daily update
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static char *solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static char *bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static char *main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 CORE_ADDR align = 0x1000;
197 CORE_ADDR minpagesize = align;
198
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
239
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
242 {
243 l_addr = l_dynaddr - dynaddr;
244
245 if (info_verbose)
246 printf_unfiltered (_("Using PIC (Position Independent Code) "
247 "prelink displacement %s for \"%s\".\n"),
248 paddress (target_gdbarch, l_addr),
249 so->so_name);
250 }
251 else
252 warning (_(".dynamic section for \"%s\" "
253 "is not at the expected address "
254 "(wrong library or version mismatch?)"), so->so_name);
255 }
256
257 set_addr:
258 so->lm_info->l_addr = l_addr;
259 }
260
261 return so->lm_info->l_addr;
262 }
263
264 static CORE_ADDR
265 LM_NEXT (struct so_list *so)
266 {
267 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
268 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
269
270 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
271 ptr_type);
272 }
273
274 static CORE_ADDR
275 LM_PREV (struct so_list *so)
276 {
277 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
278 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
279
280 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
281 ptr_type);
282 }
283
284 static CORE_ADDR
285 LM_NAME (struct so_list *so)
286 {
287 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
288 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
289
290 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
291 ptr_type);
292 }
293
294 static int
295 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
296 {
297 /* Assume that everything is a library if the dynamic loader was loaded
298 late by a static executable. */
299 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
300 return 0;
301
302 return LM_PREV (so) == 0;
303 }
304
305 /* Per pspace SVR4 specific data. */
306
307 struct svr4_info
308 {
309 CORE_ADDR debug_base; /* Base of dynamic linker structures */
310
311 /* Validity flag for debug_loader_offset. */
312 int debug_loader_offset_p;
313
314 /* Load address for the dynamic linker, inferred. */
315 CORE_ADDR debug_loader_offset;
316
317 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
318 char *debug_loader_name;
319
320 /* Load map address for the main executable. */
321 CORE_ADDR main_lm_addr;
322
323 CORE_ADDR interp_text_sect_low;
324 CORE_ADDR interp_text_sect_high;
325 CORE_ADDR interp_plt_sect_low;
326 CORE_ADDR interp_plt_sect_high;
327 };
328
329 /* Per-program-space data key. */
330 static const struct program_space_data *solib_svr4_pspace_data;
331
332 static void
333 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
334 {
335 struct svr4_info *info;
336
337 info = program_space_data (pspace, solib_svr4_pspace_data);
338 xfree (info);
339 }
340
341 /* Get the current svr4 data. If none is found yet, add it now. This
342 function always returns a valid object. */
343
344 static struct svr4_info *
345 get_svr4_info (void)
346 {
347 struct svr4_info *info;
348
349 info = program_space_data (current_program_space, solib_svr4_pspace_data);
350 if (info != NULL)
351 return info;
352
353 info = XZALLOC (struct svr4_info);
354 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355 return info;
356 }
357
358 /* Local function prototypes */
359
360 static int match_main (char *);
361
362 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
363
364 /*
365
366 LOCAL FUNCTION
367
368 bfd_lookup_symbol -- lookup the value for a specific symbol
369
370 SYNOPSIS
371
372 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
373
374 DESCRIPTION
375
376 An expensive way to lookup the value of a single symbol for
377 bfd's that are only temporary anyway. This is used by the
378 shared library support to find the address of the debugger
379 notification routine in the shared library.
380
381 The returned symbol may be in a code or data section; functions
382 will normally be in a code section, but may be in a data section
383 if this architecture uses function descriptors.
384
385 Note that 0 is specifically allowed as an error return (no
386 such symbol).
387 */
388
389 static CORE_ADDR
390 bfd_lookup_symbol (bfd *abfd, char *symname)
391 {
392 long storage_needed;
393 asymbol *sym;
394 asymbol **symbol_table;
395 unsigned int number_of_symbols;
396 unsigned int i;
397 struct cleanup *back_to;
398 CORE_ADDR symaddr = 0;
399
400 storage_needed = bfd_get_symtab_upper_bound (abfd);
401
402 if (storage_needed > 0)
403 {
404 symbol_table = (asymbol **) xmalloc (storage_needed);
405 back_to = make_cleanup (xfree, symbol_table);
406 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
407
408 for (i = 0; i < number_of_symbols; i++)
409 {
410 sym = *symbol_table++;
411 if (strcmp (sym->name, symname) == 0
412 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
413 {
414 /* BFD symbols are section relative. */
415 symaddr = sym->value + sym->section->vma;
416 break;
417 }
418 }
419 do_cleanups (back_to);
420 }
421
422 if (symaddr)
423 return symaddr;
424
425 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
426 have to check the dynamic string table too. */
427
428 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
429
430 if (storage_needed > 0)
431 {
432 symbol_table = (asymbol **) xmalloc (storage_needed);
433 back_to = make_cleanup (xfree, symbol_table);
434 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
435
436 for (i = 0; i < number_of_symbols; i++)
437 {
438 sym = *symbol_table++;
439
440 if (strcmp (sym->name, symname) == 0
441 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
442 {
443 /* BFD symbols are section relative. */
444 symaddr = sym->value + sym->section->vma;
445 break;
446 }
447 }
448 do_cleanups (back_to);
449 }
450
451 return symaddr;
452 }
453
454
455 /* Read program header TYPE from inferior memory. The header is found
456 by scanning the OS auxillary vector.
457
458 If TYPE == -1, return the program headers instead of the contents of
459 one program header.
