
1944 struct probe *probe;
1945 int ix;
1946
1947 for (ix = 0;
1948 VEC_iterate (probe_p, probes[i], ix, probe);
1949 ++ix)
1950 {
1951 create_solib_event_breakpoint (gdbarch, probe->address);
1952 register_solib_event_probe (probe, action);
1953 }
1954 }
1955
1956 svr4_update_solib_event_breakpoints ();
1957 }
1958
1959 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
1960 before and after mapping and unmapping shared libraries. The sole
1961 purpose of this method is to allow debuggers to set a breakpoint so
1962 they can track these changes.
1963
1964 Some versions of the glibc dynamic linker contain named probes
1965 to allow more fine grained stopping. Given the address of the
1966 original marker function, this function attempts to find these
1967 probes, and if found, sets breakpoints on those instead. If the
1968 probes aren't found, a single breakpoint is set on the original
1969 marker function. */
1970
1971 static void
1972 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
1973 CORE_ADDR address)
1974 {
1975 struct obj_section *os;
1976
1977 os = find_pc_section (address);
1978 if (os != NULL)
1979 {
1980 int with_prefix;
1981
1982 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
1983 {
1984 VEC (probe_p) *probes[NUM_PROBES];
1985 int all_probes_found = 1;
1986 int checked_can_use_probe_arguments = 0;
1987 int i;
1988
1989 memset (probes, 0, sizeof (probes));
1990 for (i = 0; i < NUM_PROBES; i++)
1991 {
1992 const char *name = probe_info[i].name;
1993 struct probe *p;
1994 char buf[32];
1995
1996 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
1997 shipped with an early version of the probes code in
1998 which the probes' names were prefixed with "rtld_"
1999 and the "map_failed" probe did not exist. The
2000 locations of the probes are otherwise the same, so
2001 we check for probes with prefixed names if probes
2002 with unprefixed names are not present. */
2003 if (with_prefix)
2004 {
2005 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2006 name = buf;
2007 }
2008
2009 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2010
2011 /* The "map_failed" probe did not exist in early
2012 versions of the probes code in which the probes'
2013 names were prefixed with "rtld_". */
2014 if (strcmp (name, "rtld_map_failed") == 0)
2015 continue;
2016
2017 if (VEC_empty (probe_p, probes[i]))
2018 {
2019 all_probes_found = 0;
2020 break;
2021 }
2022
2023 /* Ensure probe arguments can be evaluated. */
2024 if (!checked_can_use_probe_arguments)
2025 {
2026 p = VEC_index (probe_p, probes[i], 0);
2027 if (!can_evaluate_probe_arguments (p))
2028 {
2029 all_probes_found = 0;
2030 break;
2031 }
2032 checked_can_use_probe_arguments = 1;
2033 }
2034 }
2035
2036 if (all_probes_found)
2037 svr4_create_probe_breakpoints (gdbarch, probes);
2038
2039 for (i = 0; i < NUM_PROBES; i++)
2040 VEC_free (probe_p, probes[i]);
2041
2042 if (all_probes_found)
2043 return;
2044 }
2045 }
2046
2047 create_solib_event_breakpoint (gdbarch, address);
2048 }
2049
2050 /* Helper function for gdb_bfd_lookup_symbol. */
2051
2052 static int
2053 cmp_name_and_sec_flags (asymbol *sym, void *data)
2054 {
2055 return (strcmp (sym->name, (const char *) data) == 0
2056 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2057 }
2058 /* Arrange for dynamic linker to hit breakpoint.
2059
2060 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2061 debugger interface, support for arranging for the inferior to hit
2062 a breakpoint after mapping in the shared libraries. This function
2063 enables that breakpoint.
2064
2065 For SunOS, there is a special flag location (in_debugger) which we
2066 set to 1. When the dynamic linker sees this flag set, it will set
2067 a breakpoint at a location known only to itself, after saving the
2068 original contents of that place and the breakpoint address itself,
2069 in it's own internal structures. When we resume the inferior, it
2070 will eventually take a SIGTRAP when it runs into the breakpoint.
2071 We handle this (in a different place) by restoring the contents of
2072 the breakpointed location (which is only known after it stops),
2073 chasing around to locate the shared libraries that have been
2074 loaded, then resuming.
2075
2076 For SVR4, the debugger interface structure contains a member (r_brk)
2077 which is statically initialized at the time the shared library is
2078 built, to the offset of a function (_r_debug_state) which is guaran-
2079 teed to be called once before mapping in a library, and again when
2080 the mapping is complete. At the time we are examining this member,
2081 it contains only the unrelocated offset of the function, so we have
2082 to do our own relocation. Later, when the dynamic linker actually
2083 runs, it relocates r_brk to be the actual address of _r_debug_state().
