Memory error when reading wrong core file.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38
39 #include "gdb_assert.h"
40
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54
55 /* Link map info to include in an allocated so_list entry */
56
57 struct lm_info
58 {
59 /* Pointer to copy of link map from inferior. The type is char *
60 rather than void *, so that we may use byte offsets to find the
61 various fields without the need for a cast. */
62 gdb_byte *lm;
63
64 /* Amount by which addresses in the binary should be relocated to
65 match the inferior. This could most often be taken directly
66 from lm, but when prelinking is involved and the prelink base
67 address changes, we may need a different offset, we want to
68 warn about the difference and compute it only once. */
69 CORE_ADDR l_addr;
70
71 /* The target location of lm. */
72 CORE_ADDR lm_addr;
73 };
74
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
83 static char *solib_break_names[] =
84 {
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
89 "__dl_rtld_db_dlactivity",
90 "_rtld_debug_state",
91
92 NULL
93 };
94
95 static char *bkpt_names[] =
96 {
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102
103 static char *main_name_list[] =
104 {
105 "main_$main",
106 NULL
107 };
108
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
111
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115 if (strcmp (gdb_so_name, inferior_so_name) == 0)
116 return 1;
117
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126 return 1;
127
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132 return 1;
133
134 return 0;
135 }
136
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142
143 /* link map access functions */
144
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150
151 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 ptr_type);
153 }
154
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159
160 return lmo->l_ld_offset >= 0;
161 }
162
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168
169 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 ptr_type);
171 }
172
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176 if (so->lm_info->l_addr == (CORE_ADDR)-1)
177 {
178 struct bfd_section *dyninfo_sect;
179 CORE_ADDR l_addr, l_dynaddr, dynaddr;
180
181 l_addr = LM_ADDR_FROM_LINK_MAP (so);
182
183 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 goto set_addr;
185
186 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187
188 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189 if (dyninfo_sect == NULL)
190 goto set_addr;
191
192 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193
194 if (dynaddr + l_addr != l_dynaddr)
195 {
196 CORE_ADDR align = 0x1000;
197 CORE_ADDR minpagesize = align;
198
199 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 {
201 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 int i;
204
205 align = 1;
206
207 for (i = 0; i < ehdr->e_phnum; i++)
208 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 align = phdr[i].p_align;
210
211 minpagesize = get_elf_backend_data (abfd)->minpagesize;
212 }
213
214 /* Turn it into a mask. */
215 align--;
216
217 /* If the changes match the alignment requirements, we
218 assume we're using a core file that was generated by the
219 same binary, just prelinked with a different base offset.
220 If it doesn't match, we may have a different binary, the
221 same binary with the dynamic table loaded at an unrelated
222 location, or anything, really. To avoid regressions,
223 don't adjust the base offset in the latter case, although
224 odds are that, if things really changed, debugging won't
225 quite work.
226
227 One could expect more the condition
228 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 but the one below is relaxed for PPC. The PPC kernel supports
230 either 4k or 64k page sizes. To be prepared for 64k pages,
231 PPC ELF files are built using an alignment requirement of 64k.
232 However, when running on a kernel supporting 4k pages, the memory
233 mapping of the library may not actually happen on a 64k boundary!
234
235 (In the usual case where (l_addr & align) == 0, this check is
236 equivalent to the possibly expected check above.)
237
238 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
239
240 if ((l_addr & (minpagesize - 1)) == 0
241 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
242 {
243 l_addr = l_dynaddr - dynaddr;
244
245 if (info_verbose)
246 {
247 warning (_(".dynamic section for \"%s\" "
248 "is not at the expected address"), so->so_name);
249 warning (_("difference appears to be caused by prelink, "
250 "adjusting expectations"));
251 }
252 }
253 else
254 warning (_(".dynamic section for \"%s\" "
255 "is not at the expected address "
256 "(wrong library or version mismatch?)"), so->so_name);
257 }
258
259 set_addr:
260 so->lm_info->l_addr = l_addr;
261 }
262
263 return so->lm_info->l_addr;
264 }
265
266 static CORE_ADDR
267 LM_NEXT (struct so_list *so)
268 {
269 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
270 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
271
272 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
273 ptr_type);
274 }
275
276 static CORE_ADDR
277 LM_NAME (struct so_list *so)
278 {
279 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
280 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
281
282 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
283 ptr_type);
284 }
285
286 static int
287 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
288 {
289 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
290 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
291
292 /* Assume that everything is a library if the dynamic loader was loaded
293 late by a static executable. */
294 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
295 return 0;
296
297 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
298 ptr_type) == 0;
299 }
300
301 /* Per pspace SVR4 specific data. */
302
303 struct svr4_info
304 {
305 CORE_ADDR debug_base; /* Base of dynamic linker structures */
306
307 /* Validity flag for debug_loader_offset. */
308 int debug_loader_offset_p;
309
310 /* Load address for the dynamic linker, inferred. */
311 CORE_ADDR debug_loader_offset;
312
313 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
314 char *debug_loader_name;
315
316 /* Load map address for the main executable. */
317 CORE_ADDR main_lm_addr;
318
319 CORE_ADDR interp_text_sect_low;
320 CORE_ADDR interp_text_sect_high;
321 CORE_ADDR interp_plt_sect_low;
322 CORE_ADDR interp_plt_sect_high;
323 };
324
325 /* Per-program-space data key. */
326 static const struct program_space_data *solib_svr4_pspace_data;
327
328 static void
329 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
330 {
331 struct svr4_info *info;
332
333 info = program_space_data (pspace, solib_svr4_pspace_data);
334 xfree (info);
335 }
336
337 /* Get the current svr4 data. If none is found yet, add it now. This
338 function always returns a valid object. */
339
340 static struct svr4_info *
341 get_svr4_info (void)
342 {
343 struct svr4_info *info;
344
345 info = program_space_data (current_program_space, solib_svr4_pspace_data);
346 if (info != NULL)
347 return info;
348
349 info = XZALLOC (struct svr4_info);
350 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
351 return info;
352 }
353
354 /* Local function prototypes */
355
356 static int match_main (char *);
357
358 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
359
360 /*
361
362 LOCAL FUNCTION
363
364 bfd_lookup_symbol -- lookup the value for a specific symbol
365
366 SYNOPSIS
367
368 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
369
370 DESCRIPTION
371
372 An expensive way to lookup the value of a single symbol for
373 bfd's that are only temporary anyway. This is used by the
374 shared library support to find the address of the debugger
375 notification routine in the shared library.
376
377 The returned symbol may be in a code or data section; functions
378 will normally be in a code section, but may be in a data section
379 if this architecture uses function descriptors.
380
381 Note that 0 is specifically allowed as an error return (no
382 such symbol).
