daily update
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static char *solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static char *bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static char *main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
197 {
198 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
199 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
200 int i;
201
202 align = 1;
203
204 for (i = 0; i < ehdr->e_phnum; i++)
205 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
206 align = phdr[i].p_align;
207 }
208
209 /* Turn it into a mask. */
210 align--;
211
212 /* If the changes match the alignment requirements, we
213 assume we're using a core file that was generated by the
214 same binary, just prelinked with a different base offset.
215 If it doesn't match, we may have a different binary, the
216 same binary with the dynamic table loaded at an unrelated
217 location, or anything, really. To avoid regressions,
218 don't adjust the base offset in the latter case, although
219 odds are that, if things really changed, debugging won't
220 quite work. */
221 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
222 {
223 l_addr = l_dynaddr - dynaddr;
224
225 warning (_(".dynamic section for \"%s\" "
226 "is not at the expected address"), so->so_name);
227 warning (_("difference appears to be caused by prelink, "
228 "adjusting expectations"));
229 }
230 else
231 warning (_(".dynamic section for \"%s\" "
232 "is not at the expected address "
233 "(wrong library or version mismatch?)"), so->so_name);
234 }
235
236 set_addr:
237 so->lm_info->l_addr = l_addr;
238 }
239
240 return so->lm_info->l_addr;
241 }
242
243 static CORE_ADDR
244 LM_NEXT (struct so_list *so)
245 {
246 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
247 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
248
249 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
250 ptr_type);
251 }
252
253 static CORE_ADDR
254 LM_NAME (struct so_list *so)
255 {
256 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
257 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
258
259 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
260 ptr_type);
261 }
262
263 static int
264 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
265 {
266 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
267 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
268
269 /* Assume that everything is a library if the dynamic loader was loaded
270 late by a static executable. */
271 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
272 return 0;
273
274 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
275 ptr_type) == 0;
276 }
277
278 /* Per pspace SVR4 specific data. */
279
280 struct svr4_info
281 {
282 CORE_ADDR debug_base; /* Base of dynamic linker structures */
283
284 /* Validity flag for debug_loader_offset. */
285 int debug_loader_offset_p;
286
287 /* Load address for the dynamic linker, inferred. */
288 CORE_ADDR debug_loader_offset;
289
290 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
291 char *debug_loader_name;
292
293 /* Load map address for the main executable. */
294 CORE_ADDR main_lm_addr;
295
296 CORE_ADDR interp_text_sect_low;
297 CORE_ADDR interp_text_sect_high;
298 CORE_ADDR interp_plt_sect_low;
299 CORE_ADDR interp_plt_sect_high;
300 };
301
302 /* Per-program-space data key. */
303 static const struct program_space_data *solib_svr4_pspace_data;
304
305 static void
306 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
307 {
308 struct svr4_info *info;
309
310 info = program_space_data (pspace, solib_svr4_pspace_data);
311 xfree (info);
312 }
313
314 /* Get the current svr4 data. If none is found yet, add it now. This
315 function always returns a valid object. */
316
317 static struct svr4_info *
318 get_svr4_info (void)
319 {
320 struct svr4_info *info;
321
322 info = program_space_data (current_program_space, solib_svr4_pspace_data);
323 if (info != NULL)
324 return info;
325
326 info = XZALLOC (struct svr4_info);
327 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
328 return info;
329 }
330
331 /* Local function prototypes */
332
333 static int match_main (char *);
334
335 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
336
337 /*
338
339 LOCAL FUNCTION
340
341 bfd_lookup_symbol -- lookup the value for a specific symbol
342
343 SYNOPSIS
344
345 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
346
347 DESCRIPTION
348
349 An expensive way to lookup the value of a single symbol for
350 bfd's that are only temporary anyway. This is used by the
351 shared library support to find the address of the debugger
352 notification routine in the shared library.
353
354 The returned symbol may be in a code or data section; functions
355 will normally be in a code section, but may be in a data section
356 if this architecture uses function descriptors.
357
358 Note that 0 is specifically allowed as an error return (no
359 such symbol).
360 */
361
362 static CORE_ADDR
363 bfd_lookup_symbol (bfd *abfd, char *symname)
364 {
365 long storage_needed;
366 asymbol *sym;
367 asymbol **symbol_table;
368 unsigned int number_of_symbols;
369 unsigned int i;
370 struct cleanup *back_to;
371 CORE_ADDR symaddr = 0;
372
373 storage_needed = bfd_get_symtab_upper_bound (abfd);
374
375 if (storage_needed > 0)
376 {
377 symbol_table = (asymbol **) xmalloc (storage_needed);
378 back_to = make_cleanup (xfree, symbol_table);
379 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
380
381 for (i = 0; i < number_of_symbols; i++)
382 {
383 sym = *symbol_table++;
384 if (strcmp (sym->name, symname) == 0
385 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
386 {
387 /* BFD symbols are section relative. */
388 symaddr = sym->value + sym->section->vma;
389 break;
390 }
391 }
392 do_cleanups (back_to);
393 }
394
395 if (symaddr)
396 return symaddr;
397
398 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
399 have to check the dynamic string table too. */
400
401 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
402
403 if (storage_needed > 0)
404 {
405 symbol_table = (asymbol **) xmalloc (storage_needed);
406 back_to = make_cleanup (xfree, symbol_table);
407 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
408
409 for (i = 0; i < number_of_symbols; i++)
410 {
411 sym = *symbol_table++;
412
413 if (strcmp (sym->name, symname) == 0
414 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
415 {
416 /* BFD symbols are section relative. */
417 symaddr = sym->value + sym->section->vma;
418 break;
419 }
420 }
421 do_cleanups (back_to);
422 }
423
424 return symaddr;
425 }
426
427
428 /* Read program header TYPE from inferior memory. The header is found
429 by scanning the OS auxillary vector.