2084
2085 The debugger interface structure also contains an enumeration which
2086 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2087 depending upon whether or not the library is being mapped or unmapped,
2088 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2089
2090 static int
2091 enable_break (struct svr4_info *info, int from_tty)
2092 {
2093 struct bound_minimal_symbol msymbol;
2094 const char * const *bkpt_namep;
2095 asection *interp_sect;
2096 char *interp_name;
2097 CORE_ADDR sym_addr;
2098
2099 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2100 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2101
2102 /* If we already have a shared library list in the target, and
2103 r_debug contains r_brk, set the breakpoint there - this should
2104 mean r_brk has already been relocated. Assume the dynamic linker
2105 is the object containing r_brk. */
2106
2107 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2108 sym_addr = 0;
2109 if (info->debug_base && solib_svr4_r_map (info) != 0)
2110 sym_addr = solib_svr4_r_brk (info);
2111
2112 if (sym_addr != 0)
2113 {
2114 struct obj_section *os;
2115
2116 sym_addr = gdbarch_addr_bits_remove
2117 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2118 sym_addr,
2119 &current_target));
2120
2121 /* On at least some versions of Solaris there's a dynamic relocation
2122 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2123 we get control before the dynamic linker has self-relocated.
2124 Check if SYM_ADDR is in a known section, if it is assume we can
2125 trust its value. This is just a heuristic though, it could go away
2126 or be replaced if it's getting in the way.
2127
2128 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2129 however it's spelled in your particular system) is ARM or Thumb.
2130 That knowledge is encoded in the address, if it's Thumb the low bit
2131 is 1. However, we've stripped that info above and it's not clear
2132 what all the consequences are of passing a non-addr_bits_remove'd
2133 address to svr4_create_solib_event_breakpoints. The call to
2134 find_pc_section verifies we know about the address and have some
2135 hope of computing the right kind of breakpoint to use (via
2136 symbol info). It does mean that GDB needs to be pointed at a
2137 non-stripped version of the dynamic linker in order to obtain
2138 information it already knows about. Sigh. */
2139
2140 os = find_pc_section (sym_addr);
2141 if (os != NULL)
2142 {
2143 /* Record the relocated start and end address of the dynamic linker
2144 text and plt section for svr4_in_dynsym_resolve_code. */
2145 bfd *tmp_bfd;
2146 CORE_ADDR load_addr;
2147
2148 tmp_bfd = os->objfile->obfd;
2149 load_addr = ANOFFSET (os->objfile->section_offsets,
2150 SECT_OFF_TEXT (os->objfile));
2151
2152 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2153 if (interp_sect)
2154 {
2155 info->interp_text_sect_low =
2156 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2157 info->interp_text_sect_high =
2158 info->interp_text_sect_low
2159 + bfd_section_size (tmp_bfd, interp_sect);
2160 }
2161 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2162 if (interp_sect)
2163 {
2164 info->interp_plt_sect_low =
2165 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2166 info->interp_plt_sect_high =
2167 info->interp_plt_sect_low
2168 + bfd_section_size (tmp_bfd, interp_sect);
2169 }
2170
2171 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2172 return 1;
2173 }
2174 }
2175
2176 /* Find the program interpreter; if not found, warn the user and drop
2177 into the old breakpoint at symbol code. */
2178 interp_name = find_program_interpreter ();
2179 if (interp_name)
2180 {
2181 CORE_ADDR load_addr = 0;
2182 int load_addr_found = 0;
2183 int loader_found_in_list = 0;
2184 struct so_list *so;
2185 bfd *tmp_bfd = NULL;
2186 struct target_ops *tmp_bfd_target;
2187 volatile struct gdb_exception ex;
2188
2189 sym_addr = 0;
2190
2191 /* Now we need to figure out where the dynamic linker was
2192 loaded so that we can load its symbols and place a breakpoint
2193 in the dynamic linker itself.
