Work around GCC 6.3.1 bug
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observer.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53
54 /* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
62 static const char * const solib_break_names[] =
63 {
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
68 "__dl_rtld_db_dlactivity",
69 "_rtld_debug_state",
70
71 NULL
72 };
73
74 static const char * const bkpt_names[] =
75 {
76 "_start",
77 "__start",
78 "main",
79 NULL
80 };
81
82 static const char * const main_name_list[] =
83 {
84 "main_$main",
85 NULL
86 };
87
88 /* What to do when a probe stop occurs. */
89
90 enum probe_action
91 {
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107 };
108
109 /* A probe's name and its associated action. */
110
111 struct probe_info
112 {
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118 };
119
120 /* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124 static const struct probe_info probe_info[] =
125 {
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133 };
134
135 #define NUM_PROBES ARRAY_SIZE (probe_info)
136
137 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140 static int
141 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142 {
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163 }
164
165 static int
166 svr4_same (struct so_list *gdb, struct so_list *inferior)
167 {
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169 }
170
171 static lm_info_svr4 *
172 lm_info_read (CORE_ADDR lm_addr)
173 {
174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
175 gdb_byte *lm;
176 lm_info_svr4 *lm_info;
177 struct cleanup *back_to;
178
179 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
180 back_to = make_cleanup (xfree, lm);
181
182 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
183 {
184 warning (_("Error reading shared library list entry at %s"),
185 paddress (target_gdbarch (), lm_addr)),
186 lm_info = NULL;
187 }
188 else
189 {
190 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
191
192 lm_info = new lm_info_svr4;
193 lm_info->lm_addr = lm_addr;
194
195 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
196 ptr_type);
197 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
198 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
199 ptr_type);
200 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
201 ptr_type);
202 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
203 ptr_type);
204 }
205
206 do_cleanups (back_to);
207
208 return lm_info;
209 }
210
211 static int
212 has_lm_dynamic_from_link_map (void)
213 {
214 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
215
216 return lmo->l_ld_offset >= 0;
217 }
218
219 static CORE_ADDR
220 lm_addr_check (const struct so_list *so, bfd *abfd)
221 {
222 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
223
224 if (!li->l_addr_p)
225 {
226 struct bfd_section *dyninfo_sect;
227 CORE_ADDR l_addr, l_dynaddr, dynaddr;
228
229 l_addr = li->l_addr_inferior;
230
231 if (! abfd || ! has_lm_dynamic_from_link_map ())
232 goto set_addr;
233
234 l_dynaddr = li->l_ld;
235
236 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
237 if (dyninfo_sect == NULL)
238 goto set_addr;
239
240 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
241
242 if (dynaddr + l_addr != l_dynaddr)
243 {
244 CORE_ADDR align = 0x1000;
245 CORE_ADDR minpagesize = align;
246
247 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
248 {
249 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
250 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
251 int i;
252
253 align = 1;
254
255 for (i = 0; i < ehdr->e_phnum; i++)
256 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
257 align = phdr[i].p_align;
258
259 minpagesize = get_elf_backend_data (abfd)->minpagesize;
260 }
261
262 /* Turn it into a mask. */
263 align--;
264
265 /* If the changes match the alignment requirements, we
266 assume we're using a core file that was generated by the
267 same binary, just prelinked with a different base offset.
268 If it doesn't match, we may have a different binary, the
269 same binary with the dynamic table loaded at an unrelated
270 location, or anything, really. To avoid regressions,
271 don't adjust the base offset in the latter case, although
272 odds are that, if things really changed, debugging won't
273 quite work.
274
275 One could expect more the condition
276 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
277 but the one below is relaxed for PPC. The PPC kernel supports
278 either 4k or 64k page sizes. To be prepared for 64k pages,
279 PPC ELF files are built using an alignment requirement of 64k.
280 However, when running on a kernel supporting 4k pages, the memory
281 mapping of the library may not actually happen on a 64k boundary!
282
283 (In the usual case where (l_addr & align) == 0, this check is
284 equivalent to the possibly expected check above.)
285
286 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
287
288 l_addr = l_dynaddr - dynaddr;
289
290 if ((l_addr & (minpagesize - 1)) == 0
291 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
292 {
293 if (info_verbose)
294 printf_unfiltered (_("Using PIC (Position Independent Code) "
295 "prelink displacement %s for \"%s\".\n"),
296 paddress (target_gdbarch (), l_addr),
297 so->so_name);
298 }
299 else
300 {
301 /* There is no way to verify the library file matches. prelink
302 can during prelinking of an unprelinked file (or unprelinking
303 of a prelinked file) shift the DYNAMIC segment by arbitrary
304 offset without any page size alignment. There is no way to
305 find out the ELF header and/or Program Headers for a limited
306 verification if it they match. One could do a verification
307 of the DYNAMIC segment. Still the found address is the best
308 one GDB could find. */
309
310 warning (_(".dynamic section for \"%s\" "
311 "is not at the expected address "
312 "(wrong library or version mismatch?)"), so->so_name);
313 }
314 }
315
316 set_addr:
317 li->l_addr = l_addr;
318 li->l_addr_p = 1;
319 }
320
321 return li->l_addr;
322 }
323
324 /* Per pspace SVR4 specific data. */
325
326 struct svr4_info
327 {
328 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
329
330 /* Validity flag for debug_loader_offset. */
331 int debug_loader_offset_p;
332
333 /* Load address for the dynamic linker, inferred. */
334 CORE_ADDR debug_loader_offset;
335
336 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
337 char *debug_loader_name;
338
339 /* Load map address for the main executable. */
340 CORE_ADDR main_lm_addr;
341
342 CORE_ADDR interp_text_sect_low;
343 CORE_ADDR interp_text_sect_high;
344 CORE_ADDR interp_plt_sect_low;
345 CORE_ADDR interp_plt_sect_high;
346
347 /* Nonzero if the list of objects was last obtained from the target
348 via qXfer:libraries-svr4:read. */
349 int using_xfer;
350
351 /* Table of struct probe_and_action instances, used by the
352 probes-based interface to map breakpoint addresses to probes
353 and their associated actions. Lookup is performed using
354 probe_and_action->probe->address. */
355 htab_t probes_table;
356
357 /* List of objects loaded into the inferior, used by the probes-
358 based interface. */
359 struct so_list *solib_list;
360 };
361
362 /* Per-program-space data key. */
363 static const struct program_space_data *solib_svr4_pspace_data;
364
365 /* Free the probes table. */
366
367 static void
368 free_probes_table (struct svr4_info *info)
369 {
370 if (info->probes_table == NULL)
371 return;
372
373 htab_delete (info->probes_table);
374 info->probes_table = NULL;
375 }
376
377 /* Free the solib list. */
378
379 static void
380 free_solib_list (struct svr4_info *info)
381 {
382 svr4_free_library_list (&info->solib_list);
383 info->solib_list = NULL;
384 }
385
386 static void
387 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
388 {
389 struct svr4_info *info = (struct svr4_info *) arg;
390
391 free_probes_table (info);
392 free_solib_list (info);
393
394 xfree (info);
395 }
396
397 /* Get the current svr4 data. If none is found yet, add it now. This
398 function always returns a valid object. */
399
400 static struct svr4_info *
401 get_svr4_info (void)
402 {
403 struct svr4_info *info;
404
405 info = (struct svr4_info *) program_space_data (current_program_space,
406 solib_svr4_pspace_data);
407 if (info != NULL)
408 return info;
409
410 info = XCNEW (struct svr4_info);
411 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
412 return info;
413 }
414
415 /* Local function prototypes */
416
417 static int match_main (const char *);
418
419 /* Read program header TYPE from inferior memory. The header is found
420 by scanning the OS auxillary vector.
421
422 If TYPE == -1, return the program headers instead of the contents of
423 one program header.
424
425 Return a pointer to allocated memory holding the program header contents,
426 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
427 size of those contents is returned to P_SECT_SIZE. Likewise, the target
428 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
429 the base address of the section is returned in BASE_ADDR. */
430
431 static gdb_byte *
432 read_program_header (int type, int *p_sect_size, int *p_arch_size,
433 CORE_ADDR *base_addr)
434 {
435 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
436 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
437 int arch_size, sect_size;
438 CORE_ADDR sect_addr;
439 gdb_byte *buf;
440 int pt_phdr_p = 0;
441
442 /* Get required auxv elements from target. */
443 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
444 return 0;
445 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
446 return 0;
447 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
448 return 0;
449 if (!at_phdr || !at_phnum)
450 return 0;
451
452 /* Determine ELF architecture type. */
453 if (at_phent == sizeof (Elf32_External_Phdr))
454 arch_size = 32;
455 else if (at_phent == sizeof (Elf64_External_Phdr))
456 arch_size = 64;
457 else
458 return 0;
459
460 /* Find the requested segment. */
461 if (type == -1)
462 {
463 sect_addr = at_phdr;
464 sect_size = at_phent * at_phnum;
465 }
466 else if (arch_size == 32)
467 {
468 Elf32_External_Phdr phdr;
469 int i;
470
471 /* Search for requested PHDR. */
472 for (i = 0; i < at_phnum; i++)
473 {
474 int p_type;
475
476 if (target_read_memory (at_phdr + i * sizeof (phdr),
477 (gdb_byte *)&phdr, sizeof (phdr)))
478 return 0;
479
480 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
481 4, byte_order);
482
483 if (p_type == PT_PHDR)
484 {
485 pt_phdr_p = 1;
486 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
487 4, byte_order);
488 }
489
490 if (p_type == type)
491 break;
492 }
493
494 if (i == at_phnum)
495 return 0;
496
497 /* Retrieve address and size. */
498 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
499 4, byte_order);
500 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
501 4, byte_order);
502 }
503 else
504 {
505 Elf64_External_Phdr phdr;
506 int i;
507
508 /* Search for requested PHDR. */
509 for (i = 0; i < at_phnum; i++)
510 {
511 int p_type;
512
513 if (target_read_memory (at_phdr + i * sizeof (phdr),
514 (gdb_byte *)&phdr, sizeof (phdr)))
515 return 0;
516
517 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