430
431 Return a pointer to allocated memory holding the program header contents,
432 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
433 size of those contents is returned to P_SECT_SIZE. Likewise, the target
434 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
435
436 static gdb_byte *
437 read_program_header (int type, int *p_sect_size, int *p_arch_size)
438 {
439 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
440 CORE_ADDR at_phdr, at_phent, at_phnum;
441 int arch_size, sect_size;
442 CORE_ADDR sect_addr;
443 gdb_byte *buf;
444
445 /* Get required auxv elements from target. */
446 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
447 return 0;
448 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
449 return 0;
450 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
451 return 0;
452 if (!at_phdr || !at_phnum)
453 return 0;
454
455 /* Determine ELF architecture type. */
456 if (at_phent == sizeof (Elf32_External_Phdr))
457 arch_size = 32;
458 else if (at_phent == sizeof (Elf64_External_Phdr))
459 arch_size = 64;
460 else
461 return 0;
462
463 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
464 if (arch_size == 32)
465 {
466 Elf32_External_Phdr phdr;
467 int i;
468
469 /* Search for requested PHDR. */
470 for (i = 0; i < at_phnum; i++)
471 {
472 if (target_read_memory (at_phdr + i * sizeof (phdr),
473 (gdb_byte *)&phdr, sizeof (phdr)))
474 return 0;
475
476 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
477 4, byte_order) == type)
478 break;
479 }
480
481 if (i == at_phnum)
482 return 0;
483
484 /* Retrieve address and size. */
485 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
486 4, byte_order);
487 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
488 4, byte_order);
489 }
490 else
491 {
492 Elf64_External_Phdr phdr;
493 int i;
494
495 /* Search for requested PHDR. */
496 for (i = 0; i < at_phnum; i++)
497 {
498 if (target_read_memory (at_phdr + i * sizeof (phdr),
499 (gdb_byte *)&phdr, sizeof (phdr)))
500 return 0;
501
502 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
503 4, byte_order) == type)
504 break;
505 }
506
507 if (i == at_phnum)
508 return 0;
509
510 /* Retrieve address and size. */
511 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
512 8, byte_order);
513 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
514 8, byte_order);
515 }
516
517 /* Read in requested program header. */
518 buf = xmalloc (sect_size);
519 if (target_read_memory (sect_addr, buf, sect_size))
520 {
521 xfree (buf);
522 return NULL;
523 }
524
525 if (p_arch_size)
526 *p_arch_size = arch_size;
527 if (p_sect_size)
528 *p_sect_size = sect_size;
529
530 return buf;
531 }
532
533
534 /* Return program interpreter string. */
535 static gdb_byte *
536 find_program_interpreter (void)
537 {
538 gdb_byte *buf = NULL;
539
540 /* If we have an exec_bfd, use its section table. */
541 if (exec_bfd
542 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
543 {
544 struct bfd_section *interp_sect;
545
546 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
547 if (interp_sect != NULL)
548 {
549 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
550 int sect_size = bfd_section_size (exec_bfd, interp_sect);
551
552 buf = xmalloc (sect_size);
553 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
554 }
555 }
556
557 /* If we didn't find it, use the target auxillary vector. */
558 if (!buf)
559 buf = read_program_header (PT_INTERP, NULL, NULL);
560
561 return buf;
562 }
563
564
565 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
566 returned and the corresponding PTR is set. */
567
568 static int
569 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
570 {
571 int arch_size, step, sect_size;
572 long dyn_tag;
573 CORE_ADDR dyn_ptr;
574 gdb_byte *bufend, *bufstart, *buf;
575 Elf32_External_Dyn *x_dynp_32;
576 Elf64_External_Dyn *x_dynp_64;
577 struct bfd_section *sect;
578 struct target_section *target_section;
579
580 if (abfd == NULL)
581 return 0;
582
583 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
584 return 0;
585
586 arch_size = bfd_get_arch_size (abfd);
587 if (arch_size == -1)
588 return 0;
589
590 /* Find the start address of the .dynamic section. */
591 sect = bfd_get_section_by_name (abfd, ".dynamic");
592 if (sect == NULL)
593 return 0;
594
595 for (target_section = current_target_sections->sections;
596 target_section < current_target_sections->sections_end;
597 target_section++)
598 if (sect == target_section->the_bfd_section)
599 break;
600 gdb_assert (target_section < current_target_sections->sections_end);
601
602 /* Read in .dynamic from the BFD. We will get the actual value
603 from memory later. */
604 sect_size = bfd_section_size (abfd, sect);
605 buf = bufstart = alloca (sect_size);
606 if (!bfd_get_section_contents (abfd, sect,
607 buf, 0, sect_size))
608 return 0;
609
610 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
611 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
612 : sizeof (Elf64_External_Dyn);
613 for (bufend = buf + sect_size;
614 buf < bufend;
615 buf += step)
616 {
617 if (arch_size == 32)
618 {
619 x_dynp_32 = (Elf32_External_Dyn *) buf;
620 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
621 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
622 }
623 else
624 {
625 x_dynp_64 = (Elf64_External_Dyn *) buf;
626 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
627 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
628 }
629 if (dyn_tag == DT_NULL)
630 return 0;
631 if (dyn_tag == dyntag)
632 {
633 /* If requested, try to read the runtime value of this .dynamic
634 entry. */
635 if (ptr)
636 {
637 struct type *ptr_type;
638 gdb_byte ptr_buf[8];
639 CORE_ADDR ptr_addr;
640
641 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
642 ptr_addr = target_section->addr + (buf - bufstart) + arch_size / 8;
643 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
644 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
645 *ptr = dyn_ptr;
646 }
647 return 1;
648 }
649 }
650
651 return 0;
652 }
653
654 /* Scan for DYNTAG in .dynamic section of the target's main executable,
655 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
656 returned and the corresponding PTR is set. */
657
658 static int
659 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
660 {
661 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
662 int sect_size, arch_size, step;
663 long dyn_tag;
664 CORE_ADDR dyn_ptr;
665 gdb_byte *bufend, *bufstart, *buf;
666
667 /* Read in .dynamic section. */
668 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
669 if (!buf)
670 return 0;
671
672 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
673 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
674 : sizeof (Elf64_External_Dyn);
675 for (bufend = buf + sect_size;
676 buf < bufend;
677 buf += step)
678 {
679 if (arch_size == 32)
680 {
681 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
682 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
683 4, byte_order);
684 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
685 4, byte_order);
686 }
687 else
688 {
689 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
690 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
691 8, byte_order);
692 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
693 8, byte_order);
694 }
695 if (dyn_tag == DT_NULL)
696 break;
697
698 if (dyn_tag == dyntag)
699 {
700 if (ptr)
701 *ptr = dyn_ptr;
702
703 xfree (bufstart);
704 return 1;
705 }
706 }
707
708 xfree (bufstart);
709 return 0;
710 }
711
712
713 /*
714
715 LOCAL FUNCTION
716
717 elf_locate_base -- locate the base address of dynamic linker structs
718 for SVR4 elf targets.
719
720 SYNOPSIS
721
722 CORE_ADDR elf_locate_base (void)
723
724 DESCRIPTION
725
726 For SVR4 elf targets the address of the dynamic linker's runtime
727 structure is contained within the dynamic info section in the
728 executable file. The dynamic section is also mapped into the
729 inferior address space. Because the runtime loader fills in the
730 real address before starting the inferior, we have to read in the
731 dynamic info section from the inferior address space.
