Change target_bfd_reopen to take a gdb_bfd_ref_ptr
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "infrun.h"
34 #include "regcache.h"
35 #include "gdbthread.h"
36 #include "observable.h"
37
38 #include "solist.h"
39 #include "solib.h"
40 #include "solib-svr4.h"
41
42 #include "bfd-target.h"
43 #include "elf-bfd.h"
44 #include "exec.h"
45 #include "auxv.h"
46 #include "gdb_bfd.h"
47 #include "probe.h"
48
49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
50 static int svr4_have_link_map_offsets (void);
51 static void svr4_relocate_main_executable (void);
52 static void svr4_free_library_list (void *p_list);
53 static void probes_table_remove_objfile_probes (struct objfile *objfile);
54 static void svr4_iterate_over_objfiles_in_search_order (
55 struct gdbarch *gdbarch, iterate_over_objfiles_in_search_order_cb_ftype *cb,
56 void *cb_data, struct objfile *objfile);
57
58
59 /* On SVR4 systems, a list of symbols in the dynamic linker where
60 GDB can try to place a breakpoint to monitor shared library
61 events.
62
63 If none of these symbols are found, or other errors occur, then
64 SVR4 systems will fall back to using a symbol as the "startup
65 mapping complete" breakpoint address. */
66
67 static const char * const solib_break_names[] =
68 {
69 "r_debug_state",
70 "_r_debug_state",
71 "_dl_debug_state",
72 "rtld_db_dlactivity",
73 "__dl_rtld_db_dlactivity",
74 "_rtld_debug_state",
75
76 NULL
77 };
78
79 static const char * const bkpt_names[] =
80 {
81 "_start",
82 "__start",
83 "main",
84 NULL
85 };
86
87 static const char * const main_name_list[] =
88 {
89 "main_$main",
90 NULL
91 };
92
93 /* What to do when a probe stop occurs. */
94
95 enum probe_action
96 {
97 /* Something went seriously wrong. Stop using probes and
98 revert to using the older interface. */
99 PROBES_INTERFACE_FAILED,
100
101 /* No action is required. The shared object list is still
102 valid. */
103 DO_NOTHING,
104
105 /* The shared object list should be reloaded entirely. */
106 FULL_RELOAD,
107
108 /* Attempt to incrementally update the shared object list. If
109 the update fails or is not possible, fall back to reloading
110 the list in full. */
111 UPDATE_OR_RELOAD,
112 };
113
114 /* A probe's name and its associated action. */
115
116 struct probe_info
117 {
118 /* The name of the probe. */
119 const char *name;
120
121 /* What to do when a probe stop occurs. */
122 enum probe_action action;
123 };
124
125 /* A list of named probes and their associated actions. If all
126 probes are present in the dynamic linker then the probes-based
127 interface will be used. */
128
129 static const struct probe_info probe_info[] =
130 {
131 { "init_start", DO_NOTHING },
132 { "init_complete", FULL_RELOAD },
133 { "map_start", DO_NOTHING },
134 { "map_failed", DO_NOTHING },
135 { "reloc_complete", UPDATE_OR_RELOAD },
136 { "unmap_start", DO_NOTHING },
137 { "unmap_complete", FULL_RELOAD },
138 };
139
140 #define NUM_PROBES ARRAY_SIZE (probe_info)
141
142 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
143 the same shared library. */
144
145 static int
146 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
147 {
148 if (strcmp (gdb_so_name, inferior_so_name) == 0)
149 return 1;
150
151 /* On Solaris, when starting inferior we think that dynamic linker is
152 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
153 contains /lib/ld.so.1. Sometimes one file is a link to another, but
154 sometimes they have identical content, but are not linked to each
155 other. We don't restrict this check for Solaris, but the chances
156 of running into this situation elsewhere are very low. */
157 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
158 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
159 return 1;
160
161 /* Similarly, we observed the same issue with amd64 and sparcv9, but with
162 different locations. */
163 if (strcmp (gdb_so_name, "/usr/lib/amd64/ld.so.1") == 0
164 && strcmp (inferior_so_name, "/lib/amd64/ld.so.1") == 0)
165 return 1;
166
167 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
168 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
169 return 1;
170
171 return 0;
172 }
173
174 static int
175 svr4_same (struct so_list *gdb, struct so_list *inferior)
176 {
177 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
178 }
179
180 static std::unique_ptr<lm_info_svr4>
181 lm_info_read (CORE_ADDR lm_addr)
182 {
183 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
184 std::unique_ptr<lm_info_svr4> lm_info;
185
186 gdb::byte_vector lm (lmo->link_map_size);
187
188 if (target_read_memory (lm_addr, lm.data (), lmo->link_map_size) != 0)
189 warning (_("Error reading shared library list entry at %s"),
190 paddress (target_gdbarch (), lm_addr));
191 else
192 {
193 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
194
195 lm_info.reset (new lm_info_svr4);
196 lm_info->lm_addr = lm_addr;
197
198 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
199 ptr_type);
200 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
201 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
202 ptr_type);
203 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
204 ptr_type);
205 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
206 ptr_type);
207 }
208
209 return lm_info;
210 }
211
212 static int
213 has_lm_dynamic_from_link_map (void)
214 {
215 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
216
217 return lmo->l_ld_offset >= 0;
218 }
219
220 static CORE_ADDR
221 lm_addr_check (const struct so_list *so, bfd *abfd)
222 {
223 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
224
225 if (!li->l_addr_p)
226 {
227 struct bfd_section *dyninfo_sect;
228 CORE_ADDR l_addr, l_dynaddr, dynaddr;
229
230 l_addr = li->l_addr_inferior;
231
232 if (! abfd || ! has_lm_dynamic_from_link_map ())
233 goto set_addr;
234
235 l_dynaddr = li->l_ld;
236
237 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
238 if (dyninfo_sect == NULL)
239 goto set_addr;
240
241 dynaddr = bfd_section_vma (dyninfo_sect);
242
243 if (dynaddr + l_addr != l_dynaddr)
244 {
245 CORE_ADDR align = 0x1000;
246 CORE_ADDR minpagesize = align;
247
248 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
249 {
250 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
251 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
252 int i;
253
254 align = 1;
255
256 for (i = 0; i < ehdr->e_phnum; i++)
257 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
258 align = phdr[i].p_align;
259
260 minpagesize = get_elf_backend_data (abfd)->minpagesize;
261 }
262
263 /* Turn it into a mask. */
264 align--;
265
266 /* If the changes match the alignment requirements, we
267 assume we're using a core file that was generated by the
268 same binary, just prelinked with a different base offset.
269 If it doesn't match, we may have a different binary, the
270 same binary with the dynamic table loaded at an unrelated
271 location, or anything, really. To avoid regressions,
272 don't adjust the base offset in the latter case, although
273 odds are that, if things really changed, debugging won't
274 quite work.
275
276 One could expect more the condition
277 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
278 but the one below is relaxed for PPC. The PPC kernel supports
279 either 4k or 64k page sizes. To be prepared for 64k pages,
280 PPC ELF files are built using an alignment requirement of 64k.
281 However, when running on a kernel supporting 4k pages, the memory
282 mapping of the library may not actually happen on a 64k boundary!
283
284 (In the usual case where (l_addr & align) == 0, this check is
285 equivalent to the possibly expected check above.)
286
287 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
288
289 l_addr = l_dynaddr - dynaddr;
290
291 if ((l_addr & (minpagesize - 1)) == 0
292 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
293 {
294 if (info_verbose)
295 printf_unfiltered (_("Using PIC (Position Independent Code) "
296 "prelink displacement %s for \"%s\".\n"),
297 paddress (target_gdbarch (), l_addr),
298 so->so_name);
299 }
300 else
301 {
302 /* There is no way to verify the library file matches. prelink
303 can during prelinking of an unprelinked file (or unprelinking
304 of a prelinked file) shift the DYNAMIC segment by arbitrary
305 offset without any page size alignment. There is no way to
306 find out the ELF header and/or Program Headers for a limited
307 verification if it they match. One could do a verification
308 of the DYNAMIC segment. Still the found address is the best
309 one GDB could find. */
310
311 warning (_(".dynamic section for \"%s\" "
312 "is not at the expected address "
313 "(wrong library or version mismatch?)"), so->so_name);
314 }
315 }
316
317 set_addr:
318 li->l_addr = l_addr;
319 li->l_addr_p = 1;
320 }
321
322 return li->l_addr;
323 }
324
325 /* Per pspace SVR4 specific data. */
326
327 struct svr4_info
328 {
329 svr4_info () = default;
330 ~svr4_info ();
331
332 /* Base of dynamic linker structures. */
333 CORE_ADDR debug_base = 0;
334
335 /* Validity flag for debug_loader_offset. */
336 int debug_loader_offset_p = 0;
337
338 /* Load address for the dynamic linker, inferred. */
339 CORE_ADDR debug_loader_offset = 0;
340
341 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
342 char *debug_loader_name = nullptr;
343
344 /* Load map address for the main executable. */
345 CORE_ADDR main_lm_addr = 0;
346
347 CORE_ADDR interp_text_sect_low = 0;
348 CORE_ADDR interp_text_sect_high = 0;
349 CORE_ADDR interp_plt_sect_low = 0;
350 CORE_ADDR interp_plt_sect_high = 0;
351
352 /* Nonzero if the list of objects was last obtained from the target
353 via qXfer:libraries-svr4:read. */
354 int using_xfer = 0;
355
356 /* Table of struct probe_and_action instances, used by the
357 probes-based interface to map breakpoint addresses to probes
358 and their associated actions. Lookup is performed using
359 probe_and_action->prob->address. */
360 htab_up probes_table;
361
362 /* List of objects loaded into the inferior, used by the probes-
363 based interface. */
364 struct so_list *solib_list = nullptr;
365 };
366
367 /* Per-program-space data key. */
368 static const struct program_space_key<svr4_info> solib_svr4_pspace_data;
369
370 /* Free the probes table. */
371
372 static void
373 free_probes_table (struct svr4_info *info)
374 {
375 info->probes_table.reset (nullptr);
376 }
377
378 /* Free the solib list. */
379
380 static void
381 free_solib_list (struct svr4_info *info)
382 {
383 svr4_free_library_list (&info->solib_list);
384 info->solib_list = NULL;
385 }
386
387 svr4_info::~svr4_info ()
388 {
389 free_solib_list (this);
390 }
391
392 /* Get the svr4 data for program space PSPACE. If none is found yet, add it now.
393 This function always returns a valid object. */
394
395 static struct svr4_info *
396 get_svr4_info (program_space *pspace)
397 {
398 struct svr4_info *info = solib_svr4_pspace_data.get (pspace);
399
400 if (info == NULL)
401 info = solib_svr4_pspace_data.emplace (pspace);
402
403 return info;
404 }
405
406 /* Local function prototypes */
407
408 static int match_main (const char *);
409
410 /* Read program header TYPE from inferior memory. The header is found
411 by scanning the OS auxiliary vector.
412
413 If TYPE == -1, return the program headers instead of the contents of
414 one program header.