383 */
384
385 static CORE_ADDR
386 bfd_lookup_symbol (bfd *abfd, char *symname)
387 {
388 long storage_needed;
389 asymbol *sym;
390 asymbol **symbol_table;
391 unsigned int number_of_symbols;
392 unsigned int i;
393 struct cleanup *back_to;
394 CORE_ADDR symaddr = 0;
395
396 storage_needed = bfd_get_symtab_upper_bound (abfd);
397
398 if (storage_needed > 0)
399 {
400 symbol_table = (asymbol **) xmalloc (storage_needed);
401 back_to = make_cleanup (xfree, symbol_table);
402 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
403
404 for (i = 0; i < number_of_symbols; i++)
405 {
406 sym = *symbol_table++;
407 if (strcmp (sym->name, symname) == 0
408 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
409 {
410 /* BFD symbols are section relative. */
411 symaddr = sym->value + sym->section->vma;
412 break;
413 }
414 }
415 do_cleanups (back_to);
416 }
417
418 if (symaddr)
419 return symaddr;
420
421 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
422 have to check the dynamic string table too. */
423
424 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
425
426 if (storage_needed > 0)
427 {
428 symbol_table = (asymbol **) xmalloc (storage_needed);
429 back_to = make_cleanup (xfree, symbol_table);
430 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
431
432 for (i = 0; i < number_of_symbols; i++)
433 {
434 sym = *symbol_table++;
435
436 if (strcmp (sym->name, symname) == 0
437 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
438 {
439 /* BFD symbols are section relative. */
440 symaddr = sym->value + sym->section->vma;
441 break;
442 }
443 }
444 do_cleanups (back_to);
445 }
446
447 return symaddr;
448 }
449
450
451 /* Read program header TYPE from inferior memory. The header is found
452 by scanning the OS auxillary vector.
453
454 Return a pointer to allocated memory holding the program header contents,
455 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
456 size of those contents is returned to P_SECT_SIZE. Likewise, the target
457 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
458
459 static gdb_byte *
460 read_program_header (int type, int *p_sect_size, int *p_arch_size)
461 {
462 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
463 CORE_ADDR at_phdr, at_phent, at_phnum;
464 int arch_size, sect_size;
465 CORE_ADDR sect_addr;
466 gdb_byte *buf;
467
468 /* Get required auxv elements from target. */
469 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
470 return 0;
471 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
472 return 0;
473 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
474 return 0;
475 if (!at_phdr || !at_phnum)
476 return 0;
477
478 /* Determine ELF architecture type. */
479 if (at_phent == sizeof (Elf32_External_Phdr))
480 arch_size = 32;
481 else if (at_phent == sizeof (Elf64_External_Phdr))
482 arch_size = 64;
483 else
484 return 0;
485
486 /* Find .dynamic section via the PT_DYNAMIC PHDR. */
487 if (arch_size == 32)
488 {
489 Elf32_External_Phdr phdr;
490 int i;
491
492 /* Search for requested PHDR. */
493 for (i = 0; i < at_phnum; i++)
494 {
495 if (target_read_memory (at_phdr + i * sizeof (phdr),
496 (gdb_byte *)&phdr, sizeof (phdr)))
497 return 0;
498
499 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
500 4, byte_order) == type)
501 break;
502 }
503
504 if (i == at_phnum)
505 return 0;
506
507 /* Retrieve address and size. */
508 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
509 4, byte_order);
510 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
511 4, byte_order);
512 }
513 else
514 {
515 Elf64_External_Phdr phdr;
516 int i;
517
518 /* Search for requested PHDR. */
519 for (i = 0; i < at_phnum; i++)
520 {
521 if (target_read_memory (at_phdr + i * sizeof (phdr),
522 (gdb_byte *)&phdr, sizeof (phdr)))
523 return 0;
524
525 if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
526 4, byte_order) == type)
527 break;
528 }
529
530 if (i == at_phnum)
531 return 0;
532
533 /* Retrieve address and size. */
534 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
535 8, byte_order);
536 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
537 8, byte_order);
538 }
539
540 /* Read in requested program header. */
541 buf = xmalloc (sect_size);
542 if (target_read_memory (sect_addr, buf, sect_size))
543 {
544 xfree (buf);
545 return NULL;
546 }
547
548 if (p_arch_size)
549 *p_arch_size = arch_size;
550 if (p_sect_size)
551 *p_sect_size = sect_size;
552
553 return buf;
554 }
555
556
557 /* Return program interpreter string. */
558 static gdb_byte *
559 find_program_interpreter (void)
560 {
561 gdb_byte *buf = NULL;
562
563 /* If we have an exec_bfd, use its section table. */
564 if (exec_bfd
565 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
566 {
567 struct bfd_section *interp_sect;
568
569 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
570 if (interp_sect != NULL)
571 {
572 CORE_ADDR sect_addr = bfd_section_vma (exec_bfd, interp_sect);
573 int sect_size = bfd_section_size (exec_bfd, interp_sect);
574
575 buf = xmalloc (sect_size);
576 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
577 }
578 }
579
580 /* If we didn't find it, use the target auxillary vector. */
581 if (!buf)
582 buf = read_program_header (PT_INTERP, NULL, NULL);
583
584 return buf;
585 }
586
587
588 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
589 returned and the corresponding PTR is set. */
590
591 static int
592 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
593 {
594 int arch_size, step, sect_size;
595 long dyn_tag;
596 CORE_ADDR dyn_ptr, dyn_addr;
597 gdb_byte *bufend, *bufstart, *buf;
598 Elf32_External_Dyn *x_dynp_32;
599 Elf64_External_Dyn *x_dynp_64;
600 struct bfd_section *sect;
601 struct target_section *target_section;
602
603 if (abfd == NULL)
604 return 0;
605
606 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
607 return 0;
608
609 arch_size = bfd_get_arch_size (abfd);
610 if (arch_size == -1)
611 return 0;
612
613 /* Find the start address of the .dynamic section. */
614 sect = bfd_get_section_by_name (abfd, ".dynamic");
615 if (sect == NULL)
616 return 0;
617
618 for (target_section = current_target_sections->sections;
619 target_section < current_target_sections->sections_end;
620 target_section++)
621 if (sect == target_section->the_bfd_section)
622 break;
623 if (target_section < current_target_sections->sections_end)
624 dyn_addr = target_section->addr;
625 else
626 {
627 /* ABFD may come from OBJFILE acting only as a symbol file without being
628 loaded into the target (see add_symbol_file_command). This case is
629 such fallback to the file VMA address without the possibility of
630 having the section relocated to its actual in-memory address. */
631
632 dyn_addr = bfd_section_vma (abfd, sect);
633 }
634
635 /* Read in .dynamic from the BFD. We will get the actual value
636 from memory later. */
637 sect_size = bfd_section_size (abfd, sect);
638 buf = bufstart = alloca (sect_size);
639 if (!bfd_get_section_contents (abfd, sect,
640 buf, 0, sect_size))
641 return 0;
642
643 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
644 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
645 : sizeof (Elf64_External_Dyn);
646 for (bufend = buf + sect_size;
647 buf < bufend;
648 buf += step)
649 {
650 if (arch_size == 32)
651 {
652 x_dynp_32 = (Elf32_External_Dyn *) buf;
653 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
654 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
655 }
656 else
657 {
658 x_dynp_64 = (Elf64_External_Dyn *) buf;
659 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
660 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
661 }
662 if (dyn_tag == DT_NULL)
663 return 0;
664 if (dyn_tag == dyntag)
665 {
666 /* If requested, try to read the runtime value of this .dynamic
667 entry. */
668 if (ptr)
669 {
670 struct type *ptr_type;
671 gdb_byte ptr_buf[8];
672 CORE_ADDR ptr_addr;
673
674 ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
675 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
676 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
677 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
678 *ptr = dyn_ptr;
679 }
680 return 1;
681 }
682 }
683
684 return 0;
685 }
686
687 /* Scan for DYNTAG in .dynamic section of the target's main executable,
688 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
689 returned and the corresponding PTR is set. */
690
691 static int
692 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
693 {
694 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
695 int sect_size, arch_size, step;
696 long dyn_tag;
697 CORE_ADDR dyn_ptr;
698 gdb_byte *bufend, *bufstart, *buf;
699
700 /* Read in .dynamic section. */
701 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
702 if (!buf)
703 return 0;
704
705 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
706 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
707 : sizeof (Elf64_External_Dyn);
708 for (bufend = buf + sect_size;
709 buf < bufend;
710 buf += step)
711 {
712 if (arch_size == 32)
713 {
714 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
715 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
716 4, byte_order);
717 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
718 4, byte_order);
719 }
720 else
721 {
722 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
723 dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
724 8, byte_order);
725 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
726 8, byte_order);
727 }
728 if (dyn_tag == DT_NULL)
729 break;
730
731 if (dyn_tag == dyntag)
732 {
733 if (ptr)
734 *ptr = dyn_ptr;
735
736 xfree (bufstart);
737 return 1;
738 }
739 }
740
741 xfree (bufstart);
742 return 0;
743 }
744
745
746 /*
747
748 LOCAL FUNCTION
749
750 elf_locate_base -- locate the base address of dynamic linker structs
751 for SVR4 elf targets.