518 4, byte_order);
519
520 if (p_type == PT_PHDR)
521 {
522 pt_phdr_p = 1;
523 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
524 8, byte_order);
525 }
526
527 if (p_type == type)
528 break;
529 }
530
531 if (i == at_phnum)
532 return 0;
533
534 /* Retrieve address and size. */
535 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
536 8, byte_order);
537 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
538 8, byte_order);
539 }
540
541 /* PT_PHDR is optional, but we really need it
542 for PIE to make this work in general. */
543
544 if (pt_phdr_p)
545 {
546 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
547 Relocation offset is the difference between the two. */
548 sect_addr = sect_addr + (at_phdr - pt_phdr);
549 }
550
551 /* Read in requested program header. */
552 buf = (gdb_byte *) xmalloc (sect_size);
553 if (target_read_memory (sect_addr, buf, sect_size))
554 {
555 xfree (buf);
556 return NULL;
557 }
558
559 if (p_arch_size)
560 *p_arch_size = arch_size;
561 if (p_sect_size)
562 *p_sect_size = sect_size;
563 if (base_addr)
564 *base_addr = sect_addr;
565
566 return buf;
567 }
568
569
570 /* Return program interpreter string. */
571 static char *
572 find_program_interpreter (void)
573 {
574 gdb_byte *buf = NULL;
575
576 /* If we have an exec_bfd, use its section table. */
577 if (exec_bfd
578 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
579 {
580 struct bfd_section *interp_sect;
581
582 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
583 if (interp_sect != NULL)
584 {
585 int sect_size = bfd_section_size (exec_bfd, interp_sect);
586
587 buf = (gdb_byte *) xmalloc (sect_size);
588 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
589 }
590 }
591
592 /* If we didn't find it, use the target auxillary vector. */
593 if (!buf)
594 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
595
596 return (char *) buf;
597 }
598
599
600 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
601 found, 1 is returned and the corresponding PTR is set. */
602
603 static int
604 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
605 CORE_ADDR *ptr_addr)
606 {
607 int arch_size, step, sect_size;
608 long current_dyntag;
609 CORE_ADDR dyn_ptr, dyn_addr;
610 gdb_byte *bufend, *bufstart, *buf;
611 Elf32_External_Dyn *x_dynp_32;
612 Elf64_External_Dyn *x_dynp_64;
613 struct bfd_section *sect;
614 struct target_section *target_section;
615
616 if (abfd == NULL)
617 return 0;
618
619 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
620 return 0;
621
622 arch_size = bfd_get_arch_size (abfd);
623 if (arch_size == -1)
624 return 0;
625
626 /* Find the start address of the .dynamic section. */
627 sect = bfd_get_section_by_name (abfd, ".dynamic");
628 if (sect == NULL)
629 return 0;
630
631 for (target_section = current_target_sections->sections;
632 target_section < current_target_sections->sections_end;
633 target_section++)
634 if (sect == target_section->the_bfd_section)
635 break;
636 if (target_section < current_target_sections->sections_end)
637 dyn_addr = target_section->addr;
638 else
639 {
640 /* ABFD may come from OBJFILE acting only as a symbol file without being
641 loaded into the target (see add_symbol_file_command). This case is
642 such fallback to the file VMA address without the possibility of
643 having the section relocated to its actual in-memory address. */
644
645 dyn_addr = bfd_section_vma (abfd, sect);
646 }
647
648 /* Read in .dynamic from the BFD. We will get the actual value
649 from memory later. */
650 sect_size = bfd_section_size (abfd, sect);
651 buf = bufstart = (gdb_byte *) alloca (sect_size);
652 if (!bfd_get_section_contents (abfd, sect,
653 buf, 0, sect_size))
654 return 0;
655
656 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
657 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
658 : sizeof (Elf64_External_Dyn);
659 for (bufend = buf + sect_size;
660 buf < bufend;
661 buf += step)
662 {
663 if (arch_size == 32)
664 {
665 x_dynp_32 = (Elf32_External_Dyn *) buf;
666 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
667 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
668 }
669 else
670 {
671 x_dynp_64 = (Elf64_External_Dyn *) buf;
672 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
673 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
674 }
675 if (current_dyntag == DT_NULL)
676 return 0;
677 if (current_dyntag == desired_dyntag)
678 {
679 /* If requested, try to read the runtime value of this .dynamic
680 entry. */
681 if (ptr)
682 {
683 struct type *ptr_type;
684 gdb_byte ptr_buf[8];
685 CORE_ADDR ptr_addr_1;
686
687 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
688 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
689 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
690 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
691 *ptr = dyn_ptr;
692 if (ptr_addr)
693 *ptr_addr = dyn_addr + (buf - bufstart);
694 }
695 return 1;
696 }
697 }
698
699 return 0;
700 }
701
702 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
703 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
704 is returned and the corresponding PTR is set. */
705
706 static int
707 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
708 CORE_ADDR *ptr_addr)
709 {
710 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
711 int sect_size, arch_size, step;
712 long current_dyntag;
713 CORE_ADDR dyn_ptr;
714 CORE_ADDR base_addr;
715 gdb_byte *bufend, *bufstart, *buf;
716
717 /* Read in .dynamic section. */
718 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
719 &base_addr);
720 if (!buf)
721 return 0;
722
723 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
724 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
725 : sizeof (Elf64_External_Dyn);
726 for (bufend = buf + sect_size;
727 buf < bufend;
728 buf += step)
729 {
730 if (arch_size == 32)
731 {
732 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
733
734 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 4, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 4, byte_order);
738 }
739 else
740 {
741 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
742
743 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
744 8, byte_order);
745 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
746 8, byte_order);
747 }
748 if (current_dyntag == DT_NULL)
749 break;
750
751 if (current_dyntag == desired_dyntag)
752 {
753 if (ptr)
754 *ptr = dyn_ptr;
755
756 if (ptr_addr)
757 *ptr_addr = base_addr + buf - bufstart;
758
759 xfree (bufstart);
760 return 1;
761 }
762 }
763
764 xfree (bufstart);
765 return 0;
766 }
767
768 /* Locate the base address of dynamic linker structs for SVR4 elf
769 targets.
770
771 For SVR4 elf targets the address of the dynamic linker's runtime
772 structure is contained within the dynamic info section in the
773 executable file. The dynamic section is also mapped into the
774 inferior address space. Because the runtime loader fills in the
775 real address before starting the inferior, we have to read in the
776 dynamic info section from the inferior address space.
777 If there are any errors while trying to find the address, we
778 silently return 0, otherwise the found address is returned. */
779
780 static CORE_ADDR
781 elf_locate_base (void)
782 {
783 struct bound_minimal_symbol msymbol;
784 CORE_ADDR dyn_ptr, dyn_ptr_addr;
785
786 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
787 instead of DT_DEBUG, although they sometimes contain an unused
788 DT_DEBUG. */
789 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
790 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
791 {
792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
793 gdb_byte *pbuf;
794 int pbuf_size = TYPE_LENGTH (ptr_type);
795
796 pbuf = (gdb_byte *) alloca (pbuf_size);
797 /* DT_MIPS_RLD_MAP contains a pointer to the address
798 of the dynamic link structure. */
799 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
800 return 0;
801 return extract_typed_address (pbuf, ptr_type);
802 }
803
804 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
805 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
806 in non-PIE. */
807 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
809 {
810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
811 gdb_byte *pbuf;
812 int pbuf_size = TYPE_LENGTH (ptr_type);
813
814 pbuf = (gdb_byte *) alloca (pbuf_size);
815 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
816 DT slot to the address of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
818 return 0;
819 return extract_typed_address (pbuf, ptr_type);
820 }
821
822 /* Find DT_DEBUG. */
823 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
824 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
825 return dyn_ptr;
826
827 /* This may be a static executable. Look for the symbol
828 conventionally named _r_debug, as a last resort. */
829 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
830 if (msymbol.minsym != NULL)
831 return BMSYMBOL_VALUE_ADDRESS (msymbol);
832
833 /* DT_DEBUG entry not found. */
834 return 0;
835 }
836
837 /* Locate the base address of dynamic linker structs.
838
839 For both the SunOS and SVR4 shared library implementations, if the
840 inferior executable has been linked dynamically, there is a single
841 address somewhere in the inferior's data space which is the key to
842 locating all of the dynamic linker's runtime structures. This
843 address is the value of the debug base symbol. The job of this
844 function is to find and return that address, or to return 0 if there
845 is no such address (the executable is statically linked for example).
846
847 For SunOS, the job is almost trivial, since the dynamic linker and
848 all of it's structures are statically linked to the executable at
849 link time. Thus the symbol for the address we are looking for has
850 already been added to the minimal symbol table for the executable's
851 objfile at the time the symbol file's symbols were read, and all we
852 have to do is look it up there. Note that we explicitly do NOT want
853 to find the copies in the shared library.
854
855 The SVR4 version is a bit more complicated because the address
856 is contained somewhere in the dynamic info section. We have to go
857 to a lot more work to discover the address of the debug base symbol.
858 Because of this complexity, we cache the value we find and return that
859 value on subsequent invocations. Note there is no copy in the
860 executable symbol tables. */
861
862 static CORE_ADDR
863 locate_base (struct svr4_info *info)
864 {
865 /* Check to see if we have a currently valid address, and if so, avoid
866 doing all this work again and just return the cached address. If
867 we have no cached address, try to locate it in the dynamic info
868 section for ELF executables. There's no point in doing any of this
869 though if we don't have some link map offsets to work with. */
870
871 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
872 info->debug_base = elf_locate_base ();
873 return info->debug_base;
874 }
875
876 /* Find the first element in the inferior's dynamic link map, and
877 return its address in the inferior. Return zero if the address
878 could not be determined.