2194
2195 This address is stored on the stack. However, I've been unable
2196 to find any magic formula to find it for Solaris (appears to
2197 be trivial on GNU/Linux). Therefore, we have to try an alternate
2198 mechanism to find the dynamic linker's base address. */
2199
2200 TRY_CATCH (ex, RETURN_MASK_ALL)
2201 {
2202 tmp_bfd = solib_bfd_open (interp_name);
2203 }
2204 if (tmp_bfd == NULL)
2205 goto bkpt_at_symbol;
2206
2207 /* Now convert the TMP_BFD into a target. That way target, as
2208 well as BFD operations can be used. */
2209 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2210 /* target_bfd_reopen acquired its own reference, so we can
2211 release ours now. */
2212 gdb_bfd_unref (tmp_bfd);
2213
2214 /* On a running target, we can get the dynamic linker's base
2215 address from the shared library table. */
2216 so = master_so_list ();
2217 while (so)
2218 {
2219 if (svr4_same_1 (interp_name, so->so_original_name))
2220 {
2221 load_addr_found = 1;
2222 loader_found_in_list = 1;
2223 load_addr = lm_addr_check (so, tmp_bfd);
2224 break;
2225 }
2226 so = so->next;
2227 }
2228
2229 /* If we were not able to find the base address of the loader
2230 from our so_list, then try using the AT_BASE auxilliary entry. */
2231 if (!load_addr_found)
2232 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2233 {
2234 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2235
2236 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2237 that `+ load_addr' will overflow CORE_ADDR width not creating
2238 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2239 GDB. */
2240
2241 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2242 {
2243 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2244 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2245 tmp_bfd_target);
2246
2247 gdb_assert (load_addr < space_size);
2248
2249 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2250 64bit ld.so with 32bit executable, it should not happen. */
2251
2252 if (tmp_entry_point < space_size
2253 && tmp_entry_point + load_addr >= space_size)
2254 load_addr -= space_size;
2255 }
2256
2257 load_addr_found = 1;
2258 }
2259
2260 /* Otherwise we find the dynamic linker's base address by examining
2261 the current pc (which should point at the entry point for the
2262 dynamic linker) and subtracting the offset of the entry point.
2263
2264 This is more fragile than the previous approaches, but is a good
2265 fallback method because it has actually been working well in
2266 most cases. */
2267 if (!load_addr_found)
2268 {
2269 struct regcache *regcache
2270 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2271
2272 load_addr = (regcache_read_pc (regcache)
2273 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2274 }
2275
2276 if (!loader_found_in_list)
2277 {
2278 info->debug_loader_name = xstrdup (interp_name);
2279 info->debug_loader_offset_p = 1;
2280 info->debug_loader_offset = load_addr;
2281 solib_add (NULL, from_tty, &current_target, auto_solib_add);
2282 }
2283
2284 /* Record the relocated start and end address of the dynamic linker
2285 text and plt section for svr4_in_dynsym_resolve_code. */
2286 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2287 if (interp_sect)
2288 {
2289 info->interp_text_sect_low =
2290 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2291 info->interp_text_sect_high =
2292 info->interp_text_sect_low
2293 + bfd_section_size (tmp_bfd, interp_sect);
2294 }
2295 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2296 if (interp_sect)
2297 {
2298 info->interp_plt_sect_low =
2299 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2300 info->interp_plt_sect_high =
2301 info->interp_plt_sect_low
2302 + bfd_section_size (tmp_bfd, interp_sect);
2303 }
2304
2305 /* Now try to set a breakpoint in the dynamic linker. */
2306 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2307 {
2308 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2309 (void *) *bkpt_namep);
2310 if (sym_addr != 0)
2311 break;
2312 }
2313
2314 if (sym_addr != 0)
2315 /* Convert 'sym_addr' from a function pointer to an address.
2316 Because we pass tmp_bfd_target instead of the current
2317 target, this will always produce an unrelocated value. */
2318 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2319 sym_addr,
2320 tmp_bfd_target);
2321
2322 /* We're done with both the temporary bfd and target. Closing
2323 the target closes the underlying bfd, because it holds the
2324 only remaining reference. */
2325 target_close (tmp_bfd_target);
2326
2327 if (sym_addr != 0)
2328 {
2329 svr4_create_solib_event_breakpoints (target_gdbarch (),
2330 load_addr + sym_addr);
2331 xfree (interp_name);
2332 return 1;
2333 }
2334
2335 /* For whatever reason we couldn't set a breakpoint in the dynamic
2336 linker. Warn and drop into the old code. */
2337 bkpt_at_symbol:
2338 xfree (interp_name);
2339 warning (_("Unable to find dynamic linker breakpoint function.\n"
2340 "GDB will be unable to debug shared library initializers\n"
2341 "and track explicitly loaded dynamic code."));
2342 }
2343
2344 /* Scan through the lists of symbols, trying to look up the symbol and
2345 set a breakpoint there. Terminate loop when we/if we succeed. */
2346
2347 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2348 {
2349 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2350 if ((msymbol.minsym != NULL)
2351 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2352 {
2353 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2354 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2355 sym_addr,
2356 &current_target);
2357 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2358 return 1;
2359 }
2360 }
2361
2362 if (interp_name != NULL && !current_inferior ()->attach_flag)
2363 {
2364 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2365 {
2366 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2367 if ((msymbol.minsym != NULL)
2368 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2369 {
2370 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2371 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2372 sym_addr,
2373 &current_target);
2374 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2375 return 1;
2376 }
2377 }
2378 }
2379 return 0;
2380 }
2381
2382 /* Implement the "special_symbol_handling" target_so_ops method. */
2383
2384 static void
2385 svr4_special_symbol_handling (void)
2386 {
2387 /* Nothing to do. */
2388 }
2389
2390 /* Read the ELF program headers from ABFD. Return the contents and
2391 set *PHDRS_SIZE to the size of the program headers. */
2392
2393 static gdb_byte *
2394 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2395 {
2396 Elf_Internal_Ehdr *ehdr;
2397 gdb_byte *buf;
2398
2399 ehdr = elf_elfheader (abfd);
2400
2401 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2402 if (*phdrs_size == 0)
2403 return NULL;
2404
2405 buf = xmalloc (*phdrs_size);
2406 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2407 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2408 {
2409 xfree (buf);
2410 return NULL;
2411 }
2412
2413 return buf;
2414 }
2415
2416 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2417 exec_bfd. Otherwise return 0.