752
753 SYNOPSIS
754
755 CORE_ADDR elf_locate_base (void)
756
757 DESCRIPTION
758
759 For SVR4 elf targets the address of the dynamic linker's runtime
760 structure is contained within the dynamic info section in the
761 executable file. The dynamic section is also mapped into the
762 inferior address space. Because the runtime loader fills in the
763 real address before starting the inferior, we have to read in the
764 dynamic info section from the inferior address space.
765 If there are any errors while trying to find the address, we
766 silently return 0, otherwise the found address is returned.
767
768 */
769
770 static CORE_ADDR
771 elf_locate_base (void)
772 {
773 struct minimal_symbol *msymbol;
774 CORE_ADDR dyn_ptr;
775
776 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
777 instead of DT_DEBUG, although they sometimes contain an unused
778 DT_DEBUG. */
779 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
780 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
781 {
782 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
783 gdb_byte *pbuf;
784 int pbuf_size = TYPE_LENGTH (ptr_type);
785 pbuf = alloca (pbuf_size);
786 /* DT_MIPS_RLD_MAP contains a pointer to the address
787 of the dynamic link structure. */
788 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
789 return 0;
790 return extract_typed_address (pbuf, ptr_type);
791 }
792
793 /* Find DT_DEBUG. */
794 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
795 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
796 return dyn_ptr;
797
798 /* This may be a static executable. Look for the symbol
799 conventionally named _r_debug, as a last resort. */
800 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
801 if (msymbol != NULL)
802 return SYMBOL_VALUE_ADDRESS (msymbol);
803
804 /* DT_DEBUG entry not found. */
805 return 0;
806 }
807
808 /*
809
810 LOCAL FUNCTION
811
812 locate_base -- locate the base address of dynamic linker structs
813
814 SYNOPSIS
815
816 CORE_ADDR locate_base (struct svr4_info *)
817
818 DESCRIPTION
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
841 executable symbol tables.
842
843 */
844
845 static CORE_ADDR
846 locate_base (struct svr4_info *info)
847 {
848 /* Check to see if we have a currently valid address, and if so, avoid
849 doing all this work again and just return the cached address. If
850 we have no cached address, try to locate it in the dynamic info
851 section for ELF executables. There's no point in doing any of this
852 though if we don't have some link map offsets to work with. */
853
854 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
855 info->debug_base = elf_locate_base ();
856 return info->debug_base;
857 }
858
859 /* Find the first element in the inferior's dynamic link map, and
860 return its address in the inferior.
861
862 FIXME: Perhaps we should validate the info somehow, perhaps by
863 checking r_version for a known version number, or r_state for
864 RT_CONSISTENT. */
865
866 static CORE_ADDR
867 solib_svr4_r_map (struct svr4_info *info)
868 {
869 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
870 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
871 CORE_ADDR addr = 0;
872 volatile struct gdb_exception ex;
873
874 TRY_CATCH (ex, RETURN_MASK_ERROR)
875 {
876 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
877 ptr_type);
878 }
879 exception_print (gdb_stderr, ex);
880 return addr;
881 }
882
883 /* Find r_brk from the inferior's debug base. */
884
885 static CORE_ADDR
886 solib_svr4_r_brk (struct svr4_info *info)
887 {
888 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
889 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
890
891 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
892 ptr_type);
893 }
894
895 /* Find the link map for the dynamic linker (if it is not in the
896 normal list of loaded shared objects). */
897
898 static CORE_ADDR
899 solib_svr4_r_ldsomap (struct svr4_info *info)
900 {
901 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
902 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
903 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
904 ULONGEST version;
905
906 /* Check version, and return zero if `struct r_debug' doesn't have
907 the r_ldsomap member. */
908 version
909 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
910 lmo->r_version_size, byte_order);
911 if (version < 2 || lmo->r_ldsomap_offset == -1)
912 return 0;
913
914 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
915 ptr_type);
916 }
917
918 /* On Solaris systems with some versions of the dynamic linker,
919 ld.so's l_name pointer points to the SONAME in the string table
920 rather than into writable memory. So that GDB can find shared
921 libraries when loading a core file generated by gcore, ensure that
922 memory areas containing the l_name string are saved in the core
923 file. */
924
925 static int
926 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
927 {
928 struct svr4_info *info;
929 CORE_ADDR ldsomap;
930 struct so_list *new;
931 struct cleanup *old_chain;
932 struct link_map_offsets *lmo;
933 CORE_ADDR lm_name;
934
935 info = get_svr4_info ();
936
937 info->debug_base = 0;
938 locate_base (info);
939 if (!info->debug_base)
940 return 0;
941
942 ldsomap = solib_svr4_r_ldsomap (info);
943 if (!ldsomap)
944 return 0;
945
946 lmo = svr4_fetch_link_map_offsets ();
947 new = XZALLOC (struct so_list);
948 old_chain = make_cleanup (xfree, new);
949 new->lm_info = xmalloc (sizeof (struct lm_info));
950 make_cleanup (xfree, new->lm_info);
951 new->lm_info->l_addr = (CORE_ADDR)-1;
952 new->lm_info->lm_addr = ldsomap;
953 new->lm_info->lm = xzalloc (lmo->link_map_size);
954 make_cleanup (xfree, new->lm_info->lm);
955 read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
956 lm_name = LM_NAME (new);
957 do_cleanups (old_chain);
958
959 return (lm_name >= vaddr && lm_name < vaddr + size);
960 }
961
962 /*
963
964 LOCAL FUNCTION
965
966 open_symbol_file_object
967
968 SYNOPSIS
969
970 void open_symbol_file_object (void *from_tty)
971
972 DESCRIPTION
973
974 If no open symbol file, attempt to locate and open the main symbol
975 file. On SVR4 systems, this is the first link map entry. If its
976 name is here, we can open it. Useful when attaching to a process
977 without first loading its symbol file.