879
880 FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
883
884 static CORE_ADDR
885 solib_svr4_r_map (struct svr4_info *info)
886 {
887 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
888 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
889 CORE_ADDR addr = 0;
890
891 TRY
892 {
893 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
894 ptr_type);
895 }
896 CATCH (ex, RETURN_MASK_ERROR)
897 {
898 exception_print (gdb_stderr, ex);
899 }
900 END_CATCH
901
902 return addr;
903 }
904
905 /* Find r_brk from the inferior's debug base. */
906
907 static CORE_ADDR
908 solib_svr4_r_brk (struct svr4_info *info)
909 {
910 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
911 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
912
913 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
914 ptr_type);
915 }
916
917 /* Find the link map for the dynamic linker (if it is not in the
918 normal list of loaded shared objects). */
919
920 static CORE_ADDR
921 solib_svr4_r_ldsomap (struct svr4_info *info)
922 {
923 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
924 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
925 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
926 ULONGEST version = 0;
927
928 TRY
929 {
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
934 lmo->r_version_size, byte_order);
935 }
936 CATCH (ex, RETURN_MASK_ERROR)
937 {
938 exception_print (gdb_stderr, ex);
939 }
940 END_CATCH
941
942 if (version < 2 || lmo->r_ldsomap_offset == -1)
943 return 0;
944
945 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
946 ptr_type);
947 }
948
949 /* On Solaris systems with some versions of the dynamic linker,
950 ld.so's l_name pointer points to the SONAME in the string table
951 rather than into writable memory. So that GDB can find shared
952 libraries when loading a core file generated by gcore, ensure that
953 memory areas containing the l_name string are saved in the core
954 file. */
955
956 static int
957 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
958 {
959 struct svr4_info *info;
960 CORE_ADDR ldsomap;
961 struct so_list *newobj;
962 struct cleanup *old_chain;
963 CORE_ADDR name_lm;
964
965 info = get_svr4_info ();
966
967 info->debug_base = 0;
968 locate_base (info);
969 if (!info->debug_base)
970 return 0;
971
972 ldsomap = solib_svr4_r_ldsomap (info);
973 if (!ldsomap)
974 return 0;
975
976 newobj = XCNEW (struct so_list);
977 old_chain = make_cleanup (xfree, newobj);
978 lm_info_svr4 *li = lm_info_read (ldsomap);
979 newobj->lm_info = li;
980 make_cleanup (xfree, newobj->lm_info);
981 name_lm = li != NULL ? li->l_name : 0;
982 do_cleanups (old_chain);
983
984 return (name_lm >= vaddr && name_lm < vaddr + size);
985 }
986
987 /* See solist.h. */
988
989 static int
990 open_symbol_file_object (int from_tty)
991 {
992 CORE_ADDR lm, l_name;
993 char *filename;
994 int errcode;
995 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
996 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
997 int l_name_size = TYPE_LENGTH (ptr_type);
998 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
999 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1000 struct svr4_info *info = get_svr4_info ();
1001 symfile_add_flags add_flags = 0;
1002
1003 if (from_tty)
1004 add_flags |= SYMFILE_VERBOSE;
1005
1006 if (symfile_objfile)
1007 if (!query (_("Attempt to reload symbols from process? ")))
1008 {
1009 do_cleanups (cleanups);
1010 return 0;
1011 }
1012
1013 /* Always locate the debug struct, in case it has moved. */
1014 info->debug_base = 0;
1015 if (locate_base (info) == 0)
1016 {
1017 do_cleanups (cleanups);
1018 return 0; /* failed somehow... */
1019 }
1020
1021 /* First link map member should be the executable. */
1022 lm = solib_svr4_r_map (info);
1023 if (lm == 0)
1024 {
1025 do_cleanups (cleanups);
1026 return 0; /* failed somehow... */
1027 }
1028
1029 /* Read address of name from target memory to GDB. */
1030 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1031
1032 /* Convert the address to host format. */
1033 l_name = extract_typed_address (l_name_buf, ptr_type);
1034
1035 if (l_name == 0)
1036 {
1037 do_cleanups (cleanups);
1038 return 0; /* No filename. */
1039 }
1040
1041 /* Now fetch the filename from target memory. */
1042 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1043 make_cleanup (xfree, filename);
1044
1045 if (errcode)
1046 {
1047 warning (_("failed to read exec filename from attached file: %s"),
1048 safe_strerror (errcode));
1049 do_cleanups (cleanups);
1050 return 0;
1051 }
1052
1053 /* Have a pathname: read the symbol file. */
1054 symbol_file_add_main (filename, add_flags);
1055
1056 do_cleanups (cleanups);
1057 return 1;
1058 }
1059
1060 /* Data exchange structure for the XML parser as returned by
1061 svr4_current_sos_via_xfer_libraries. */
1062
1063 struct svr4_library_list
1064 {
1065 struct so_list *head, **tailp;
1066
1067 /* Inferior address of struct link_map used for the main executable. It is
1068 NULL if not known. */
1069 CORE_ADDR main_lm;
1070 };
1071
1072 /* Implementation for target_so_ops.free_so. */
1073
1074 static void
1075 svr4_free_so (struct so_list *so)
1076 {
1077 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1078
1079 delete li;
1080 }
1081
1082 /* Implement target_so_ops.clear_so. */
1083
1084 static void
1085 svr4_clear_so (struct so_list *so)
1086 {
1087 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1088
1089 if (li != NULL)
1090 li->l_addr_p = 0;
1091 }
1092
1093 /* Free so_list built so far (called via cleanup). */
1094
1095 static void
1096 svr4_free_library_list (void *p_list)
1097 {
1098 struct so_list *list = *(struct so_list **) p_list;
1099
1100 while (list != NULL)
1101 {
1102 struct so_list *next = list->next;
1103
1104 free_so (list);
1105 list = next;
1106 }
1107 }
1108
1109 /* Copy library list. */
1110
1111 static struct so_list *
1112 svr4_copy_library_list (struct so_list *src)
1113 {
1114 struct so_list *dst = NULL;
1115 struct so_list **link = &dst;
1116
1117 while (src != NULL)
1118 {
1119 struct so_list *newobj;
1120
1121 newobj = XNEW (struct so_list);
1122 memcpy (newobj, src, sizeof (struct so_list));
1123
1124 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1125 newobj->lm_info = new lm_info_svr4 (*src_li);
1126
1127 newobj->next = NULL;
1128 *link = newobj;
1129 link = &newobj->next;
1130
1131 src = src->next;
1132 }
1133
1134 return dst;
1135 }
1136
1137 #ifdef HAVE_LIBEXPAT
1138
1139 #include "xml-support.h"
1140
1141 /* Handle the start of a <library> element. Note: new elements are added
1142 at the tail of the list, keeping the list in order. */
1143
1144 static void
1145 library_list_start_library (struct gdb_xml_parser *parser,
1146 const struct gdb_xml_element *element,
1147 void *user_data, VEC(gdb_xml_value_s) *attributes)
1148 {
1149 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1150 const char *name
1151 = (const char *) xml_find_attribute (attributes, "name")->value;
1152 ULONGEST *lmp
1153 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
1154 ULONGEST *l_addrp
1155 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
1156 ULONGEST *l_ldp
1157 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
1158 struct so_list *new_elem;
1159
1160 new_elem = XCNEW (struct so_list);
1161 lm_info_svr4 *li = new lm_info_svr4;
1162 new_elem->lm_info = li;
1163 li->lm_addr = *lmp;
1164 li->l_addr_inferior = *l_addrp;
1165 li->l_ld = *l_ldp;
1166
1167 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1168 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1169 strcpy (new_elem->so_original_name, new_elem->so_name);
1170
1171 *list->tailp = new_elem;
1172 list->tailp = &new_elem->next;
1173 }
1174
1175 /* Handle the start of a <library-list-svr4> element. */
1176
1177 static void
1178 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1179 const struct gdb_xml_element *element,
1180 void *user_data, VEC(gdb_xml_value_s) *attributes)
1181 {
1182 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1183 const char *version
1184 = (const char *) xml_find_attribute (attributes, "version")->value;
1185 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1186
1187 if (strcmp (version, "1.0") != 0)
1188 gdb_xml_error (parser,
1189 _("SVR4 Library list has unsupported version \"%s\""),
1190 version);
1191
1192 if (main_lm)
1193 list->main_lm = *(ULONGEST *) main_lm->value;
1194 }
1195
1196 /* The allowed elements and attributes for an XML library list.
1197 The root element is a <library-list>. */
1198
1199 static const struct gdb_xml_attribute svr4_library_attributes[] =
1200 {
1201 { "name", GDB_XML_AF_NONE, NULL, NULL },
1202 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1203 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1204 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1205 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1206 };
1207
1208 static const struct gdb_xml_element svr4_library_list_children[] =
1209 {
1210 {
1211 "library", svr4_library_attributes, NULL,
1212 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1213 library_list_start_library, NULL
1214 },
1215 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1216 };
1217
1218 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1219 {
1220 { "version", GDB_XML_AF_NONE, NULL, NULL },
1221 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1222 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1223 };
1224
1225 static const struct gdb_xml_element svr4_library_list_elements[] =
1226 {
1227 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1228 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1229 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1230 };
1231
1232 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1233
1234 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1235 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1236 empty, caller is responsible for freeing all its entries. */
1237
1238 static int
1239 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1240 {
1241 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1242 &list->head);
1243
1244 memset (list, 0, sizeof (*list));
1245 list->tailp = &list->head;
1246 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1247 svr4_library_list_elements, document, list) == 0)
1248 {
1249 /* Parsed successfully, keep the result. */
1250 discard_cleanups (back_to);
1251 return 1;
1252 }
1253
1254 do_cleanups (back_to);
1255 return 0;
1256 }
1257
1258 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1259
1260 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1261 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1262 empty, caller is responsible for freeing all its entries.
1263
1264 Note that ANNEX must be NULL if the remote does not explicitly allow
1265 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1266 this can be checked using target_augmented_libraries_svr4_read (). */
1267
1268 static int
1269 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1270 const char *annex)
1271 {
1272 char *svr4_library_document;
1273 int result;
1274 struct cleanup *back_to;
1275
1276 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1277
1278 /* Fetch the list of shared libraries. */
1279 svr4_library_document = target_read_stralloc (&current_target,
1280 TARGET_OBJECT_LIBRARIES_SVR4,
1281 annex);
1282 if (svr4_library_document == NULL)
1283 return 0;
1284
1285 back_to = make_cleanup (xfree, svr4_library_document);
1286 result = svr4_parse_libraries (svr4_library_document, list);
1287 do_cleanups (back_to);
1288
1289 return result;
1290 }
1291
1292 #else
1293
1294 static int
1295 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1296 const char *annex)
1297 {
1298 return 0;
1299 }
1300
1301 #endif
1302
1303 /* If no shared library information is available from the dynamic
1304 linker, build a fallback list from other sources. */
1305
1306 static struct so_list *
1307 svr4_default_sos (void)
1308 {
1309 struct svr4_info *info = get_svr4_info ();
1310 struct so_list *newobj;
1311
1312 if (!info->debug_loader_offset_p)
1313 return NULL;
1314
1315 newobj = XCNEW (struct so_list);
1316 lm_info_svr4 *li = new lm_info_svr4;
1317 newobj->lm_info = li;
1318
1319 /* Nothing will ever check the other fields if we set l_addr_p. */
1320 li->l_addr = info->debug_loader_offset;
1321 li->l_addr_p = 1;
1322
1323 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1324 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1325 strcpy (newobj->so_original_name, newobj->so_name);
1326
1327 return newobj;
1328 }
1329
1330 /* Read the whole inferior libraries chain starting at address LM.
1331 Expect the first entry in the chain's previous entry to be PREV_LM.
1332 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1333 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1334 to it. Returns nonzero upon success. If zero is returned the
1335 entries stored to LINK_PTR_PTR are still valid although they may
1336 represent only part of the inferior library list. */
1337
1338 static int
1339 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1340 struct so_list ***link_ptr_ptr, int ignore_first)
1341 {
1342 CORE_ADDR first_l_name = 0;
1343 CORE_ADDR next_lm;
1344
1345 for (; lm != 0; prev_lm = lm, lm = next_lm)
1346 {
1347 int errcode;
1348 char *buffer;
1349
1350 so_list_up newobj (XCNEW (struct so_list));
1351
1352 lm_info_svr4 *li = lm_info_read (lm);
1353 newobj->lm_info = li;
1354 if (li == NULL)
1355 return 0;
1356
1357 next_lm = li->l_next;
1358
1359 if (li->l_prev != prev_lm)
1360 {
1361 warning (_("Corrupted shared library list: %s != %s"),
1362 paddress (target_gdbarch (), prev_lm),
1363 paddress (target_gdbarch (), li->l_prev));
1364 return 0;
1365 }
1366
1367 /* For SVR4 versions, the first entry in the link map is for the
1368 inferior executable, so we must ignore it. For some versions of
1369 SVR4, it has no name. For others (Solaris 2.3 for example), it
1370 does have a name, so we can no longer use a missing name to
1371 decide when to ignore it. */
1372 if (ignore_first && li->l_prev == 0)
1373 {
1374 struct svr4_info *info = get_svr4_info ();
1375
1376 first_l_name = li->l_name;
1377 info->main_lm_addr = li->lm_addr;
1378 continue;
1379 }
1380
1381 /* Extract this shared object's name. */
1382 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1383 &errcode);
1384 if (errcode != 0)
1385 {
1386 /* If this entry's l_name address matches that of the
1387 inferior executable, then this is not a normal shared
1388 object, but (most likely) a vDSO. In this case, silently
1389 skip it; otherwise emit a warning. */
1390 if (first_l_name == 0 || li->l_name != first_l_name)
1391 warning (_("Can't read pathname for load map: %s."),
1392 safe_strerror (errcode));
1393 continue;
1394 }
1395
1396 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1397 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1398 strcpy (newobj->so_original_name, newobj->so_name);
1399 xfree (buffer);
1400
1401 /* If this entry has no name, or its name matches the name
1402 for the main executable, don't include it in the list. */
1403 if (! newobj->so_name[0] || match_main (newobj->so_name))
1404 continue;
1405
1406 newobj->next = 0;
1407 /* Don't free it now. */
1408 **link_ptr_ptr = newobj.release ();
1409 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1410 }
1411
1412 return 1;
1413 }
1414
1415 /* Read the full list of currently loaded shared objects directly
1416 from the inferior, without referring to any libraries read and
1417 stored by the probes interface. Handle special cases relating
1418 to the first elements of the list. */
1419
1420 static struct so_list *
1421 svr4_current_sos_direct (struct svr4_info *info)
1422 {
1423 CORE_ADDR lm;
1424 struct so_list *head = NULL;
1425 struct so_list **link_ptr = &head;
1426 struct cleanup *back_to;
1427 int ignore_first;
1428 struct svr4_library_list library_list;
1429
1430 /* Fall back to manual examination of the target if the packet is not
1431 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1432 tests a case where gdbserver cannot find the shared libraries list while