732 If there are any errors while trying to find the address, we
733 silently return 0, otherwise the found address is returned.
734
735 */
736
737 static CORE_ADDR
738 elf_locate_base (void)
739 {
740 struct minimal_symbol *msymbol;
741 CORE_ADDR dyn_ptr;
742
743 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
744 instead of DT_DEBUG, although they sometimes contain an unused
745 DT_DEBUG. */
746 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
747 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
748 {
749 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
750 gdb_byte *pbuf;
751 int pbuf_size = TYPE_LENGTH (ptr_type);
752 pbuf = alloca (pbuf_size);
753 /* DT_MIPS_RLD_MAP contains a pointer to the address
754 of the dynamic link structure. */
755 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
756 return 0;
757 return extract_typed_address (pbuf, ptr_type);
758 }
759
760 /* Find DT_DEBUG. */
761 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
762 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
763 return dyn_ptr;
764
765 /* This may be a static executable. Look for the symbol
766 conventionally named _r_debug, as a last resort. */
767 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
768 if (msymbol != NULL)
769 return SYMBOL_VALUE_ADDRESS (msymbol);
770
771 /* DT_DEBUG entry not found. */
772 return 0;
773 }
774
775 /*
776
777 LOCAL FUNCTION
778
779 locate_base -- locate the base address of dynamic linker structs
780
781 SYNOPSIS
782
783 CORE_ADDR locate_base (struct svr4_info *)
784
785 DESCRIPTION
786
787 For both the SunOS and SVR4 shared library implementations, if the
788 inferior executable has been linked dynamically, there is a single
789 address somewhere in the inferior's data space which is the key to
790 locating all of the dynamic linker's runtime structures. This
791 address is the value of the debug base symbol. The job of this
792 function is to find and return that address, or to return 0 if there
793 is no such address (the executable is statically linked for example).
794
795 For SunOS, the job is almost trivial, since the dynamic linker and
796 all of it's structures are statically linked to the executable at
797 link time. Thus the symbol for the address we are looking for has
798 already been added to the minimal symbol table for the executable's
799 objfile at the time the symbol file's symbols were read, and all we
800 have to do is look it up there. Note that we explicitly do NOT want
801 to find the copies in the shared library.
802
803 The SVR4 version is a bit more complicated because the address
804 is contained somewhere in the dynamic info section. We have to go
805 to a lot more work to discover the address of the debug base symbol.
806 Because of this complexity, we cache the value we find and return that
807 value on subsequent invocations. Note there is no copy in the
808 executable symbol tables.
809
810 */
811
812 static CORE_ADDR
813 locate_base (struct svr4_info *info)
814 {
815 /* Check to see if we have a currently valid address, and if so, avoid
816 doing all this work again and just return the cached address. If
817 we have no cached address, try to locate it in the dynamic info
818 section for ELF executables. There's no point in doing any of this
819 though if we don't have some link map offsets to work with. */
820
821 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
822 info->debug_base = elf_locate_base ();
823 return info->debug_base;
824 }
825
826 /* Find the first element in the inferior's dynamic link map, and
827 return its address in the inferior.
828
829 FIXME: Perhaps we should validate the info somehow, perhaps by
830 checking r_version for a known version number, or r_state for
831 RT_CONSISTENT. */
832
833 static CORE_ADDR
834 solib_svr4_r_map (struct svr4_info *info)
835 {
836 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
837 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
838
839 return read_memory_typed_address (info->debug_base + lmo->r_map_offset,
840 ptr_type);
841 }
842
843 /* Find r_brk from the inferior's debug base. */
844
845 static CORE_ADDR
846 solib_svr4_r_brk (struct svr4_info *info)
847 {
848 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
849 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
850
851 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
852 ptr_type);
853 }
854
855 /* Find the link map for the dynamic linker (if it is not in the
856 normal list of loaded shared objects). */
857
858 static CORE_ADDR
859 solib_svr4_r_ldsomap (struct svr4_info *info)
860 {
861 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
862 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
863 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
864 ULONGEST version;
865
866 /* Check version, and return zero if `struct r_debug' doesn't have
867 the r_ldsomap member. */
868 version
869 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
870 lmo->r_version_size, byte_order);
871 if (version < 2 || lmo->r_ldsomap_offset == -1)
872 return 0;
873
874 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
875 ptr_type);
876 }
877
878 /* On Solaris systems with some versions of the dynamic linker,
879 ld.so's l_name pointer points to the SONAME in the string table
880 rather than into writable memory. So that GDB can find shared
881 libraries when loading a core file generated by gcore, ensure that
882 memory areas containing the l_name string are saved in the core
883 file. */
884
885 static int
886 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
887 {
888 struct svr4_info *info;
889 CORE_ADDR ldsomap;
890 struct so_list *new;
891 struct cleanup *old_chain;
892 struct link_map_offsets *lmo;
893 CORE_ADDR lm_name;
894
895 info = get_svr4_info ();
896
897 info->debug_base = 0;
898 locate_base (info);
899 if (!info->debug_base)
900 return 0;
901
902 ldsomap = solib_svr4_r_ldsomap (info);
903 if (!ldsomap)
904 return 0;
905
906 lmo = svr4_fetch_link_map_offsets ();
907 new = XZALLOC (struct so_list);
908 old_chain = make_cleanup (xfree, new);
909 new->lm_info = xmalloc (sizeof (struct lm_info));
910 make_cleanup (xfree, new->lm_info);
911 new->lm_info->l_addr = (CORE_ADDR)-1;
912 new->lm_info->lm_addr = ldsomap;
913 new->lm_info->lm = xzalloc (lmo->link_map_size);
914 make_cleanup (xfree, new->lm_info->lm);
915 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
916 lm_name = LM_NAME (new);
917 do_cleanups (old_chain);
918
919 return (lm_name >= vaddr && lm_name < vaddr + size);
920 }
921
922 /*
923
924 LOCAL FUNCTION
925
926 open_symbol_file_object
927
928 SYNOPSIS
929
930 void open_symbol_file_object (void *from_tty)
931
932 DESCRIPTION
933
934 If no open symbol file, attempt to locate and open the main symbol
935 file. On SVR4 systems, this is the first link map entry. If its
936 name is here, we can open it. Useful when attaching to a process
937 without first loading its symbol file.