415
416 Return vector of bytes holding the program header contents, or an empty
417 optional on failure. If successful and P_ARCH_SIZE is non-NULL, the target
418 architecture size (32-bit or 64-bit) is returned to *P_ARCH_SIZE. Likewise,
419 the base address of the section is returned in *BASE_ADDR. */
420
421 static gdb::optional<gdb::byte_vector>
422 read_program_header (int type, int *p_arch_size, CORE_ADDR *base_addr)
423 {
424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
425 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
426 int arch_size, sect_size;
427 CORE_ADDR sect_addr;
428 int pt_phdr_p = 0;
429
430 /* Get required auxv elements from target. */
431 if (target_auxv_search (current_top_target (), AT_PHDR, &at_phdr) <= 0)
432 return {};
433 if (target_auxv_search (current_top_target (), AT_PHENT, &at_phent) <= 0)
434 return {};
435 if (target_auxv_search (current_top_target (), AT_PHNUM, &at_phnum) <= 0)
436 return {};
437 if (!at_phdr || !at_phnum)
438 return {};
439
440 /* Determine ELF architecture type. */
441 if (at_phent == sizeof (Elf32_External_Phdr))
442 arch_size = 32;
443 else if (at_phent == sizeof (Elf64_External_Phdr))
444 arch_size = 64;
445 else
446 return {};
447
448 /* Find the requested segment. */
449 if (type == -1)
450 {
451 sect_addr = at_phdr;
452 sect_size = at_phent * at_phnum;
453 }
454 else if (arch_size == 32)
455 {
456 Elf32_External_Phdr phdr;
457 int i;
458
459 /* Search for requested PHDR. */
460 for (i = 0; i < at_phnum; i++)
461 {
462 int p_type;
463
464 if (target_read_memory (at_phdr + i * sizeof (phdr),
465 (gdb_byte *)&phdr, sizeof (phdr)))
466 return {};
467
468 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
469 4, byte_order);
470
471 if (p_type == PT_PHDR)
472 {
473 pt_phdr_p = 1;
474 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
475 4, byte_order);
476 }
477
478 if (p_type == type)
479 break;
480 }
481
482 if (i == at_phnum)
483 return {};
484
485 /* Retrieve address and size. */
486 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
487 4, byte_order);
488 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
489 4, byte_order);
490 }
491 else
492 {
493 Elf64_External_Phdr phdr;
494 int i;
495
496 /* Search for requested PHDR. */
497 for (i = 0; i < at_phnum; i++)
498 {
499 int p_type;
500
501 if (target_read_memory (at_phdr + i * sizeof (phdr),
502 (gdb_byte *)&phdr, sizeof (phdr)))
503 return {};
504
505 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
506 4, byte_order);
507
508 if (p_type == PT_PHDR)
509 {
510 pt_phdr_p = 1;
511 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
512 8, byte_order);
513 }
514
515 if (p_type == type)
516 break;
517 }
518
519 if (i == at_phnum)
520 return {};
521
522 /* Retrieve address and size. */
523 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
524 8, byte_order);
525 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
526 8, byte_order);
527 }
528
529 /* PT_PHDR is optional, but we really need it
530 for PIE to make this work in general. */
531
532 if (pt_phdr_p)
533 {
534 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
535 Relocation offset is the difference between the two. */
536 sect_addr = sect_addr + (at_phdr - pt_phdr);
537 }
538
539 /* Read in requested program header. */
540 gdb::byte_vector buf (sect_size);
541 if (target_read_memory (sect_addr, buf.data (), sect_size))
542 return {};
543
544 if (p_arch_size)
545 *p_arch_size = arch_size;
546 if (base_addr)
547 *base_addr = sect_addr;
548
549 return buf;
550 }
551
552
553 /* Return program interpreter string. */
554 static gdb::optional<gdb::byte_vector>
555 find_program_interpreter (void)
556 {
557 /* If we have a current exec_bfd, use its section table. */
558 if (current_program_space->exec_bfd ()
559 && (bfd_get_flavour (current_program_space->exec_bfd ())
560 == bfd_target_elf_flavour))
561 {
562 struct bfd_section *interp_sect;
563
564 interp_sect = bfd_get_section_by_name (current_program_space->exec_bfd (),
565 ".interp");
566 if (interp_sect != NULL)
567 {
568 int sect_size = bfd_section_size (interp_sect);
569
570 gdb::byte_vector buf (sect_size);
571 bfd_get_section_contents (current_program_space->exec_bfd (),
572 interp_sect, buf.data (), 0, sect_size);
573 return buf;
574 }
575 }
576
577 /* If we didn't find it, use the target auxiliary vector. */
578 return read_program_header (PT_INTERP, NULL, NULL);
579 }
580
581
582 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
583 found, 1 is returned and the corresponding PTR is set. */
584
585 static int
586 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
587 CORE_ADDR *ptr_addr)
588 {
589 int arch_size, step, sect_size;
590 long current_dyntag;
591 CORE_ADDR dyn_ptr, dyn_addr;
592 gdb_byte *bufend, *bufstart, *buf;
593 Elf32_External_Dyn *x_dynp_32;
594 Elf64_External_Dyn *x_dynp_64;
595 struct bfd_section *sect;
596
597 if (abfd == NULL)
598 return 0;
599
600 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
601 return 0;
602
603 arch_size = bfd_get_arch_size (abfd);
604 if (arch_size == -1)
605 return 0;
606
607 /* Find the start address of the .dynamic section. */
608 sect = bfd_get_section_by_name (abfd, ".dynamic");
609 if (sect == NULL)
610 return 0;
611
612 bool found = false;
613 for (target_section &target_section : current_program_space->target_sections)
614 if (sect == target_section.the_bfd_section)
615 {
616 dyn_addr = target_section.addr;
617 found = true;
618 break;
619 }
620 if (!found)
621 {
622 /* ABFD may come from OBJFILE acting only as a symbol file without being
623 loaded into the target (see add_symbol_file_command). This case is
624 such fallback to the file VMA address without the possibility of
625 having the section relocated to its actual in-memory address. */
626
627 dyn_addr = bfd_section_vma (sect);
628 }
629
630 /* Read in .dynamic from the BFD. We will get the actual value
631 from memory later. */
632 sect_size = bfd_section_size (sect);
633 buf = bufstart = (gdb_byte *) alloca (sect_size);
634 if (!bfd_get_section_contents (abfd, sect,
635 buf, 0, sect_size))
636 return 0;
637
638 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
639 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
640 : sizeof (Elf64_External_Dyn);
641 for (bufend = buf + sect_size;
642 buf < bufend;
643 buf += step)
644 {
645 if (arch_size == 32)
646 {
647 x_dynp_32 = (Elf32_External_Dyn *) buf;
648 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
649 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
650 }
651 else
652 {
653 x_dynp_64 = (Elf64_External_Dyn *) buf;
654 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
655 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
656 }
657 if (current_dyntag == DT_NULL)
658 return 0;
659 if (current_dyntag == desired_dyntag)
660 {
661 /* If requested, try to read the runtime value of this .dynamic
662 entry. */
663 if (ptr)
664 {
665 struct type *ptr_type;
666 gdb_byte ptr_buf[8];
667 CORE_ADDR ptr_addr_1;
668
669 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
670 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
671 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
672 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
673 *ptr = dyn_ptr;
674 if (ptr_addr)
675 *ptr_addr = dyn_addr + (buf - bufstart);
676 }
677 return 1;
678 }
679 }
680
681 return 0;
682 }
683
684 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
685 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
686 is returned and the corresponding PTR is set. */
687
688 static int
689 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
690 CORE_ADDR *ptr_addr)
691 {
692 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
693 int arch_size, step;
694 long current_dyntag;
695 CORE_ADDR dyn_ptr;
696 CORE_ADDR base_addr;
697
698 /* Read in .dynamic section. */
699 gdb::optional<gdb::byte_vector> ph_data
700 = read_program_header (PT_DYNAMIC, &arch_size, &base_addr);
701 if (!ph_data)
702 return 0;
703
704 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
705 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
706 : sizeof (Elf64_External_Dyn);
707 for (gdb_byte *buf = ph_data->data (), *bufend = buf + ph_data->size ();
708 buf < bufend; buf += step)
709 {
710 if (arch_size == 32)
711 {
712 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
713
714 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
715 4, byte_order);
716 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
717 4, byte_order);
718 }
719 else
720 {
721 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
722
723 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
724 8, byte_order);
725 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
726 8, byte_order);
727 }
728 if (current_dyntag == DT_NULL)
729 break;
730
731 if (current_dyntag == desired_dyntag)
732 {
733 if (ptr)
734 *ptr = dyn_ptr;
735
736 if (ptr_addr)
737 *ptr_addr = base_addr + buf - ph_data->data ();
738
739 return 1;
740 }
741 }
742
743 return 0;
744 }
745
746 /* Locate the base address of dynamic linker structs for SVR4 elf
747 targets.
748
749 For SVR4 elf targets the address of the dynamic linker's runtime
750 structure is contained within the dynamic info section in the
751 executable file. The dynamic section is also mapped into the
752 inferior address space. Because the runtime loader fills in the
753 real address before starting the inferior, we have to read in the
754 dynamic info section from the inferior address space.
755 If there are any errors while trying to find the address, we
756 silently return 0, otherwise the found address is returned. */
757
758 static CORE_ADDR
759 elf_locate_base (void)
760 {
761 struct bound_minimal_symbol msymbol;
762 CORE_ADDR dyn_ptr, dyn_ptr_addr;
763
764 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
765 instead of DT_DEBUG, although they sometimes contain an unused
766 DT_DEBUG. */
767 if (scan_dyntag (DT_MIPS_RLD_MAP, current_program_space->exec_bfd (),
768 &dyn_ptr, NULL)
769 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
770 {
771 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
772 gdb_byte *pbuf;
773 int pbuf_size = TYPE_LENGTH (ptr_type);
774
775 pbuf = (gdb_byte *) alloca (pbuf_size);
776 /* DT_MIPS_RLD_MAP contains a pointer to the address
777 of the dynamic link structure. */
778 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
779 return 0;
780 return extract_typed_address (pbuf, ptr_type);
781 }
782
783 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
784 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
785 in non-PIE. */
786 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, current_program_space->exec_bfd (),
787 &dyn_ptr, &dyn_ptr_addr)
788 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
789 {
790 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
791 gdb_byte *pbuf;
792 int pbuf_size = TYPE_LENGTH (ptr_type);
793
794 pbuf = (gdb_byte *) alloca (pbuf_size);
795 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
796 DT slot to the address of the dynamic link structure. */
797 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
798 return 0;
799 return extract_typed_address (pbuf, ptr_type);
800 }
801
802 /* Find DT_DEBUG. */
803 if (scan_dyntag (DT_DEBUG, current_program_space->exec_bfd (), &dyn_ptr, NULL)
804 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
805 return dyn_ptr;
806
807 /* This may be a static executable. Look for the symbol
808 conventionally named _r_debug, as a last resort. */
809 msymbol = lookup_minimal_symbol ("_r_debug", NULL,
810 current_program_space->symfile_object_file);
811 if (msymbol.minsym != NULL)
812 return BMSYMBOL_VALUE_ADDRESS (msymbol);
813
814 /* DT_DEBUG entry not found. */
815 return 0;
816 }
817
818 /* Locate the base address of dynamic linker structs.
819
820 For both the SunOS and SVR4 shared library implementations, if the
821 inferior executable has been linked dynamically, there is a single
822 address somewhere in the inferior's data space which is the key to
823 locating all of the dynamic linker's runtime structures. This
824 address is the value of the debug base symbol. The job of this
825 function is to find and return that address, or to return 0 if there
826 is no such address (the executable is statically linked for example).
827
828 For SunOS, the job is almost trivial, since the dynamic linker and
829 all of it's structures are statically linked to the executable at
830 link time. Thus the symbol for the address we are looking for has
831 already been added to the minimal symbol table for the executable's
832 objfile at the time the symbol file's symbols were read, and all we
833 have to do is look it up there. Note that we explicitly do NOT want
834 to find the copies in the shared library.
835
836 The SVR4 version is a bit more complicated because the address
837 is contained somewhere in the dynamic info section. We have to go
838 to a lot more work to discover the address of the debug base symbol.