1433 GDB itself is able to find it via SYMFILE_OBJFILE.
1434
1435 Unfortunately statically linked inferiors will also fall back through this
1436 suboptimal code path. */
1437
1438 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1439 NULL);
1440 if (info->using_xfer)
1441 {
1442 if (library_list.main_lm)
1443 info->main_lm_addr = library_list.main_lm;
1444
1445 return library_list.head ? library_list.head : svr4_default_sos ();
1446 }
1447
1448 /* Always locate the debug struct, in case it has moved. */
1449 info->debug_base = 0;
1450 locate_base (info);
1451
1452 /* If we can't find the dynamic linker's base structure, this
1453 must not be a dynamically linked executable. Hmm. */
1454 if (! info->debug_base)
1455 return svr4_default_sos ();
1456
1457 /* Assume that everything is a library if the dynamic loader was loaded
1458 late by a static executable. */
1459 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1460 ignore_first = 0;
1461 else
1462 ignore_first = 1;
1463
1464 back_to = make_cleanup (svr4_free_library_list, &head);
1465
1466 /* Walk the inferior's link map list, and build our list of
1467 `struct so_list' nodes. */
1468 lm = solib_svr4_r_map (info);
1469 if (lm)
1470 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
1471
1472 /* On Solaris, the dynamic linker is not in the normal list of
1473 shared objects, so make sure we pick it up too. Having
1474 symbol information for the dynamic linker is quite crucial
1475 for skipping dynamic linker resolver code. */
1476 lm = solib_svr4_r_ldsomap (info);
1477 if (lm)
1478 svr4_read_so_list (lm, 0, &link_ptr, 0);
1479
1480 discard_cleanups (back_to);
1481
1482 if (head == NULL)
1483 return svr4_default_sos ();
1484
1485 return head;
1486 }
1487
1488 /* Implement the main part of the "current_sos" target_so_ops
1489 method. */
1490
1491 static struct so_list *
1492 svr4_current_sos_1 (void)
1493 {
1494 struct svr4_info *info = get_svr4_info ();
1495
1496 /* If the solib list has been read and stored by the probes
1497 interface then we return a copy of the stored list. */
1498 if (info->solib_list != NULL)
1499 return svr4_copy_library_list (info->solib_list);
1500
1501 /* Otherwise obtain the solib list directly from the inferior. */
1502 return svr4_current_sos_direct (info);
1503 }
1504
1505 /* Implement the "current_sos" target_so_ops method. */
1506
1507 static struct so_list *
1508 svr4_current_sos (void)
1509 {
1510 struct so_list *so_head = svr4_current_sos_1 ();
1511 struct mem_range vsyscall_range;
1512
1513 /* Filter out the vDSO module, if present. Its symbol file would
1514 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1515 managed by symfile-mem.c:add_vsyscall_page. */
1516 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1517 && vsyscall_range.length != 0)
1518 {
1519 struct so_list **sop;
1520
1521 sop = &so_head;
1522 while (*sop != NULL)
1523 {
1524 struct so_list *so = *sop;
1525
1526 /* We can't simply match the vDSO by starting address alone,
1527 because lm_info->l_addr_inferior (and also l_addr) do not
1528 necessarily represent the real starting address of the
1529 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1530 field (the ".dynamic" section of the shared object)
1531 always points at the absolute/resolved address though.
1532 So check whether that address is inside the vDSO's
1533 mapping instead.
1534
1535 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1536 0-based ELF, and we see:
1537
1538 (gdb) info auxv
1539 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1540 (gdb) p/x *_r_debug.r_map.l_next
1541 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1542
1543 And on Linux 2.6.32 (x86_64) we see:
1544
1545 (gdb) info auxv
1546 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1547 (gdb) p/x *_r_debug.r_map.l_next
1548 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1549
1550 Dumping that vDSO shows:
1551
1552 (gdb) info proc mappings
1553 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1554 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1555 # readelf -Wa vdso.bin
1556 [...]
1557 Entry point address: 0xffffffffff700700
1558 [...]
1559 Section Headers:
1560 [Nr] Name Type Address Off Size
1561 [ 0] NULL 0000000000000000 000000 000000
1562 [ 1] .hash HASH ffffffffff700120 000120 000038
1563 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1564 [...]
1565 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1566 */
1567
1568 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1569
1570 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1571 {
1572 *sop = so->next;
1573 free_so (so);
1574 break;
1575 }
1576
1577 sop = &so->next;
1578 }
1579 }
1580
1581 return so_head;
1582 }
1583
1584 /* Get the address of the link_map for a given OBJFILE. */
1585
1586 CORE_ADDR
1587 svr4_fetch_objfile_link_map (struct objfile *objfile)
1588 {
1589 struct so_list *so;
1590 struct svr4_info *info = get_svr4_info ();
1591
1592 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1593 if (info->main_lm_addr == 0)
1594 solib_add (NULL, 0, auto_solib_add);
1595
1596 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1597 if (objfile == symfile_objfile)
1598 return info->main_lm_addr;
1599
1600 /* The other link map addresses may be found by examining the list
1601 of shared libraries. */
1602 for (so = master_so_list (); so; so = so->next)
1603 if (so->objfile == objfile)
1604 {
1605 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1606
1607 return li->lm_addr;
1608 }
1609
1610 /* Not found! */
1611 return 0;
1612 }
1613
1614 /* On some systems, the only way to recognize the link map entry for
1615 the main executable file is by looking at its name. Return
1616 non-zero iff SONAME matches one of the known main executable names. */
1617
1618 static int
1619 match_main (const char *soname)
1620 {
1621 const char * const *mainp;
1622
1623 for (mainp = main_name_list; *mainp != NULL; mainp++)
1624 {
1625 if (strcmp (soname, *mainp) == 0)
1626 return (1);
1627 }
1628
1629 return (0);
1630 }
1631
1632 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1633 SVR4 run time loader. */
1634
1635 int
1636 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1637 {
1638 struct svr4_info *info = get_svr4_info ();
1639
1640 return ((pc >= info->interp_text_sect_low
1641 && pc < info->interp_text_sect_high)
1642 || (pc >= info->interp_plt_sect_low
1643 && pc < info->interp_plt_sect_high)
1644 || in_plt_section (pc)
1645 || in_gnu_ifunc_stub (pc));
1646 }
1647
1648 /* Given an executable's ABFD and target, compute the entry-point
1649 address. */
1650
1651 static CORE_ADDR
1652 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1653 {
1654 CORE_ADDR addr;
1655
1656 /* KevinB wrote ... for most targets, the address returned by
1657 bfd_get_start_address() is the entry point for the start
1658 function. But, for some targets, bfd_get_start_address() returns
1659 the address of a function descriptor from which the entry point
1660 address may be extracted. This address is extracted by
1661 gdbarch_convert_from_func_ptr_addr(). The method
1662 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1663 function for targets which don't use function descriptors. */
1664 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1665 bfd_get_start_address (abfd),
1666 targ);
1667 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1668 }
1669
1670 /* A probe and its associated action. */
1671
1672 struct probe_and_action
1673 {
1674 /* The probe. */
1675 struct probe *probe;
1676
1677 /* The relocated address of the probe. */
1678 CORE_ADDR address;
1679
1680 /* The action. */
1681 enum probe_action action;
1682 };
1683
1684 /* Returns a hash code for the probe_and_action referenced by p. */
1685
1686 static hashval_t
1687 hash_probe_and_action (const void *p)
1688 {
1689 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1690
1691 return (hashval_t) pa->address;
1692 }
1693
1694 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1695 are equal. */
1696
1697 static int
1698 equal_probe_and_action (const void *p1, const void *p2)
1699 {
1700 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1701 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1702
1703 return pa1->address == pa2->address;
1704 }
1705
1706 /* Register a solib event probe and its associated action in the
1707 probes table. */
1708
1709 static void
1710 register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1711 enum probe_action action)
1712 {
1713 struct svr4_info *info = get_svr4_info ();
1714 struct probe_and_action lookup, *pa;
1715 void **slot;
1716
1717 /* Create the probes table, if necessary. */
1718 if (info->probes_table == NULL)
1719 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1720 equal_probe_and_action,
1721 xfree, xcalloc, xfree);
1722
1723 lookup.probe = probe;
1724 lookup.address = address;
1725 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1726 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1727
1728 pa = XCNEW (struct probe_and_action);
1729 pa->probe = probe;
1730 pa->address = address;
1731 pa->action = action;
1732
1733 *slot = pa;
1734 }
1735
1736 /* Get the solib event probe at the specified location, and the
1737 action associated with it. Returns NULL if no solib event probe
1738 was found. */
1739
1740 static struct probe_and_action *
1741 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1742 {
1743 struct probe_and_action lookup;
1744 void **slot;
1745
1746 lookup.address = address;
1747 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1748
1749 if (slot == NULL)
1750 return NULL;
1751
1752 return (struct probe_and_action *) *slot;
1753 }
1754
1755 /* Decide what action to take when the specified solib event probe is
1756 hit. */
1757
1758 static enum probe_action
1759 solib_event_probe_action (struct probe_and_action *pa)
1760 {
1761 enum probe_action action;
1762 unsigned probe_argc = 0;
1763 struct frame_info *frame = get_current_frame ();
1764
1765 action = pa->action;
1766 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1767 return action;
1768
1769 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1770
1771 /* Check that an appropriate number of arguments has been supplied.