938
939 If FROM_TTYP dereferences to a non-zero integer, allow messages to
940 be printed. This parameter is a pointer rather than an int because
941 open_symbol_file_object() is called via catch_errors() and
942 catch_errors() requires a pointer argument. */
943
944 static int
945 open_symbol_file_object (void *from_ttyp)
946 {
947 CORE_ADDR lm, l_name;
948 char *filename;
949 int errcode;
950 int from_tty = *(int *)from_ttyp;
951 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
952 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
953 int l_name_size = TYPE_LENGTH (ptr_type);
954 gdb_byte *l_name_buf = xmalloc (l_name_size);
955 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
956 struct svr4_info *info = get_svr4_info ();
957
958 if (symfile_objfile)
959 if (!query (_("Attempt to reload symbols from process? ")))
960 return 0;
961
962 /* Always locate the debug struct, in case it has moved. */
963 info->debug_base = 0;
964 if (locate_base (info) == 0)
965 return 0; /* failed somehow... */
966
967 /* First link map member should be the executable. */
968 lm = solib_svr4_r_map (info);
969 if (lm == 0)
970 return 0; /* failed somehow... */
971
972 /* Read address of name from target memory to GDB. */
973 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
974
975 /* Convert the address to host format. */
976 l_name = extract_typed_address (l_name_buf, ptr_type);
977
978 /* Free l_name_buf. */
979 do_cleanups (cleanups);
980
981 if (l_name == 0)
982 return 0; /* No filename. */
983
984 /* Now fetch the filename from target memory. */
985 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
986 make_cleanup (xfree, filename);
987
988 if (errcode)
989 {
990 warning (_("failed to read exec filename from attached file: %s"),
991 safe_strerror (errcode));
992 return 0;
993 }
994
995 /* Have a pathname: read the symbol file. */
996 symbol_file_add_main (filename, from_tty);
997
998 return 1;
999 }
1000
1001 /* If no shared library information is available from the dynamic
1002 linker, build a fallback list from other sources. */
1003
1004 static struct so_list *
1005 svr4_default_sos (void)
1006 {
1007 struct svr4_info *info = get_svr4_info ();
1008
1009 struct so_list *head = NULL;
1010 struct so_list **link_ptr = &head;
1011
1012 if (info->debug_loader_offset_p)
1013 {
1014 struct so_list *new = XZALLOC (struct so_list);
1015
1016 new->lm_info = xmalloc (sizeof (struct lm_info));
1017
1018 /* Nothing will ever check the cached copy of the link
1019 map if we set l_addr. */
1020 new->lm_info->l_addr = info->debug_loader_offset;
1021 new->lm_info->lm_addr = 0;
1022 new->lm_info->lm = NULL;
1023
1024 strncpy (new->so_name, info->debug_loader_name,
1025 SO_NAME_MAX_PATH_SIZE - 1);
1026 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1027 strcpy (new->so_original_name, new->so_name);
1028
1029 *link_ptr = new;
1030 link_ptr = &new->next;
1031 }
1032
1033 return head;
1034 }
1035
1036 /* LOCAL FUNCTION
1037
1038 current_sos -- build a list of currently loaded shared objects
1039
1040 SYNOPSIS
1041
1042 struct so_list *current_sos ()
1043
1044 DESCRIPTION
1045
1046 Build a list of `struct so_list' objects describing the shared
1047 objects currently loaded in the inferior. This list does not
1048 include an entry for the main executable file.
1049
1050 Note that we only gather information directly available from the
1051 inferior --- we don't examine any of the shared library files
1052 themselves. The declaration of `struct so_list' says which fields
1053 we provide values for. */
1054
1055 static struct so_list *
1056 svr4_current_sos (void)
1057 {
1058 CORE_ADDR lm;
1059 struct so_list *head = 0;
1060 struct so_list **link_ptr = &head;
1061 CORE_ADDR ldsomap = 0;
1062 struct svr4_info *info;
1063
1064 info = get_svr4_info ();
1065
1066 /* Always locate the debug struct, in case it has moved. */
1067 info->debug_base = 0;
1068 locate_base (info);
1069
1070 /* If we can't find the dynamic linker's base structure, this
1071 must not be a dynamically linked executable. Hmm. */
1072 if (! info->debug_base)
1073 return svr4_default_sos ();
1074
1075 /* Walk the inferior's link map list, and build our list of
1076 `struct so_list' nodes. */
1077 lm = solib_svr4_r_map (info);
1078
1079 while (lm)
1080 {
1081 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1082 struct so_list *new = XZALLOC (struct so_list);
1083 struct cleanup *old_chain = make_cleanup (xfree, new);
1084
1085 new->lm_info = xmalloc (sizeof (struct lm_info));
1086 make_cleanup (xfree, new->lm_info);
1087
1088 new->lm_info->l_addr = (CORE_ADDR)-1;
1089 new->lm_info->lm_addr = lm;
1090 new->lm_info->lm = xzalloc (lmo->link_map_size);
1091 make_cleanup (xfree, new->lm_info->lm);
1092
1093 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1094
1095 lm = LM_NEXT (new);
1096
1097 /* For SVR4 versions, the first entry in the link map is for the
1098 inferior executable, so we must ignore it. For some versions of
1099 SVR4, it has no name. For others (Solaris 2.3 for example), it
1100 does have a name, so we can no longer use a missing name to
1101 decide when to ignore it. */
1102 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1103 {
1104 info->main_lm_addr = new->lm_info->lm_addr;
1105 free_so (new);
1106 }
1107 else
1108 {
1109 int errcode;
1110 char *buffer;
1111
1112 /* Extract this shared object's name. */
1113 target_read_string (LM_NAME (new), &buffer,
1114 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1115 if (errcode != 0)
1116 warning (_("Can't read pathname for load map: %s."),
1117 safe_strerror (errcode));
1118 else
1119 {
1120 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1121 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1122 strcpy (new->so_original_name, new->so_name);
1123 }
1124 xfree (buffer);
1125
1126 /* If this entry has no name, or its name matches the name
1127 for the main executable, don't include it in the list. */
1128 if (! new->so_name[0]
1129 || match_main (new->so_name))
1130 free_so (new);
1131 else
1132 {
1133 new->next = 0;
1134 *link_ptr = new;
1135 link_ptr = &new->next;
1136 }
1137 }
1138
1139 /* On Solaris, the dynamic linker is not in the normal list of
1140 shared objects, so make sure we pick it up too. Having
1141 symbol information for the dynamic linker is quite crucial
1142 for skipping dynamic linker resolver code. */
1143 if (lm == 0 && ldsomap == 0)
1144 lm = ldsomap = solib_svr4_r_ldsomap (info);
1145
1146 discard_cleanups (old_chain);
1147 }
1148
1149 if (head == NULL)
1150 return svr4_default_sos ();
1151
1152 return head;
1153 }
1154
1155 /* Get the address of the link_map for a given OBJFILE. */
1156
1157 CORE_ADDR
1158 svr4_fetch_objfile_link_map (struct objfile *objfile)
1159 {
1160 struct so_list *so;
1161 struct svr4_info *info = get_svr4_info ();
1162
1163 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1164 if (info->main_lm_addr == 0)
1165 solib_add (NULL, 0, &current_target, auto_solib_add);