978
979 If FROM_TTYP dereferences to a non-zero integer, allow messages to
980 be printed. This parameter is a pointer rather than an int because
981 open_symbol_file_object() is called via catch_errors() and
982 catch_errors() requires a pointer argument. */
983
984 static int
985 open_symbol_file_object (void *from_ttyp)
986 {
987 CORE_ADDR lm, l_name;
988 char *filename;
989 int errcode;
990 int from_tty = *(int *)from_ttyp;
991 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
992 struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
993 int l_name_size = TYPE_LENGTH (ptr_type);
994 gdb_byte *l_name_buf = xmalloc (l_name_size);
995 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
996 struct svr4_info *info = get_svr4_info ();
997
998 if (symfile_objfile)
999 if (!query (_("Attempt to reload symbols from process? ")))
1000 return 0;
1001
1002 /* Always locate the debug struct, in case it has moved. */
1003 info->debug_base = 0;
1004 if (locate_base (info) == 0)
1005 return 0; /* failed somehow... */
1006
1007 /* First link map member should be the executable. */
1008 lm = solib_svr4_r_map (info);
1009 if (lm == 0)
1010 return 0; /* failed somehow... */
1011
1012 /* Read address of name from target memory to GDB. */
1013 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1014
1015 /* Convert the address to host format. */
1016 l_name = extract_typed_address (l_name_buf, ptr_type);
1017
1018 /* Free l_name_buf. */
1019 do_cleanups (cleanups);
1020
1021 if (l_name == 0)
1022 return 0; /* No filename. */
1023
1024 /* Now fetch the filename from target memory. */
1025 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1026 make_cleanup (xfree, filename);
1027
1028 if (errcode)
1029 {
1030 warning (_("failed to read exec filename from attached file: %s"),
1031 safe_strerror (errcode));
1032 return 0;
1033 }
1034
1035 /* Have a pathname: read the symbol file. */
1036 symbol_file_add_main (filename, from_tty);
1037
1038 return 1;
1039 }
1040
1041 /* If no shared library information is available from the dynamic
1042 linker, build a fallback list from other sources. */
1043
1044 static struct so_list *
1045 svr4_default_sos (void)
1046 {
1047 struct svr4_info *info = get_svr4_info ();
1048
1049 struct so_list *head = NULL;
1050 struct so_list **link_ptr = &head;
1051
1052 if (info->debug_loader_offset_p)
1053 {
1054 struct so_list *new = XZALLOC (struct so_list);
1055
1056 new->lm_info = xmalloc (sizeof (struct lm_info));
1057
1058 /* Nothing will ever check the cached copy of the link
1059 map if we set l_addr. */
1060 new->lm_info->l_addr = info->debug_loader_offset;
1061 new->lm_info->lm_addr = 0;
1062 new->lm_info->lm = NULL;
1063
1064 strncpy (new->so_name, info->debug_loader_name,
1065 SO_NAME_MAX_PATH_SIZE - 1);
1066 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1067 strcpy (new->so_original_name, new->so_name);
1068
1069 *link_ptr = new;
1070 link_ptr = &new->next;
1071 }
1072
1073 return head;
1074 }
1075
1076 /* LOCAL FUNCTION
1077
1078 current_sos -- build a list of currently loaded shared objects
1079
1080 SYNOPSIS
1081
1082 struct so_list *current_sos ()
1083
1084 DESCRIPTION
1085
1086 Build a list of `struct so_list' objects describing the shared
1087 objects currently loaded in the inferior. This list does not
1088 include an entry for the main executable file.
1089
1090 Note that we only gather information directly available from the
1091 inferior --- we don't examine any of the shared library files
1092 themselves. The declaration of `struct so_list' says which fields
1093 we provide values for. */
1094
1095 static struct so_list *
1096 svr4_current_sos (void)
1097 {
1098 CORE_ADDR lm;
1099 struct so_list *head = 0;
1100 struct so_list **link_ptr = &head;
1101 CORE_ADDR ldsomap = 0;
1102 struct svr4_info *info;
1103
1104 info = get_svr4_info ();
1105
1106 /* Always locate the debug struct, in case it has moved. */
1107 info->debug_base = 0;
1108 locate_base (info);
1109
1110 /* If we can't find the dynamic linker's base structure, this
1111 must not be a dynamically linked executable. Hmm. */
1112 if (! info->debug_base)
1113 return svr4_default_sos ();
1114
1115 /* Walk the inferior's link map list, and build our list of
1116 `struct so_list' nodes. */
1117 lm = solib_svr4_r_map (info);
1118
1119 while (lm)
1120 {
1121 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1122 struct so_list *new = XZALLOC (struct so_list);
1123 struct cleanup *old_chain = make_cleanup (xfree, new);
1124
1125 new->lm_info = xmalloc (sizeof (struct lm_info));
1126 make_cleanup (xfree, new->lm_info);
1127
1128 new->lm_info->l_addr = (CORE_ADDR)-1;
1129 new->lm_info->lm_addr = lm;
1130 new->lm_info->lm = xzalloc (lmo->link_map_size);
1131 make_cleanup (xfree, new->lm_info->lm);
1132
1133 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1134
1135 lm = LM_NEXT (new);
1136
1137 /* For SVR4 versions, the first entry in the link map is for the
1138 inferior executable, so we must ignore it. For some versions of
1139 SVR4, it has no name. For others (Solaris 2.3 for example), it
1140 does have a name, so we can no longer use a missing name to
1141 decide when to ignore it. */
1142 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1143 {
1144 info->main_lm_addr = new->lm_info->lm_addr;
1145 free_so (new);
1146 }
1147 else
1148 {
1149 int errcode;
1150 char *buffer;
1151
1152 /* Extract this shared object's name. */
1153 target_read_string (LM_NAME (new), &buffer,
1154 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1155 if (errcode != 0)
1156 warning (_("Can't read pathname for load map: %s."),
1157 safe_strerror (errcode));
1158 else
1159 {
1160 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1161 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1162 strcpy (new->so_original_name, new->so_name);
1163 }
1164 xfree (buffer);
1165
1166 /* If this entry has no name, or its name matches the name
1167 for the main executable, don't include it in the list. */
1168 if (! new->so_name[0]
1169 || match_main (new->so_name))
1170 free_so (new);
1171 else
1172 {
1173 new->next = 0;
1174 *link_ptr = new;
1175 link_ptr = &new->next;
1176 }
1177 }
1178
1179 /* On Solaris, the dynamic linker is not in the normal list of
1180 shared objects, so make sure we pick it up too. Having
1181 symbol information for the dynamic linker is quite crucial
1182 for skipping dynamic linker resolver code. */
1183 if (lm == 0 && ldsomap == 0)
1184 lm = ldsomap = solib_svr4_r_ldsomap (info);
1185
1186 discard_cleanups (old_chain);
1187 }
1188
1189 if (head == NULL)
1190 return svr4_default_sos ();
1191
1192 return head;
1193 }
1194
1195 /* Get the address of the link_map for a given OBJFILE. */
1196
1197 CORE_ADDR
1198 svr4_fetch_objfile_link_map (struct objfile *objfile)
1199 {
1200 struct so_list *so;
1201 struct svr4_info *info = get_svr4_info ();
1202
1203 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1204 if (info->main_lm_addr == 0)
1205 solib_add (NULL, 0, &current_target, auto_solib_add);
1206
1207 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1208 if (objfile == symfile_objfile)
1209 return info->main_lm_addr;
1210
1211 /* The other link map addresses may be found by examining the list
1212 of shared libraries. */
1213 for (so = master_so_list (); so; so = so->next)
1214 if (so->objfile == objfile)
1215 return so->lm_info->lm_addr;
1216
1217 /* Not found! */
1218 return 0;
1219 }
1220