2418
2419 We relocate all of the sections by the same amount. This
2420 behavior is mandated by recent editions of the System V ABI.
2421 According to the System V Application Binary Interface,
2422 Edition 4.1, page 5-5:
2423
2424 ... Though the system chooses virtual addresses for
2425 individual processes, it maintains the segments' relative
2426 positions. Because position-independent code uses relative
2427 addressesing between segments, the difference between
2428 virtual addresses in memory must match the difference
2429 between virtual addresses in the file. The difference
2430 between the virtual address of any segment in memory and
2431 the corresponding virtual address in the file is thus a
2432 single constant value for any one executable or shared
2433 object in a given process. This difference is the base
2434 address. One use of the base address is to relocate the
2435 memory image of the program during dynamic linking.
2436
2437 The same language also appears in Edition 4.0 of the System V
2438 ABI and is left unspecified in some of the earlier editions.
2439
2440 Decide if the objfile needs to be relocated. As indicated above, we will
2441 only be here when execution is stopped. But during attachment PC can be at
2442 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2443 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2444 regcache_read_pc would point to the interpreter and not the main executable.
2445
2446 So, to summarize, relocations are necessary when the start address obtained
2447 from the executable is different from the address in auxv AT_ENTRY entry.
2448
2449 [ The astute reader will note that we also test to make sure that
2450 the executable in question has the DYNAMIC flag set. It is my
2451 opinion that this test is unnecessary (undesirable even). It
2452 was added to avoid inadvertent relocation of an executable
2453 whose e_type member in the ELF header is not ET_DYN. There may
2454 be a time in the future when it is desirable to do relocations
2455 on other types of files as well in which case this condition
2456 should either be removed or modified to accomodate the new file
2457 type. - Kevin, Nov 2000. ] */
2458
2459 static int
2460 svr4_exec_displacement (CORE_ADDR *displacementp)
2461 {
2462 /* ENTRY_POINT is a possible function descriptor - before
2463 a call to gdbarch_convert_from_func_ptr_addr. */
2464 CORE_ADDR entry_point, displacement;
2465
2466 if (exec_bfd == NULL)
2467 return 0;
2468
2469 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2470 being executed themselves and PIE (Position Independent Executable)
2471 executables are ET_DYN. */
2472
2473 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2474 return 0;
2475
2476 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2477 return 0;
2478
2479 displacement = entry_point - bfd_get_start_address (exec_bfd);
2480
2481 /* Verify the DISPLACEMENT candidate complies with the required page
2482 alignment. It is cheaper than the program headers comparison below. */
2483
2484 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2485 {
2486 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2487
2488 /* p_align of PT_LOAD segments does not specify any alignment but
2489 only congruency of addresses:
2490 p_offset % p_align == p_vaddr % p_align
2491 Kernel is free to load the executable with lower alignment. */
2492
2493 if ((displacement & (elf->minpagesize - 1)) != 0)
2494 return 0;
2495 }
2496
2497 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2498 comparing their program headers. If the program headers in the auxilliary
2499 vector do not match the program headers in the executable, then we are
2500 looking at a different file than the one used by the kernel - for
2501 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2502
2503 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2504 {
2505 /* Be optimistic and clear OK only if GDB was able to verify the headers
2506 really do not match. */
2507 int phdrs_size, phdrs2_size, ok = 1;
2508 gdb_byte *buf, *buf2;
2509 int arch_size;
2510
2511 buf = read_program_header (-1, &phdrs_size, &arch_size);
2512 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2513 if (buf != NULL && buf2 != NULL)
2514 {
2515 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2516
2517 /* We are dealing with three different addresses. EXEC_BFD
2518 represents current address in on-disk file. target memory content
2519 may be different from EXEC_BFD as the file may have been prelinked
2520 to a different address after the executable has been loaded.