460
461 Return a pointer to allocated memory holding the program header contents,
462 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
463 size of those contents is returned to P_SECT_SIZE. Likewise, the target
464 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
465
466 static gdb_byte *
467 read_program_header (int type, int *p_sect_size, int *p_arch_size)
468 {
469 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
470 CORE_ADDR at_phdr, at_phent, at_phnum;
471 int arch_size, sect_size;
472 CORE_ADDR sect_addr;
473 gdb_byte *buf;
474
475 /* Get required auxv elements from target. */
476 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
477 return 0;
478 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
479 return 0;
480 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
481 return 0;
482 if (!at_phdr || !at_phnum)
483 return 0;
484
485 /* Determine ELF architecture type. */
486 if (at_phent == sizeof (Elf32_External_Phdr))
487 arch_size = 32;
488 else if (at_phent == sizeof (Elf64_External_Phdr))
489 arch_size = 64;
490 else
491 return 0;
492
493 /* Find the requested segment. */
494 if (type == -1)
495 {
496 sect_addr = at_phdr;
497 sect_size = at_phent * at_phnum;
498 }
499 else if (arch_size == 32)
500 {
501 Elf32_External_Phdr phdr;
502 int i;
503
504 /* Search for requested PHDR. */
505 for (i = 0; i < at_phnum; i++)
506 {
507 if (target_read_memory (at_phdr + i * sizeof (phdr),
508 (gdb_byte *)&phdr, sizeof (phdr)))
509 return 0;
510
511 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
512 4, byte_order) == type)
513 break;
514 }
515
516 if (i == at_phnum)
517 return 0;
518
519 /* Retrieve address and size. */
520 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
521 4, byte_order);
522 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
523 4, byte_order);
524 }
525 else
526 {
527 Elf64_External_Phdr phdr;
528 int i;
529
530 /* Search for requested PHDR. */
531 for (i = 0; i < at_phnum; i++)
532 {
533 if (target_read_memory (at_phdr + i * sizeof (phdr),
534 (gdb_byte *)&phdr, sizeof (phdr)))
535 return 0;
536
537 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
538 4, byte_order) == type)
539 break;
540 }
541
542 if (i == at_phnum)
543 return 0;
544
545 /* Retrieve address and size. */
546 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
547 8, byte_order);
548 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
549 8, byte_order);
550 }
551
552 /* Read in requested program header. */
553 buf = xmalloc (sect_size);
554 if (target_read_memory (sect_addr, buf, sect_size))
555 {
556 xfree (buf);
557 return NULL;
558 }
559
560 if (p_arch_size)
561 *p_arch_size = arch_size;
562 if (p_sect_size)
563 *p_sect_size = sect_size;
564
565 return buf;
566 }
567
568
569 /* Return program interpreter string. */
570 static gdb_byte *
571 find_program_interpreter (void)
572 {
573 gdb_byte *buf = NULL;
574
575 /* If we have an exec_bfd, use its section table. */
576 if (exec_bfd
577 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
578 {
579 struct bfd_section *interp_sect;
580
581 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
582 if (interp_sect != NULL)
583 {
584 int sect_size = bfd_section_size (exec_bfd, interp_sect);
585
586 buf = xmalloc (sect_size);
587 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
588 }
589 }
590
591 /* If we didn't find it, use the target auxillary vector. */
592 if (!buf)
593 buf = read_program_header (PT_INTERP, NULL, NULL);
594
595 return buf;
596 }
597
598
599 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
600 returned and the corresponding PTR is set. */
601
602 static int
603 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
604 {
605 int arch_size, step, sect_size;
606 long dyn_tag;
607 CORE_ADDR dyn_ptr, dyn_addr;
608 gdb_byte *bufend, *bufstart, *buf;
609 Elf32_External_Dyn *x_dynp_32;
610 Elf64_External_Dyn *x_dynp_64;
611 struct bfd_section *sect;
612 struct target_section *target_section;
613
614 if (abfd == NULL)
615 return 0;
616
617 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
618 return 0;
619
620 arch_size = bfd_get_arch_size (abfd);
621 if (arch_size == -1)
622 return 0;
623
624 /* Find the start address of the .dynamic section. */
625 sect = bfd_get_section_by_name (abfd, ".dynamic");
626 if (sect == NULL)
627 return 0;
628
629 for (target_section = current_target_sections->sections;
630 target_section < current_target_sections->sections_end;
631 target_section++)
632 if (sect == target_section->the_bfd_section)
633 break;
634 if (target_section < current_target_sections->sections_end)
635 dyn_addr = target_section->addr;
636 else
637 {
638 /* ABFD may come from OBJFILE acting only as a symbol file without being
639 loaded into the target (see add_symbol_file_command). This case is
640 such fallback to the file VMA address without the possibility of
641 having the section relocated to its actual in-memory address. */
642
643 dyn_addr = bfd_section_vma (abfd, sect);
644 }
645
646 /* Read in .dynamic from the BFD. We will get the actual value
647 from memory later. */
648 sect_size = bfd_section_size (abfd, sect);
649 buf = bufstart = alloca (sect_size);
650 if (!bfd_get_section_contents (abfd, sect,
651 buf, 0, sect_size))
652 return 0;
653
654 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
655 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
656 : sizeof (Elf64_External_Dyn);
657 for (bufend = buf + sect_size;
658 buf < bufend;
659 buf += step)
660 {
661 if (arch_size == 32)
662 {
663 x_dynp_32 = (Elf32_External_Dyn *) buf;
664 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
665 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
666 }
667 else
668 {
669 x_dynp_64 = (Elf64_External_Dyn *) buf;
670 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
671 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
672 }
673 if (dyn_tag == DT_NULL)
674 return 0;
675 if (dyn_tag == dyntag)
676 {
677 /* If requested, try to read the runtime value of this .dynamic
678 entry. */
679 if (ptr)
680 {
681 struct type *ptr_type;
682 gdb_byte ptr_buf[8];
683 CORE_ADDR ptr_addr;
684
685 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
686 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
687 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
688 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
689 *ptr = dyn_ptr;
690 }
691 return 1;
692 }
693 }
694
695 return 0;
696 }
697
698 /* Scan for DYNTAG in .dynamic section of the target's main executable,
699 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
700 returned and the corresponding PTR is set. */
701
702 static int
703 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
704 {
705 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
706 int sect_size, arch_size, step;
707 long dyn_tag;
708 CORE_ADDR dyn_ptr;
709 gdb_byte *bufend, *bufstart, *buf;
710
711 /* Read in .dynamic section. */
712 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
713 if (!buf)
714 return 0;
715
716 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
717 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
718 : sizeof (Elf64_External_Dyn);
719 for (bufend = buf + sect_size;
720 buf < bufend;
721 buf += step)
722 {
723 if (arch_size == 32)
724 {
725 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
726
727 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
728 4, byte_order);
729 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
730 4, byte_order);
731 }
732 else
733 {
734 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
735
736 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
737 8, byte_order);
738 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
739 8, byte_order);
740 }
741 if (dyn_tag == DT_NULL)
742 break;
743
744 if (dyn_tag == dyntag)
745 {
746 if (ptr)
747 *ptr = dyn_ptr;
748
749 xfree (bufstart);
750 return 1;
751 }
752 }
753
754 xfree (bufstart);
755 return 0;
756 }
757
758
759 /*
760
761 LOCAL FUNCTION
762
763 elf_locate_base -- locate the base address of dynamic linker structs
764 for SVR4 elf targets.
765
766 SYNOPSIS
767
768 CORE_ADDR elf_locate_base (void)
769
770 DESCRIPTION
771
772 For SVR4 elf targets the address of the dynamic linker's runtime
773 structure is contained within the dynamic info section in the
774 executable file. The dynamic section is also mapped into the
775 inferior address space. Because the runtime loader fills in the
776 real address before starting the inferior, we have to read in the
777 dynamic info section from the inferior address space.
778 If there are any errors while trying to find the address, we
779 silently return 0, otherwise the found address is returned.
780
781 */
782
783 static CORE_ADDR
784 elf_locate_base (void)
785 {
786 struct minimal_symbol *msymbol;
787 CORE_ADDR dyn_ptr;
788
789 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
790 instead of DT_DEBUG, although they sometimes contain an unused
791 DT_DEBUG. */
792 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
793 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
794 {
795 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
796 gdb_byte *pbuf;
797 int pbuf_size = TYPE_LENGTH (ptr_type);
798
799 pbuf = alloca (pbuf_size);
800 /* DT_MIPS_RLD_MAP contains a pointer to the address
801 of the dynamic link structure. */
802 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
803 return 0;
804 return extract_typed_address (pbuf, ptr_type);
805 }
806
807 /* Find DT_DEBUG. */
808 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
809 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
810 return dyn_ptr;
811
812 /* This may be a static executable. Look for the symbol
813 conventionally named _r_debug, as a last resort. */
814 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
815 if (msymbol != NULL)
816 return SYMBOL_VALUE_ADDRESS (msymbol);
817
818 /* DT_DEBUG entry not found. */
819 return 0;
820 }
821
822 /*
823
824 LOCAL FUNCTION
825
826 locate_base -- locate the base address of dynamic linker structs
827
828 SYNOPSIS
829
830 CORE_ADDR locate_base (struct svr4_info *)
831
832 DESCRIPTION
833
834 For both the SunOS and SVR4 shared library implementations, if the
835 inferior executable has been linked dynamically, there is a single
836 address somewhere in the inferior's data space which is the key to
837 locating all of the dynamic linker's runtime structures. This
838 address is the value of the debug base symbol. The job of this
839 function is to find and return that address, or to return 0 if there
840 is no such address (the executable is statically linked for example).