1166
1167 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1168 if (objfile == symfile_objfile)
1169 return info->main_lm_addr;
1170
1171 /* The other link map addresses may be found by examining the list
1172 of shared libraries. */
1173 for (so = master_so_list (); so; so = so->next)
1174 if (so->objfile == objfile)
1175 return so->lm_info->lm_addr;
1176
1177 /* Not found! */
1178 return 0;
1179 }
1180
1181 /* On some systems, the only way to recognize the link map entry for
1182 the main executable file is by looking at its name. Return
1183 non-zero iff SONAME matches one of the known main executable names. */
1184
1185 static int
1186 match_main (char *soname)
1187 {
1188 char **mainp;
1189
1190 for (mainp = main_name_list; *mainp != NULL; mainp++)
1191 {
1192 if (strcmp (soname, *mainp) == 0)
1193 return (1);
1194 }
1195
1196 return (0);
1197 }
1198
1199 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1200 SVR4 run time loader. */
1201
1202 int
1203 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1204 {
1205 struct svr4_info *info = get_svr4_info ();
1206
1207 return ((pc >= info->interp_text_sect_low
1208 && pc < info->interp_text_sect_high)
1209 || (pc >= info->interp_plt_sect_low
1210 && pc < info->interp_plt_sect_high)
1211 || in_plt_section (pc, NULL));
1212 }
1213
1214 /* Given an executable's ABFD and target, compute the entry-point
1215 address. */
1216
1217 static CORE_ADDR
1218 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1219 {
1220 /* KevinB wrote ... for most targets, the address returned by
1221 bfd_get_start_address() is the entry point for the start
1222 function. But, for some targets, bfd_get_start_address() returns
1223 the address of a function descriptor from which the entry point
1224 address may be extracted. This address is extracted by
1225 gdbarch_convert_from_func_ptr_addr(). The method
1226 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1227 function for targets which don't use function descriptors. */
1228 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1229 bfd_get_start_address (abfd),
1230 targ);
1231 }
1232
1233 /*
1234
1235 LOCAL FUNCTION
1236
1237 enable_break -- arrange for dynamic linker to hit breakpoint
1238
1239 SYNOPSIS
1240
1241 int enable_break (void)
1242
1243 DESCRIPTION
1244
1245 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1246 debugger interface, support for arranging for the inferior to hit
1247 a breakpoint after mapping in the shared libraries. This function
1248 enables that breakpoint.
1249
1250 For SunOS, there is a special flag location (in_debugger) which we
1251 set to 1. When the dynamic linker sees this flag set, it will set
1252 a breakpoint at a location known only to itself, after saving the
1253 original contents of that place and the breakpoint address itself,
1254 in it's own internal structures. When we resume the inferior, it
1255 will eventually take a SIGTRAP when it runs into the breakpoint.
1256 We handle this (in a different place) by restoring the contents of
1257 the breakpointed location (which is only known after it stops),
1258 chasing around to locate the shared libraries that have been
1259 loaded, then resuming.
1260
1261 For SVR4, the debugger interface structure contains a member (r_brk)
1262 which is statically initialized at the time the shared library is
1263 built, to the offset of a function (_r_debug_state) which is guaran-
1264 teed to be called once before mapping in a library, and again when
1265 the mapping is complete. At the time we are examining this member,
1266 it contains only the unrelocated offset of the function, so we have
1267 to do our own relocation. Later, when the dynamic linker actually
1268 runs, it relocates r_brk to be the actual address of _r_debug_state().
1269
1270 The debugger interface structure also contains an enumeration which
1271 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1272 depending upon whether or not the library is being mapped or unmapped,
1273 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1274 */
1275
1276 static int
1277 enable_break (struct svr4_info *info, int from_tty)
1278 {
1279 struct minimal_symbol *msymbol;
1280 char **bkpt_namep;
1281 asection *interp_sect;
1282 gdb_byte *interp_name;
1283 CORE_ADDR sym_addr;
1284
1285 /* First, remove all the solib event breakpoints. Their addresses
1286 may have changed since the last time we ran the program. */
1287 remove_solib_event_breakpoints ();
1288
1289 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1290 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1291
1292 /* If we already have a shared library list in the target, and
1293 r_debug contains r_brk, set the breakpoint there - this should
1294 mean r_brk has already been relocated. Assume the dynamic linker
1295 is the object containing r_brk. */
1296
1297 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1298 sym_addr = 0;
1299 if (info->debug_base && solib_svr4_r_map (info) != 0)
1300 sym_addr = solib_svr4_r_brk (info);
1301
1302 if (sym_addr != 0)
1303 {
1304 struct obj_section *os;
1305
1306 sym_addr = gdbarch_addr_bits_remove
1307 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1308 sym_addr,
1309 &current_target));
1310
1311 os = find_pc_section (sym_addr);
1312 if (os != NULL)
1313 {
1314 /* Record the relocated start and end address of the dynamic linker
1315 text and plt section for svr4_in_dynsym_resolve_code. */
1316 bfd *tmp_bfd;
1317 CORE_ADDR load_addr;
1318
1319 tmp_bfd = os->objfile->obfd;
1320 load_addr = ANOFFSET (os->objfile->section_offsets,
1321 os->objfile->sect_index_text);
1322
1323 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1324 if (interp_sect)
1325 {
1326 info->interp_text_sect_low =
1327 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1328 info->interp_text_sect_high =
1329 info->interp_text_sect_low
1330 + bfd_section_size (tmp_bfd, interp_sect);
1331 }
1332 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1333 if (interp_sect)
1334 {
1335 info->interp_plt_sect_low =
1336 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1337 info->interp_plt_sect_high =
1338 info->interp_plt_sect_low
1339 + bfd_section_size (tmp_bfd, interp_sect);
1340 }
1341
1342 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1343 return 1;
1344 }
1345 }
1346
1347 /* Find the program interpreter; if not found, warn the user and drop
1348 into the old breakpoint at symbol code. */
1349 interp_name = find_program_interpreter ();
1350 if (interp_name)
1351 {
1352 CORE_ADDR load_addr = 0;
1353 int load_addr_found = 0;
1354 int loader_found_in_list = 0;
1355 struct so_list *so;
1356 bfd *tmp_bfd = NULL;
1357 struct target_ops *tmp_bfd_target;
1358 volatile struct gdb_exception ex;
1359
1360 sym_addr = 0;
1361
1362 /* Now we need to figure out where the dynamic linker was
1363 loaded so that we can load its symbols and place a breakpoint
1364 in the dynamic linker itself.