839 Because of this complexity, we cache the value we find and return that
840 value on subsequent invocations. Note there is no copy in the
841 executable symbol tables. */
842
843 static CORE_ADDR
844 locate_base (struct svr4_info *info)
845 {
846 /* Check to see if we have a currently valid address, and if so, avoid
847 doing all this work again and just return the cached address. If
848 we have no cached address, try to locate it in the dynamic info
849 section for ELF executables. There's no point in doing any of this
850 though if we don't have some link map offsets to work with. */
851
852 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
853 info->debug_base = elf_locate_base ();
854 return info->debug_base;
855 }
856
857 /* Find the first element in the inferior's dynamic link map, and
858 return its address in the inferior. Return zero if the address
859 could not be determined.
860
861 FIXME: Perhaps we should validate the info somehow, perhaps by
862 checking r_version for a known version number, or r_state for
863 RT_CONSISTENT. */
864
865 static CORE_ADDR
866 solib_svr4_r_map (struct svr4_info *info)
867 {
868 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
869 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
870 CORE_ADDR addr = 0;
871
872 try
873 {
874 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
875 ptr_type);
876 }
877 catch (const gdb_exception_error &ex)
878 {
879 exception_print (gdb_stderr, ex);
880 }
881
882 return addr;
883 }
884
885 /* Find r_brk from the inferior's debug base. */
886
887 static CORE_ADDR
888 solib_svr4_r_brk (struct svr4_info *info)
889 {
890 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
891 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
892
893 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
894 ptr_type);
895 }
896
897 /* Find the link map for the dynamic linker (if it is not in the
898 normal list of loaded shared objects). */
899
900 static CORE_ADDR
901 solib_svr4_r_ldsomap (struct svr4_info *info)
902 {
903 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
904 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
905 enum bfd_endian byte_order = type_byte_order (ptr_type);
906 ULONGEST version = 0;
907
908 try
909 {
910 /* Check version, and return zero if `struct r_debug' doesn't have
911 the r_ldsomap member. */
912 version
913 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
914 lmo->r_version_size, byte_order);
915 }
916 catch (const gdb_exception_error &ex)
917 {
918 exception_print (gdb_stderr, ex);
919 }
920
921 if (version < 2 || lmo->r_ldsomap_offset == -1)
922 return 0;
923
924 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
925 ptr_type);
926 }
927
928 /* On Solaris systems with some versions of the dynamic linker,
929 ld.so's l_name pointer points to the SONAME in the string table
930 rather than into writable memory. So that GDB can find shared
931 libraries when loading a core file generated by gcore, ensure that
932 memory areas containing the l_name string are saved in the core
933 file. */
934
935 static int
936 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
937 {
938 struct svr4_info *info;
939 CORE_ADDR ldsomap;
940 CORE_ADDR name_lm;
941
942 info = get_svr4_info (current_program_space);
943
944 info->debug_base = 0;
945 locate_base (info);
946 if (!info->debug_base)
947 return 0;
948
949 ldsomap = solib_svr4_r_ldsomap (info);
950 if (!ldsomap)
951 return 0;
952
953 std::unique_ptr<lm_info_svr4> li = lm_info_read (ldsomap);
954 name_lm = li != NULL ? li->l_name : 0;
955
956 return (name_lm >= vaddr && name_lm < vaddr + size);
957 }
958
959 /* See solist.h. */
960
961 static int
962 open_symbol_file_object (int from_tty)
963 {
964 CORE_ADDR lm, l_name;
965 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
966 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
967 int l_name_size = TYPE_LENGTH (ptr_type);
968 gdb::byte_vector l_name_buf (l_name_size);
969 struct svr4_info *info = get_svr4_info (current_program_space);
970 symfile_add_flags add_flags = 0;
971
972 if (from_tty)
973 add_flags |= SYMFILE_VERBOSE;
974
975 if (current_program_space->symfile_object_file)
976 if (!query (_("Attempt to reload symbols from process? ")))
977 return 0;
978
979 /* Always locate the debug struct, in case it has moved. */
980 info->debug_base = 0;
981 if (locate_base (info) == 0)
982 return 0; /* failed somehow... */
983
984 /* First link map member should be the executable. */
985 lm = solib_svr4_r_map (info);
986 if (lm == 0)
987 return 0; /* failed somehow... */
988
989 /* Read address of name from target memory to GDB. */
990 read_memory (lm + lmo->l_name_offset, l_name_buf.data (), l_name_size);
991
992 /* Convert the address to host format. */
993 l_name = extract_typed_address (l_name_buf.data (), ptr_type);
994
995 if (l_name == 0)
996 return 0; /* No filename. */
997
998 /* Now fetch the filename from target memory. */
999 gdb::unique_xmalloc_ptr<char> filename
1000 = target_read_string (l_name, SO_NAME_MAX_PATH_SIZE - 1);
1001
1002 if (filename == nullptr)
1003 {
1004 warning (_("failed to read exec filename from attached file"));
1005 return 0;
1006 }
1007
1008 /* Have a pathname: read the symbol file. */
1009 symbol_file_add_main (filename.get (), add_flags);
1010
1011 return 1;
1012 }
1013
1014 /* Data exchange structure for the XML parser as returned by
1015 svr4_current_sos_via_xfer_libraries. */
1016
1017 struct svr4_library_list
1018 {
1019 struct so_list *head, **tailp;
1020
1021 /* Inferior address of struct link_map used for the main executable. It is
1022 NULL if not known. */
1023 CORE_ADDR main_lm;
1024 };
1025
1026 /* This module's 'free_objfile' observer. */
1027
1028 static void
1029 svr4_free_objfile_observer (struct objfile *objfile)
1030 {
1031 probes_table_remove_objfile_probes (objfile);
1032 }
1033
1034 /* Implementation for target_so_ops.free_so. */
1035
1036 static void
1037 svr4_free_so (struct so_list *so)
1038 {
1039 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1040
1041 delete li;
1042 }
1043
1044 /* Implement target_so_ops.clear_so. */
1045
1046 static void
1047 svr4_clear_so (struct so_list *so)
1048 {
1049 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1050
1051 if (li != NULL)
1052 li->l_addr_p = 0;
1053 }
1054
1055 /* Free so_list built so far (called via cleanup). */
1056
1057 static void
1058 svr4_free_library_list (void *p_list)
1059 {
1060 struct so_list *list = *(struct so_list **) p_list;
1061
1062 while (list != NULL)
1063 {
1064 struct so_list *next = list->next;
1065
1066 free_so (list);
1067 list = next;
1068 }
1069 }
1070
1071 /* Copy library list. */
1072
1073 static struct so_list *
1074 svr4_copy_library_list (struct so_list *src)
1075 {
1076 struct so_list *dst = NULL;
1077 struct so_list **link = &dst;
1078
1079 while (src != NULL)
1080 {
1081 struct so_list *newobj;
1082
1083 newobj = XNEW (struct so_list);
1084 memcpy (newobj, src, sizeof (struct so_list));
1085
1086 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1087 newobj->lm_info = new lm_info_svr4 (*src_li);
1088
1089 newobj->next = NULL;
1090 *link = newobj;
1091 link = &newobj->next;
1092
1093 src = src->next;
1094 }
1095
1096 return dst;
1097 }
1098
1099 #ifdef HAVE_LIBEXPAT
1100
1101 #include "xml-support.h"
1102
1103 /* Handle the start of a <library> element. Note: new elements are added
1104 at the tail of the list, keeping the list in order. */
1105
1106 static void
1107 library_list_start_library (struct gdb_xml_parser *parser,
1108 const struct gdb_xml_element *element,
1109 void *user_data,
1110 std::vector<gdb_xml_value> &attributes)
1111 {
1112 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1113 const char *name
1114 = (const char *) xml_find_attribute (attributes, "name")->value.get ();
1115 ULONGEST *lmp
1116 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value.get ();
1117 ULONGEST *l_addrp
1118 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value.get ();
1119 ULONGEST *l_ldp
1120 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value.get ();
1121 struct so_list *new_elem;
1122
1123 new_elem = XCNEW (struct so_list);
1124 lm_info_svr4 *li = new lm_info_svr4;
1125 new_elem->lm_info = li;
1126 li->lm_addr = *lmp;
1127 li->l_addr_inferior = *l_addrp;
1128 li->l_ld = *l_ldp;
1129
1130 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1131 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1132 strcpy (new_elem->so_original_name, new_elem->so_name);
1133
1134 *list->tailp = new_elem;
1135 list->tailp = &new_elem->next;
1136 }
1137
1138 /* Handle the start of a <library-list-svr4> element. */
1139
1140 static void
1141 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1142 const struct gdb_xml_element *element,
1143 void *user_data,
1144 std::vector<gdb_xml_value> &attributes)
1145 {
1146 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1147 const char *version
1148 = (const char *) xml_find_attribute (attributes, "version")->value.get ();
1149 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1150
1151 if (strcmp (version, "1.0") != 0)
1152 gdb_xml_error (parser,
1153 _("SVR4 Library list has unsupported version \"%s\""),
1154 version);
1155
1156 if (main_lm)
1157 list->main_lm = *(ULONGEST *) main_lm->value.get ();
1158 }
1159
1160 /* The allowed elements and attributes for an XML library list.
1161 The root element is a <library-list>. */
1162
1163 static const struct gdb_xml_attribute svr4_library_attributes[] =
1164 {
1165 { "name", GDB_XML_AF_NONE, NULL, NULL },
1166 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1167 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1168 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1169 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1170 };
1171
1172 static const struct gdb_xml_element svr4_library_list_children[] =
1173 {
1174 {
1175 "library", svr4_library_attributes, NULL,
1176 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1177 library_list_start_library, NULL
1178 },
1179 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1180 };
1181
1182 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1183 {
1184 { "version", GDB_XML_AF_NONE, NULL, NULL },
1185 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1186 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1187 };
1188
1189 static const struct gdb_xml_element svr4_library_list_elements[] =
1190 {
1191 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1192 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1193 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1194 };
1195
1196 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1197
1198 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1199 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1200 empty, caller is responsible for freeing all its entries. */
1201
1202 static int
1203 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1204 {
1205 auto cleanup = make_scope_exit ([&] ()
1206 {
1207 svr4_free_library_list (&list->head);
1208 });
1209
1210 memset (list, 0, sizeof (*list));
1211 list->tailp = &list->head;
1212 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
1213 svr4_library_list_elements, document, list) == 0)
1214 {
1215 /* Parsed successfully, keep the result. */
1216 cleanup.release ();
1217 return 1;
1218 }
1219
1220 return 0;
1221 }
1222
1223 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
1224
1225 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1226 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1227 empty, caller is responsible for freeing all its entries.
1228
1229 Note that ANNEX must be NULL if the remote does not explicitly allow
1230 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1231 this can be checked using target_augmented_libraries_svr4_read (). */
1232
1233 static int
1234 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1235 const char *annex)
1236 {
1237 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1238
1239 /* Fetch the list of shared libraries. */
1240 gdb::optional<gdb::char_vector> svr4_library_document
1241 = target_read_stralloc (current_top_target (), TARGET_OBJECT_LIBRARIES_SVR4,
1242 annex);
1243 if (!svr4_library_document)
1244 return 0;
1245
1246 return svr4_parse_libraries (svr4_library_document->data (), list);
1247 }
1248
1249 #else
1250
1251 static int
1252 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1253 const char *annex)
1254 {
1255 return 0;
1256 }
1257
1258 #endif
1259
1260 /* If no shared library information is available from the dynamic
1261 linker, build a fallback list from other sources. */
1262
1263 static struct so_list *
1264 svr4_default_sos (svr4_info *info)
1265 {
1266 struct so_list *newobj;
1267
1268 if (!info->debug_loader_offset_p)
1269 return NULL;
1270
1271 newobj = XCNEW (struct so_list);
1272 lm_info_svr4 *li = new lm_info_svr4;
1273 newobj->lm_info = li;
1274
1275 /* Nothing will ever check the other fields if we set l_addr_p. */
1276 li->l_addr = info->debug_loader_offset;
1277 li->l_addr_p = 1;
1278
1279 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1280 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1281 strcpy (newobj->so_original_name, newobj->so_name);
1282
1283 return newobj;
1284 }
1285
1286 /* Read the whole inferior libraries chain starting at address LM.