841
842 For SunOS, the job is almost trivial, since the dynamic linker and
843 all of it's structures are statically linked to the executable at
844 link time. Thus the symbol for the address we are looking for has
845 already been added to the minimal symbol table for the executable's
846 objfile at the time the symbol file's symbols were read, and all we
847 have to do is look it up there. Note that we explicitly do NOT want
848 to find the copies in the shared library.
849
850 The SVR4 version is a bit more complicated because the address
851 is contained somewhere in the dynamic info section. We have to go
852 to a lot more work to discover the address of the debug base symbol.
853 Because of this complexity, we cache the value we find and return that
854 value on subsequent invocations. Note there is no copy in the
855 executable symbol tables.
856
857 */
858
859 static CORE_ADDR
860 locate_base (struct svr4_info *info)
861 {
862 /* Check to see if we have a currently valid address, and if so, avoid
863 doing all this work again and just return the cached address. If
864 we have no cached address, try to locate it in the dynamic info
865 section for ELF executables. There's no point in doing any of this
866 though if we don't have some link map offsets to work with. */
867
868 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
869 info->debug_base = elf_locate_base ();
870 return info->debug_base;
871 }
872
873 /* Find the first element in the inferior's dynamic link map, and
874 return its address in the inferior. Return zero if the address
875 could not be determined.
876
877 FIXME: Perhaps we should validate the info somehow, perhaps by
878 checking r_version for a known version number, or r_state for
879 RT_CONSISTENT. */
880
881 static CORE_ADDR
882 solib_svr4_r_map (struct svr4_info *info)
883 {
884 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
885 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
886 CORE_ADDR addr = 0;
887 volatile struct gdb_exception ex;
888
889 TRY_CATCH (ex, RETURN_MASK_ERROR)
890 {
891 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
892 ptr_type);
893 }
894 exception_print (gdb_stderr, ex);
895 return addr;
896 }
897
898 /* Find r_brk from the inferior's debug base. */
899
900 static CORE_ADDR
901 solib_svr4_r_brk (struct svr4_info *info)
902 {
903 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
904 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
905
906 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
907 ptr_type);
908 }
909
910 /* Find the link map for the dynamic linker (if it is not in the
911 normal list of loaded shared objects). */
912
913 static CORE_ADDR
914 solib_svr4_r_ldsomap (struct svr4_info *info)
915 {
916 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
917 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
918 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
919 ULONGEST version;
920
921 /* Check version, and return zero if `struct r_debug' doesn't have
922 the r_ldsomap member. */
923 version
924 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
925 lmo->r_version_size, byte_order);
926 if (version < 2 || lmo->r_ldsomap_offset == -1)
927 return 0;
928
929 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
930 ptr_type);
931 }
932
933 /* On Solaris systems with some versions of the dynamic linker,
934 ld.so's l_name pointer points to the SONAME in the string table
935 rather than into writable memory. So that GDB can find shared
936 libraries when loading a core file generated by gcore, ensure that
937 memory areas containing the l_name string are saved in the core
938 file. */
939
940 static int
941 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
942 {
943 struct svr4_info *info;
944 CORE_ADDR ldsomap;
945 struct so_list *new;
946 struct cleanup *old_chain;
947 struct link_map_offsets *lmo;
948 CORE_ADDR lm_name;
949
950 info = get_svr4_info ();
951
952 info->debug_base = 0;
953 locate_base (info);
954 if (!info->debug_base)
955 return 0;
956
957 ldsomap = solib_svr4_r_ldsomap (info);
958 if (!ldsomap)
959 return 0;
960
961 lmo = svr4_fetch_link_map_offsets ();
962 new = XZALLOC (struct so_list);
963 old_chain = make_cleanup (xfree, new);
964 new->lm_info = xmalloc (sizeof (struct lm_info));
965 make_cleanup (xfree, new->lm_info);
966 new->lm_info->l_addr = (CORE_ADDR)-1;
967 new->lm_info->lm_addr = ldsomap;
968 new->lm_info->lm = xzalloc (lmo->link_map_size);
969 make_cleanup (xfree, new->lm_info->lm);
970 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
971 lm_name = LM_NAME (new);
972 do_cleanups (old_chain);
973
974 return (lm_name >= vaddr && lm_name < vaddr + size);
975 }
976
977 /*
978
979 LOCAL FUNCTION
980
981 open_symbol_file_object
982
983 SYNOPSIS
984
985 void open_symbol_file_object (void *from_tty)
986
987 DESCRIPTION
988
989 If no open symbol file, attempt to locate and open the main symbol
990 file. On SVR4 systems, this is the first link map entry. If its
991 name is here, we can open it. Useful when attaching to a process
992 without first loading its symbol file.