1221 /* On some systems, the only way to recognize the link map entry for
1222 the main executable file is by looking at its name. Return
1223 non-zero iff SONAME matches one of the known main executable names. */
1224
1225 static int
1226 match_main (char *soname)
1227 {
1228 char **mainp;
1229
1230 for (mainp = main_name_list; *mainp != NULL; mainp++)
1231 {
1232 if (strcmp (soname, *mainp) == 0)
1233 return (1);
1234 }
1235
1236 return (0);
1237 }
1238
1239 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1240 SVR4 run time loader. */
1241
1242 int
1243 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1244 {
1245 struct svr4_info *info = get_svr4_info ();
1246
1247 return ((pc >= info->interp_text_sect_low
1248 && pc < info->interp_text_sect_high)
1249 || (pc >= info->interp_plt_sect_low
1250 && pc < info->interp_plt_sect_high)
1251 || in_plt_section (pc, NULL));
1252 }
1253
1254 /* Given an executable's ABFD and target, compute the entry-point
1255 address. */
1256
1257 static CORE_ADDR
1258 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1259 {
1260 /* KevinB wrote ... for most targets, the address returned by
1261 bfd_get_start_address() is the entry point for the start
1262 function. But, for some targets, bfd_get_start_address() returns
1263 the address of a function descriptor from which the entry point
1264 address may be extracted. This address is extracted by
1265 gdbarch_convert_from_func_ptr_addr(). The method
1266 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1267 function for targets which don't use function descriptors. */
1268 return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1269 bfd_get_start_address (abfd),
1270 targ);
1271 }
1272
1273 /*
1274
1275 LOCAL FUNCTION
1276
1277 enable_break -- arrange for dynamic linker to hit breakpoint
1278
1279 SYNOPSIS
1280
1281 int enable_break (void)
1282
1283 DESCRIPTION
1284
1285 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1286 debugger interface, support for arranging for the inferior to hit
1287 a breakpoint after mapping in the shared libraries. This function
1288 enables that breakpoint.
1289
1290 For SunOS, there is a special flag location (in_debugger) which we
1291 set to 1. When the dynamic linker sees this flag set, it will set
1292 a breakpoint at a location known only to itself, after saving the
1293 original contents of that place and the breakpoint address itself,
1294 in it's own internal structures. When we resume the inferior, it
1295 will eventually take a SIGTRAP when it runs into the breakpoint.
1296 We handle this (in a different place) by restoring the contents of
1297 the breakpointed location (which is only known after it stops),
1298 chasing around to locate the shared libraries that have been
1299 loaded, then resuming.
1300
1301 For SVR4, the debugger interface structure contains a member (r_brk)
1302 which is statically initialized at the time the shared library is
1303 built, to the offset of a function (_r_debug_state) which is guaran-
1304 teed to be called once before mapping in a library, and again when
1305 the mapping is complete. At the time we are examining this member,
1306 it contains only the unrelocated offset of the function, so we have
1307 to do our own relocation. Later, when the dynamic linker actually
1308 runs, it relocates r_brk to be the actual address of _r_debug_state().
1309
1310 The debugger interface structure also contains an enumeration which
1311 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1312 depending upon whether or not the library is being mapped or unmapped,
1313 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1314 */
1315
1316 static int
1317 enable_break (struct svr4_info *info, int from_tty)
1318 {
1319 struct minimal_symbol *msymbol;
1320 char **bkpt_namep;
1321 asection *interp_sect;
1322 gdb_byte *interp_name;
1323 CORE_ADDR sym_addr;
1324
1325 info->interp_text_sect_low = info->interp_text_sect_high = 0;
1326 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1327
1328 /* If we already have a shared library list in the target, and
1329 r_debug contains r_brk, set the breakpoint there - this should
1330 mean r_brk has already been relocated. Assume the dynamic linker
1331 is the object containing r_brk. */
1332
1333 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1334 sym_addr = 0;
1335 if (info->debug_base && solib_svr4_r_map (info) != 0)
1336 sym_addr = solib_svr4_r_brk (info);
1337
1338 if (sym_addr != 0)
1339 {
1340 struct obj_section *os;
1341
1342 sym_addr = gdbarch_addr_bits_remove
1343 (target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1344 sym_addr,
1345 &current_target));
1346
1347 /* On at least some versions of Solaris there's a dynamic relocation
1348 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1349 we get control before the dynamic linker has self-relocated.
1350 Check if SYM_ADDR is in a known section, if it is assume we can
1351 trust its value. This is just a heuristic though, it could go away
1352 or be replaced if it's getting in the way.
1353
1354 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1355 however it's spelled in your particular system) is ARM or Thumb.
1356 That knowledge is encoded in the address, if it's Thumb the low bit
1357 is 1. However, we've stripped that info above and it's not clear
1358 what all the consequences are of passing a non-addr_bits_remove'd
1359 address to create_solib_event_breakpoint. The call to
1360 find_pc_section verifies we know about the address and have some
1361 hope of computing the right kind of breakpoint to use (via
1362 symbol info). It does mean that GDB needs to be pointed at a
1363 non-stripped version of the dynamic linker in order to obtain
1364 information it already knows about. Sigh. */
1365
1366 os = find_pc_section (sym_addr);
1367 if (os != NULL)
1368 {
1369 /* Record the relocated start and end address of the dynamic linker
1370 text and plt section for svr4_in_dynsym_resolve_code. */
1371 bfd *tmp_bfd;
1372 CORE_ADDR load_addr;
1373
1374 tmp_bfd = os->objfile->obfd;
1375 load_addr = ANOFFSET (os->objfile->section_offsets,
1376 os->objfile->sect_index_text);
1377
1378 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1379 if (interp_sect)
1380 {
1381 info->interp_text_sect_low =
1382 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1383 info->interp_text_sect_high =
1384 info->interp_text_sect_low
1385 + bfd_section_size (tmp_bfd, interp_sect);
1386 }
1387 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1388 if (interp_sect)
1389 {
1390 info->interp_plt_sect_low =
1391 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1392 info->interp_plt_sect_high =
1393 info->interp_plt_sect_low
1394 + bfd_section_size (tmp_bfd, interp_sect);
1395 }
1396
1397 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1398 return 1;
1399 }
1400 }
1401
1402 /* Find the program interpreter; if not found, warn the user and drop
1403 into the old breakpoint at symbol code. */
1404 interp_name = find_program_interpreter ();
1405 if (interp_name)
1406 {
1407 CORE_ADDR load_addr = 0;
1408 int load_addr_found = 0;
1409 int loader_found_in_list = 0;
1410 struct so_list *so;
1411 bfd *tmp_bfd = NULL;
1412 struct target_ops *tmp_bfd_target;
1413 volatile struct gdb_exception ex;
1414
1415 sym_addr = 0;
1416
1417 /* Now we need to figure out where the dynamic linker was
1418 loaded so that we can load its symbols and place a breakpoint
1419 in the dynamic linker itself.