1287 Expect the first entry in the chain's previous entry to be PREV_LM.
1288 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1289 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1290 to it. Returns nonzero upon success. If zero is returned the
1291 entries stored to LINK_PTR_PTR are still valid although they may
1292 represent only part of the inferior library list. */
1293
1294 static int
1295 svr4_read_so_list (svr4_info *info, CORE_ADDR lm, CORE_ADDR prev_lm,
1296 struct so_list ***link_ptr_ptr, int ignore_first)
1297 {
1298 CORE_ADDR first_l_name = 0;
1299 CORE_ADDR next_lm;
1300
1301 for (; lm != 0; prev_lm = lm, lm = next_lm)
1302 {
1303 so_list_up newobj (XCNEW (struct so_list));
1304
1305 lm_info_svr4 *li = lm_info_read (lm).release ();
1306 newobj->lm_info = li;
1307 if (li == NULL)
1308 return 0;
1309
1310 next_lm = li->l_next;
1311
1312 if (li->l_prev != prev_lm)
1313 {
1314 warning (_("Corrupted shared library list: %s != %s"),
1315 paddress (target_gdbarch (), prev_lm),
1316 paddress (target_gdbarch (), li->l_prev));
1317 return 0;
1318 }
1319
1320 /* For SVR4 versions, the first entry in the link map is for the
1321 inferior executable, so we must ignore it. For some versions of
1322 SVR4, it has no name. For others (Solaris 2.3 for example), it
1323 does have a name, so we can no longer use a missing name to
1324 decide when to ignore it. */
1325 if (ignore_first && li->l_prev == 0)
1326 {
1327 first_l_name = li->l_name;
1328 info->main_lm_addr = li->lm_addr;
1329 continue;
1330 }
1331
1332 /* Extract this shared object's name. */
1333 gdb::unique_xmalloc_ptr<char> buffer
1334 = target_read_string (li->l_name, SO_NAME_MAX_PATH_SIZE - 1);
1335 if (buffer == nullptr)
1336 {
1337 /* If this entry's l_name address matches that of the
1338 inferior executable, then this is not a normal shared
1339 object, but (most likely) a vDSO. In this case, silently
1340 skip it; otherwise emit a warning. */
1341 if (first_l_name == 0 || li->l_name != first_l_name)
1342 warning (_("Can't read pathname for load map."));
1343 continue;
1344 }
1345
1346 strncpy (newobj->so_name, buffer.get (), SO_NAME_MAX_PATH_SIZE - 1);
1347 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1348 strcpy (newobj->so_original_name, newobj->so_name);
1349
1350 /* If this entry has no name, or its name matches the name
1351 for the main executable, don't include it in the list. */
1352 if (! newobj->so_name[0] || match_main (newobj->so_name))
1353 continue;
1354
1355 newobj->next = 0;
1356 /* Don't free it now. */
1357 **link_ptr_ptr = newobj.release ();
1358 *link_ptr_ptr = &(**link_ptr_ptr)->next;
1359 }
1360
1361 return 1;
1362 }
1363
1364 /* Read the full list of currently loaded shared objects directly
1365 from the inferior, without referring to any libraries read and
1366 stored by the probes interface. Handle special cases relating
1367 to the first elements of the list. */
1368
1369 static struct so_list *
1370 svr4_current_sos_direct (struct svr4_info *info)
1371 {
1372 CORE_ADDR lm;
1373 struct so_list *head = NULL;
1374 struct so_list **link_ptr = &head;
1375 int ignore_first;
1376 struct svr4_library_list library_list;
1377
1378 /* Fall back to manual examination of the target if the packet is not
1379 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1380 tests a case where gdbserver cannot find the shared libraries list while
1381 GDB itself is able to find it via SYMFILE_OBJFILE.
1382
1383 Unfortunately statically linked inferiors will also fall back through this
1384 suboptimal code path. */
1385
1386 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1387 NULL);
1388 if (info->using_xfer)
1389 {
1390 if (library_list.main_lm)
1391 info->main_lm_addr = library_list.main_lm;
1392
1393 return library_list.head ? library_list.head : svr4_default_sos (info);
1394 }
1395
1396 /* Always locate the debug struct, in case it has moved. */
1397 info->debug_base = 0;
1398 locate_base (info);
1399
1400 /* If we can't find the dynamic linker's base structure, this
1401 must not be a dynamically linked executable. Hmm. */
1402 if (! info->debug_base)
1403 return svr4_default_sos (info);
1404
1405 /* Assume that everything is a library if the dynamic loader was loaded
1406 late by a static executable. */
1407 if (current_program_space->exec_bfd ()
1408 && bfd_get_section_by_name (current_program_space->exec_bfd (),
1409 ".dynamic") == NULL)
1410 ignore_first = 0;
1411 else
1412 ignore_first = 1;
1413
1414 auto cleanup = make_scope_exit ([&] ()
1415 {
1416 svr4_free_library_list (&head);
1417 });
1418
1419 /* Walk the inferior's link map list, and build our list of
1420 `struct so_list' nodes. */
1421 lm = solib_svr4_r_map (info);
1422 if (lm)
1423 svr4_read_so_list (info, lm, 0, &link_ptr, ignore_first);
1424
1425 /* On Solaris, the dynamic linker is not in the normal list of
1426 shared objects, so make sure we pick it up too. Having
1427 symbol information for the dynamic linker is quite crucial
1428 for skipping dynamic linker resolver code. */
1429 lm = solib_svr4_r_ldsomap (info);
1430 if (lm)
1431 svr4_read_so_list (info, lm, 0, &link_ptr, 0);
1432
1433 cleanup.release ();
1434
1435 if (head == NULL)
1436 return svr4_default_sos (info);
1437
1438 return head;
1439 }
1440
1441 /* Implement the main part of the "current_sos" target_so_ops
1442 method. */
1443
1444 static struct so_list *
1445 svr4_current_sos_1 (svr4_info *info)
1446 {
1447 /* If the solib list has been read and stored by the probes
1448 interface then we return a copy of the stored list. */
1449 if (info->solib_list != NULL)
1450 return svr4_copy_library_list (info->solib_list);
1451
1452 /* Otherwise obtain the solib list directly from the inferior. */
1453 return svr4_current_sos_direct (info);
1454 }
1455
1456 /* Implement the "current_sos" target_so_ops method. */
1457
1458 static struct so_list *
1459 svr4_current_sos (void)
1460 {
1461 svr4_info *info = get_svr4_info (current_program_space);
1462 struct so_list *so_head = svr4_current_sos_1 (info);
1463 struct mem_range vsyscall_range;
1464
1465 /* Filter out the vDSO module, if present. Its symbol file would
1466 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1467 managed by symfile-mem.c:add_vsyscall_page. */
1468 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1469 && vsyscall_range.length != 0)
1470 {
1471 struct so_list **sop;
1472
1473 sop = &so_head;
1474 while (*sop != NULL)
1475 {
1476 struct so_list *so = *sop;
1477
1478 /* We can't simply match the vDSO by starting address alone,
1479 because lm_info->l_addr_inferior (and also l_addr) do not
1480 necessarily represent the real starting address of the
1481 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1482 field (the ".dynamic" section of the shared object)
1483 always points at the absolute/resolved address though.
1484 So check whether that address is inside the vDSO's
1485 mapping instead.
1486
1487 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1488 0-based ELF, and we see:
1489
1490 (gdb) info auxv
1491 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1492 (gdb) p/x *_r_debug.r_map.l_next
1493 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1494
1495 And on Linux 2.6.32 (x86_64) we see:
1496
1497 (gdb) info auxv
1498 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1499 (gdb) p/x *_r_debug.r_map.l_next
1500 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1501
1502 Dumping that vDSO shows:
1503
1504 (gdb) info proc mappings
1505 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1506 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1507 # readelf -Wa vdso.bin
1508 [...]
1509 Entry point address: 0xffffffffff700700
1510 [...]
1511 Section Headers:
1512 [Nr] Name Type Address Off Size
1513 [ 0] NULL 0000000000000000 000000 000000
1514 [ 1] .hash HASH ffffffffff700120 000120 000038
1515 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1516 [...]