993
994 If FROM_TTYP dereferences to a non-zero integer, allow messages to
995 be printed. This parameter is a pointer rather than an int because
996 open_symbol_file_object() is called via catch_errors() and
997 catch_errors() requires a pointer argument. */
998
999 static int
1000 open_symbol_file_object (void *from_ttyp)
1001 {
1002 CORE_ADDR lm, l_name;
1003 char *filename;
1004 int errcode;
1005 int from_tty = *(int *)from_ttyp;
1006 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1007 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1008 int l_name_size = TYPE_LENGTH (ptr_type);
1009 gdb_byte *l_name_buf = xmalloc (l_name_size);
1010 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1011 struct svr4_info *info = get_svr4_info ();
1012
1013 if (symfile_objfile)
1014 if (!query (_("Attempt to reload symbols from process? ")))
1015 return 0;
1016
1017 /* Always locate the debug struct, in case it has moved. */
1018 info->debug_base = 0;
1019 if (locate_base (info) == 0)
1020 return 0; /* failed somehow... */
1021
1022 /* First link map member should be the executable. */
1023 lm = solib_svr4_r_map (info);
1024 if (lm == 0)
1025 return 0; /* failed somehow... */
1026
1027 /* Read address of name from target memory to GDB. */
1028 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1029
1030 /* Convert the address to host format. */
1031 l_name = extract_typed_address (l_name_buf, ptr_type);
1032
1033 /* Free l_name_buf. */
1034 do_cleanups (cleanups);
1035
1036 if (l_name == 0)
1037 return 0; /* No filename. */
1038
1039 /* Now fetch the filename from target memory. */
1040 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1041 make_cleanup (xfree, filename);
1042
1043 if (errcode)
1044 {
1045 warning (_("failed to read exec filename from attached file: %s"),
1046 safe_strerror (errcode));
1047 return 0;
1048 }
1049
1050 /* Have a pathname: read the symbol file. */
1051 symbol_file_add_main (filename, from_tty);
1052
1053 return 1;
1054 }
1055
1056 /* If no shared library information is available from the dynamic
1057 linker, build a fallback list from other sources. */
1058
1059 static struct so_list *
1060 svr4_default_sos (void)
1061 {
1062 struct svr4_info *info = get_svr4_info ();
1063
1064 struct so_list *head = NULL;
1065 struct so_list **link_ptr = &head;
1066
1067 if (info->debug_loader_offset_p)
1068 {
1069 struct so_list *new = XZALLOC (struct so_list);
1070
1071 new->lm_info = xmalloc (sizeof (struct lm_info));
1072
1073 /* Nothing will ever check the cached copy of the link
1074 map if we set l_addr. */
1075 new->lm_info->l_addr = info->debug_loader_offset;
1076 new->lm_info->lm_addr = 0;
1077 new->lm_info->lm = NULL;
1078
1079 strncpy (new->so_name, info->debug_loader_name,
1080 SO_NAME_MAX_PATH_SIZE - 1);
1081 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1082 strcpy (new->so_original_name, new->so_name);
1083
1084 *link_ptr = new;
1085 link_ptr = &new->next;
1086 }
1087
1088 return head;
1089 }
1090
1091 /* LOCAL FUNCTION
1092
1093 current_sos -- build a list of currently loaded shared objects
1094
1095 SYNOPSIS
1096
1097 struct so_list *current_sos ()
1098
1099 DESCRIPTION
1100
1101 Build a list of `struct so_list' objects describing the shared
1102 objects currently loaded in the inferior. This list does not
1103 include an entry for the main executable file.
1104
1105 Note that we only gather information directly available from the
1106 inferior --- we don't examine any of the shared library files
1107 themselves. The declaration of `struct so_list' says which fields
1108 we provide values for. */
1109
1110 static struct so_list *
1111 svr4_current_sos (void)
1112 {
1113 CORE_ADDR lm, prev_lm;
1114 struct so_list *head = 0;
1115 struct so_list **link_ptr = &head;
1116 CORE_ADDR ldsomap = 0;
1117 struct svr4_info *info;
1118
1119 info = get_svr4_info ();
1120
1121 /* Always locate the debug struct, in case it has moved. */
1122 info->debug_base = 0;
1123 locate_base (info);
1124
1125 /* If we can't find the dynamic linker's base structure, this
1126 must not be a dynamically linked executable. Hmm. */
1127 if (! info->debug_base)
1128 return svr4_default_sos ();
1129
1130 /* Walk the inferior's link map list, and build our list of
1131 `struct so_list' nodes. */
1132 prev_lm = 0;
1133 lm = solib_svr4_r_map (info);
1134
1135 while (lm)
1136 {
1137 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1138 struct so_list *new = XZALLOC (struct so_list);
1139 struct cleanup *old_chain = make_cleanup (xfree, new);
1140 CORE_ADDR next_lm;
1141
1142 new->lm_info = xmalloc (sizeof (struct lm_info));
1143 make_cleanup (xfree, new->lm_info);
1144
1145 new->lm_info->l_addr = (CORE_ADDR)-1;
1146 new->lm_info->lm_addr = lm;
1147 new->lm_info->lm = xzalloc (lmo->link_map_size);
1148 make_cleanup (xfree, new->lm_info->lm);
1149
1150 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1151
1152 next_lm = LM_NEXT (new);
1153
1154 if (LM_PREV (new) != prev_lm)
1155 {
1156 warning (_("Corrupted shared library list"));
1157 free_so (new);
1158 next_lm = 0;
1159 }
1160
1161 /* For SVR4 versions, the first entry in the link map is for the
1162 inferior executable, so we must ignore it. For some versions of
1163 SVR4, it has no name. For others (Solaris 2.3 for example), it
1164 does have a name, so we can no longer use a missing name to
1165 decide when to ignore it. */
1166 else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1167 {
1168 info->main_lm_addr = new->lm_info->lm_addr;
1169 free_so (new);
1170 }
1171 else
1172 {
1173 int errcode;
1174 char *buffer;
1175
1176 /* Extract this shared object's name. */
1177 target_read_string (LM_NAME (new), &buffer,
1178 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1179 if (errcode != 0)
1180 warning (_("Can't read pathname for load map: %s."),
1181 safe_strerror (errcode));
1182 else
1183 {
1184 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1185 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1186 strcpy (new->so_original_name, new->so_name);
1187 }
1188 xfree (buffer);
1189
1190 /* If this entry has no name, or its name matches the name
1191 for the main executable, don't include it in the list. */
1192 if (! new->so_name[0]
1193 || match_main (new->so_name))
1194 free_so (new);
1195 else
1196 {
1197 new->next = 0;
1198 *link_ptr = new;
1199 link_ptr = &new->next;
1200 }
1201 }
1202
1203 prev_lm = lm;
1204 lm = next_lm;
1205
1206 /* On Solaris, the dynamic linker is not in the normal list of
1207 shared objects, so make sure we pick it up too. Having
1208 symbol information for the dynamic linker is quite crucial
1209 for skipping dynamic linker resolver code. */
1210 if (lm == 0 && ldsomap == 0)
1211 {
1212 lm = ldsomap = solib_svr4_r_ldsomap (info);
1213 prev_lm = 0;
1214 }
1215
1216 discard_cleanups (old_chain);
1217 }
1218
1219 if (head == NULL)
1220 return svr4_default_sos ();
1221
1222 return head;
1223 }
1224
1225 /* Get the address of the link_map for a given OBJFILE. */
1226
1227 CORE_ADDR
1228 svr4_fetch_objfile_link_map (struct objfile *objfile)
1229 {
1230 struct so_list *so;
1231 struct svr4_info *info = get_svr4_info ();
1232
1233 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1234 if (info->main_lm_addr == 0)
1235 solib_add (NULL, 0, &current_target, auto_solib_add);
1236
1237 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1238 if (objfile == symfile_objfile)
1239 return info->main_lm_addr;
1240
1241 /* The other link map addresses may be found by examining the list
1242 of shared libraries. */
1243 for (so = master_so_list (); so; so = so->next)
1244 if (so->objfile == objfile)
1245 return so->lm_info->lm_addr;
1246
1247 /* Not found! */
1248 return 0;
1249 }
1250
1251 /* On some systems, the only way to recognize the link map entry for
1252 the main executable file is by looking at its name. Return
1253 non-zero iff SONAME matches one of the known main executable names. */
1254
1255 static int
1256 match_main (char *soname)
1257 {
1258 char **mainp;
1259
1260 for (mainp = main_name_list; *mainp != NULL; mainp++)
1261 {
1262 if (strcmp (soname, *mainp) == 0)
1263 return (1);
1264 }
1265
1266 return (0);
1267 }
1268
1269 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1270 SVR4 run time loader. */
1271
1272 int
1273 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1274 {
1275 struct svr4_info *info = get_svr4_info ();
1276
1277 return ((pc >= info->interp_text_sect_low
1278 && pc < info->interp_text_sect_high)
1279 || (pc >= info->interp_plt_sect_low
1280 && pc < info->interp_plt_sect_high)
1281 || in_plt_section (pc, NULL));
1282 }
1283
1284 /* Given an executable's ABFD and target, compute the entry-point
1285 address. */
1286
1287 static CORE_ADDR
1288 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1289 {
1290 /* KevinB wrote ... for most targets, the address returned by
1291 bfd_get_start_address() is the entry point for the start
1292 function. But, for some targets, bfd_get_start_address() returns
1293 the address of a function descriptor from which the entry point
1294 address may be extracted. This address is extracted by
1295 gdbarch_convert_from_func_ptr_addr(). The method
1296 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1297 function for targets which don't use function descriptors. */
1298 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1299 bfd_get_start_address (abfd),
1300 targ);
1301 }
1302
1303 /*
1304
1305 LOCAL FUNCTION
1306
1307 enable_break -- arrange for dynamic linker to hit breakpoint
1308
1309 SYNOPSIS
1310
1311 int enable_break (void)
1312
1313 DESCRIPTION
1314
1315 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1316 debugger interface, support for arranging for the inferior to hit
1317 a breakpoint after mapping in the shared libraries. This function
1318 enables that breakpoint.