2521 Moreover the address of placement in target memory can be
2522 different from what the program headers in target memory say -
2523 this is the goal of PIE.
2524
2525 Detected DISPLACEMENT covers both the offsets of PIE placement and
2526 possible new prelink performed after start of the program. Here
2527 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2528 content offset for the verification purpose. */
2529
2530 if (phdrs_size != phdrs2_size
2531 || bfd_get_arch_size (exec_bfd) != arch_size)
2532 ok = 0;
2533 else if (arch_size == 32
2534 && phdrs_size >= sizeof (Elf32_External_Phdr)
2535 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2536 {
2537 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2538 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2539 CORE_ADDR displacement = 0;
2540 int i;
2541
2542 /* DISPLACEMENT could be found more easily by the difference of
2543 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2544 already have enough information to compute that displacement
2545 with what we've read. */
2546
2547 for (i = 0; i < ehdr2->e_phnum; i++)
2548 if (phdr2[i].p_type == PT_LOAD)
2549 {
2550 Elf32_External_Phdr *phdrp;
2551 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2552 CORE_ADDR vaddr, paddr;
2553 CORE_ADDR displacement_vaddr = 0;
2554 CORE_ADDR displacement_paddr = 0;
2555
2556 phdrp = &((Elf32_External_Phdr *) buf)[i];
2557 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2558 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2559
2560 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2561 byte_order);
2562 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2563
2564 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2565 byte_order);
2566 displacement_paddr = paddr - phdr2[i].p_paddr;
2567
2568 if (displacement_vaddr == displacement_paddr)
2569 displacement = displacement_vaddr;
2570
2571 break;
2572 }
2573
2574 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2575
2576 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2577 {
2578 Elf32_External_Phdr *phdrp;
2579 Elf32_External_Phdr *phdr2p;
2580 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2581 CORE_ADDR vaddr, paddr;
2582 asection *plt2_asect;
2583
2584 phdrp = &((Elf32_External_Phdr *) buf)[i];
2585 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2586 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2587 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2588
2589 /* PT_GNU_STACK is an exception by being never relocated by
2590 prelink as its addresses are always zero. */
2591
2592 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2593 continue;
2594
2595 /* Check also other adjustment combinations - PR 11786. */
2596
2597 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2598 byte_order);
2599 vaddr -= displacement;
2600 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2601
2602 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2603 byte_order);
2604 paddr -= displacement;
2605 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2606
2607 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2608 continue;
2609
2610 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2611 CentOS-5 has problems with filesz, memsz as well.
2612 See PR 11786. */
2613 if (phdr2[i].p_type == PT_GNU_RELRO)
2614 {
2615 Elf32_External_Phdr tmp_phdr = *phdrp;
2616 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2617
2618 memset (tmp_phdr.p_filesz, 0, 4);
2619 memset (tmp_phdr.p_memsz, 0, 4);
2620 memset (tmp_phdr.p_flags, 0, 4);
2621 memset (tmp_phdr.p_align, 0, 4);
2622 memset (tmp_phdr2.p_filesz, 0, 4);
2623 memset (tmp_phdr2.p_memsz, 0, 4);
2624 memset (tmp_phdr2.p_flags, 0, 4);
2625 memset (tmp_phdr2.p_align, 0, 4);
2626
2627 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2628 == 0)
2629 continue;
2630 }
2631
2632 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2633 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2634 if (plt2_asect)
2635 {
2636 int content2;
2637 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2638 CORE_ADDR filesz;
2639
2640 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2641 & SEC_HAS_CONTENTS) != 0;
2642
2643 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2644 byte_order);
2645
2646 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2647 FILESZ is from the in-memory image. */
2648 if (content2)
2649 filesz += bfd_get_section_size (plt2_asect);
2650 else
2651 filesz -= bfd_get_section_size (plt2_asect);
2652
2653 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2654 filesz);
2655
2656 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2657 continue;
2658 }
2659
2660 ok = 0;
2661 break;
2662 }
2663 }
2664 else if (arch_size == 64
2665 && phdrs_size >= sizeof (Elf64_External_Phdr)
2666 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2667 {
2668 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2669 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2670 CORE_ADDR displacement = 0;
2671 int i;
2672
2673 /* DISPLACEMENT could be found more easily by the difference of
2674 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2675 already have enough information to compute that displacement
2676 with what we've read. */
2677
2678 for (i = 0; i < ehdr2->e_phnum; i++)
2679 if (phdr2[i].p_type == PT_LOAD)
2680 {
2681 Elf64_External_Phdr *phdrp;
2682 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2683 CORE_ADDR vaddr, paddr;