1517 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1518 */
1519
1520 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1521
1522 if (address_in_mem_range (li->l_ld, &vsyscall_range))
1523 {
1524 *sop = so->next;
1525 free_so (so);
1526 break;
1527 }
1528
1529 sop = &so->next;
1530 }
1531 }
1532
1533 return so_head;
1534 }
1535
1536 /* Get the address of the link_map for a given OBJFILE. */
1537
1538 CORE_ADDR
1539 svr4_fetch_objfile_link_map (struct objfile *objfile)
1540 {
1541 struct svr4_info *info = get_svr4_info (objfile->pspace);
1542
1543 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1544 if (info->main_lm_addr == 0)
1545 solib_add (NULL, 0, auto_solib_add);
1546
1547 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1548 if (objfile == current_program_space->symfile_object_file)
1549 return info->main_lm_addr;
1550
1551 /* If OBJFILE is a separate debug object file, look for the
1552 original object file. */
1553 if (objfile->separate_debug_objfile_backlink != NULL)
1554 objfile = objfile->separate_debug_objfile_backlink;
1555
1556 /* The other link map addresses may be found by examining the list
1557 of shared libraries. */
1558 for (struct so_list *so : current_program_space->solibs ())
1559 if (so->objfile == objfile)
1560 {
1561 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1562
1563 return li->lm_addr;
1564 }
1565
1566 /* Not found! */
1567 return 0;
1568 }
1569
1570 /* On some systems, the only way to recognize the link map entry for
1571 the main executable file is by looking at its name. Return
1572 non-zero iff SONAME matches one of the known main executable names. */
1573
1574 static int
1575 match_main (const char *soname)
1576 {
1577 const char * const *mainp;
1578
1579 for (mainp = main_name_list; *mainp != NULL; mainp++)
1580 {
1581 if (strcmp (soname, *mainp) == 0)
1582 return (1);
1583 }
1584
1585 return (0);
1586 }
1587
1588 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1589 SVR4 run time loader. */
1590
1591 int
1592 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1593 {
1594 struct svr4_info *info = get_svr4_info (current_program_space);
1595
1596 return ((pc >= info->interp_text_sect_low
1597 && pc < info->interp_text_sect_high)
1598 || (pc >= info->interp_plt_sect_low
1599 && pc < info->interp_plt_sect_high)
1600 || in_plt_section (pc)
1601 || in_gnu_ifunc_stub (pc));
1602 }
1603
1604 /* Given an executable's ABFD and target, compute the entry-point
1605 address. */
1606
1607 static CORE_ADDR
1608 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1609 {
1610 CORE_ADDR addr;
1611
1612 /* KevinB wrote ... for most targets, the address returned by
1613 bfd_get_start_address() is the entry point for the start
1614 function. But, for some targets, bfd_get_start_address() returns
1615 the address of a function descriptor from which the entry point
1616 address may be extracted. This address is extracted by
1617 gdbarch_convert_from_func_ptr_addr(). The method
1618 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1619 function for targets which don't use function descriptors. */
1620 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1621 bfd_get_start_address (abfd),
1622 targ);
1623 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1624 }
1625
1626 /* A probe and its associated action. */
1627
1628 struct probe_and_action
1629 {
1630 /* The probe. */
1631 probe *prob;
1632
1633 /* The relocated address of the probe. */
1634 CORE_ADDR address;
1635
1636 /* The action. */
1637 enum probe_action action;
1638
1639 /* The objfile where this probe was found. */
1640 struct objfile *objfile;
1641 };
1642
1643 /* Returns a hash code for the probe_and_action referenced by p. */
1644
1645 static hashval_t
1646 hash_probe_and_action (const void *p)
1647 {
1648 const struct probe_and_action *pa = (const struct probe_and_action *) p;
1649
1650 return (hashval_t) pa->address;
1651 }
1652
1653 /* Returns non-zero if the probe_and_actions referenced by p1 and p2
1654 are equal. */
1655
1656 static int
1657 equal_probe_and_action (const void *p1, const void *p2)
1658 {
1659 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1660 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
1661
1662 return pa1->address == pa2->address;
1663 }
1664
1665 /* Traversal function for probes_table_remove_objfile_probes. */
1666
1667 static int
1668 probes_table_htab_remove_objfile_probes (void **slot, void *info)
1669 {
1670 probe_and_action *pa = (probe_and_action *) *slot;
1671 struct objfile *objfile = (struct objfile *) info;
1672
1673 if (pa->objfile == objfile)
1674 htab_clear_slot (get_svr4_info (objfile->pspace)->probes_table.get (),
1675 slot);
1676
1677 return 1;
1678 }
1679
1680 /* Remove all probes that belong to OBJFILE from the probes table. */
1681
1682 static void
1683 probes_table_remove_objfile_probes (struct objfile *objfile)
1684 {
1685 svr4_info *info = get_svr4_info (objfile->pspace);
1686 if (info->probes_table != nullptr)
1687 htab_traverse_noresize (info->probes_table.get (),
1688 probes_table_htab_remove_objfile_probes, objfile);
1689 }
1690
1691 /* Register a solib event probe and its associated action in the
1692 probes table. */
1693
1694 static void
1695 register_solib_event_probe (svr4_info *info, struct objfile *objfile,
1696 probe *prob, CORE_ADDR address,
1697 enum probe_action action)
1698 {
1699 struct probe_and_action lookup, *pa;
1700 void **slot;
1701
1702 /* Create the probes table, if necessary. */
1703 if (info->probes_table == NULL)
1704 info->probes_table.reset (htab_create_alloc (1, hash_probe_and_action,
1705 equal_probe_and_action,
1706 xfree, xcalloc, xfree));
1707
1708 lookup.address = address;
1709 slot = htab_find_slot (info->probes_table.get (), &lookup, INSERT);
1710 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1711
1712 pa = XCNEW (struct probe_and_action);
1713 pa->prob = prob;
1714 pa->address = address;
1715 pa->action = action;
1716 pa->objfile = objfile;
1717
1718 *slot = pa;
1719 }
1720
1721 /* Get the solib event probe at the specified location, and the
1722 action associated with it. Returns NULL if no solib event probe
1723 was found. */
1724
1725 static struct probe_and_action *
1726 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1727 {
1728 struct probe_and_action lookup;
1729 void **slot;
1730
1731 lookup.address = address;
1732 slot = htab_find_slot (info->probes_table.get (), &lookup, NO_INSERT);
1733
1734 if (slot == NULL)
1735 return NULL;
1736
1737 return (struct probe_and_action *) *slot;
1738 }
1739
1740 /* Decide what action to take when the specified solib event probe is
1741 hit. */
1742
1743 static enum probe_action
1744 solib_event_probe_action (struct probe_and_action *pa)
1745 {
1746 enum probe_action action;
1747 unsigned probe_argc = 0;
1748 struct frame_info *frame = get_current_frame ();
1749
1750 action = pa->action;
1751 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1752 return action;
1753
1754 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1755
1756 /* Check that an appropriate number of arguments has been supplied.
1757 We expect:
1758 arg0: Lmid_t lmid (mandatory)
1759 arg1: struct r_debug *debug_base (mandatory)
1760 arg2: struct link_map *new (optional, for incremental updates) */
1761 try
1762 {
1763 probe_argc = pa->prob->get_argument_count (get_frame_arch (frame));
1764 }
1765 catch (const gdb_exception_error &ex)
1766 {
1767 exception_print (gdb_stderr, ex);
1768 probe_argc = 0;
1769 }
1770
1771 /* If get_argument_count throws an exception, probe_argc will be set
1772 to zero. However, if pa->prob does not have arguments, then
1773 get_argument_count will succeed but probe_argc will also be zero.
1774 Both cases happen because of different things, but they are
1775 treated equally here: action will be set to
1776 PROBES_INTERFACE_FAILED. */
1777 if (probe_argc == 2)
1778 action = FULL_RELOAD;
1779 else if (probe_argc < 2)
1780 action = PROBES_INTERFACE_FAILED;
1781
1782 return action;
1783 }
1784
1785 /* Populate the shared object list by reading the entire list of
1786 shared objects from the inferior. Handle special cases relating
1787 to the first elements of the list. Returns nonzero on success. */
1788
1789 static int
1790 solist_update_full (struct svr4_info *info)
1791 {
1792 free_solib_list (info);
1793 info->solib_list = svr4_current_sos_direct (info);
1794
1795 return 1;
1796 }
1797
1798 /* Update the shared object list starting from the link-map entry
1799 passed by the linker in the probe's third argument. Returns
1800 nonzero if the list was successfully updated, or zero to indicate
1801 failure. */
1802
1803 static int
1804 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1805 {
1806 struct so_list *tail;
1807 CORE_ADDR prev_lm;
1808
1809 /* svr4_current_sos_direct contains logic to handle a number of
1810 special cases relating to the first elements of the list. To
1811 avoid duplicating this logic we defer to solist_update_full
1812 if the list is empty. */
1813 if (info->solib_list == NULL)
1814 return 0;
1815
1816 /* Fall back to a full update if we are using a remote target
1817 that does not support incremental transfers. */
1818 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1819 return 0;
1820
1821 /* Walk to the end of the list. */
1822 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1823 /* Nothing. */;
1824
1825 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1826 prev_lm = li->lm_addr;
1827
1828 /* Read the new objects. */
1829 if (info->using_xfer)
1830 {
1831 struct svr4_library_list library_list;
1832 char annex[64];
1833
1834 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1835 phex_nz (lm, sizeof (lm)),
1836 phex_nz (prev_lm, sizeof (prev_lm)));
1837 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1838 return 0;
1839
1840 tail->next = library_list.head;
1841 }
1842 else
1843 {
1844 struct so_list **link = &tail->next;
1845
1846 /* IGNORE_FIRST may safely be set to zero here because the
1847 above check and deferral to solist_update_full ensures
1848 that this call to svr4_read_so_list will never see the
1849 first element. */
1850 if (!svr4_read_so_list (info, lm, prev_lm, &link, 0))
1851 return 0;
1852 }
1853
1854 return 1;
1855 }
1856
1857 /* Disable the probes-based linker interface and revert to the
1858 original interface. We don't reset the breakpoints as the
1859 ones set up for the probes-based interface are adequate. */
1860
1861 static void
1862 disable_probes_interface (svr4_info *info)
1863 {
1864 warning (_("Probes-based dynamic linker interface failed.\n"
1865 "Reverting to original interface."));
1866
1867 free_probes_table (info);
1868 free_solib_list (info);
1869 }
1870
1871 /* Update the solib list as appropriate when using the
1872 probes-based linker interface. Do nothing if using the
1873 standard interface. */
1874
1875 static void
1876 svr4_handle_solib_event (void)
1877 {
1878 struct svr4_info *info = get_svr4_info (current_program_space);
1879 struct probe_and_action *pa;
1880 enum probe_action action;
1881 struct value *val = NULL;
1882 CORE_ADDR pc, debug_base, lm = 0;
1883 struct frame_info *frame = get_current_frame ();
1884
1885 /* Do nothing if not using the probes interface. */
1886 if (info->probes_table == NULL)
1887 return;
1888
1889 /* If anything goes wrong we revert to the original linker
1890 interface. */
1891 auto cleanup = make_scope_exit ([info] ()
1892 {
1893 disable_probes_interface (info);
1894 });
1895
1896 pc = regcache_read_pc (get_current_regcache ());
1897 pa = solib_event_probe_at (info, pc);
1898 if (pa == NULL)
1899 return;
1900
1901 action = solib_event_probe_action (pa);
1902 if (action == PROBES_INTERFACE_FAILED)
1903 return;
1904
1905 if (action == DO_NOTHING)
1906 {
1907 cleanup.release ();
1908 return;
1909 }
1910
1911 /* evaluate_argument looks up symbols in the dynamic linker
1912 using find_pc_section. find_pc_section is accelerated by a cache
1913 called the section map. The section map is invalidated every
1914 time a shared library is loaded or unloaded, and if the inferior
1915 is generating a lot of shared library events then the section map
1916 will be updated every time svr4_handle_solib_event is called.
1917 We called find_pc_section in svr4_create_solib_event_breakpoints,
1918 so we can guarantee that the dynamic linker's sections are in the
1919 section map. We can therefore inhibit section map updates across
1920 these calls to evaluate_argument and save a lot of time. */
1921 {
1922 scoped_restore inhibit_updates
1923 = inhibit_section_map_updates (current_program_space);
1924
1925 try
1926 {
1927 val = pa->prob->evaluate_argument (1, frame);
1928 }
1929 catch (const gdb_exception_error &ex)
1930 {
1931 exception_print (gdb_stderr, ex);
1932 val = NULL;
1933 }
1934
1935 if (val == NULL)
1936 return;
1937
1938 debug_base = value_as_address (val);
1939 if (debug_base == 0)
1940 return;
1941
1942 /* Always locate the debug struct, in case it moved. */
1943 info->debug_base = 0;
1944 if (locate_base (info) == 0)
1945 {
1946 /* It's possible for the reloc_complete probe to be triggered before
1947 the linker has set the DT_DEBUG pointer (for example, when the
1948 linker has finished relocating an LD_AUDIT library or its
1949 dependencies). Since we can't yet handle libraries from other link
1950 namespaces, we don't lose anything by ignoring them here. */
1951 struct value *link_map_id_val;
1952 try
1953 {
1954 link_map_id_val = pa->prob->evaluate_argument (0, frame);
1955 }
1956 catch (const gdb_exception_error)
1957 {
1958 link_map_id_val = NULL;
1959 }
1960 /* glibc and illumos' libc both define LM_ID_BASE as zero. */
1961 if (link_map_id_val != NULL && value_as_long (link_map_id_val) != 0)
1962 action = DO_NOTHING;
1963 else
1964 return;
1965 }
1966
1967 /* GDB does not currently support libraries loaded via dlmopen
1968 into namespaces other than the initial one. We must ignore
1969 any namespace other than the initial namespace here until
1970 support for this is added to GDB. */
1971 if (debug_base != info->debug_base)
1972 action = DO_NOTHING;
1973
1974 if (action == UPDATE_OR_RELOAD)
1975 {
1976 try
1977 {
1978 val = pa->prob->evaluate_argument (2, frame);
1979 }
1980 catch (const gdb_exception_error &ex)
1981 {
1982 exception_print (gdb_stderr, ex);
1983 return;
1984 }
1985
1986 if (val != NULL)
1987 lm = value_as_address (val);
1988
1989 if (lm == 0)
1990 action = FULL_RELOAD;
1991 }
1992
1993 /* Resume section map updates. Closing the scope is
1994 sufficient. */
1995 }
1996
1997 if (action == UPDATE_OR_RELOAD)
1998 {
1999 if (!solist_update_incremental (info, lm))
2000 action = FULL_RELOAD;
2001 }
2002
2003 if (action == FULL_RELOAD)
2004 {
2005 if (!solist_update_full (info))
2006 return;
2007 }
2008
2009 cleanup.release ();
2010 }
2011
2012 /* Helper function for svr4_update_solib_event_breakpoints. */
2013
2014 static bool
2015 svr4_update_solib_event_breakpoint (struct breakpoint *b)
2016 {
2017 struct bp_location *loc;
2018
2019 if (b->type != bp_shlib_event)
2020 {
2021 /* Continue iterating. */
2022 return false;
2023 }
2024
2025 for (loc = b->loc; loc != NULL; loc = loc->next)
2026 {
2027 struct svr4_info *info;
2028 struct probe_and_action *pa;
2029
2030 info = solib_svr4_pspace_data.get (loc->pspace);
2031 if (info == NULL || info->probes_table == NULL)
2032 continue;
2033
2034 pa = solib_event_probe_at (info, loc->address);
2035 if (pa == NULL)
2036 continue;
2037
2038 if (pa->action == DO_NOTHING)
2039 {
2040 if (b->enable_state == bp_disabled && stop_on_solib_events)
2041 enable_breakpoint (b);
2042 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2043 disable_breakpoint (b);
2044 }
2045
2046 break;
2047 }
2048
2049 /* Continue iterating. */
2050 return false;
2051 }
2052
2053 /* Enable or disable optional solib event breakpoints as appropriate.