1319
1320 For SunOS, there is a special flag location (in_debugger) which we
1321 set to 1. When the dynamic linker sees this flag set, it will set
1322 a breakpoint at a location known only to itself, after saving the
1323 original contents of that place and the breakpoint address itself,
1324 in it's own internal structures. When we resume the inferior, it
1325 will eventually take a SIGTRAP when it runs into the breakpoint.
1326 We handle this (in a different place) by restoring the contents of
1327 the breakpointed location (which is only known after it stops),
1328 chasing around to locate the shared libraries that have been
1329 loaded, then resuming.
1330
1331 For SVR4, the debugger interface structure contains a member (r_brk)
1332 which is statically initialized at the time the shared library is
1333 built, to the offset of a function (_r_debug_state) which is guaran-
1334 teed to be called once before mapping in a library, and again when
1335 the mapping is complete. At the time we are examining this member,
1336 it contains only the unrelocated offset of the function, so we have
1337 to do our own relocation. Later, when the dynamic linker actually
1338 runs, it relocates r_brk to be the actual address of _r_debug_state().
1339
1340 The debugger interface structure also contains an enumeration which
1341 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1342 depending upon whether or not the library is being mapped or unmapped,
1343 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1344 */
1345
1346 static int
1347 enable_break (struct svr4_info *info, int from_tty)
1348 {
1349 struct minimal_symbol *msymbol;
1350 char **bkpt_namep;
1351 asection *interp_sect;
1352 gdb_byte *interp_name;
1353 CORE_ADDR sym_addr;
1354
1355 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1356 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1357
1358 /* If we already have a shared library list in the target, and
1359 r_debug contains r_brk, set the breakpoint there - this should
1360 mean r_brk has already been relocated. Assume the dynamic linker
1361 is the object containing r_brk. */
1362
1363 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1364 sym_addr = 0;
1365 if (info->debug_base && solib_svr4_r_map (info) != 0)
1366 sym_addr = solib_svr4_r_brk (info);
1367
1368 if (sym_addr != 0)
1369 {
1370 struct obj_section *os;
1371
1372 sym_addr = gdbarch_addr_bits_remove
1373 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1374 sym_addr,
1375 &current_target));
1376
1377 /* On at least some versions of Solaris there's a dynamic relocation
1378 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1379 we get control before the dynamic linker has self-relocated.
1380 Check if SYM_ADDR is in a known section, if it is assume we can
1381 trust its value. This is just a heuristic though, it could go away
1382 or be replaced if it's getting in the way.
1383
1384 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1385 however it's spelled in your particular system) is ARM or Thumb.
1386 That knowledge is encoded in the address, if it's Thumb the low bit
1387 is 1. However, we've stripped that info above and it's not clear
1388 what all the consequences are of passing a non-addr_bits_remove'd
1389 address to create_solib_event_breakpoint. The call to
1390 find_pc_section verifies we know about the address and have some
1391 hope of computing the right kind of breakpoint to use (via
1392 symbol info). It does mean that GDB needs to be pointed at a
1393 non-stripped version of the dynamic linker in order to obtain
1394 information it already knows about. Sigh. */
1395
1396 os = find_pc_section (sym_addr);
1397 if (os != NULL)
1398 {
1399 /* Record the relocated start and end address of the dynamic linker
1400 text and plt section for svr4_in_dynsym_resolve_code. */
1401 bfd *tmp_bfd;
1402 CORE_ADDR load_addr;
1403
1404 tmp_bfd = os->objfile->obfd;
1405 load_addr = ANOFFSET (os->objfile->section_offsets,
1406 os->objfile->sect_index_text);
1407
1408 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1409 if (interp_sect)
1410 {
1411 info->interp_text_sect_low =
1412 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1413 info->interp_text_sect_high =
1414 info->interp_text_sect_low
1415 + bfd_section_size (tmp_bfd, interp_sect);
1416 }
1417 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1418 if (interp_sect)
1419 {
1420 info->interp_plt_sect_low =
1421 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1422 info->interp_plt_sect_high =
1423 info->interp_plt_sect_low
1424 + bfd_section_size (tmp_bfd, interp_sect);
1425 }
1426
1427 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1428 return 1;
1429 }
1430 }
1431
1432 /* Find the program interpreter; if not found, warn the user and drop
1433 into the old breakpoint at symbol code. */
1434 interp_name = find_program_interpreter ();
1435 if (interp_name)
1436 {
1437 CORE_ADDR load_addr = 0;
1438 int load_addr_found = 0;
1439 int loader_found_in_list = 0;
1440 struct so_list *so;
1441 bfd *tmp_bfd = NULL;
1442 struct target_ops *tmp_bfd_target;
1443 volatile struct gdb_exception ex;
1444
1445 sym_addr = 0;
1446
1447 /* Now we need to figure out where the dynamic linker was
1448 loaded so that we can load its symbols and place a breakpoint
1449 in the dynamic linker itself.