1772 We expect:
1773 arg0: Lmid_t lmid (mandatory)
1774 arg1: struct r_debug *debug_base (mandatory)
1775 arg2: struct link_map *new (optional, for incremental updates) */
1776 TRY
1777 {
1778 probe_argc = get_probe_argument_count (pa->probe, frame);
1779 }
1780 CATCH (ex, RETURN_MASK_ERROR)
1781 {
1782 exception_print (gdb_stderr, ex);
1783 probe_argc = 0;
1784 }
1785 END_CATCH
1786
1787 /* If get_probe_argument_count throws an exception, probe_argc will
1788 be set to zero. However, if pa->probe does not have arguments,
1789 then get_probe_argument_count will succeed but probe_argc will
1790 also be zero. Both cases happen because of different things, but
1791 they are treated equally here: action will be set to
1792 PROBES_INTERFACE_FAILED. */
1793 if (probe_argc == 2)
1794 action = FULL_RELOAD;
1795 else if (probe_argc < 2)
1796 action = PROBES_INTERFACE_FAILED;
1797
1798 return action;
1799 }
1800
1801 /* Populate the shared object list by reading the entire list of
1802 shared objects from the inferior. Handle special cases relating
1803 to the first elements of the list. Returns nonzero on success. */
1804
1805 static int
1806 solist_update_full (struct svr4_info *info)
1807 {
1808 free_solib_list (info);
1809 info->solib_list = svr4_current_sos_direct (info);
1810
1811 return 1;
1812 }
1813
1814 /* Update the shared object list starting from the link-map entry
1815 passed by the linker in the probe's third argument. Returns
1816 nonzero if the list was successfully updated, or zero to indicate
1817 failure. */
1818
1819 static int
1820 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1821 {
1822 struct so_list *tail;
1823 CORE_ADDR prev_lm;
1824
1825 /* svr4_current_sos_direct contains logic to handle a number of
1826 special cases relating to the first elements of the list. To
1827 avoid duplicating this logic we defer to solist_update_full
1828 if the list is empty. */
1829 if (info->solib_list == NULL)
1830 return 0;
1831
1832 /* Fall back to a full update if we are using a remote target
1833 that does not support incremental transfers. */
1834 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1835 return 0;
1836
1837 /* Walk to the end of the list. */
1838 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1839 /* Nothing. */;
1840
1841 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1842 prev_lm = li->lm_addr;
1843
1844 /* Read the new objects. */
1845 if (info->using_xfer)
1846 {
1847 struct svr4_library_list library_list;
1848 char annex[64];
1849
1850 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1851 phex_nz (lm, sizeof (lm)),
1852 phex_nz (prev_lm, sizeof (prev_lm)));
1853 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1854 return 0;
1855
1856 tail->next = library_list.head;
1857 }
1858 else
1859 {
1860 struct so_list **link = &tail->next;
1861
1862 /* IGNORE_FIRST may safely be set to zero here because the
1863 above check and deferral to solist_update_full ensures
1864 that this call to svr4_read_so_list will never see the
1865 first element. */
1866 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1867 return 0;
1868 }
1869
1870 return 1;
1871 }
1872
1873 /* Disable the probes-based linker interface and revert to the
1874 original interface. We don't reset the breakpoints as the
1875 ones set up for the probes-based interface are adequate. */
1876
1877 static void
1878 disable_probes_interface_cleanup (void *arg)
1879 {
1880 struct svr4_info *info = get_svr4_info ();
1881
1882 warning (_("Probes-based dynamic linker interface failed.\n"
1883 "Reverting to original interface.\n"));
1884
1885 free_probes_table (info);
1886 free_solib_list (info);
1887 }
1888
1889 /* Update the solib list as appropriate when using the
1890 probes-based linker interface. Do nothing if using the
1891 standard interface. */
1892
1893 static void
1894 svr4_handle_solib_event (void)
1895 {
1896 struct svr4_info *info = get_svr4_info ();
1897 struct probe_and_action *pa;
1898 enum probe_action action;
1899 struct cleanup *old_chain, *usm_chain;
1900 struct value *val = NULL;
1901 CORE_ADDR pc, debug_base, lm = 0;
1902 struct frame_info *frame = get_current_frame ();
1903
1904 /* Do nothing if not using the probes interface. */
1905 if (info->probes_table == NULL)
1906 return;
1907
1908 /* If anything goes wrong we revert to the original linker
1909 interface. */
1910 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1911
1912 pc = regcache_read_pc (get_current_regcache ());
1913 pa = solib_event_probe_at (info, pc);
1914 if (pa == NULL)
1915 {
1916 do_cleanups (old_chain);
1917 return;
1918 }
1919
1920 action = solib_event_probe_action (pa);
1921 if (action == PROBES_INTERFACE_FAILED)
1922 {
1923 do_cleanups (old_chain);
1924 return;
1925 }
1926
1927 if (action == DO_NOTHING)
1928 {
1929 discard_cleanups (old_chain);
1930 return;
1931 }
1932
1933 /* evaluate_probe_argument looks up symbols in the dynamic linker
1934 using find_pc_section. find_pc_section is accelerated by a cache
1935 called the section map. The section map is invalidated every
1936 time a shared library is loaded or unloaded, and if the inferior
1937 is generating a lot of shared library events then the section map
1938 will be updated every time svr4_handle_solib_event is called.
1939 We called find_pc_section in svr4_create_solib_event_breakpoints,
1940 so we can guarantee that the dynamic linker's sections are in the
1941 section map. We can therefore inhibit section map updates across
1942 these calls to evaluate_probe_argument and save a lot of time. */
1943 inhibit_section_map_updates (current_program_space);
1944 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1945 current_program_space);
1946
1947 TRY
1948 {
1949 val = evaluate_probe_argument (pa->probe, 1, frame);
1950 }
1951 CATCH (ex, RETURN_MASK_ERROR)
1952 {
1953 exception_print (gdb_stderr, ex);
1954 val = NULL;
1955 }
1956 END_CATCH
1957
1958 if (val == NULL)
1959 {
1960 do_cleanups (old_chain);
1961 return;
1962 }
1963
1964 debug_base = value_as_address (val);
1965 if (debug_base == 0)
1966 {
1967 do_cleanups (old_chain);
1968 return;
1969 }
1970
1971 /* Always locate the debug struct, in case it moved. */
1972 info->debug_base = 0;
1973 if (locate_base (info) == 0)
1974 {
1975 do_cleanups (old_chain);
1976 return;
1977 }
1978
1979 /* GDB does not currently support libraries loaded via dlmopen
1980 into namespaces other than the initial one. We must ignore
1981 any namespace other than the initial namespace here until
1982 support for this is added to GDB. */
1983 if (debug_base != info->debug_base)
1984 action = DO_NOTHING;
1985
1986 if (action == UPDATE_OR_RELOAD)
1987 {
1988 TRY
1989 {
1990 val = evaluate_probe_argument (pa->probe, 2, frame);
1991 }
1992 CATCH (ex, RETURN_MASK_ERROR)
1993 {
1994 exception_print (gdb_stderr, ex);
1995 do_cleanups (old_chain);
1996 return;
1997 }
1998 END_CATCH
1999
2000 if (val != NULL)
2001 lm = value_as_address (val);
2002
2003 if (lm == 0)
2004 action = FULL_RELOAD;
2005 }
2006
2007 /* Resume section map updates. */
2008 do_cleanups (usm_chain);
2009
2010 if (action == UPDATE_OR_RELOAD)
2011 {
2012 if (!solist_update_incremental (info, lm))
2013 action = FULL_RELOAD;
2014 }
2015
2016 if (action == FULL_RELOAD)
2017 {
2018 if (!solist_update_full (info))
2019 {
2020 do_cleanups (old_chain);
2021 return;
2022 }
2023 }
2024
2025 discard_cleanups (old_chain);
2026 }
2027
2028 /* Helper function for svr4_update_solib_event_breakpoints. */
2029
2030 static int
2031 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2032 {
2033 struct bp_location *loc;
2034
2035 if (b->type != bp_shlib_event)
2036 {
2037 /* Continue iterating. */
2038 return 0;
2039 }
2040
2041 for (loc = b->loc; loc != NULL; loc = loc->next)
2042 {
2043 struct svr4_info *info;
2044 struct probe_and_action *pa;
2045
2046 info = ((struct svr4_info *)
2047 program_space_data (loc->pspace, solib_svr4_pspace_data));
2048 if (info == NULL || info->probes_table == NULL)
2049 continue;
2050
2051 pa = solib_event_probe_at (info, loc->address);
2052 if (pa == NULL)
2053 continue;
2054
2055 if (pa->action == DO_NOTHING)
2056 {
2057 if (b->enable_state == bp_disabled && stop_on_solib_events)
2058 enable_breakpoint (b);
2059 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2060 disable_breakpoint (b);
2061 }
2062
2063 break;
2064 }
2065
2066 /* Continue iterating. */
2067 return 0;
2068 }
2069
2070 /* Enable or disable optional solib event breakpoints as appropriate.
2071 Called whenever stop_on_solib_events is changed. */
2072
2073 static void
2074 svr4_update_solib_event_breakpoints (void)
2075 {
2076 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2077 }
2078
2079 /* Create and register solib event breakpoints. PROBES is an array
2080 of NUM_PROBES elements, each of which is vector of probes. A
2081 solib event breakpoint will be created and registered for each
2082 probe. */
2083
2084 static void
2085 svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
2086 VEC (probe_p) **probes,
2087 struct objfile *objfile)
2088 {
2089 int i;
2090
2091 for (i = 0; i < NUM_PROBES; i++)
2092 {
2093 enum probe_action action = probe_info[i].action;
2094 struct probe *probe;
2095 int ix;
2096
2097 for (ix = 0;
2098 VEC_iterate (probe_p, probes[i], ix, probe);
2099 ++ix)
2100 {
2101 CORE_ADDR address = get_probe_address (probe, objfile);
2102
2103 create_solib_event_breakpoint (gdbarch, address);
2104 register_solib_event_probe (probe, address, action);
2105 }
2106 }
2107
2108 svr4_update_solib_event_breakpoints ();
2109 }
2110
2111 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2112 before and after mapping and unmapping shared libraries. The sole
2113 purpose of this method is to allow debuggers to set a breakpoint so
2114 they can track these changes.
2115
2116 Some versions of the glibc dynamic linker contain named probes
2117 to allow more fine grained stopping. Given the address of the
2118 original marker function, this function attempts to find these
2119 probes, and if found, sets breakpoints on those instead. If the
2120 probes aren't found, a single breakpoint is set on the original
2121 marker function. */
2122
2123 static void
2124 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2125 CORE_ADDR address)
2126 {
2127 struct obj_section *os;
2128
2129 os = find_pc_section (address);
2130 if (os != NULL)
2131 {
2132 int with_prefix;
2133
2134 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2135 {
2136 VEC (probe_p) *probes[NUM_PROBES];
2137 int all_probes_found = 1;
2138 int checked_can_use_probe_arguments = 0;
2139 int i;
2140
2141 memset (probes, 0, sizeof (probes));
2142 for (i = 0; i < NUM_PROBES; i++)
2143 {
2144 const char *name = probe_info[i].name;
2145 struct probe *p;
2146 char buf[32];
2147
2148 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2149 shipped with an early version of the probes code in
2150 which the probes' names were prefixed with "rtld_"
2151 and the "map_failed" probe did not exist. The
2152 locations of the probes are otherwise the same, so
2153 we check for probes with prefixed names if probes
2154 with unprefixed names are not present. */
2155 if (with_prefix)
2156 {
2157 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2158 name = buf;
2159 }
2160
2161 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2162
2163 /* The "map_failed" probe did not exist in early
2164 versions of the probes code in which the probes'
2165 names were prefixed with "rtld_". */
2166 if (strcmp (name, "rtld_map_failed") == 0)
2167 continue;
2168
2169 if (VEC_empty (probe_p, probes[i]))
2170 {
2171 all_probes_found = 0;
2172 break;
2173 }
2174
2175 /* Ensure probe arguments can be evaluated. */
2176 if (!checked_can_use_probe_arguments)
2177 {
2178 p = VEC_index (probe_p, probes[i], 0);
2179 if (!can_evaluate_probe_arguments (p))
2180 {
2181 all_probes_found = 0;
2182 break;
2183 }
2184 checked_can_use_probe_arguments = 1;
2185 }
2186 }
2187
2188 if (all_probes_found)
2189 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
2190
2191 for (i = 0; i < NUM_PROBES; i++)
2192 VEC_free (probe_p, probes[i]);
2193
2194 if (all_probes_found)
2195 return;
2196 }
2197 }
2198
2199 create_solib_event_breakpoint (gdbarch, address);
2200 }
2201
2202 /* Helper function for gdb_bfd_lookup_symbol. */
2203
2204 static int
2205 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2206 {
2207 return (strcmp (sym->name, (const char *) data) == 0
2208 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2209 }
2210 /* Arrange for dynamic linker to hit breakpoint.