2054 Called whenever stop_on_solib_events is changed. */
2055
2056 static void
2057 svr4_update_solib_event_breakpoints (void)
2058 {
2059 iterate_over_breakpoints (svr4_update_solib_event_breakpoint);
2060 }
2061
2062 /* Create and register solib event breakpoints. PROBES is an array
2063 of NUM_PROBES elements, each of which is vector of probes. A
2064 solib event breakpoint will be created and registered for each
2065 probe. */
2066
2067 static void
2068 svr4_create_probe_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2069 const std::vector<probe *> *probes,
2070 struct objfile *objfile)
2071 {
2072 for (int i = 0; i < NUM_PROBES; i++)
2073 {
2074 enum probe_action action = probe_info[i].action;
2075
2076 for (probe *p : probes[i])
2077 {
2078 CORE_ADDR address = p->get_relocated_address (objfile);
2079
2080 create_solib_event_breakpoint (gdbarch, address);
2081 register_solib_event_probe (info, objfile, p, address, action);
2082 }
2083 }
2084
2085 svr4_update_solib_event_breakpoints ();
2086 }
2087
2088 /* Find all the glibc named probes. Only if all of the probes are found, then
2089 create them and return true. Otherwise return false. If WITH_PREFIX is set
2090 then add "rtld" to the front of the probe names. */
2091 static bool
2092 svr4_find_and_create_probe_breakpoints (svr4_info *info,
2093 struct gdbarch *gdbarch,
2094 struct obj_section *os,
2095 bool with_prefix)
2096 {
2097 std::vector<probe *> probes[NUM_PROBES];
2098
2099 for (int i = 0; i < NUM_PROBES; i++)
2100 {
2101 const char *name = probe_info[i].name;
2102 char buf[32];
2103
2104 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 shipped with an early
2105 version of the probes code in which the probes' names were prefixed
2106 with "rtld_" and the "map_failed" probe did not exist. The locations
2107 of the probes are otherwise the same, so we check for probes with
2108 prefixed names if probes with unprefixed names are not present. */
2109 if (with_prefix)
2110 {
2111 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2112 name = buf;
2113 }
2114
2115 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2116
2117 /* The "map_failed" probe did not exist in early
2118 versions of the probes code in which the probes'
2119 names were prefixed with "rtld_". */
2120 if (with_prefix && streq (name, "rtld_map_failed"))
2121 continue;
2122
2123 /* Ensure at least one probe for the current name was found. */
2124 if (probes[i].empty ())
2125 return false;
2126
2127 /* Ensure probe arguments can be evaluated. */
2128 for (probe *p : probes[i])
2129 {
2130 if (!p->can_evaluate_arguments ())
2131 return false;
2132 /* This will fail if the probe is invalid. This has been seen on Arm
2133 due to references to symbols that have been resolved away. */
2134 try
2135 {
2136 p->get_argument_count (gdbarch);
2137 }
2138 catch (const gdb_exception_error &ex)
2139 {
2140 exception_print (gdb_stderr, ex);
2141 warning (_("Initializing probes-based dynamic linker interface "
2142 "failed.\nReverting to original interface."));
2143 return false;
2144 }
2145 }
2146 }
2147
2148 /* All probes found. Now create them. */
2149 svr4_create_probe_breakpoints (info, gdbarch, probes, os->objfile);
2150 return true;
2151 }
2152
2153 /* Both the SunOS and the SVR4 dynamic linkers call a marker function
2154 before and after mapping and unmapping shared libraries. The sole
2155 purpose of this method is to allow debuggers to set a breakpoint so
2156 they can track these changes.
2157
2158 Some versions of the glibc dynamic linker contain named probes
2159 to allow more fine grained stopping. Given the address of the
2160 original marker function, this function attempts to find these
2161 probes, and if found, sets breakpoints on those instead. If the
2162 probes aren't found, a single breakpoint is set on the original
2163 marker function. */
2164
2165 static void
2166 svr4_create_solib_event_breakpoints (svr4_info *info, struct gdbarch *gdbarch,
2167 CORE_ADDR address)
2168 {
2169 struct obj_section *os = find_pc_section (address);
2170
2171 if (os == nullptr
2172 || (!svr4_find_and_create_probe_breakpoints (info, gdbarch, os, false)
2173 && !svr4_find_and_create_probe_breakpoints (info, gdbarch, os, true)))
2174 create_solib_event_breakpoint (gdbarch, address);
2175 }
2176
2177 /* Helper function for gdb_bfd_lookup_symbol. */
2178
2179 static int
2180 cmp_name_and_sec_flags (const asymbol *sym, const void *data)
2181 {
2182 return (strcmp (sym->name, (const char *) data) == 0
2183 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2184 }
2185 /* Arrange for dynamic linker to hit breakpoint.
2186
2187 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2188 debugger interface, support for arranging for the inferior to hit
2189 a breakpoint after mapping in the shared libraries. This function
2190 enables that breakpoint.
2191
2192 For SunOS, there is a special flag location (in_debugger) which we
2193 set to 1. When the dynamic linker sees this flag set, it will set
2194 a breakpoint at a location known only to itself, after saving the
2195 original contents of that place and the breakpoint address itself,
2196 in it's own internal structures. When we resume the inferior, it
2197 will eventually take a SIGTRAP when it runs into the breakpoint.
2198 We handle this (in a different place) by restoring the contents of
2199 the breakpointed location (which is only known after it stops),
2200 chasing around to locate the shared libraries that have been
2201 loaded, then resuming.
2202
2203 For SVR4, the debugger interface structure contains a member (r_brk)
2204 which is statically initialized at the time the shared library is
2205 built, to the offset of a function (_r_debug_state) which is guaran-
2206 teed to be called once before mapping in a library, and again when
2207 the mapping is complete. At the time we are examining this member,
2208 it contains only the unrelocated offset of the function, so we have
2209 to do our own relocation. Later, when the dynamic linker actually
2210 runs, it relocates r_brk to be the actual address of _r_debug_state().
2211
2212 The debugger interface structure also contains an enumeration which
2213 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2214 depending upon whether or not the library is being mapped or unmapped,
2215 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
2216
2217 static int
2218 enable_break (struct svr4_info *info, int from_tty)
2219 {
2220 struct bound_minimal_symbol msymbol;
2221 const char * const *bkpt_namep;
2222 asection *interp_sect;
2223 CORE_ADDR sym_addr;
2224
2225 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2226 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
2227
2228 /* If we already have a shared library list in the target, and
2229 r_debug contains r_brk, set the breakpoint there - this should
2230 mean r_brk has already been relocated. Assume the dynamic linker
2231 is the object containing r_brk. */
2232
2233 solib_add (NULL, from_tty, auto_solib_add);
2234 sym_addr = 0;
2235 if (info->debug_base && solib_svr4_r_map (info) != 0)
2236 sym_addr = solib_svr4_r_brk (info);
2237
2238 if (sym_addr != 0)
2239 {
2240 struct obj_section *os;
2241
2242 sym_addr = gdbarch_addr_bits_remove
2243 (target_gdbarch (),
2244 gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2245 sym_addr,
2246 current_top_target ()));
2247
2248 /* On at least some versions of Solaris there's a dynamic relocation
2249 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2250 we get control before the dynamic linker has self-relocated.
2251 Check if SYM_ADDR is in a known section, if it is assume we can
2252 trust its value. This is just a heuristic though, it could go away
2253 or be replaced if it's getting in the way.
2254
2255 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2256 however it's spelled in your particular system) is ARM or Thumb.
2257 That knowledge is encoded in the address, if it's Thumb the low bit
2258 is 1. However, we've stripped that info above and it's not clear
2259 what all the consequences are of passing a non-addr_bits_remove'd
2260 address to svr4_create_solib_event_breakpoints. The call to
2261 find_pc_section verifies we know about the address and have some
2262 hope of computing the right kind of breakpoint to use (via
2263 symbol info). It does mean that GDB needs to be pointed at a
2264 non-stripped version of the dynamic linker in order to obtain
2265 information it already knows about. Sigh. */
2266
2267 os = find_pc_section (sym_addr);
2268 if (os != NULL)
2269 {
2270 /* Record the relocated start and end address of the dynamic linker
2271 text and plt section for svr4_in_dynsym_resolve_code. */
2272 bfd *tmp_bfd;
2273 CORE_ADDR load_addr;
2274
2275 tmp_bfd = os->objfile->obfd;
2276 load_addr = os->objfile->text_section_offset ();
2277
2278 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2279 if (interp_sect)
2280 {
2281 info->interp_text_sect_low
2282 = bfd_section_vma (interp_sect) + load_addr;
2283 info->interp_text_sect_high
2284 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2285 }
2286 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2287 if (interp_sect)
2288 {
2289 info->interp_plt_sect_low
2290 = bfd_section_vma (interp_sect) + load_addr;
2291 info->interp_plt_sect_high
2292 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2293 }
2294
2295 svr4_create_solib_event_breakpoints (info, target_gdbarch (), sym_addr);
2296 return 1;
2297 }
2298 }
2299
2300 /* Find the program interpreter; if not found, warn the user and drop
2301 into the old breakpoint at symbol code. */
2302 gdb::optional<gdb::byte_vector> interp_name_holder
2303 = find_program_interpreter ();
2304 if (interp_name_holder)
2305 {
2306 const char *interp_name = (const char *) interp_name_holder->data ();
2307 CORE_ADDR load_addr = 0;
2308 int load_addr_found = 0;
2309 int loader_found_in_list = 0;
2310 struct target_ops *tmp_bfd_target;
2311
2312 sym_addr = 0;
2313
2314 /* Now we need to figure out where the dynamic linker was
2315 loaded so that we can load its symbols and place a breakpoint
2316 in the dynamic linker itself.