1365
1366 This address is stored on the stack. However, I've been unable
1367 to find any magic formula to find it for Solaris (appears to
1368 be trivial on GNU/Linux). Therefore, we have to try an alternate
1369 mechanism to find the dynamic linker's base address. */
1370
1371 TRY_CATCH (ex, RETURN_MASK_ALL)
1372 {
1373 tmp_bfd = solib_bfd_open (interp_name);
1374 }
1375 if (tmp_bfd == NULL)
1376 goto bkpt_at_symbol;
1377
1378 /* Now convert the TMP_BFD into a target. That way target, as
1379 well as BFD operations can be used. Note that closing the
1380 target will also close the underlying bfd. */
1381 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1382
1383 /* On a running target, we can get the dynamic linker's base
1384 address from the shared library table. */
1385 so = master_so_list ();
1386 while (so)
1387 {
1388 if (svr4_same_1 (interp_name, so->so_original_name))
1389 {
1390 load_addr_found = 1;
1391 loader_found_in_list = 1;
1392 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1393 break;
1394 }
1395 so = so->next;
1396 }
1397
1398 /* If we were not able to find the base address of the loader
1399 from our so_list, then try using the AT_BASE auxilliary entry. */
1400 if (!load_addr_found)
1401 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1402 load_addr_found = 1;
1403
1404 /* Otherwise we find the dynamic linker's base address by examining
1405 the current pc (which should point at the entry point for the
1406 dynamic linker) and subtracting the offset of the entry point.
1407
1408 This is more fragile than the previous approaches, but is a good
1409 fallback method because it has actually been working well in
1410 most cases. */
1411 if (!load_addr_found)
1412 {
1413 struct regcache *regcache
1414 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1415 load_addr = (regcache_read_pc (regcache)
1416 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1417 }
1418
1419 if (!loader_found_in_list)
1420 {
1421 info->debug_loader_name = xstrdup (interp_name);
1422 info->debug_loader_offset_p = 1;
1423 info->debug_loader_offset = load_addr;
1424 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1425 }
1426
1427 /* Record the relocated start and end address of the dynamic linker
1428 text and plt section for svr4_in_dynsym_resolve_code. */
1429 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1430 if (interp_sect)
1431 {
1432 info->interp_text_sect_low =
1433 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1434 info->interp_text_sect_high =
1435 info->interp_text_sect_low
1436 + bfd_section_size (tmp_bfd, interp_sect);
1437 }
1438 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1439 if (interp_sect)
1440 {
1441 info->interp_plt_sect_low =
1442 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1443 info->interp_plt_sect_high =
1444 info->interp_plt_sect_low
1445 + bfd_section_size (tmp_bfd, interp_sect);
1446 }
1447
1448 /* Now try to set a breakpoint in the dynamic linker. */
1449 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1450 {
1451 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1452 if (sym_addr != 0)
1453 break;
1454 }
1455
1456 if (sym_addr != 0)
1457 /* Convert 'sym_addr' from a function pointer to an address.
1458 Because we pass tmp_bfd_target instead of the current
1459 target, this will always produce an unrelocated value. */
1460 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1461 sym_addr,
1462 tmp_bfd_target);
1463
1464 /* We're done with both the temporary bfd and target. Remember,
1465 closing the target closes the underlying bfd. */
1466 target_close (tmp_bfd_target, 0);
1467
1468 if (sym_addr != 0)
1469 {
1470 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1471 xfree (interp_name);
1472 return 1;
1473 }
1474
1475 /* For whatever reason we couldn't set a breakpoint in the dynamic
1476 linker. Warn and drop into the old code. */
1477 bkpt_at_symbol:
1478 xfree (interp_name);
1479 warning (_("Unable to find dynamic linker breakpoint function.\n"
1480 "GDB will be unable to debug shared library initializers\n"
1481 "and track explicitly loaded dynamic code."));
1482 }
1483
1484 /* Scan through the lists of symbols, trying to look up the symbol and
1485 set a breakpoint there. Terminate loop when we/if we succeed. */
1486
1487 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1488 {
1489 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1490 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1491 {
1492 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1493 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1494 sym_addr,
1495 &current_target);
1496 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1497 return 1;
1498 }
1499 }
1500
1501 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1502 {
1503 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1504 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1505 {
1506 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1507 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1508 sym_addr,
1509 &current_target);
1510 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1511 return 1;
1512 }
1513 }
1514 return 0;
1515 }
1516
1517 /*
1518
1519 LOCAL FUNCTION
1520
1521 special_symbol_handling -- additional shared library symbol handling
1522
1523 SYNOPSIS
1524
1525 void special_symbol_handling ()
1526
1527 DESCRIPTION
1528
1529 Once the symbols from a shared object have been loaded in the usual
1530 way, we are called to do any system specific symbol handling that
1531 is needed.
1532
1533 For SunOS4, this consisted of grunging around in the dynamic
1534 linkers structures to find symbol definitions for "common" symbols
1535 and adding them to the minimal symbol table for the runtime common
1536 objfile.
1537
1538 However, for SVR4, there's nothing to do.
1539
1540 */
1541
1542 static void
1543 svr4_special_symbol_handling (void)
1544 {
1545 svr4_relocate_main_executable ();
1546 }
1547
1548 /* Decide if the objfile needs to be relocated. As indicated above,
1549 we will only be here when execution is stopped at the beginning
1550 of the program. Relocation is necessary if the address at which
1551 we are presently stopped differs from the start address stored in
1552 the executable AND there's no interpreter section. The condition
1553 regarding the interpreter section is very important because if
1554 there *is* an interpreter section, execution will begin there
1555 instead. When there is an interpreter section, the start address
1556 is (presumably) used by the interpreter at some point to start
1557 execution of the program.
1558
1559 If there is an interpreter, it is normal for it to be set to an
1560 arbitrary address at the outset. The job of finding it is
1561 handled in enable_break().
1562
1563 So, to summarize, relocations are necessary when there is no
1564 interpreter section and the start address obtained from the
1565 executable is different from the address at which GDB is
1566 currently stopped.