1420
1421 This address is stored on the stack. However, I've been unable
1422 to find any magic formula to find it for Solaris (appears to
1423 be trivial on GNU/Linux). Therefore, we have to try an alternate
1424 mechanism to find the dynamic linker's base address. */
1425
1426 TRY_CATCH (ex, RETURN_MASK_ALL)
1427 {
1428 tmp_bfd = solib_bfd_open (interp_name);
1429 }
1430 if (tmp_bfd == NULL)
1431 goto bkpt_at_symbol;
1432
1433 /* Now convert the TMP_BFD into a target. That way target, as
1434 well as BFD operations can be used. Note that closing the
1435 target will also close the underlying bfd. */
1436 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1437
1438 /* On a running target, we can get the dynamic linker's base
1439 address from the shared library table. */
1440 so = master_so_list ();
1441 while (so)
1442 {
1443 if (svr4_same_1 (interp_name, so->so_original_name))
1444 {
1445 load_addr_found = 1;
1446 loader_found_in_list = 1;
1447 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1448 break;
1449 }
1450 so = so->next;
1451 }
1452
1453 /* If we were not able to find the base address of the loader
1454 from our so_list, then try using the AT_BASE auxilliary entry. */
1455 if (!load_addr_found)
1456 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1457 {
1458 int addr_bit = gdbarch_addr_bit (target_gdbarch);
1459
1460 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1461 that `+ load_addr' will overflow CORE_ADDR width not creating
1462 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1463 GDB. */
1464
1465 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1466 {
1467 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1468 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1469 tmp_bfd_target);
1470
1471 gdb_assert (load_addr < space_size);
1472
1473 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1474 64bit ld.so with 32bit executable, it should not happen. */
1475
1476 if (tmp_entry_point < space_size
1477 && tmp_entry_point + load_addr >= space_size)
1478 load_addr -= space_size;
1479 }
1480
1481 load_addr_found = 1;
1482 }
1483
1484 /* Otherwise we find the dynamic linker's base address by examining
1485 the current pc (which should point at the entry point for the
1486 dynamic linker) and subtracting the offset of the entry point.
1487
1488 This is more fragile than the previous approaches, but is a good
1489 fallback method because it has actually been working well in
1490 most cases. */
1491 if (!load_addr_found)
1492 {
1493 struct regcache *regcache
1494 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1495 load_addr = (regcache_read_pc (regcache)
1496 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1497 }
1498
1499 if (!loader_found_in_list)
1500 {
1501 info->debug_loader_name = xstrdup (interp_name);
1502 info->debug_loader_offset_p = 1;
1503 info->debug_loader_offset = load_addr;
1504 solib_add (NULL, from_tty, &current_target, auto_solib_add);
1505 }
1506
1507 /* Record the relocated start and end address of the dynamic linker
1508 text and plt section for svr4_in_dynsym_resolve_code. */
1509 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1510 if (interp_sect)
1511 {
1512 info->interp_text_sect_low =
1513 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1514 info->interp_text_sect_high =
1515 info->interp_text_sect_low
1516 + bfd_section_size (tmp_bfd, interp_sect);
1517 }
1518 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1519 if (interp_sect)
1520 {
1521 info->interp_plt_sect_low =
1522 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1523 info->interp_plt_sect_high =
1524 info->interp_plt_sect_low
1525 + bfd_section_size (tmp_bfd, interp_sect);
1526 }
1527
1528 /* Now try to set a breakpoint in the dynamic linker. */
1529 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1530 {
1531 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1532 if (sym_addr != 0)
1533 break;
1534 }
1535
1536 if (sym_addr != 0)
1537 /* Convert 'sym_addr' from a function pointer to an address.
1538 Because we pass tmp_bfd_target instead of the current
1539 target, this will always produce an unrelocated value. */
1540 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1541 sym_addr,
1542 tmp_bfd_target);
1543
1544 /* We're done with both the temporary bfd and target. Remember,
1545 closing the target closes the underlying bfd. */
1546 target_close (tmp_bfd_target, 0);
1547
1548 if (sym_addr != 0)
1549 {
1550 create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1551 xfree (interp_name);
1552 return 1;
1553 }
1554
1555 /* For whatever reason we couldn't set a breakpoint in the dynamic
1556 linker. Warn and drop into the old code. */
1557 bkpt_at_symbol:
1558 xfree (interp_name);
1559 warning (_("Unable to find dynamic linker breakpoint function.\n"
1560 "GDB will be unable to debug shared library initializers\n"
1561 "and track explicitly loaded dynamic code."));
1562 }
1563
1564 /* Scan through the lists of symbols, trying to look up the symbol and
1565 set a breakpoint there. Terminate loop when we/if we succeed. */
1566
1567 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1568 {
1569 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1570 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1571 {
1572 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1573 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1574 sym_addr,
1575 &current_target);
1576 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1577 return 1;
1578 }
1579 }
1580
1581 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1582 {
1583 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1584 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1585 {
1586 sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1587 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1588 sym_addr,
1589 &current_target);
1590 create_solib_event_breakpoint (target_gdbarch, sym_addr);
1591 return 1;
1592 }
1593 }
1594 return 0;
1595 }
1596
1597 /*
1598
1599 LOCAL FUNCTION
1600
1601 special_symbol_handling -- additional shared library symbol handling
1602
1603 SYNOPSIS
1604
1605 void special_symbol_handling ()
1606
1607 DESCRIPTION
1608
1609 Once the symbols from a shared object have been loaded in the usual
1610 way, we are called to do any system specific symbol handling that
1611 is needed.
1612
1613 For SunOS4, this consisted of grunging around in the dynamic
1614 linkers structures to find symbol definitions for "common" symbols
1615 and adding them to the minimal symbol table for the runtime common
1616 objfile.
1617
1618 However, for SVR4, there's nothing to do.
1619
1620 */
1621
1622 static void
1623 svr4_special_symbol_handling (void)
1624 {
1625 svr4_relocate_main_executable ();
1626 }
1627
1628 /* Decide if the objfile needs to be relocated. As indicated above,
1629 we will only be here when execution is stopped at the beginning
1630 of the program. Relocation is necessary if the address at which
1631 we are presently stopped differs from the start address stored in
1632 the executable AND there's no interpreter section. The condition
1633 regarding the interpreter section is very important because if
1634 there *is* an interpreter section, execution will begin there
1635 instead. When there is an interpreter section, the start address
1636 is (presumably) used by the interpreter at some point to start
1637 execution of the program.