2317
2318 This address is stored on the stack. However, I've been unable
2319 to find any magic formula to find it for Solaris (appears to
2320 be trivial on GNU/Linux). Therefore, we have to try an alternate
2321 mechanism to find the dynamic linker's base address. */
2322
2323 gdb_bfd_ref_ptr tmp_bfd;
2324 try
2325 {
2326 tmp_bfd = solib_bfd_open (interp_name);
2327 }
2328 catch (const gdb_exception &ex)
2329 {
2330 }
2331
2332 if (tmp_bfd == NULL)
2333 goto bkpt_at_symbol;
2334
2335 /* Now convert the TMP_BFD into a target. That way target, as
2336 well as BFD operations can be used. */
2337 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
2338
2339 /* On a running target, we can get the dynamic linker's base
2340 address from the shared library table. */
2341 for (struct so_list *so : current_program_space->solibs ())
2342 {
2343 if (svr4_same_1 (interp_name, so->so_original_name))
2344 {
2345 load_addr_found = 1;
2346 loader_found_in_list = 1;
2347 load_addr = lm_addr_check (so, tmp_bfd.get ());
2348 break;
2349 }
2350 }
2351
2352 /* If we were not able to find the base address of the loader
2353 from our so_list, then try using the AT_BASE auxilliary entry. */
2354 if (!load_addr_found)
2355 if (target_auxv_search (current_top_target (), AT_BASE, &load_addr) > 0)
2356 {
2357 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
2358
2359 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2360 that `+ load_addr' will overflow CORE_ADDR width not creating
2361 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2362 GDB. */
2363
2364 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
2365 {
2366 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
2367 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
2368 tmp_bfd_target);
2369
2370 gdb_assert (load_addr < space_size);
2371
2372 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2373 64bit ld.so with 32bit executable, it should not happen. */
2374
2375 if (tmp_entry_point < space_size
2376 && tmp_entry_point + load_addr >= space_size)
2377 load_addr -= space_size;
2378 }
2379
2380 load_addr_found = 1;
2381 }
2382
2383 /* Otherwise we find the dynamic linker's base address by examining
2384 the current pc (which should point at the entry point for the
2385 dynamic linker) and subtracting the offset of the entry point.
2386
2387 This is more fragile than the previous approaches, but is a good
2388 fallback method because it has actually been working well in
2389 most cases. */
2390 if (!load_addr_found)
2391 {
2392 struct regcache *regcache
2393 = get_thread_arch_regcache (current_inferior ()->process_target (),
2394 inferior_ptid, target_gdbarch ());
2395
2396 load_addr = (regcache_read_pc (regcache)
2397 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
2398 }
2399
2400 if (!loader_found_in_list)
2401 {
2402 info->debug_loader_name = xstrdup (interp_name);
2403 info->debug_loader_offset_p = 1;
2404 info->debug_loader_offset = load_addr;
2405 solib_add (NULL, from_tty, auto_solib_add);
2406 }
2407
2408 /* Record the relocated start and end address of the dynamic linker
2409 text and plt section for svr4_in_dynsym_resolve_code. */
2410 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
2411 if (interp_sect)
2412 {
2413 info->interp_text_sect_low
2414 = bfd_section_vma (interp_sect) + load_addr;
2415 info->interp_text_sect_high
2416 = info->interp_text_sect_low + bfd_section_size (interp_sect);
2417 }
2418 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
2419 if (interp_sect)
2420 {
2421 info->interp_plt_sect_low
2422 = bfd_section_vma (interp_sect) + load_addr;
2423 info->interp_plt_sect_high
2424 = info->interp_plt_sect_low + bfd_section_size (interp_sect);
2425 }
2426
2427 /* Now try to set a breakpoint in the dynamic linker. */
2428 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2429 {
2430 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2431 cmp_name_and_sec_flags,
2432 *bkpt_namep);
2433 if (sym_addr != 0)
2434 break;
2435 }
2436
2437 if (sym_addr != 0)
2438 /* Convert 'sym_addr' from a function pointer to an address.
2439 Because we pass tmp_bfd_target instead of the current
2440 target, this will always produce an unrelocated value. */
2441 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2442 sym_addr,
2443 tmp_bfd_target);
2444
2445 /* We're done with both the temporary bfd and target. Closing
2446 the target closes the underlying bfd, because it holds the
2447 only remaining reference. */
2448 target_close (tmp_bfd_target);
2449
2450 if (sym_addr != 0)
2451 {
2452 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2453 load_addr + sym_addr);
2454 return 1;
2455 }
2456
2457 /* For whatever reason we couldn't set a breakpoint in the dynamic
2458 linker. Warn and drop into the old code. */
2459 bkpt_at_symbol:
2460 warning (_("Unable to find dynamic linker breakpoint function.\n"
2461 "GDB will be unable to debug shared library initializers\n"
2462 "and track explicitly loaded dynamic code."));
2463 }
2464
2465 /* Scan through the lists of symbols, trying to look up the symbol and
2466 set a breakpoint there. Terminate loop when we/if we succeed. */
2467
2468 objfile *objf = current_program_space->symfile_object_file;
2469 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2470 {
2471 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2472 if ((msymbol.minsym != NULL)
2473 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2474 {
2475 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2476 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2477 sym_addr,
2478 current_top_target ());
2479 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2480 sym_addr);
2481 return 1;
2482 }
2483 }
2484
2485 if (interp_name_holder && !current_inferior ()->attach_flag)
2486 {
2487 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
2488 {
2489 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, objf);
2490 if ((msymbol.minsym != NULL)
2491 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
2492 {
2493 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2494 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2495 sym_addr,
2496 current_top_target ());
2497 svr4_create_solib_event_breakpoints (info, target_gdbarch (),
2498 sym_addr);
2499 return 1;
2500 }
2501 }
2502 }
2503 return 0;
2504 }
2505
2506 /* Read the ELF program headers from ABFD. */
2507
2508 static gdb::optional<gdb::byte_vector>
2509 read_program_headers_from_bfd (bfd *abfd)
2510 {
2511 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
2512 int phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2513 if (phdrs_size == 0)
2514 return {};
2515
2516 gdb::byte_vector buf (phdrs_size);
2517 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2518 || bfd_bread (buf.data (), phdrs_size, abfd) != phdrs_size)
2519 return {};
2520
2521 return buf;
2522 }
2523
2524 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2525 exec_bfd. Otherwise return 0.
2526
2527 We relocate all of the sections by the same amount. This
2528 behavior is mandated by recent editions of the System V ABI.
2529 According to the System V Application Binary Interface,
2530 Edition 4.1, page 5-5:
2531
2532 ... Though the system chooses virtual addresses for
2533 individual processes, it maintains the segments' relative
2534 positions. Because position-independent code uses relative
2535 addressing between segments, the difference between
2536 virtual addresses in memory must match the difference
2537 between virtual addresses in the file. The difference
2538 between the virtual address of any segment in memory and
2539 the corresponding virtual address in the file is thus a
2540 single constant value for any one executable or shared
2541 object in a given process. This difference is the base
2542 address. One use of the base address is to relocate the
2543 memory image of the program during dynamic linking.
2544
2545 The same language also appears in Edition 4.0 of the System V
2546 ABI and is left unspecified in some of the earlier editions.
2547
2548 Decide if the objfile needs to be relocated. As indicated above, we will
2549 only be here when execution is stopped. But during attachment PC can be at
2550 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2551 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2552 regcache_read_pc would point to the interpreter and not the main executable.
2553
2554 So, to summarize, relocations are necessary when the start address obtained
2555 from the executable is different from the address in auxv AT_ENTRY entry.
2556
2557 [ The astute reader will note that we also test to make sure that
2558 the executable in question has the DYNAMIC flag set. It is my
2559 opinion that this test is unnecessary (undesirable even). It
2560 was added to avoid inadvertent relocation of an executable
2561 whose e_type member in the ELF header is not ET_DYN. There may
2562 be a time in the future when it is desirable to do relocations
2563 on other types of files as well in which case this condition
2564 should either be removed or modified to accomodate the new file
2565 type. - Kevin, Nov 2000. ] */
2566
2567 static int
2568 svr4_exec_displacement (CORE_ADDR *displacementp)
2569 {
2570 /* ENTRY_POINT is a possible function descriptor - before
2571 a call to gdbarch_convert_from_func_ptr_addr. */
2572 CORE_ADDR entry_point, exec_displacement;
2573
2574 if (current_program_space->exec_bfd () == NULL)
2575 return 0;
2576
2577 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2578 being executed themselves and PIE (Position Independent Executable)
2579 executables are ET_DYN. */
2580
2581 if ((bfd_get_file_flags (current_program_space->exec_bfd ()) & DYNAMIC) == 0)
2582 return 0;
2583
2584 if (target_auxv_search (current_top_target (), AT_ENTRY, &entry_point) <= 0)
2585 return 0;
2586
2587 exec_displacement
2588 = entry_point - bfd_get_start_address (current_program_space->exec_bfd ());
2589
2590 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
2591 alignment. It is cheaper than the program headers comparison below. */
2592
2593 if (bfd_get_flavour (current_program_space->exec_bfd ())
2594 == bfd_target_elf_flavour)
2595 {
2596 const struct elf_backend_data *elf
2597 = get_elf_backend_data (current_program_space->exec_bfd ());
2598
2599 /* p_align of PT_LOAD segments does not specify any alignment but
2600 only congruency of addresses:
2601 p_offset % p_align == p_vaddr % p_align
2602 Kernel is free to load the executable with lower alignment. */
2603
2604 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
2605 return 0;
2606 }
2607
2608 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2609 comparing their program headers. If the program headers in the auxilliary
2610 vector do not match the program headers in the executable, then we are
2611 looking at a different file than the one used by the kernel - for
2612 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2613
2614 if (bfd_get_flavour (current_program_space->exec_bfd ())
2615 == bfd_target_elf_flavour)
2616 {
2617 /* Be optimistic and return 0 only if GDB was able to verify the headers
2618 really do not match. */
2619 int arch_size;
2620
2621 gdb::optional<gdb::byte_vector> phdrs_target
2622 = read_program_header (-1, &arch_size, NULL);
2623 gdb::optional<gdb::byte_vector> phdrs_binary
2624 = read_program_headers_from_bfd (current_program_space->exec_bfd ());
2625 if (phdrs_target && phdrs_binary)
2626 {
2627 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
2628
2629 /* We are dealing with three different addresses. EXEC_BFD
2630 represents current address in on-disk file. target memory content
2631 may be different from EXEC_BFD as the file may have been prelinked
2632 to a different address after the executable has been loaded.
2633 Moreover the address of placement in target memory can be
2634 different from what the program headers in target memory say -
2635 this is the goal of PIE.