1450
1451 This address is stored on the stack. However, I've been unable
1452 to find any magic formula to find it for Solaris (appears to
1453 be trivial on GNU/Linux). Therefore, we have to try an alternate
1454 mechanism to find the dynamic linker's base address. */
1455
1456 TRY_CATCH (ex, RETURN_MASK_ALL)
1457 {
1458 tmp_bfd = solib_bfd_open (interp_name);
1459 }
1460 if (tmp_bfd == NULL)
1461 goto bkpt_at_symbol;
1462
1463 /* Now convert the TMP_BFD into a target. That way target, as
1464 well as BFD operations can be used. Note that closing the
1465 target will also close the underlying bfd. */
1466 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1467
1468 /* On a running target, we can get the dynamic linker's base
1469 address from the shared library table. */
1470 so = master_so_list ();
1471 while (so)
1472 {
1473 if (svr4_same_1 (interp_name, so->so_original_name))
1474 {
1475 load_addr_found = 1;
1476 loader_found_in_list = 1;
1477 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1478 break;
1479 }
1480 so = so->next;
1481 }
1482
1483 /* If we were not able to find the base address of the loader
1484 from our so_list, then try using the AT_BASE auxilliary entry. */
1485 if (!load_addr_found)
1486 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1487 {
1488 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1489
1490 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1491 that `+ load_addr' will overflow CORE_ADDR width not creating
1492 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1493 GDB. */
1494
1495 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1496 {
1497 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1498 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1499 tmp_bfd_target);
1500
1501 gdb_assert (load_addr < space_size);
1502
1503 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1504 64bit ld.so with 32bit executable, it should not happen. */
1505
1506 if (tmp_entry_point < space_size
1507 && tmp_entry_point + load_addr >= space_size)
1508 load_addr -= space_size;
1509 }
1510
1511 load_addr_found = 1;
1512 }
1513
1514 /* Otherwise we find the dynamic linker's base address by examining
1515 the current pc (which should point at the entry point for the
1516 dynamic linker) and subtracting the offset of the entry point.
1517
1518 This is more fragile than the previous approaches, but is a good
1519 fallback method because it has actually been working well in
1520 most cases. */
1521 if (!load_addr_found)
1522 {
1523 struct regcache *regcache
1524 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1525
1526 load_addr = (regcache_read_pc (regcache)
1527 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1528 }
1529
1530 if (!loader_found_in_list)
1531 {
1532 info->debug_loader_name = xstrdup (interp_name);
1533 info->debug_loader_offset_p = 1;
1534 info->debug_loader_offset = load_addr;
1535 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1536 }
1537
1538 /* Record the relocated start and end address of the dynamic linker
1539 text and plt section for svr4_in_dynsym_resolve_code. */
1540 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1541 if (interp_sect)
1542 {
1543 info->interp_text_sect_low =
1544 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1545 info->interp_text_sect_high =
1546 info->interp_text_sect_low
1547 + bfd_section_size (tmp_bfd, interp_sect);
1548 }
1549 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1550 if (interp_sect)
1551 {
1552 info->interp_plt_sect_low =
1553 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1554 info->interp_plt_sect_high =
1555 info->interp_plt_sect_low
1556 + bfd_section_size (tmp_bfd, interp_sect);
1557 }
1558
1559 /* Now try to set a breakpoint in the dynamic linker. */
1560 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1561 {
1562 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1563 if (sym_addr != 0)
1564 break;
1565 }
1566
1567 if (sym_addr != 0)
1568 /* Convert 'sym_addr' from a function pointer to an address.
1569 Because we pass tmp_bfd_target instead of the current
1570 target, this will always produce an unrelocated value. */
1571 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1572 sym_addr,
1573 tmp_bfd_target);
1574
1575 /* We're done with both the temporary bfd and target. Remember,
1576 closing the target closes the underlying bfd. */
1577 target_close (tmp_bfd_target, 0);
1578
1579 if (sym_addr != 0)
1580 {
1581 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1582 xfree (interp_name);
1583 return 1;
1584 }
1585
1586 /* For whatever reason we couldn't set a breakpoint in the dynamic
1587 linker. Warn and drop into the old code. */
1588 bkpt_at_symbol:
1589 xfree (interp_name);
1590 warning (_("Unable to find dynamic linker breakpoint function.\n"
1591 "GDB will be unable to debug shared library initializers\n"
1592 "and track explicitly loaded dynamic code."));
1593 }
1594
1595 /* Scan through the lists of symbols, trying to look up the symbol and
1596 set a breakpoint there. Terminate loop when we/if we succeed. */
1597
1598 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1599 {
1600 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1601 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1602 {
1603 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1604 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1605 sym_addr,
1606 &current_target);
1607 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1608 return 1;
1609 }
1610 }
1611
1612 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1613 {
1614 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1615 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1616 {
1617 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1618 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1619 sym_addr,
1620 &current_target);
1621 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1622 return 1;
1623 }
1624 }
1625 return 0;
1626 }
1627
1628 /*
1629
1630 LOCAL FUNCTION
1631
1632 special_symbol_handling -- additional shared library symbol handling
1633
1634 SYNOPSIS
1635
1636 void special_symbol_handling ()
1637
1638 DESCRIPTION
1639
1640 Once the symbols from a shared object have been loaded in the usual
1641 way, we are called to do any system specific symbol handling that
1642 is needed.
1643
1644 For SunOS4, this consisted of grunging around in the dynamic
1645 linkers structures to find symbol definitions for "common" symbols
1646 and adding them to the minimal symbol table for the runtime common
1647 objfile.
1648
1649 However, for SVR4, there's nothing to do.
1650
1651 */
1652
1653 static void
1654 svr4_special_symbol_handling (void)
1655 {
1656 svr4_relocate_main_executable ();
1657 }
1658
1659 /* Read the ELF program headers from ABFD. Return the contents and
1660 set *PHDRS_SIZE to the size of the program headers. */
1661
1662 static gdb_byte *
1663 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1664 {
1665 Elf_Internal_Ehdr *ehdr;
1666 gdb_byte *buf;
1667
1668 ehdr = elf_elfheader (abfd);
1669
1670 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1671 if (*phdrs_size == 0)
1672 return NULL;
1673
1674 buf = xmalloc (*phdrs_size);
1675 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1676 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1677 {
1678 xfree (buf);
1679 return NULL;
1680 }
1681
1682 return buf;
1683 }
1684
1685 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1686 exec_bfd. Otherwise return 0.
1687
1688 We relocate all of the sections by the same amount. This
1689 behavior is mandated by recent editions of the System V ABI.
1690 According to the System V Application Binary Interface,
1691 Edition 4.1, page 5-5:
1692
1693 ... Though the system chooses virtual addresses for
1694 individual processes, it maintains the segments' relative
1695 positions. Because position-independent code uses relative
1696 addressesing between segments, the difference between
1697 virtual addresses in memory must match the difference
1698 between virtual addresses in the file. The difference
1699 between the virtual address of any segment in memory and
1700 the corresponding virtual address in the file is thus a
1701 single constant value for any one executable or shared
1702 object in a given process. This difference is the base
1703 address. One use of the base address is to relocate the
1704 memory image of the program during dynamic linking.
1705
1706 The same language also appears in Edition 4.0 of the System V
1707 ABI and is left unspecified in some of the earlier editions.
1708
1709 Decide if the objfile needs to be relocated. As indicated above, we will
1710 only be here when execution is stopped. But during attachment PC can be at
1711 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1712 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1713 regcache_read_pc would point to the interpreter and not the main executable.
1714
1715 So, to summarize, relocations are necessary when the start address obtained
1716 from the executable is different from the address in auxv AT_ENTRY entry.