2684 CORE_ADDR displacement_vaddr = 0;
2685 CORE_ADDR displacement_paddr = 0;
2686
2687 phdrp = &((Elf64_External_Phdr *) buf)[i];
2688 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2689 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2690
2691 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2692 byte_order);
2693 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2694
2695 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2696 byte_order);
2697 displacement_paddr = paddr - phdr2[i].p_paddr;
2698
2699 if (displacement_vaddr == displacement_paddr)
2700 displacement = displacement_vaddr;
2701
2702 break;
2703 }
2704
2705 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2706
2707 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2708 {
2709 Elf64_External_Phdr *phdrp;
2710 Elf64_External_Phdr *phdr2p;
2711 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2712 CORE_ADDR vaddr, paddr;
2713 asection *plt2_asect;
2714
2715 phdrp = &((Elf64_External_Phdr *) buf)[i];
2716 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2717 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2718 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2719
2720 /* PT_GNU_STACK is an exception by being never relocated by
2721 prelink as its addresses are always zero. */
2722
2723 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2724 continue;
2725
2726 /* Check also other adjustment combinations - PR 11786. */
2727
2728 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2729 byte_order);
2730 vaddr -= displacement;
2731 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2732
2733 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2734 byte_order);
2735 paddr -= displacement;
2736 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2737
2738 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2739 continue;
2740
2741 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2742 CentOS-5 has problems with filesz, memsz as well.
2743 See PR 11786. */
2744 if (phdr2[i].p_type == PT_GNU_RELRO)
2745 {
2746 Elf64_External_Phdr tmp_phdr = *phdrp;
2747 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2748
2749 memset (tmp_phdr.p_filesz, 0, 8);
2750 memset (tmp_phdr.p_memsz, 0, 8);
2751 memset (tmp_phdr.p_flags, 0, 4);
2752 memset (tmp_phdr.p_align, 0, 8);
2753 memset (tmp_phdr2.p_filesz, 0, 8);
2754 memset (tmp_phdr2.p_memsz, 0, 8);
2755 memset (tmp_phdr2.p_flags, 0, 4);
2756 memset (tmp_phdr2.p_align, 0, 8);
2757
2758 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2759 == 0)
2760 continue;
2761 }
2762
2763 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2764 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2765 if (plt2_asect)
2766 {
2767 int content2;
2768 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2769 CORE_ADDR filesz;
2770
2771 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2772 & SEC_HAS_CONTENTS) != 0;
2773
2774 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2775 byte_order);
2776
2777 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2778 FILESZ is from the in-memory image. */
2779 if (content2)
2780 filesz += bfd_get_section_size (plt2_asect);
2781 else
2782 filesz -= bfd_get_section_size (plt2_asect);
2783
2784 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2785 filesz);
2786
2787 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2788 continue;
2789 }
2790
2791 ok = 0;
2792 break;
2793 }
2794 }
2795 else
2796 ok = 0;
2797 }
2798
2799 xfree (buf);
2800 xfree (buf2);
2801
2802 if (!ok)
2803 return 0;
2804 }
2805
2806 if (info_verbose)
2807 {
2808 /* It can be printed repeatedly as there is no easy way to check
2809 the executable symbols/file has been already relocated to
2810 displacement. */
2811
2812 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2813 "displacement %s for \"%s\".\n"),
2814 paddress (target_gdbarch (), displacement),
2815 bfd_get_filename (exec_bfd));
2816 }
2817
2818 *displacementp = displacement;
2819 return 1;
2820 }
2821
2822 /* Relocate the main executable. This function should be called upon
2823 stopping the inferior process at the entry point to the program.
2824 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2825 different, the main executable is relocated by the proper amount. */
2826
2827 static void
2828 svr4_relocate_main_executable (void)
2829 {
2830 CORE_ADDR displacement;
2831
2832 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2833 probably contains the offsets computed using the PIE displacement
2834 from the previous run, which of course are irrelevant for this run.
2835 So we need to determine the new PIE displacement and recompute the
2836 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2837 already contains pre-computed offsets.
2838
2839 If we cannot compute the PIE displacement, either:
2840
2841 - The executable is not PIE.
2842
2843 - SYMFILE_OBJFILE does not match the executable started in the target.
2844 This can happen for main executable symbols loaded at the host while
2845 `ld.so --ld-args main-executable' is loaded in the target.
2846
2847 Then we leave the section offsets untouched and use them as is for
2848 this run. Either:
2849
2850 - These section offsets were properly reset earlier, and thus
2851 already contain the correct values. This can happen for instance
2852 when reconnecting via the remote protocol to a target that supports
2853 the `qOffsets' packet.