1638
1639 If there is an interpreter, it is normal for it to be set to an
1640 arbitrary address at the outset. The job of finding it is
1641 handled in enable_break().
1642
1643 So, to summarize, relocations are necessary when there is no
1644 interpreter section and the start address obtained from the
1645 executable is different from the address at which GDB is
1646 currently stopped.
1647
1648 [ The astute reader will note that we also test to make sure that
1649 the executable in question has the DYNAMIC flag set. It is my
1650 opinion that this test is unnecessary (undesirable even). It
1651 was added to avoid inadvertent relocation of an executable
1652 whose e_type member in the ELF header is not ET_DYN. There may
1653 be a time in the future when it is desirable to do relocations
1654 on other types of files as well in which case this condition
1655 should either be removed or modified to accomodate the new file
1656 type. (E.g, an ET_EXEC executable which has been built to be
1657 position-independent could safely be relocated by the OS if
1658 desired. It is true that this violates the ABI, but the ABI
1659 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1660 */
1661
1662 static CORE_ADDR
1663 svr4_static_exec_displacement (void)
1664 {
1665 asection *interp_sect;
1666 struct regcache *regcache
1667 = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1668 CORE_ADDR pc = regcache_read_pc (regcache);
1669
1670 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1671 if (interp_sect == NULL
1672 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1673 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1674 return pc - exec_entry_point (exec_bfd, &exec_ops);
1675
1676 return 0;
1677 }
1678
1679 /* We relocate all of the sections by the same amount. This
1680 behavior is mandated by recent editions of the System V ABI.
1681 According to the System V Application Binary Interface,
1682 Edition 4.1, page 5-5:
1683
1684 ... Though the system chooses virtual addresses for
1685 individual processes, it maintains the segments' relative
1686 positions. Because position-independent code uses relative
1687 addressesing between segments, the difference between
1688 virtual addresses in memory must match the difference
1689 between virtual addresses in the file. The difference
1690 between the virtual address of any segment in memory and
1691 the corresponding virtual address in the file is thus a
1692 single constant value for any one executable or shared
1693 object in a given process. This difference is the base
1694 address. One use of the base address is to relocate the
1695 memory image of the program during dynamic linking.
1696
1697 The same language also appears in Edition 4.0 of the System V
1698 ABI and is left unspecified in some of the earlier editions. */
1699
1700 static CORE_ADDR
1701 svr4_exec_displacement (void)
1702 {
1703 int found;
1704 /* ENTRY_POINT is a possible function descriptor - before
1705 a call to gdbarch_convert_from_func_ptr_addr. */
1706 CORE_ADDR entry_point;
1707
1708 if (exec_bfd == NULL)
1709 return 0;
1710
1711 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) == 1)
1712 return entry_point - bfd_get_start_address (exec_bfd);
1713
1714 return svr4_static_exec_displacement ();
1715 }
1716
1717 /* Relocate the main executable. This function should be called upon
1718 stopping the inferior process at the entry point to the program.
1719 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
1720 different, the main executable is relocated by the proper amount. */
1721
1722 static void
1723 svr4_relocate_main_executable (void)
1724 {
1725 CORE_ADDR displacement = svr4_exec_displacement ();
1726
1727 /* Even if DISPLACEMENT is 0 still try to relocate it as this is a new
1728 difference of in-memory vs. in-file addresses and we could already
1729 relocate the executable at this function to improper address before. */
1730
1731 if (symfile_objfile)
1732 {
1733 struct section_offsets *new_offsets;
1734 int i;
1735
1736 new_offsets = alloca (symfile_objfile->num_sections
1737 * sizeof (*new_offsets));
1738
1739 for (i = 0; i < symfile_objfile->num_sections; i++)
1740 new_offsets->offsets[i] = displacement;
1741
1742 objfile_relocate (symfile_objfile, new_offsets);
1743 }
1744 else if (exec_bfd)
1745 {
1746 asection *asect;
1747
1748 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
1749 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
1750 (bfd_section_vma (exec_bfd, asect)
1751 + displacement));
1752 }
1753 }
1754
1755 /*
1756
1757 GLOBAL FUNCTION
1758
1759 svr4_solib_create_inferior_hook -- shared library startup support
1760
1761 SYNOPSIS
1762
1763 void svr4_solib_create_inferior_hook (int from_tty)
1764
1765 DESCRIPTION
1766
1767 When gdb starts up the inferior, it nurses it along (through the
1768 shell) until it is ready to execute it's first instruction. At this
1769 point, this function gets called via expansion of the macro
1770 SOLIB_CREATE_INFERIOR_HOOK.
1771
1772 For SunOS executables, this first instruction is typically the
1773 one at "_start", or a similar text label, regardless of whether
1774 the executable is statically or dynamically linked. The runtime
1775 startup code takes care of dynamically linking in any shared
1776 libraries, once gdb allows the inferior to continue.
1777
1778 For SVR4 executables, this first instruction is either the first
1779 instruction in the dynamic linker (for dynamically linked
1780 executables) or the instruction at "start" for statically linked
1781 executables. For dynamically linked executables, the system
1782 first exec's /lib/libc.so.N, which contains the dynamic linker,
1783 and starts it running. The dynamic linker maps in any needed
1784 shared libraries, maps in the actual user executable, and then
1785 jumps to "start" in the user executable.
1786
1787 For both SunOS shared libraries, and SVR4 shared libraries, we
1788 can arrange to cooperate with the dynamic linker to discover the
1789 names of shared libraries that are dynamically linked, and the
1790 base addresses to which they are linked.
1791
1792 This function is responsible for discovering those names and
1793 addresses, and saving sufficient information about them to allow
1794 their symbols to be read at a later time.
1795
1796 FIXME
1797
1798 Between enable_break() and disable_break(), this code does not
1799 properly handle hitting breakpoints which the user might have
1800 set in the startup code or in the dynamic linker itself. Proper
1801 handling will probably have to wait until the implementation is
1802 changed to use the "breakpoint handler function" method.
1803
1804 Also, what if child has exit()ed? Must exit loop somehow.
1805 */
1806
1807 static void
1808 svr4_solib_create_inferior_hook (int from_tty)
1809 {
1810 struct inferior *inf;
1811 struct thread_info *tp;
1812 struct svr4_info *info;
1813
1814 info = get_svr4_info ();
1815
1816 /* Relocate the main executable if necessary. */
1817 if (current_inferior ()->attach_flag == 0)
1818 svr4_relocate_main_executable ();
1819
1820 if (!svr4_have_link_map_offsets ())
1821 return;
1822
1823 if (!enable_break (info, from_tty))
1824 return;
1825
1826 #if defined(_SCO_DS)
1827 /* SCO needs the loop below, other systems should be using the
1828 special shared library breakpoints and the shared library breakpoint
1829 service routine.