1567
1568 [ The astute reader will note that we also test to make sure that
1569 the executable in question has the DYNAMIC flag set. It is my
1570 opinion that this test is unnecessary (undesirable even). It
1571 was added to avoid inadvertent relocation of an executable
1572 whose e_type member in the ELF header is not ET_DYN. There may
1573 be a time in the future when it is desirable to do relocations
1574 on other types of files as well in which case this condition
1575 should either be removed or modified to accomodate the new file
1576 type. (E.g, an ET_EXEC executable which has been built to be
1577 position-independent could safely be relocated by the OS if
1578 desired. It is true that this violates the ABI, but the ABI
1579 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1580 */
1581
1582 static CORE_ADDR
1583 svr4_static_exec_displacement (void)
1584 {
1585 asection *interp_sect;
1586 struct regcache *regcache
1587 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1588 CORE_ADDR pc = regcache_read_pc (regcache);
1589
1590 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1591 if (interp_sect == NULL
1592 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1593 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1594 return pc - exec_entry_point (exec_bfd, &exec_ops);
1595
1596 return 0;
1597 }
1598
1599 /* We relocate all of the sections by the same amount. This
1600 behavior is mandated by recent editions of the System V ABI.
1601 According to the System V Application Binary Interface,
1602 Edition 4.1, page 5-5:
1603
1604 ... Though the system chooses virtual addresses for
1605 individual processes, it maintains the segments' relative
1606 positions. Because position-independent code uses relative
1607 addressesing between segments, the difference between
1608 virtual addresses in memory must match the difference
1609 between virtual addresses in the file. The difference
1610 between the virtual address of any segment in memory and
1611 the corresponding virtual address in the file is thus a
1612 single constant value for any one executable or shared
1613 object in a given process. This difference is the base
1614 address. One use of the base address is to relocate the
1615 memory image of the program during dynamic linking.
1616
1617 The same language also appears in Edition 4.0 of the System V
1618 ABI and is left unspecified in some of the earlier editions. */
1619
1620 static CORE_ADDR
1621 svr4_exec_displacement (void)
1622 {
1623 int found;
1624 /* ENTRY_POINT is a possible function descriptor - before
1625 a call to gdbarch_convert_from_func_ptr_addr. */
1626 CORE_ADDR entry_point;
1627
1628 if (exec_bfd == NULL)
1629 return 0;
1630
1631 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
1632 return entry_point - bfd_get_start_address (exec_bfd);
1633
1634 return svr4_static_exec_displacement ();
1635 }
1636
1637 /* Relocate the main executable. This function should be called upon
1638 stopping the inferior process at the entry point to the program.
1639 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1640 different, the main executable is relocated by the proper amount. */
1641
1642 static void
1643 svr4_relocate_main_executable (void)
1644 {
1645 CORE_ADDR displacement = svr4_exec_displacement ();
1646
1647 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1648 difference of in-memory vs. in-file addresses and we could already
1649 relocate the executable at this function to improper address before. */
1650
1651 if (symfile_objfile)
1652 {
1653 struct section_offsets *new_offsets;
1654 int i;
1655
1656 new_offsets = alloca (symfile_objfile->num_sections
1657 * sizeof (*new_offsets));
1658
1659 for (i = 0; i < symfile_objfile->num_sections; i++)
1660 new_offsets->offsets[i] = displacement;
1661
1662 objfile_relocate (symfile_objfile, new_offsets);
1663 }
1664 else if (exec_bfd)
1665 {
1666 asection *asect;
1667
1668 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1669 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1670 (bfd_section_vma (exec_bfd, asect)
1671 + displacement));
1672 }
1673 }
1674
1675 /*
1676
1677 GLOBAL FUNCTION
1678
1679 svr4_solib_create_inferior_hook -- shared library startup support
1680
1681 SYNOPSIS
1682
1683 void svr4_solib_create_inferior_hook (int from_tty)
1684
1685 DESCRIPTION
1686
1687 When gdb starts up the inferior, it nurses it along (through the
1688 shell) until it is ready to execute it's first instruction. At this
1689 point, this function gets called via expansion of the macro
1690 SOLIB_CREATE_INFERIOR_HOOK.
1691
1692 For SunOS executables, this first instruction is typically the
1693 one at "_start", or a similar text label, regardless of whether
1694 the executable is statically or dynamically linked. The runtime
1695 startup code takes care of dynamically linking in any shared
1696 libraries, once gdb allows the inferior to continue.
1697
1698 For SVR4 executables, this first instruction is either the first
1699 instruction in the dynamic linker (for dynamically linked
1700 executables) or the instruction at "start" for statically linked
1701 executables. For dynamically linked executables, the system
1702 first exec's /lib/libc.so.N, which contains the dynamic linker,
1703 and starts it running. The dynamic linker maps in any needed
1704 shared libraries, maps in the actual user executable, and then
1705 jumps to "start" in the user executable.
1706
1707 For both SunOS shared libraries, and SVR4 shared libraries, we
1708 can arrange to cooperate with the dynamic linker to discover the
1709 names of shared libraries that are dynamically linked, and the
1710 base addresses to which they are linked.
1711
1712 This function is responsible for discovering those names and
1713 addresses, and saving sufficient information about them to allow
1714 their symbols to be read at a later time.
1715
1716 FIXME
1717
1718 Between enable_break() and disable_break(), this code does not
1719 properly handle hitting breakpoints which the user might have
1720 set in the startup code or in the dynamic linker itself. Proper
1721 handling will probably have to wait until the implementation is
1722 changed to use the "breakpoint handler function" method.
1723
1724 Also, what if child has exit()ed? Must exit loop somehow.
1725 */
1726
1727 static void
1728 svr4_solib_create_inferior_hook (int from_tty)
1729 {
1730 struct inferior *inf;
1731 struct thread_info *tp;
1732 struct svr4_info *info;
1733
1734 info = get_svr4_info ();
1735
1736 /* Relocate the main executable if necessary. */
1737 if (current_inferior ()->attach_flag == 0)
1738 svr4_relocate_main_executable ();
1739
1740 if (!svr4_have_link_map_offsets ())
1741 return;
1742
1743 if (!enable_break (info, from_tty))
1744 return;
1745
1746 #if defined(_SCO_DS)
1747 /* SCO needs the loop below, other systems should be using the
1748 special shared library breakpoints and the shared library breakpoint
1749 service routine.
1750
1751 Now run the target. It will eventually hit the breakpoint, at
1752 which point all of the libraries will have been mapped in and we
1753 can go groveling around in the dynamic linker structures to find
1754 out what we need to know about them. */
1755
1756 inf = current_inferior ();
1757 tp = inferior_thread ();
1758
1759 clear_proceed_status ();
1760 inf->stop_soon = STOP_QUIETLY;
1761 tp->stop_signal = TARGET_SIGNAL_0;
1762 do
1763 {
1764 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1765 wait_for_inferior (0);
1766 }
1767 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1768 inf->stop_soon = NO_STOP_QUIETLY;
1769 #endif /* defined(_SCO_DS) */
1770 }
1771
1772 static void
1773 svr4_clear_solib (void)
1774 {
1775 struct svr4_info *info;
1776
1777 info = get_svr4_info ();
1778 info->debug_base = 0;
1779 info->debug_loader_offset_p = 0;
1780 info->debug_loader_offset = 0;
1781 xfree (info->debug_loader_name);
1782 info->debug_loader_name = NULL;
1783 }
1784
1785 static void
1786 svr4_free_so (struct so_list *so)
1787 {
1788 xfree (so->lm_info->lm);
1789 xfree (so->lm_info);
1790 }
1791
1792
1793 /* Clear any bits of ADDR that wouldn't fit in a target-format
1794 data pointer. "Data pointer" here refers to whatever sort of
1795 address the dynamic linker uses to manage its sections. At the
1796 moment, we don't support shared libraries on any processors where
1797 code and data pointers are different sizes.