1717
1718 [ The astute reader will note that we also test to make sure that
1719 the executable in question has the DYNAMIC flag set. It is my
1720 opinion that this test is unnecessary (undesirable even). It
1721 was added to avoid inadvertent relocation of an executable
1722 whose e_type member in the ELF header is not ET_DYN. There may
1723 be a time in the future when it is desirable to do relocations
1724 on other types of files as well in which case this condition
1725 should either be removed or modified to accomodate the new file
1726 type. - Kevin, Nov 2000. ] */
1727
1728 static int
1729 svr4_exec_displacement (CORE_ADDR *displacementp)
1730 {
1731 /* ENTRY_POINT is a possible function descriptor - before
1732 a call to gdbarch_convert_from_func_ptr_addr. */
1733 CORE_ADDR entry_point, displacement;
1734
1735 if (exec_bfd == NULL)
1736 return 0;
1737
1738 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1739 being executed themselves and PIE (Position Independent Executable)
1740 executables are ET_DYN. */
1741
1742 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1743 return 0;
1744
1745 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1746 return 0;
1747
1748 displacement = entry_point - bfd_get_start_address (exec_bfd);
1749
1750 /* Verify the DISPLACEMENT candidate complies with the required page
1751 alignment. It is cheaper than the program headers comparison below. */
1752
1753 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1754 {
1755 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1756
1757 /* p_align of PT_LOAD segments does not specify any alignment but
1758 only congruency of addresses:
1759 p_offset % p_align == p_vaddr % p_align
1760 Kernel is free to load the executable with lower alignment. */
1761
1762 if ((displacement & (elf->minpagesize - 1)) != 0)
1763 return 0;
1764 }
1765
1766 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1767 comparing their program headers. If the program headers in the auxilliary
1768 vector do not match the program headers in the executable, then we are
1769 looking at a different file than the one used by the kernel - for
1770 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1771
1772 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1773 {
1774 /* Be optimistic and clear OK only if GDB was able to verify the headers
1775 really do not match. */
1776 int phdrs_size, phdrs2_size, ok = 1;
1777 gdb_byte *buf, *buf2;
1778
1779 buf = read_program_header (-1, &phdrs_size, NULL);
1780 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1781 if (buf != NULL && buf2 != NULL
1782 && (phdrs_size != phdrs2_size
1783 || memcmp (buf, buf2, phdrs_size) != 0))
1784 ok = 0;
1785
1786 xfree (buf);
1787 xfree (buf2);
1788
1789 if (!ok)
1790 return 0;
1791 }
1792
1793 if (info_verbose)
1794 {
1795 /* It can be printed repeatedly as there is no easy way to check
1796 the executable symbols/file has been already relocated to
1797 displacement. */
1798
1799 printf_unfiltered (_("Using PIE (Position Independent Executable) "
1800 "displacement %s for \"%s\".\n"),
1801 paddress (target_gdbarch, displacement),
1802 bfd_get_filename (exec_bfd));
1803 }
1804
1805 *displacementp = displacement;
1806 return 1;
1807 }
1808
1809 /* Relocate the main executable. This function should be called upon
1810 stopping the inferior process at the entry point to the program.
1811 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1812 different, the main executable is relocated by the proper amount. */
1813
1814 static void
1815 svr4_relocate_main_executable (void)
1816 {
1817 CORE_ADDR displacement;
1818
1819 if (symfile_objfile)
1820 {
1821 int i;
1822
1823 /* Remote target may have already set specific offsets by `qOffsets'
1824 which should be preferred. */
1825
1826 for (i = 0; i < symfile_objfile->num_sections; i++)
1827 if (ANOFFSET (symfile_objfile->section_offsets, i) != 0)
1828 return;
1829 }
1830
1831 if (! svr4_exec_displacement (&displacement))
1832 return;
1833
1834 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
1835 addresses. */
1836
1837 if (symfile_objfile)
1838 {
1839 struct section_offsets *new_offsets;
1840 int i;
1841
1842 new_offsets = alloca (symfile_objfile->num_sections
1843 * sizeof (*new_offsets));
1844
1845 for (i = 0; i < symfile_objfile->num_sections; i++)
1846 new_offsets->offsets[i] = displacement;
1847
1848 objfile_relocate (symfile_objfile, new_offsets);
1849 }
1850 else if (exec_bfd)
1851 {
1852 asection *asect;
1853
1854 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1855 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1856 (bfd_section_vma (exec_bfd, asect)
1857 + displacement));
1858 }
1859 }
1860
1861 /*
1862
1863 GLOBAL FUNCTION
1864
1865 svr4_solib_create_inferior_hook -- shared library startup support
1866
1867 SYNOPSIS
1868
1869 void svr4_solib_create_inferior_hook (int from_tty)
1870
1871 DESCRIPTION
1872
1873 When gdb starts up the inferior, it nurses it along (through the
1874 shell) until it is ready to execute it's first instruction. At this
1875 point, this function gets called via expansion of the macro
1876 SOLIB_CREATE_INFERIOR_HOOK.
1877
1878 For SunOS executables, this first instruction is typically the
1879 one at "_start", or a similar text label, regardless of whether
1880 the executable is statically or dynamically linked. The runtime
1881 startup code takes care of dynamically linking in any shared
1882 libraries, once gdb allows the inferior to continue.
1883
1884 For SVR4 executables, this first instruction is either the first
1885 instruction in the dynamic linker (for dynamically linked
1886 executables) or the instruction at "start" for statically linked
1887 executables. For dynamically linked executables, the system
1888 first exec's /lib/libc.so.N, which contains the dynamic linker,
1889 and starts it running. The dynamic linker maps in any needed
1890 shared libraries, maps in the actual user executable, and then
1891 jumps to "start" in the user executable.
1892
1893 For both SunOS shared libraries, and SVR4 shared libraries, we
1894 can arrange to cooperate with the dynamic linker to discover the
1895 names of shared libraries that are dynamically linked, and the
1896 base addresses to which they are linked.
1897
1898 This function is responsible for discovering those names and
1899 addresses, and saving sufficient information about them to allow
1900 their symbols to be read at a later time.
1901
1902 FIXME
1903
1904 Between enable_break() and disable_break(), this code does not
1905 properly handle hitting breakpoints which the user might have
1906 set in the startup code or in the dynamic linker itself. Proper
1907 handling will probably have to wait until the implementation is
1908 changed to use the "breakpoint handler function" method.
1909
1910 Also, what if child has exit()ed? Must exit loop somehow.
1911 */
1912
1913 static void
1914 svr4_solib_create_inferior_hook (int from_tty)
1915 {
1916 #if defined(_SCO_DS)
1917 struct inferior *inf;
1918 struct thread_info *tp;
1919 #endif /* defined(_SCO_DS) */
1920 struct svr4_info *info;
1921
1922 info = get_svr4_info ();
1923
1924 /* Relocate the main executable if necessary. */
1925 if (current_inferior ()->attach_flag == 0)
1926 svr4_relocate_main_executable ();
1927
1928 if (!svr4_have_link_map_offsets ())
1929 return;
1930
1931 if (!enable_break (info, from_tty))
1932 return;
1933
1934 #if defined(_SCO_DS)
1935 /* SCO needs the loop below, other systems should be using the
1936 special shared library breakpoints and the shared library breakpoint
1937 service routine.