2211
2212 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2213 debugger interface, support for arranging for the inferior to hit
2214 a breakpoint after mapping in the shared libraries. This function
2215 enables that breakpoint.
2216
2217 For SunOS, there is a special flag location (in_debugger) which we
2218 set to 1. When the dynamic linker sees this flag set, it will set
2219 a breakpoint at a location known only to itself, after saving the
2220 original contents of that place and the breakpoint address itself,
2221 in it's own internal structures. When we resume the inferior, it
2222 will eventually take a SIGTRAP when it runs into the breakpoint.
2223 We handle this (in a different place) by restoring the contents of
2224 the breakpointed location (which is only known after it stops),
2225 chasing around to locate the shared libraries that have been
2226 loaded, then resuming.
2227
2228 For SVR4, the debugger interface structure contains a member (r_brk)
2229 which is statically initialized at the time the shared library is
2230 built, to the offset of a function (_r_debug_state) which is guaran-
2231 teed to be called once before mapping in a library, and again when
2232 the mapping is complete. At the time we are examining this member,
2233 it contains only the unrelocated offset of the function, so we have
2234 to do our own relocation. Later, when the dynamic linker actually
2235 runs, it relocates r_brk to be the actual address of _r_debug_state().
2236
2237 The debugger interface structure also contains an enumeration which
2238 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2239 depending upon whether or not the library is being mapped or unmapped,
2240 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2241
2242 static int
2243 enable_break (struct svr4_info *info, int from_tty)
2244 {
2245 struct bound_minimal_symbol msymbol;
2246 const char * const *bkpt_namep;
2247 asection *interp_sect;
2248 char *interp_name;
2249 CORE_ADDR sym_addr;
2250
2251 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2252 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2253
2254 /* If we already have a shared library list in the target, and
2255 r_debug contains r_brk, set the breakpoint there - this should
2256 mean r_brk has already been relocated. Assume the dynamic linker
2257 is the object containing r_brk. */
2258
2259 solib_add (NULL, from_tty, auto_solib_add);
2260 sym_addr = 0;
2261 if (info->debug_base && solib_svr4_r_map (info) != 0)
2262 sym_addr = solib_svr4_r_brk (info);
2263
2264 if (sym_addr != 0)
2265 {
2266 struct obj_section *os;
2267
2268 sym_addr = gdbarch_addr_bits_remove
2269 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2270 sym_addr,
2271 &current_target));
2272
2273 /* On at least some versions of Solaris there's a dynamic relocation
2274 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2275 we get control before the dynamic linker has self-relocated.
2276 Check if SYM_ADDR is in a known section, if it is assume we can
2277 trust its value. This is just a heuristic though, it could go away
2278 or be replaced if it's getting in the way.
2279
2280 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2281 however it's spelled in your particular system) is ARM or Thumb.
2282 That knowledge is encoded in the address, if it's Thumb the low bit
2283 is 1. However, we've stripped that info above and it's not clear
2284 what all the consequences are of passing a non-addr_bits_remove'd
2285 address to svr4_create_solib_event_breakpoints. The call to
2286 find_pc_section verifies we know about the address and have some
2287 hope of computing the right kind of breakpoint to use (via
2288 symbol info). It does mean that GDB needs to be pointed at a
2289 non-stripped version of the dynamic linker in order to obtain
2290 information it already knows about. Sigh. */
2291
2292 os = find_pc_section (sym_addr);
2293 if (os != NULL)
2294 {
2295 /* Record the relocated start and end address of the dynamic linker
2296 text and plt section for svr4_in_dynsym_resolve_code. */
2297 bfd *tmp_bfd;
2298 CORE_ADDR load_addr;
2299
2300 tmp_bfd = os->objfile->obfd;
2301 load_addr = ANOFFSET (os->objfile->section_offsets,
2302 SECT_OFF_TEXT (os->objfile));
2303
2304 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2305 if (interp_sect)
2306 {
2307 info->interp_text_sect_low =
2308 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2309 info->interp_text_sect_high =
2310 info->interp_text_sect_low
2311 + bfd_section_size (tmp_bfd, interp_sect);
2312 }
2313 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2314 if (interp_sect)
2315 {
2316 info->interp_plt_sect_low =
2317 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
2318 info->interp_plt_sect_high =
2319 info->interp_plt_sect_low
2320 + bfd_section_size (tmp_bfd, interp_sect);
2321 }
2322
2323 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2324 return 1;
2325 }
2326 }
2327
2328 /* Find the program interpreter; if not found, warn the user and drop
2329 into the old breakpoint at symbol code. */
2330 interp_name = find_program_interpreter ();
2331 if (interp_name)
2332 {
2333 CORE_ADDR load_addr = 0;
2334 int load_addr_found = 0;
2335 int loader_found_in_list = 0;
2336 struct so_list *so;
2337 struct target_ops *tmp_bfd_target;
2338
2339 sym_addr = 0;
2340
2341 /* Now we need to figure out where the dynamic linker was
2342 loaded so that we can load its symbols and place a breakpoint
2343 in the dynamic linker itself.
2344
2345 This address is stored on the stack. However, I've been unable
2346 to find any magic formula to find it for Solaris (appears to
2347 be trivial on GNU/Linux). Therefore, we have to try an alternate
2348 mechanism to find the dynamic linker's base address. */
2349
2350 gdb_bfd_ref_ptr tmp_bfd;
2351 TRY
2352 {
2353 tmp_bfd = solib_bfd_open (interp_name);
2354 }
2355 CATCH (ex, RETURN_MASK_ALL)
2356 {
2357 }
2358 END_CATCH
2359
2360 if (tmp_bfd == NULL)
2361 goto bkpt_at_symbol;
2362
2363 /* Now convert the TMP_BFD into a target. That way target, as
2364 well as BFD operations can be used. target_bfd_reopen
2365 acquires its own reference. */
2366 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2367
2368 /* On a running target, we can get the dynamic linker's base
2369 address from the shared library table. */
2370 so = master_so_list ();
2371 while (so)
2372 {
2373 if (svr4_same_1 (interp_name, so->so_original_name))
2374 {
2375 load_addr_found = 1;
2376 loader_found_in_list = 1;
2377 load_addr = lm_addr_check (so, tmp_bfd.get ());
2378 break;
2379 }
2380 so = so->next;
2381 }
2382
2383 /* If we were not able to find the base address of the loader
2384 from our so_list, then try using the AT_BASE auxilliary entry. */
2385 if (!load_addr_found)
2386 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
2387 {
2388 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2389
2390 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2391 that `+ load_addr' will overflow CORE_ADDR width not creating
2392 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2393 GDB. */
2394
2395 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2396 {
2397 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2398 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2399 tmp_bfd_target);
2400
2401 gdb_assert (load_addr < space_size);
2402
2403 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2404 64bit ld.so with 32bit executable, it should not happen. */
2405
2406 if (tmp_entry_point < space_size
2407 && tmp_entry_point + load_addr >= space_size)
2408 load_addr -= space_size;
2409 }
2410
2411 load_addr_found = 1;
2412 }
2413
2414 /* Otherwise we find the dynamic linker's base address by examining
2415 the current pc (which should point at the entry point for the
2416 dynamic linker) and subtracting the offset of the entry point.
2417
2418 This is more fragile than the previous approaches, but is a good
2419 fallback method because it has actually been working well in
2420 most cases. */
2421 if (!load_addr_found)
2422 {
2423 struct regcache *regcache
2424 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
2425
2426 load_addr = (regcache_read_pc (regcache)
2427 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2428 }
2429
2430 if (!loader_found_in_list)
2431 {
2432 info->debug_loader_name = xstrdup (interp_name);
2433 info->debug_loader_offset_p = 1;
2434 info->debug_loader_offset = load_addr;
2435 solib_add (NULL, from_tty, auto_solib_add);
2436 }
2437
2438 /* Record the relocated start and end address of the dynamic linker
2439 text and plt section for svr4_in_dynsym_resolve_code. */
2440 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2441 if (interp_sect)
2442 {
2443 info->interp_text_sect_low =
2444 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2445 info->interp_text_sect_high =
2446 info->interp_text_sect_low
2447 + bfd_section_size (tmp_bfd.get (), interp_sect);
2448 }
2449 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2450 if (interp_sect)
2451 {
2452 info->interp_plt_sect_low =
2453 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
2454 info->interp_plt_sect_high =
2455 info->interp_plt_sect_low
2456 + bfd_section_size (tmp_bfd.get (), interp_sect);
2457 }
2458
2459 /* Now try to set a breakpoint in the dynamic linker. */
2460 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2461 {
2462 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2463 cmp_name_and_sec_flags,
2464 *bkpt_namep);
2465 if (sym_addr != 0)
2466 break;
2467 }
2468
2469 if (sym_addr != 0)
2470 /* Convert 'sym_addr' from a function pointer to an address.
2471 Because we pass tmp_bfd_target instead of the current
2472 target, this will always produce an unrelocated value. */
2473 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2474 sym_addr,
2475 tmp_bfd_target);
2476
2477 /* We're done with both the temporary bfd and target. Closing
2478 the target closes the underlying bfd, because it holds the
2479 only remaining reference. */
2480 target_close (tmp_bfd_target);
2481
2482 if (sym_addr != 0)
2483 {
2484 svr4_create_solib_event_breakpoints (target_gdbarch (),
2485 load_addr + sym_addr);
2486 xfree (interp_name);
2487 return 1;
2488 }
2489
2490 /* For whatever reason we couldn't set a breakpoint in the dynamic
2491 linker. Warn and drop into the old code. */
2492 bkpt_at_symbol:
2493 xfree (interp_name);
2494 warning (_("Unable to find dynamic linker breakpoint function.\n"
2495 "GDB will be unable to debug shared library initializers\n"
2496 "and track explicitly loaded dynamic code."));
2497 }
2498
2499 /* Scan through the lists of symbols, trying to look up the symbol and
2500 set a breakpoint there. Terminate loop when we/if we succeed. */
2501
2502 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2503 {
2504 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2505 if ((msymbol.minsym != NULL)
2506 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2507 {
2508 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2509 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2510 sym_addr,
2511 &current_target);
2512 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2513 return 1;
2514 }
2515 }
2516
2517 if (interp_name != NULL && !current_inferior ()->attach_flag)
2518 {
2519 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2520 {
2521 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
2522 if ((msymbol.minsym != NULL)
2523 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2524 {
2525 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2526 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2527 sym_addr,
2528 &current_target);
2529 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
2530 return 1;
2531 }
2532 }
2533 }
2534 return 0;
2535 }
2536
2537 /* Read the ELF program headers from ABFD. Return the contents and
2538 set *PHDRS_SIZE to the size of the program headers. */
2539
2540 static gdb_byte *
2541 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
2542 {
2543 Elf_Internal_Ehdr *ehdr;
2544 gdb_byte *buf;
2545
2546 ehdr = elf_elfheader (abfd);
2547
2548 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2549 if (*phdrs_size == 0)
2550 return NULL;
2551
2552 buf = (gdb_byte *) xmalloc (*phdrs_size);
2553 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2554 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2555 {
2556 xfree (buf);
2557 return NULL;
2558 }
2559
2560 return buf;
2561 }
2562
2563 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2564 exec_bfd. Otherwise return 0.