2854
2855 - The section offsets were not reset earlier, and the best we can
2856 hope is that the old offsets are still applicable to the new run. */
2857
2858 if (! svr4_exec_displacement (&displacement))
2859 return;
2860
2861 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2862 addresses. */
2863
2864 if (symfile_objfile)
2865 {
2866 struct section_offsets *new_offsets;
2867 int i;
2868
2869 new_offsets = alloca (symfile_objfile->num_sections
2870 * sizeof (*new_offsets));
2871
2872 for (i = 0; i < symfile_objfile->num_sections; i++)
2873 new_offsets->offsets[i] = displacement;
2874
2875 objfile_relocate (symfile_objfile, new_offsets);
2876 }
2877 else if (exec_bfd)
2878 {
2879 asection *asect;
2880
2881 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2882 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2883 (bfd_section_vma (exec_bfd, asect)
2884 + displacement));
2885 }
2886 }
2887
2888 /* Implement the "create_inferior_hook" target_solib_ops method.
2889
2890 For SVR4 executables, this first instruction is either the first
2891 instruction in the dynamic linker (for dynamically linked
2892 executables) or the instruction at "start" for statically linked
2893 executables. For dynamically linked executables, the system
2894 first exec's /lib/libc.so.N, which contains the dynamic linker,
2895 and starts it running. The dynamic linker maps in any needed
2896 shared libraries, maps in the actual user executable, and then
2897 jumps to "start" in the user executable.
2898
2899 We can arrange to cooperate with the dynamic linker to discover the
2900 names of shared libraries that are dynamically linked, and the base
2901 addresses to which they are linked.
2902
2903 This function is responsible for discovering those names and
2904 addresses, and saving sufficient information about them to allow
2905 their symbols to be read at a later time. */
2906
2907 static void
2908 svr4_solib_create_inferior_hook (int from_tty)
2909 {
2910 struct svr4_info *info;
2911
2912 info = get_svr4_info ();
2913
2914 /* Clear the probes-based interface's state. */
2915 free_probes_table (info);
2916 free_solib_list (info);
2917
2918 /* Relocate the main executable if necessary. */
2919 svr4_relocate_main_executable ();
2920
2921 /* No point setting a breakpoint in the dynamic linker if we can't
2922 hit it (e.g., a core file, or a trace file). */
2923 if (!target_has_execution)
2924 return;
2925
2926 if (!svr4_have_link_map_offsets ())
2927 return;
2928
2929 if (!enable_break (info, from_tty))
2930 return;
2931 }
2932
2933 static void
2934 svr4_clear_solib (void)
2935 {
2936 struct svr4_info *info;
2937
2938 info = get_svr4_info ();
2939 info->debug_base = 0;
2940 info->debug_loader_offset_p = 0;
2941 info->debug_loader_offset = 0;
2942 xfree (info->debug_loader_name);
2943 info->debug_loader_name = NULL;
2944 }
2945
2946 /* Clear any bits of ADDR that wouldn't fit in a target-format
2947 data pointer. "Data pointer" here refers to whatever sort of
2948 address the dynamic linker uses to manage its sections. At the
2949 moment, we don't support shared libraries on any processors where
2950 code and data pointers are different sizes.
2951
2952 This isn't really the right solution. What we really need here is
2953 a way to do arithmetic on CORE_ADDR values that respects the
2954 natural pointer/address correspondence. (For example, on the MIPS,
2955 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2956 sign-extend the value. There, simply truncating the bits above
2957 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2958 be a new gdbarch method or something. */
2959 static CORE_ADDR
2960 svr4_truncate_ptr (CORE_ADDR addr)
2961 {
2962 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
2963 /* We don't need to truncate anything, and the bit twiddling below
2964 will fail due to overflow problems. */
2965 return addr;
2966 else
2967 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
2968 }
2969
2970
2971 static void
2972 svr4_relocate_section_addresses (struct so_list *so,
2973 struct target_section *sec)
2974 {
2975 bfd *abfd = sec->the_bfd_section->owner;
2976
2977 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
2978 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
2979 }
2980 \f
2981
2982 /* Architecture-specific operations. */
2983
2984 /* Per-architecture data key. */
2985 static struct gdbarch_data *solib_svr4_data;
2986
2987 struct solib_svr4_ops
2988 {
2989 /* Return a description of the layout of `struct link_map'. */
2990 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2991 };
2992
2993 /* Return a default for the architecture-specific operations. */
2994
2995 static void *
2996 solib_svr4_init (struct obstack *obstack)
2997 {
2998 struct solib_svr4_ops *ops;