1798
1799 This isn't really the right solution. What we really need here is
1800 a way to do arithmetic on CORE_ADDR values that respects the
1801 natural pointer/address correspondence. (For example, on the MIPS,
1802 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1803 sign-extend the value. There, simply truncating the bits above
1804 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1805 be a new gdbarch method or something. */
1806 static CORE_ADDR
1807 svr4_truncate_ptr (CORE_ADDR addr)
1808 {
1809 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1810 /* We don't need to truncate anything, and the bit twiddling below
1811 will fail due to overflow problems. */
1812 return addr;
1813 else
1814 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
1815 }
1816
1817
1818 static void
1819 svr4_relocate_section_addresses (struct so_list *so,
1820 struct target_section *sec)
1821 {
1822 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1823 sec->bfd));
1824 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1825 sec->bfd));
1826 }
1827 \f
1828
1829 /* Architecture-specific operations. */
1830
1831 /* Per-architecture data key. */
1832 static struct gdbarch_data *solib_svr4_data;
1833
1834 struct solib_svr4_ops
1835 {
1836 /* Return a description of the layout of `struct link_map'. */
1837 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1838 };
1839
1840 /* Return a default for the architecture-specific operations. */
1841
1842 static void *
1843 solib_svr4_init (struct obstack *obstack)
1844 {
1845 struct solib_svr4_ops *ops;
1846
1847 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1848 ops->fetch_link_map_offsets = NULL;
1849 return ops;
1850 }
1851
1852 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1853 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1854
1855 void
1856 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1857 struct link_map_offsets *(*flmo) (void))
1858 {
1859 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1860
1861 ops->fetch_link_map_offsets = flmo;
1862
1863 set_solib_ops (gdbarch, &svr4_so_ops);
1864 }
1865
1866 /* Fetch a link_map_offsets structure using the architecture-specific
1867 `struct link_map_offsets' fetcher. */
1868
1869 static struct link_map_offsets *
1870 svr4_fetch_link_map_offsets (void)
1871 {
1872 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1873
1874 gdb_assert (ops->fetch_link_map_offsets);
1875 return ops->fetch_link_map_offsets ();
1876 }
1877
1878 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1879
1880 static int
1881 svr4_have_link_map_offsets (void)
1882 {
1883 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1884 return (ops->fetch_link_map_offsets != NULL);
1885 }
1886 \f
1887
1888 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1889 `struct r_debug' and a `struct link_map' that are binary compatible
1890 with the origional SVR4 implementation. */
1891
1892 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1893 for an ILP32 SVR4 system. */
1894
1895 struct link_map_offsets *
1896 svr4_ilp32_fetch_link_map_offsets (void)
1897 {
1898 static struct link_map_offsets lmo;
1899 static struct link_map_offsets *lmp = NULL;
1900
1901 if (lmp == NULL)
1902 {
1903 lmp = &lmo;
1904
1905 lmo.r_version_offset = 0;
1906 lmo.r_version_size = 4;
1907 lmo.r_map_offset = 4;
1908 lmo.r_brk_offset = 8;
1909 lmo.r_ldsomap_offset = 20;
1910
1911 /* Everything we need is in the first 20 bytes. */
1912 lmo.link_map_size = 20;
1913 lmo.l_addr_offset = 0;
1914 lmo.l_name_offset = 4;
1915 lmo.l_ld_offset = 8;
1916 lmo.l_next_offset = 12;
1917 lmo.l_prev_offset = 16;
1918 }
1919
1920 return lmp;
1921 }
1922
1923 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1924 for an LP64 SVR4 system. */
1925
1926 struct link_map_offsets *
1927 svr4_lp64_fetch_link_map_offsets (void)
1928 {
1929 static struct link_map_offsets lmo;
1930 static struct link_map_offsets *lmp = NULL;
1931
1932 if (lmp == NULL)
1933 {
1934 lmp = &lmo;
1935
1936 lmo.r_version_offset = 0;
1937 lmo.r_version_size = 4;
1938 lmo.r_map_offset = 8;
1939 lmo.r_brk_offset = 16;
1940 lmo.r_ldsomap_offset = 40;
1941
1942 /* Everything we need is in the first 40 bytes. */
1943 lmo.link_map_size = 40;
1944 lmo.l_addr_offset = 0;
1945 lmo.l_name_offset = 8;
1946 lmo.l_ld_offset = 16;
1947 lmo.l_next_offset = 24;
1948 lmo.l_prev_offset = 32;
1949 }
1950
1951 return lmp;
1952 }
1953 \f
1954
1955 struct target_so_ops svr4_so_ops;
1956
1957 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1958 different rule for symbol lookup. The lookup begins here in the DSO, not in
1959 the main executable. */
1960
1961 static struct symbol *
1962 elf_lookup_lib_symbol (const struct objfile *objfile,
1963 const char *name,
1964 const char *linkage_name,
1965 const domain_enum domain)
1966 {
1967 bfd *abfd;
1968
1969 if (objfile == symfile_objfile)
1970 abfd = exec_bfd;
1971 else
1972 {
1973 /* OBJFILE should have been passed as the non-debug one. */
1974 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1975
1976 abfd = objfile->obfd;
1977 }
1978
1979 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
1980 return NULL;
1981
1982 return lookup_global_symbol_from_objfile
1983 (objfile, name, linkage_name, domain);
1984 }
1985
1986 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1987
1988 void
1989 _initialize_svr4_solib (void)
1990 {
1991 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1992 solib_svr4_pspace_data
1993 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
1994
1995 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1996 svr4_so_ops.free_so = svr4_free_so;
1997 svr4_so_ops.clear_solib = svr4_clear_solib;
1998 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1999 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2000 svr4_so_ops.current_sos = svr4_current_sos;
2001 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2002 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2003 svr4_so_ops.bfd_open = solib_bfd_open;
2004 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2005 svr4_so_ops.same = svr4_same;
2006 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2007 }
This page took 0.115847 seconds and 4 git commands to generate.