2565
2566 We relocate all of the sections by the same amount. This
2567 behavior is mandated by recent editions of the System V ABI.
2568 According to the System V Application Binary Interface,
2569 Edition 4.1, page 5-5:
2570
2571 ... Though the system chooses virtual addresses for
2572 individual processes, it maintains the segments' relative
2573 positions. Because position-independent code uses relative
2574 addressesing between segments, the difference between
2575 virtual addresses in memory must match the difference
2576 between virtual addresses in the file. The difference
2577 between the virtual address of any segment in memory and
2578 the corresponding virtual address in the file is thus a
2579 single constant value for any one executable or shared
2580 object in a given process. This difference is the base
2581 address. One use of the base address is to relocate the
2582 memory image of the program during dynamic linking.
2583
2584 The same language also appears in Edition 4.0 of the System V
2585 ABI and is left unspecified in some of the earlier editions.
2586
2587 Decide if the objfile needs to be relocated. As indicated above, we will
2588 only be here when execution is stopped. But during attachment PC can be at
2589 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2590 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2591 regcache_read_pc would point to the interpreter and not the main executable.
2592
2593 So, to summarize, relocations are necessary when the start address obtained
2594 from the executable is different from the address in auxv AT_ENTRY entry.
2595
2596 [ The astute reader will note that we also test to make sure that
2597 the executable in question has the DYNAMIC flag set. It is my
2598 opinion that this test is unnecessary (undesirable even). It
2599 was added to avoid inadvertent relocation of an executable
2600 whose e_type member in the ELF header is not ET_DYN. There may
2601 be a time in the future when it is desirable to do relocations
2602 on other types of files as well in which case this condition
2603 should either be removed or modified to accomodate the new file
2604 type. - Kevin, Nov 2000. ] */
2605
2606 static int
2607 svr4_exec_displacement (CORE_ADDR *displacementp)
2608 {
2609 /* ENTRY_POINT is a possible function descriptor - before
2610 a call to gdbarch_convert_from_func_ptr_addr. */
2611 CORE_ADDR entry_point, exec_displacement;
2612
2613 if (exec_bfd == NULL)
2614 return 0;
2615
2616 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2617 being executed themselves and PIE (Position Independent Executable)
2618 executables are ET_DYN. */
2619
2620 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2621 return 0;
2622
2623 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2624 return 0;
2625
2626 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
2627
2628 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2629 alignment. It is cheaper than the program headers comparison below. */
2630
2631 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2632 {
2633 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2634
2635 /* p_align of PT_LOAD segments does not specify any alignment but
2636 only congruency of addresses:
2637 p_offset % p_align == p_vaddr % p_align
2638 Kernel is free to load the executable with lower alignment. */
2639
2640 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2641 return 0;
2642 }
2643
2644 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2645 comparing their program headers. If the program headers in the auxilliary
2646 vector do not match the program headers in the executable, then we are
2647 looking at a different file than the one used by the kernel - for
2648 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2649
2650 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2651 {
2652 /* Be optimistic and clear OK only if GDB was able to verify the headers
2653 really do not match. */
2654 int phdrs_size, phdrs2_size, ok = 1;
2655 gdb_byte *buf, *buf2;
2656 int arch_size;
2657
2658 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
2659 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
2660 if (buf != NULL && buf2 != NULL)
2661 {
2662 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2663
2664 /* We are dealing with three different addresses. EXEC_BFD
2665 represents current address in on-disk file. target memory content
2666 may be different from EXEC_BFD as the file may have been prelinked
2667 to a different address after the executable has been loaded.
2668 Moreover the address of placement in target memory can be
2669 different from what the program headers in target memory say -
2670 this is the goal of PIE.
2671
2672 Detected DISPLACEMENT covers both the offsets of PIE placement and
2673 possible new prelink performed after start of the program. Here
2674 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2675 content offset for the verification purpose. */
2676
2677 if (phdrs_size != phdrs2_size
2678 || bfd_get_arch_size (exec_bfd) != arch_size)
2679 ok = 0;
2680 else if (arch_size == 32
2681 && phdrs_size >= sizeof (Elf32_External_Phdr)
2682 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2683 {
2684 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2685 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2686 CORE_ADDR displacement = 0;
2687 int i;
2688
2689 /* DISPLACEMENT could be found more easily by the difference of
2690 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2691 already have enough information to compute that displacement
2692 with what we've read. */
2693
2694 for (i = 0; i < ehdr2->e_phnum; i++)
2695 if (phdr2[i].p_type == PT_LOAD)
2696 {
2697 Elf32_External_Phdr *phdrp;
2698 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2699 CORE_ADDR vaddr, paddr;
2700 CORE_ADDR displacement_vaddr = 0;
2701 CORE_ADDR displacement_paddr = 0;
2702
2703 phdrp = &((Elf32_External_Phdr *) buf)[i];
2704 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2705 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2706
2707 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2708 byte_order);
2709 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2710
2711 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2712 byte_order);
2713 displacement_paddr = paddr - phdr2[i].p_paddr;
2714
2715 if (displacement_vaddr == displacement_paddr)
2716 displacement = displacement_vaddr;
2717
2718 break;
2719 }
2720
2721 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2722
2723 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2724 {
2725 Elf32_External_Phdr *phdrp;
2726 Elf32_External_Phdr *phdr2p;
2727 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2728 CORE_ADDR vaddr, paddr;
2729 asection *plt2_asect;
2730
2731 phdrp = &((Elf32_External_Phdr *) buf)[i];
2732 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2733 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2734 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2735
2736 /* PT_GNU_STACK is an exception by being never relocated by
2737 prelink as its addresses are always zero. */
2738
2739 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2740 continue;
2741
2742 /* Check also other adjustment combinations - PR 11786. */
2743
2744 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2745 byte_order);
2746 vaddr -= displacement;
2747 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2748
2749 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2750 byte_order);
2751 paddr -= displacement;
2752 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2753
2754 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2755 continue;
2756
2757 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2758 CentOS-5 has problems with filesz, memsz as well.
2759 See PR 11786. */
2760 if (phdr2[i].p_type == PT_GNU_RELRO)
2761 {
2762 Elf32_External_Phdr tmp_phdr = *phdrp;
2763 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2764
2765 memset (tmp_phdr.p_filesz, 0, 4);
2766 memset (tmp_phdr.p_memsz, 0, 4);
2767 memset (tmp_phdr.p_flags, 0, 4);
2768 memset (tmp_phdr.p_align, 0, 4);
2769 memset (tmp_phdr2.p_filesz, 0, 4);
2770 memset (tmp_phdr2.p_memsz, 0, 4);
2771 memset (tmp_phdr2.p_flags, 0, 4);
2772 memset (tmp_phdr2.p_align, 0, 4);
2773
2774 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2775 == 0)
2776 continue;
2777 }
2778
2779 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2780 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2781 if (plt2_asect)
2782 {
2783 int content2;
2784 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2785 CORE_ADDR filesz;
2786
2787 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2788 & SEC_HAS_CONTENTS) != 0;
2789
2790 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2791 byte_order);
2792
2793 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2794 FILESZ is from the in-memory image. */
2795 if (content2)
2796 filesz += bfd_get_section_size (plt2_asect);
2797 else
2798 filesz -= bfd_get_section_size (plt2_asect);
2799
2800 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2801 filesz);
2802
2803 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2804 continue;
2805 }
2806
2807 ok = 0;
2808 break;
2809 }
2810 }
2811 else if (arch_size == 64
2812 && phdrs_size >= sizeof (Elf64_External_Phdr)
2813 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2814 {
2815 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2816 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2817 CORE_ADDR displacement = 0;
2818 int i;
2819
2820 /* DISPLACEMENT could be found more easily by the difference of
2821 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2822 already have enough information to compute that displacement
2823 with what we've read. */
2824
2825 for (i = 0; i < ehdr2->e_phnum; i++)
2826 if (phdr2[i].p_type == PT_LOAD)
2827 {
2828 Elf64_External_Phdr *phdrp;
2829 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2830 CORE_ADDR vaddr, paddr;
2831 CORE_ADDR displacement_vaddr = 0;
2832 CORE_ADDR displacement_paddr = 0;
2833
2834 phdrp = &((Elf64_External_Phdr *) buf)[i];
2835 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2836 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2837
2838 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2839 byte_order);
2840 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2841
2842 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2843 byte_order);
2844 displacement_paddr = paddr - phdr2[i].p_paddr;
2845
2846 if (displacement_vaddr == displacement_paddr)
2847 displacement = displacement_vaddr;
2848
2849 break;
2850 }
2851
2852 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2853
2854 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2855 {
2856 Elf64_External_Phdr *phdrp;
2857 Elf64_External_Phdr *phdr2p;
2858 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2859 CORE_ADDR vaddr, paddr;
2860 asection *plt2_asect;
2861
2862 phdrp = &((Elf64_External_Phdr *) buf)[i];
2863 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2864 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2865 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2866
2867 /* PT_GNU_STACK is an exception by being never relocated by
2868 prelink as its addresses are always zero. */
2869
2870 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2871 continue;
2872
2873 /* Check also other adjustment combinations - PR 11786. */
2874
2875 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2876 byte_order);
2877 vaddr -= displacement;
2878 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2879
2880 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2881 byte_order);
2882 paddr -= displacement;
2883 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2884
2885 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2886 continue;
2887
2888 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2889 CentOS-5 has problems with filesz, memsz as well.
2890 See PR 11786. */
2891 if (phdr2[i].p_type == PT_GNU_RELRO)
2892 {
2893 Elf64_External_Phdr tmp_phdr = *phdrp;
2894 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2895
2896 memset (tmp_phdr.p_filesz, 0, 8);
2897 memset (tmp_phdr.p_memsz, 0, 8);
2898 memset (tmp_phdr.p_flags, 0, 4);
2899 memset (tmp_phdr.p_align, 0, 8);
2900 memset (tmp_phdr2.p_filesz, 0, 8);
2901 memset (tmp_phdr2.p_memsz, 0, 8);
2902 memset (tmp_phdr2.p_flags, 0, 4);
2903 memset (tmp_phdr2.p_align, 0, 8);
2904
2905 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2906 == 0)
2907 continue;
2908 }
2909
2910 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2911 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2912 if (plt2_asect)
2913 {
2914 int content2;
2915 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2916 CORE_ADDR filesz;
2917
2918 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2919 & SEC_HAS_CONTENTS) != 0;
2920
2921 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2922 byte_order);
2923
2924 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2925 FILESZ is from the in-memory image. */
2926 if (content2)
2927 filesz += bfd_get_section_size (plt2_asect);
2928 else
2929 filesz -= bfd_get_section_size (plt2_asect);
2930
2931 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2932 filesz);
2933
2934 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2935 continue;
2936 }
2937
2938 ok = 0;
2939 break;
2940 }
2941 }
2942 else
2943 ok = 0;
2944 }
2945
2946 xfree (buf);
2947 xfree (buf2);
2948
2949 if (!ok)
2950 return 0;
2951 }
2952
2953 if (info_verbose)
2954 {
2955 /* It can be printed repeatedly as there is no easy way to check
2956 the executable symbols/file has been already relocated to
2957 displacement. */
2958
2959 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2960 "displacement %s for \"%s\".\n"),
2961 paddress (target_gdbarch (), exec_displacement),
2962 bfd_get_filename (exec_bfd));
2963 }
2964
2965 *displacementp = exec_displacement;
2966 return 1;
2967 }
2968
2969 /* Relocate the main executable. This function should be called upon
2970 stopping the inferior process at the entry point to the program.