2999
3000 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3001 ops->fetch_link_map_offsets = NULL;
3002 return ops;
3003 }
3004
3005 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3006 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3007
3008 void
3009 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3010 struct link_map_offsets *(*flmo) (void))
3011 {
3012 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3013
3014 ops->fetch_link_map_offsets = flmo;
3015
3016 set_solib_ops (gdbarch, &svr4_so_ops);
3017 }
3018
3019 /* Fetch a link_map_offsets structure using the architecture-specific
3020 `struct link_map_offsets' fetcher. */
3021
3022 static struct link_map_offsets *
3023 svr4_fetch_link_map_offsets (void)
3024 {
3025 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
3026
3027 gdb_assert (ops->fetch_link_map_offsets);
3028 return ops->fetch_link_map_offsets ();
3029 }
3030
3031 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3032
3033 static int
3034 svr4_have_link_map_offsets (void)
3035 {
3036 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
3037
3038 return (ops->fetch_link_map_offsets != NULL);
3039 }
3040 \f
3041
3042 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3043 `struct r_debug' and a `struct link_map' that are binary compatible
3044 with the origional SVR4 implementation. */
3045
3046 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3047 for an ILP32 SVR4 system. */
3048
3049 struct link_map_offsets *
3050 svr4_ilp32_fetch_link_map_offsets (void)
3051 {
3052 static struct link_map_offsets lmo;
3053 static struct link_map_offsets *lmp = NULL;
3054
3055 if (lmp == NULL)
3056 {
3057 lmp = &lmo;
3058
3059 lmo.r_version_offset = 0;
3060 lmo.r_version_size = 4;
3061 lmo.r_map_offset = 4;
3062 lmo.r_brk_offset = 8;
3063 lmo.r_ldsomap_offset = 20;
3064
3065 /* Everything we need is in the first 20 bytes. */
3066 lmo.link_map_size = 20;
3067 lmo.l_addr_offset = 0;
3068 lmo.l_name_offset = 4;
3069 lmo.l_ld_offset = 8;
3070 lmo.l_next_offset = 12;
3071 lmo.l_prev_offset = 16;
3072 }
3073
3074 return lmp;
3075 }
3076
3077 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3078 for an LP64 SVR4 system. */
3079
3080 struct link_map_offsets *
3081 svr4_lp64_fetch_link_map_offsets (void)
3082 {
3083 static struct link_map_offsets lmo;
3084 static struct link_map_offsets *lmp = NULL;
3085
3086 if (lmp == NULL)
3087 {
3088 lmp = &lmo;
3089
3090 lmo.r_version_offset = 0;
3091 lmo.r_version_size = 4;
3092 lmo.r_map_offset = 8;
3093 lmo.r_brk_offset = 16;
3094 lmo.r_ldsomap_offset = 40;
3095
3096 /* Everything we need is in the first 40 bytes. */
3097 lmo.link_map_size = 40;
3098 lmo.l_addr_offset = 0;
3099 lmo.l_name_offset = 8;
3100 lmo.l_ld_offset = 16;
3101 lmo.l_next_offset = 24;
3102 lmo.l_prev_offset = 32;
3103 }
3104
3105 return lmp;
3106 }
3107 \f
3108
3109 struct target_so_ops svr4_so_ops;
3110
3111 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3112 different rule for symbol lookup. The lookup begins here in the DSO, not in
3113 the main executable. */
3114
3115 static struct symbol *
3116 elf_lookup_lib_symbol (const struct objfile *objfile,
3117 const char *name,
3118 const domain_enum domain)
3119 {
3120 bfd *abfd;
3121
3122 if (objfile == symfile_objfile)
3123 abfd = exec_bfd;
3124 else
3125 {
3126 /* OBJFILE should have been passed as the non-debug one. */
3127 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3128
3129 abfd = objfile->obfd;
3130 }
3131
3132 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
3133 return NULL;
3134
3135 return lookup_global_symbol_from_objfile (objfile, name, domain);
3136 }
3137
3138 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3139
3140 void
3141 _initialize_svr4_solib (void)
3142 {
3143 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3144 solib_svr4_pspace_data
3145 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3146
3147 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3148 svr4_so_ops.free_so = svr4_free_so;
3149 svr4_so_ops.clear_so = svr4_clear_so;
3150 svr4_so_ops.clear_solib = svr4_clear_solib;
3151 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3152 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3153 svr4_so_ops.current_sos = svr4_current_sos;
3154 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3155 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3156 svr4_so_ops.bfd_open = solib_bfd_open;
3157 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3158 svr4_so_ops.same = svr4_same;
3159 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3160 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3161 svr4_so_ops.handle_event = svr4_handle_solib_event;
3162 }
This page took 0.110722 seconds and 4 git commands to generate.