1938
1939 Now run the target. It will eventually hit the breakpoint, at
1940 which point all of the libraries will have been mapped in and we
1941 can go groveling around in the dynamic linker structures to find
1942 out what we need to know about them. */
1943
1944 inf = current_inferior ();
1945 tp = inferior_thread ();
1946
1947 clear_proceed_status ();
1948 inf->stop_soon = STOP_QUIETLY;
1949 tp->stop_signal = TARGET_SIGNAL_0;
1950 do
1951 {
1952 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1953 wait_for_inferior (0);
1954 }
1955 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1956 inf->stop_soon = NO_STOP_QUIETLY;
1957 #endif /* defined(_SCO_DS) */
1958 }
1959
1960 static void
1961 svr4_clear_solib (void)
1962 {
1963 struct svr4_info *info;
1964
1965 info = get_svr4_info ();
1966 info->debug_base = 0;
1967 info->debug_loader_offset_p = 0;
1968 info->debug_loader_offset = 0;
1969 xfree (info->debug_loader_name);
1970 info->debug_loader_name = NULL;
1971 }
1972
1973 static void
1974 svr4_free_so (struct so_list *so)
1975 {
1976 xfree (so->lm_info->lm);
1977 xfree (so->lm_info);
1978 }
1979
1980
1981 /* Clear any bits of ADDR that wouldn't fit in a target-format
1982 data pointer. "Data pointer" here refers to whatever sort of
1983 address the dynamic linker uses to manage its sections. At the
1984 moment, we don't support shared libraries on any processors where
1985 code and data pointers are different sizes.
1986
1987 This isn't really the right solution. What we really need here is
1988 a way to do arithmetic on CORE_ADDR values that respects the
1989 natural pointer/address correspondence. (For example, on the MIPS,
1990 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1991 sign-extend the value. There, simply truncating the bits above
1992 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1993 be a new gdbarch method or something. */
1994 static CORE_ADDR
1995 svr4_truncate_ptr (CORE_ADDR addr)
1996 {
1997 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1998 /* We don't need to truncate anything, and the bit twiddling below
1999 will fail due to overflow problems. */
2000 return addr;
2001 else
2002 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
2003 }
2004
2005
2006 static void
2007 svr4_relocate_section_addresses (struct so_list *so,
2008 struct target_section *sec)
2009 {
2010 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
2011 sec->bfd));
2012 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
2013 sec->bfd));
2014 }
2015 \f
2016
2017 /* Architecture-specific operations. */
2018
2019 /* Per-architecture data key. */
2020 static struct gdbarch_data *solib_svr4_data;
2021
2022 struct solib_svr4_ops
2023 {
2024 /* Return a description of the layout of `struct link_map'. */
2025 struct link_map_offsets *(*fetch_link_map_offsets)(void);
2026 };
2027
2028 /* Return a default for the architecture-specific operations. */
2029
2030 static void *
2031 solib_svr4_init (struct obstack *obstack)
2032 {
2033 struct solib_svr4_ops *ops;
2034
2035 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2036 ops->fetch_link_map_offsets = NULL;
2037 return ops;
2038 }
2039
2040 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2041 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2042
2043 void
2044 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2045 struct link_map_offsets *(*flmo) (void))
2046 {
2047 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2048
2049 ops->fetch_link_map_offsets = flmo;
2050
2051 set_solib_ops (gdbarch, &svr4_so_ops);
2052 }
2053
2054 /* Fetch a link_map_offsets structure using the architecture-specific
2055 `struct link_map_offsets' fetcher. */
2056
2057 static struct link_map_offsets *
2058 svr4_fetch_link_map_offsets (void)
2059 {
2060 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2061
2062 gdb_assert (ops->fetch_link_map_offsets);
2063 return ops->fetch_link_map_offsets ();
2064 }
2065
2066 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2067
2068 static int
2069 svr4_have_link_map_offsets (void)
2070 {
2071 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2072
2073 return (ops->fetch_link_map_offsets != NULL);
2074 }
2075 \f
2076
2077 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2078 `struct r_debug' and a `struct link_map' that are binary compatible
2079 with the origional SVR4 implementation. */
2080
2081 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2082 for an ILP32 SVR4 system. */
2083
2084 struct link_map_offsets *
2085 svr4_ilp32_fetch_link_map_offsets (void)
2086 {
2087 static struct link_map_offsets lmo;
2088 static struct link_map_offsets *lmp = NULL;
2089
2090 if (lmp == NULL)
2091 {
2092 lmp = &lmo;
2093
2094 lmo.r_version_offset = 0;
2095 lmo.r_version_size = 4;
2096 lmo.r_map_offset = 4;
2097 lmo.r_brk_offset = 8;
2098 lmo.r_ldsomap_offset = 20;
2099
2100 /* Everything we need is in the first 20 bytes. */
2101 lmo.link_map_size = 20;
2102 lmo.l_addr_offset = 0;
2103 lmo.l_name_offset = 4;
2104 lmo.l_ld_offset = 8;
2105 lmo.l_next_offset = 12;
2106 lmo.l_prev_offset = 16;
2107 }
2108
2109 return lmp;
2110 }
2111
2112 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2113 for an LP64 SVR4 system. */
2114
2115 struct link_map_offsets *
2116 svr4_lp64_fetch_link_map_offsets (void)
2117 {
2118 static struct link_map_offsets lmo;
2119 static struct link_map_offsets *lmp = NULL;
2120
2121 if (lmp == NULL)
2122 {
2123 lmp = &lmo;
2124
2125 lmo.r_version_offset = 0;
2126 lmo.r_version_size = 4;
2127 lmo.r_map_offset = 8;
2128 lmo.r_brk_offset = 16;
2129 lmo.r_ldsomap_offset = 40;
2130
2131 /* Everything we need is in the first 40 bytes. */
2132 lmo.link_map_size = 40;
2133 lmo.l_addr_offset = 0;
2134 lmo.l_name_offset = 8;
2135 lmo.l_ld_offset = 16;
2136 lmo.l_next_offset = 24;
2137 lmo.l_prev_offset = 32;
2138 }
2139
2140 return lmp;
2141 }
2142 \f
2143
2144 struct target_so_ops svr4_so_ops;
2145
2146 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2147 different rule for symbol lookup. The lookup begins here in the DSO, not in
2148 the main executable. */
2149
2150 static struct symbol *
2151 elf_lookup_lib_symbol (const struct objfile *objfile,
2152 const char *name,
2153 const domain_enum domain)
2154 {
2155 bfd *abfd;
2156
2157 if (objfile == symfile_objfile)
2158 abfd = exec_bfd;
2159 else
2160 {
2161 /* OBJFILE should have been passed as the non-debug one. */
2162 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2163
2164 abfd = objfile->obfd;
2165 }
2166
2167 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2168 return NULL;
2169
2170 return lookup_global_symbol_from_objfile (objfile, name, domain);
2171 }
2172
2173 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2174
2175 void
2176 _initialize_svr4_solib (void)
2177 {
2178 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2179 solib_svr4_pspace_data
2180 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2181
2182 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2183 svr4_so_ops.free_so = svr4_free_so;
2184 svr4_so_ops.clear_solib = svr4_clear_solib;
2185 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2186 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2187 svr4_so_ops.current_sos = svr4_current_sos;
2188 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2189 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2190 svr4_so_ops.bfd_open = solib_bfd_open;
2191 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2192 svr4_so_ops.same = svr4_same;
2193 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2194 }
This page took 0.150583 seconds and 4 git commands to generate.