1830
1831 Now run the target. It will eventually hit the breakpoint, at
1832 which point all of the libraries will have been mapped in and we
1833 can go groveling around in the dynamic linker structures to find
1834 out what we need to know about them. */
1835
1836 inf = current_inferior ();
1837 tp = inferior_thread ();
1838
1839 clear_proceed_status ();
1840 inf->stop_soon = STOP_QUIETLY;
1841 tp->stop_signal = TARGET_SIGNAL_0;
1842 do
1843 {
1844 target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
1845 wait_for_inferior (0);
1846 }
1847 while (tp->stop_signal != TARGET_SIGNAL_TRAP);
1848 inf->stop_soon = NO_STOP_QUIETLY;
1849 #endif /* defined(_SCO_DS) */
1850 }
1851
1852 static void
1853 svr4_clear_solib (void)
1854 {
1855 struct svr4_info *info;
1856
1857 info = get_svr4_info ();
1858 info->debug_base = 0;
1859 info->debug_loader_offset_p = 0;
1860 info->debug_loader_offset = 0;
1861 xfree (info->debug_loader_name);
1862 info->debug_loader_name = NULL;
1863 }
1864
1865 static void
1866 svr4_free_so (struct so_list *so)
1867 {
1868 xfree (so->lm_info->lm);
1869 xfree (so->lm_info);
1870 }
1871
1872
1873 /* Clear any bits of ADDR that wouldn't fit in a target-format
1874 data pointer. "Data pointer" here refers to whatever sort of
1875 address the dynamic linker uses to manage its sections. At the
1876 moment, we don't support shared libraries on any processors where
1877 code and data pointers are different sizes.
1878
1879 This isn't really the right solution. What we really need here is
1880 a way to do arithmetic on CORE_ADDR values that respects the
1881 natural pointer/address correspondence. (For example, on the MIPS,
1882 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1883 sign-extend the value. There, simply truncating the bits above
1884 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1885 be a new gdbarch method or something. */
1886 static CORE_ADDR
1887 svr4_truncate_ptr (CORE_ADDR addr)
1888 {
1889 if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
1890 /* We don't need to truncate anything, and the bit twiddling below
1891 will fail due to overflow problems. */
1892 return addr;
1893 else
1894 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
1895 }
1896
1897
1898 static void
1899 svr4_relocate_section_addresses (struct so_list *so,
1900 struct target_section *sec)
1901 {
1902 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1903 sec->bfd));
1904 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1905 sec->bfd));
1906 }
1907 \f
1908
1909 /* Architecture-specific operations. */
1910
1911 /* Per-architecture data key. */
1912 static struct gdbarch_data *solib_svr4_data;
1913
1914 struct solib_svr4_ops
1915 {
1916 /* Return a description of the layout of `struct link_map'. */
1917 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1918 };
1919
1920 /* Return a default for the architecture-specific operations. */
1921
1922 static void *
1923 solib_svr4_init (struct obstack *obstack)
1924 {
1925 struct solib_svr4_ops *ops;
1926
1927 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1928 ops->fetch_link_map_offsets = NULL;
1929 return ops;
1930 }
1931
1932 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1933 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1934
1935 void
1936 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1937 struct link_map_offsets *(*flmo) (void))
1938 {
1939 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1940
1941 ops->fetch_link_map_offsets = flmo;
1942
1943 set_solib_ops (gdbarch, &svr4_so_ops);
1944 }
1945
1946 /* Fetch a link_map_offsets structure using the architecture-specific
1947 `struct link_map_offsets' fetcher. */
1948
1949 static struct link_map_offsets *
1950 svr4_fetch_link_map_offsets (void)
1951 {
1952 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1953
1954 gdb_assert (ops->fetch_link_map_offsets);
1955 return ops->fetch_link_map_offsets ();
1956 }
1957
1958 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1959
1960 static int
1961 svr4_have_link_map_offsets (void)
1962 {
1963 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
1964 return (ops->fetch_link_map_offsets != NULL);
1965 }
1966 \f
1967
1968 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1969 `struct r_debug' and a `struct link_map' that are binary compatible
1970 with the origional SVR4 implementation. */
1971
1972 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1973 for an ILP32 SVR4 system. */
1974
1975 struct link_map_offsets *
1976 svr4_ilp32_fetch_link_map_offsets (void)
1977 {
1978 static struct link_map_offsets lmo;
1979 static struct link_map_offsets *lmp = NULL;
1980
1981 if (lmp == NULL)
1982 {
1983 lmp = &lmo;
1984
1985 lmo.r_version_offset = 0;
1986 lmo.r_version_size = 4;
1987 lmo.r_map_offset = 4;
1988 lmo.r_brk_offset = 8;
1989 lmo.r_ldsomap_offset = 20;
1990
1991 /* Everything we need is in the first 20 bytes. */
1992 lmo.link_map_size = 20;
1993 lmo.l_addr_offset = 0;
1994 lmo.l_name_offset = 4;
1995 lmo.l_ld_offset = 8;
1996 lmo.l_next_offset = 12;
1997 lmo.l_prev_offset = 16;
1998 }
1999
2000 return lmp;
2001 }
2002
2003 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2004 for an LP64 SVR4 system. */
2005
2006 struct link_map_offsets *
2007 svr4_lp64_fetch_link_map_offsets (void)
2008 {
2009 static struct link_map_offsets lmo;
2010 static struct link_map_offsets *lmp = NULL;
2011
2012 if (lmp == NULL)
2013 {
2014 lmp = &lmo;
2015
2016 lmo.r_version_offset = 0;
2017 lmo.r_version_size = 4;
2018 lmo.r_map_offset = 8;
2019 lmo.r_brk_offset = 16;
2020 lmo.r_ldsomap_offset = 40;
2021
2022 /* Everything we need is in the first 40 bytes. */
2023 lmo.link_map_size = 40;
2024 lmo.l_addr_offset = 0;
2025 lmo.l_name_offset = 8;
2026 lmo.l_ld_offset = 16;
2027 lmo.l_next_offset = 24;
2028 lmo.l_prev_offset = 32;
2029 }
2030
2031 return lmp;
2032 }
2033 \f
2034
2035 struct target_so_ops svr4_so_ops;
2036
2037 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2038 different rule for symbol lookup. The lookup begins here in the DSO, not in
2039 the main executable. */
2040
2041 static struct symbol *
2042 elf_lookup_lib_symbol (const struct objfile *objfile,
2043 const char *name,
2044 const char *linkage_name,
2045 const domain_enum domain)
2046 {
2047 bfd *abfd;
2048
2049 if (objfile == symfile_objfile)
2050 abfd = exec_bfd;
2051 else
2052 {
2053 /* OBJFILE should have been passed as the non-debug one. */
2054 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2055
2056 abfd = objfile->obfd;
2057 }
2058
2059 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2060 return NULL;
2061
2062 return lookup_global_symbol_from_objfile
2063 (objfile, name, linkage_name, domain);
2064 }
2065
2066 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2067
2068 void
2069 _initialize_svr4_solib (void)
2070 {
2071 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2072 solib_svr4_pspace_data
2073 = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2074
2075 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2076 svr4_so_ops.free_so = svr4_free_so;
2077 svr4_so_ops.clear_solib = svr4_clear_solib;
2078 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2079 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2080 svr4_so_ops.current_sos = svr4_current_sos;
2081 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2082 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2083 svr4_so_ops.bfd_open = solib_bfd_open;
2084 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2085 svr4_so_ops.same = svr4_same;
2086 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2087 }
This page took 0.070926 seconds and 5 git commands to generate.