2971 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2972 different, the main executable is relocated by the proper amount. */
2973
2974 static void
2975 svr4_relocate_main_executable (void)
2976 {
2977 CORE_ADDR displacement;
2978
2979 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2980 probably contains the offsets computed using the PIE displacement
2981 from the previous run, which of course are irrelevant for this run.
2982 So we need to determine the new PIE displacement and recompute the
2983 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2984 already contains pre-computed offsets.
2985
2986 If we cannot compute the PIE displacement, either:
2987
2988 - The executable is not PIE.
2989
2990 - SYMFILE_OBJFILE does not match the executable started in the target.
2991 This can happen for main executable symbols loaded at the host while
2992 `ld.so --ld-args main-executable' is loaded in the target.
2993
2994 Then we leave the section offsets untouched and use them as is for
2995 this run. Either:
2996
2997 - These section offsets were properly reset earlier, and thus
2998 already contain the correct values. This can happen for instance
2999 when reconnecting via the remote protocol to a target that supports
3000 the `qOffsets' packet.
3001
3002 - The section offsets were not reset earlier, and the best we can
3003 hope is that the old offsets are still applicable to the new run. */
3004
3005 if (! svr4_exec_displacement (&displacement))
3006 return;
3007
3008 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3009 addresses. */
3010
3011 if (symfile_objfile)
3012 {
3013 struct section_offsets *new_offsets;
3014 int i;
3015
3016 new_offsets = XALLOCAVEC (struct section_offsets,
3017 symfile_objfile->num_sections);
3018
3019 for (i = 0; i < symfile_objfile->num_sections; i++)
3020 new_offsets->offsets[i] = displacement;
3021
3022 objfile_relocate (symfile_objfile, new_offsets);
3023 }
3024 else if (exec_bfd)
3025 {
3026 asection *asect;
3027
3028 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3029 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3030 (bfd_section_vma (exec_bfd, asect)
3031 + displacement));
3032 }
3033 }
3034
3035 /* Implement the "create_inferior_hook" target_solib_ops method.
3036
3037 For SVR4 executables, this first instruction is either the first
3038 instruction in the dynamic linker (for dynamically linked
3039 executables) or the instruction at "start" for statically linked
3040 executables. For dynamically linked executables, the system
3041 first exec's /lib/libc.so.N, which contains the dynamic linker,
3042 and starts it running. The dynamic linker maps in any needed
3043 shared libraries, maps in the actual user executable, and then
3044 jumps to "start" in the user executable.
3045
3046 We can arrange to cooperate with the dynamic linker to discover the
3047 names of shared libraries that are dynamically linked, and the base
3048 addresses to which they are linked.
3049
3050 This function is responsible for discovering those names and
3051 addresses, and saving sufficient information about them to allow
3052 their symbols to be read at a later time. */
3053
3054 static void
3055 svr4_solib_create_inferior_hook (int from_tty)
3056 {
3057 struct svr4_info *info;
3058
3059 info = get_svr4_info ();
3060
3061 /* Clear the probes-based interface's state. */
3062 free_probes_table (info);
3063 free_solib_list (info);
3064
3065 /* Relocate the main executable if necessary. */
3066 svr4_relocate_main_executable ();
3067
3068 /* No point setting a breakpoint in the dynamic linker if we can't
3069 hit it (e.g., a core file, or a trace file). */
3070 if (!target_has_execution)
3071 return;
3072
3073 if (!svr4_have_link_map_offsets ())
3074 return;
3075
3076 if (!enable_break (info, from_tty))
3077 return;
3078 }
3079
3080 static void
3081 svr4_clear_solib (void)
3082 {
3083 struct svr4_info *info;
3084
3085 info = get_svr4_info ();
3086 info->debug_base = 0;
3087 info->debug_loader_offset_p = 0;
3088 info->debug_loader_offset = 0;
3089 xfree (info->debug_loader_name);
3090 info->debug_loader_name = NULL;
3091 }
3092
3093 /* Clear any bits of ADDR that wouldn't fit in a target-format
3094 data pointer. "Data pointer" here refers to whatever sort of
3095 address the dynamic linker uses to manage its sections. At the
3096 moment, we don't support shared libraries on any processors where
3097 code and data pointers are different sizes.
3098
3099 This isn't really the right solution. What we really need here is
3100 a way to do arithmetic on CORE_ADDR values that respects the
3101 natural pointer/address correspondence. (For example, on the MIPS,
3102 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3103 sign-extend the value. There, simply truncating the bits above
3104 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3105 be a new gdbarch method or something. */
3106 static CORE_ADDR
3107 svr4_truncate_ptr (CORE_ADDR addr)
3108 {
3109 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3110 /* We don't need to truncate anything, and the bit twiddling below
3111 will fail due to overflow problems. */
3112 return addr;
3113 else
3114 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3115 }
3116
3117
3118 static void
3119 svr4_relocate_section_addresses (struct so_list *so,
3120 struct target_section *sec)
3121 {
3122 bfd *abfd = sec->the_bfd_section->owner;
3123
3124 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3125 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3126 }
3127 \f
3128
3129 /* Architecture-specific operations. */
3130
3131 /* Per-architecture data key. */
3132 static struct gdbarch_data *solib_svr4_data;
3133
3134 struct solib_svr4_ops
3135 {
3136 /* Return a description of the layout of `struct link_map'. */
3137 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3138 };
3139
3140 /* Return a default for the architecture-specific operations. */
3141
3142 static void *
3143 solib_svr4_init (struct obstack *obstack)
3144 {
3145 struct solib_svr4_ops *ops;
3146
3147 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3148 ops->fetch_link_map_offsets = NULL;
3149 return ops;
3150 }
3151
3152 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3153 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3154
3155 void
3156 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3157 struct link_map_offsets *(*flmo) (void))
3158 {
3159 struct solib_svr4_ops *ops
3160 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3161
3162 ops->fetch_link_map_offsets = flmo;
3163
3164 set_solib_ops (gdbarch, &svr4_so_ops);
3165 }
3166
3167 /* Fetch a link_map_offsets structure using the architecture-specific
3168 `struct link_map_offsets' fetcher. */
3169
3170 static struct link_map_offsets *
3171 svr4_fetch_link_map_offsets (void)
3172 {
3173 struct solib_svr4_ops *ops
3174 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3175 solib_svr4_data);
3176
3177 gdb_assert (ops->fetch_link_map_offsets);
3178 return ops->fetch_link_map_offsets ();
3179 }
3180
3181 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3182
3183 static int
3184 svr4_have_link_map_offsets (void)
3185 {
3186 struct solib_svr4_ops *ops
3187 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3188 solib_svr4_data);
3189
3190 return (ops->fetch_link_map_offsets != NULL);
3191 }
3192 \f
3193
3194 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3195 `struct r_debug' and a `struct link_map' that are binary compatible
3196 with the origional SVR4 implementation. */
3197
3198 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3199 for an ILP32 SVR4 system. */
3200
3201 struct link_map_offsets *
3202 svr4_ilp32_fetch_link_map_offsets (void)
3203 {
3204 static struct link_map_offsets lmo;
3205 static struct link_map_offsets *lmp = NULL;
3206
3207 if (lmp == NULL)
3208 {
3209 lmp = &lmo;
3210
3211 lmo.r_version_offset = 0;
3212 lmo.r_version_size = 4;
3213 lmo.r_map_offset = 4;
3214 lmo.r_brk_offset = 8;
3215 lmo.r_ldsomap_offset = 20;
3216
3217 /* Everything we need is in the first 20 bytes. */
3218 lmo.link_map_size = 20;
3219 lmo.l_addr_offset = 0;
3220 lmo.l_name_offset = 4;
3221 lmo.l_ld_offset = 8;
3222 lmo.l_next_offset = 12;
3223 lmo.l_prev_offset = 16;
3224 }
3225
3226 return lmp;
3227 }
3228
3229 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3230 for an LP64 SVR4 system. */
3231
3232 struct link_map_offsets *
3233 svr4_lp64_fetch_link_map_offsets (void)
3234 {
3235 static struct link_map_offsets lmo;
3236 static struct link_map_offsets *lmp = NULL;
3237
3238 if (lmp == NULL)
3239 {
3240 lmp = &lmo;
3241
3242 lmo.r_version_offset = 0;
3243 lmo.r_version_size = 4;
3244 lmo.r_map_offset = 8;
3245 lmo.r_brk_offset = 16;
3246 lmo.r_ldsomap_offset = 40;
3247
3248 /* Everything we need is in the first 40 bytes. */
3249 lmo.link_map_size = 40;
3250 lmo.l_addr_offset = 0;
3251 lmo.l_name_offset = 8;
3252 lmo.l_ld_offset = 16;
3253 lmo.l_next_offset = 24;
3254 lmo.l_prev_offset = 32;
3255 }
3256
3257 return lmp;
3258 }
3259 \f
3260
3261 struct target_so_ops svr4_so_ops;
3262
3263 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3264 different rule for symbol lookup. The lookup begins here in the DSO, not in
3265 the main executable. */
3266
3267 static struct block_symbol
3268 elf_lookup_lib_symbol (struct objfile *objfile,
3269 const char *name,
3270 const domain_enum domain)
3271 {
3272 bfd *abfd;
3273
3274 if (objfile == symfile_objfile)
3275 abfd = exec_bfd;
3276 else
3277 {
3278 /* OBJFILE should have been passed as the non-debug one. */
3279 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3280
3281 abfd = objfile->obfd;
3282 }
3283
3284 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
3285 return (struct block_symbol) {NULL, NULL};
3286
3287 return lookup_global_symbol_from_objfile (objfile, name, domain);
3288 }
3289
3290 void
3291 _initialize_svr4_solib (void)
3292 {
3293 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3294 solib_svr4_pspace_data
3295 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
3296
3297 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3298 svr4_so_ops.free_so = svr4_free_so;
3299 svr4_so_ops.clear_so = svr4_clear_so;
3300 svr4_so_ops.clear_solib = svr4_clear_solib;
3301 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3302 svr4_so_ops.current_sos = svr4_current_sos;
3303 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3304 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3305 svr4_so_ops.bfd_open = solib_bfd_open;
3306 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
3307 svr4_so_ops.same = svr4_same;
3308 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3309 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3310 svr4_so_ops.handle_event = svr4_handle_solib_event;
3311 }
This page took 0.116399 seconds and 4 git commands to generate.