2636
2637 Detected DISPLACEMENT covers both the offsets of PIE placement and
2638 possible new prelink performed after start of the program. Here
2639 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2640 content offset for the verification purpose. */
2641
2642 if (phdrs_target->size () != phdrs_binary->size ()
2643 || bfd_get_arch_size (current_program_space->exec_bfd ()) != arch_size)
2644 return 0;
2645 else if (arch_size == 32
2646 && phdrs_target->size () >= sizeof (Elf32_External_Phdr)
2647 && phdrs_target->size () % sizeof (Elf32_External_Phdr) == 0)
2648 {
2649 Elf_Internal_Ehdr *ehdr2
2650 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2651 Elf_Internal_Phdr *phdr2
2652 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2653 CORE_ADDR displacement = 0;
2654 int i;
2655
2656 /* DISPLACEMENT could be found more easily by the difference of
2657 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2658 already have enough information to compute that displacement
2659 with what we've read. */
2660
2661 for (i = 0; i < ehdr2->e_phnum; i++)
2662 if (phdr2[i].p_type == PT_LOAD)
2663 {
2664 Elf32_External_Phdr *phdrp;
2665 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2666 CORE_ADDR vaddr, paddr;
2667 CORE_ADDR displacement_vaddr = 0;
2668 CORE_ADDR displacement_paddr = 0;
2669
2670 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2671 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2672 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2673
2674 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2675 byte_order);
2676 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2677
2678 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2679 byte_order);
2680 displacement_paddr = paddr - phdr2[i].p_paddr;
2681
2682 if (displacement_vaddr == displacement_paddr)
2683 displacement = displacement_vaddr;
2684
2685 break;
2686 }
2687
2688 /* Now compare program headers from the target and the binary
2689 with optional DISPLACEMENT. */
2690
2691 for (i = 0;
2692 i < phdrs_target->size () / sizeof (Elf32_External_Phdr);
2693 i++)
2694 {
2695 Elf32_External_Phdr *phdrp;
2696 Elf32_External_Phdr *phdr2p;
2697 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2698 CORE_ADDR vaddr, paddr;
2699 asection *plt2_asect;
2700
2701 phdrp = &((Elf32_External_Phdr *) phdrs_target->data ())[i];
2702 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2703 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2704 phdr2p = &((Elf32_External_Phdr *) phdrs_binary->data ())[i];
2705
2706 /* PT_GNU_STACK is an exception by being never relocated by
2707 prelink as its addresses are always zero. */
2708
2709 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2710 continue;
2711
2712 /* Check also other adjustment combinations - PR 11786. */
2713
2714 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2715 byte_order);
2716 vaddr -= displacement;
2717 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2718
2719 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2720 byte_order);
2721 paddr -= displacement;
2722 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2723
2724 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2725 continue;
2726
2727 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2728 CentOS-5 has problems with filesz, memsz as well.
2729 Strip also modifies memsz of PT_TLS.
2730 See PR 11786. */
2731 if (phdr2[i].p_type == PT_GNU_RELRO
2732 || phdr2[i].p_type == PT_TLS)
2733 {
2734 Elf32_External_Phdr tmp_phdr = *phdrp;
2735 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2736
2737 memset (tmp_phdr.p_filesz, 0, 4);
2738 memset (tmp_phdr.p_memsz, 0, 4);
2739 memset (tmp_phdr.p_flags, 0, 4);
2740 memset (tmp_phdr.p_align, 0, 4);
2741 memset (tmp_phdr2.p_filesz, 0, 4);
2742 memset (tmp_phdr2.p_memsz, 0, 4);
2743 memset (tmp_phdr2.p_flags, 0, 4);
2744 memset (tmp_phdr2.p_align, 0, 4);
2745
2746 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2747 == 0)
2748 continue;
2749 }
2750
2751 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2752 bfd *exec_bfd = current_program_space->exec_bfd ();
2753 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2754 if (plt2_asect)
2755 {
2756 int content2;
2757 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2758 CORE_ADDR filesz;
2759
2760 content2 = (bfd_section_flags (plt2_asect)
2761 & SEC_HAS_CONTENTS) != 0;
2762
2763 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2764 byte_order);
2765
2766 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2767 FILESZ is from the in-memory image. */
2768 if (content2)
2769 filesz += bfd_section_size (plt2_asect);
2770 else
2771 filesz -= bfd_section_size (plt2_asect);
2772
2773 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2774 filesz);
2775
2776 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2777 continue;
2778 }
2779
2780 return 0;
2781 }
2782 }
2783 else if (arch_size == 64
2784 && phdrs_target->size () >= sizeof (Elf64_External_Phdr)
2785 && phdrs_target->size () % sizeof (Elf64_External_Phdr) == 0)
2786 {
2787 Elf_Internal_Ehdr *ehdr2
2788 = elf_tdata (current_program_space->exec_bfd ())->elf_header;
2789 Elf_Internal_Phdr *phdr2
2790 = elf_tdata (current_program_space->exec_bfd ())->phdr;
2791 CORE_ADDR displacement = 0;
2792 int i;
2793
2794 /* DISPLACEMENT could be found more easily by the difference of
2795 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2796 already have enough information to compute that displacement
2797 with what we've read. */
2798
2799 for (i = 0; i < ehdr2->e_phnum; i++)
2800 if (phdr2[i].p_type == PT_LOAD)
2801 {
2802 Elf64_External_Phdr *phdrp;
2803 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2804 CORE_ADDR vaddr, paddr;
2805 CORE_ADDR displacement_vaddr = 0;
2806 CORE_ADDR displacement_paddr = 0;
2807
2808 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2809 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2810 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2811
2812 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2813 byte_order);
2814 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2815
2816 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2817 byte_order);
2818 displacement_paddr = paddr - phdr2[i].p_paddr;
2819
2820 if (displacement_vaddr == displacement_paddr)
2821 displacement = displacement_vaddr;
2822
2823 break;
2824 }
2825
2826 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2827
2828 for (i = 0;
2829 i < phdrs_target->size () / sizeof (Elf64_External_Phdr);
2830 i++)
2831 {
2832 Elf64_External_Phdr *phdrp;
2833 Elf64_External_Phdr *phdr2p;
2834 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2835 CORE_ADDR vaddr, paddr;
2836 asection *plt2_asect;
2837
2838 phdrp = &((Elf64_External_Phdr *) phdrs_target->data ())[i];
2839 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2840 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2841 phdr2p = &((Elf64_External_Phdr *) phdrs_binary->data ())[i];
2842
2843 /* PT_GNU_STACK is an exception by being never relocated by
2844 prelink as its addresses are always zero. */
2845
2846 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2847 continue;
2848
2849 /* Check also other adjustment combinations - PR 11786. */
2850
2851 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2852 byte_order);
2853 vaddr -= displacement;
2854 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2855
2856 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2857 byte_order);
2858 paddr -= displacement;
2859 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2860
2861 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2862 continue;
2863
2864 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2865 CentOS-5 has problems with filesz, memsz as well.
2866 Strip also modifies memsz of PT_TLS.
2867 See PR 11786. */
2868 if (phdr2[i].p_type == PT_GNU_RELRO
2869 || phdr2[i].p_type == PT_TLS)
2870 {
2871 Elf64_External_Phdr tmp_phdr = *phdrp;
2872 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2873
2874 memset (tmp_phdr.p_filesz, 0, 8);
2875 memset (tmp_phdr.p_memsz, 0, 8);
2876 memset (tmp_phdr.p_flags, 0, 4);
2877 memset (tmp_phdr.p_align, 0, 8);
2878 memset (tmp_phdr2.p_filesz, 0, 8);
2879 memset (tmp_phdr2.p_memsz, 0, 8);
2880 memset (tmp_phdr2.p_flags, 0, 4);
2881 memset (tmp_phdr2.p_align, 0, 8);
2882
2883 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2884 == 0)
2885 continue;
2886 }
2887
2888 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2889 plt2_asect
2890 = bfd_get_section_by_name (current_program_space->exec_bfd (),
2891 ".plt");
2892 if (plt2_asect)
2893 {
2894 int content2;
2895 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2896 CORE_ADDR filesz;
2897
2898 content2 = (bfd_section_flags (plt2_asect)
2899 & SEC_HAS_CONTENTS) != 0;
2900
2901 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2902 byte_order);
2903
2904 /* PLT2_ASECT is from on-disk file (current
2905 exec_bfd) while FILESZ is from the in-memory
2906 image. */
2907 if (content2)
2908 filesz += bfd_section_size (plt2_asect);
2909 else
2910 filesz -= bfd_section_size (plt2_asect);
2911
2912 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2913 filesz);
2914
2915 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2916 continue;
2917 }
2918
2919 return 0;
2920 }
2921 }
2922 else
2923 return 0;
2924 }
2925 }
2926
2927 if (info_verbose)
2928 {
2929 /* It can be printed repeatedly as there is no easy way to check
2930 the executable symbols/file has been already relocated to
2931 displacement. */
2932
2933 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2934 "displacement %s for \"%s\".\n"),
2935 paddress (target_gdbarch (), exec_displacement),
2936 bfd_get_filename (current_program_space->exec_bfd ()));
2937 }
2938
2939 *displacementp = exec_displacement;
2940 return 1;
2941 }
2942
2943 /* Relocate the main executable. This function should be called upon
2944 stopping the inferior process at the entry point to the program.
2945 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2946 different, the main executable is relocated by the proper amount. */
2947
2948 static void
2949 svr4_relocate_main_executable (void)
2950 {
2951 CORE_ADDR displacement;
2952
2953 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2954 probably contains the offsets computed using the PIE displacement
2955 from the previous run, which of course are irrelevant for this run.
2956 So we need to determine the new PIE displacement and recompute the
2957 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2958 already contains pre-computed offsets.
2959
2960 If we cannot compute the PIE displacement, either:
2961
2962 - The executable is not PIE.
2963
2964 - SYMFILE_OBJFILE does not match the executable started in the target.
2965 This can happen for main executable symbols loaded at the host while
2966 `ld.so --ld-args main-executable' is loaded in the target.
2967
2968 Then we leave the section offsets untouched and use them as is for
2969 this run. Either:
2970
2971 - These section offsets were properly reset earlier, and thus
2972 already contain the correct values. This can happen for instance
2973 when reconnecting via the remote protocol to a target that supports
2974 the `qOffsets' packet.
2975
2976 - The section offsets were not reset earlier, and the best we can
2977 hope is that the old offsets are still applicable to the new run. */
2978
2979 if (! svr4_exec_displacement (&displacement))
2980 return;
2981
2982 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2983 addresses. */
2984
2985 objfile *objf = current_program_space->symfile_object_file;
2986 if (objf)
2987 {
2988 section_offsets new_offsets (objf->section_offsets.size (),
2989 displacement);
2990 objfile_relocate (objf, new_offsets);
2991 }
2992 else if (current_program_space->exec_bfd ())
2993 {
2994 asection *asect;
2995
2996 bfd *exec_bfd = current_program_space->exec_bfd ();
2997 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2998 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2999 bfd_section_vma (asect) + displacement);
3000 }
3001 }
3002
3003 /* Implement the "create_inferior_hook" target_solib_ops method.
3004
3005 For SVR4 executables, this first instruction is either the first
3006 instruction in the dynamic linker (for dynamically linked
3007 executables) or the instruction at "start" for statically linked
3008 executables. For dynamically linked executables, the system
3009 first exec's /lib/libc.so.N, which contains the dynamic linker,
3010 and starts it running. The dynamic linker maps in any needed
3011 shared libraries, maps in the actual user executable, and then
3012 jumps to "start" in the user executable.
3013
3014 We can arrange to cooperate with the dynamic linker to discover the
3015 names of shared libraries that are dynamically linked, and the base
3016 addresses to which they are linked.
3017
3018 This function is responsible for discovering those names and
3019 addresses, and saving sufficient information about them to allow
3020 their symbols to be read at a later time. */
3021
3022 static void
3023 svr4_solib_create_inferior_hook (int from_tty)
3024 {
3025 struct svr4_info *info;
3026
3027 info = get_svr4_info (current_program_space);
3028
3029 /* Clear the probes-based interface's state. */
3030 free_probes_table (info);
3031 free_solib_list (info);
3032
3033 /* Relocate the main executable if necessary. */
3034 svr4_relocate_main_executable ();
3035
3036 /* No point setting a breakpoint in the dynamic linker if we can't
3037 hit it (e.g., a core file, or a trace file). */
3038 if (!target_has_execution ())
3039 return;
3040
3041 if (!svr4_have_link_map_offsets ())
3042 return;
3043
3044 if (!enable_break (info, from_tty))
3045 return;
3046 }
3047
3048 static void
3049 svr4_clear_solib (void)
3050 {
3051 struct svr4_info *info;
3052
3053 info = get_svr4_info (current_program_space);
3054 info->debug_base = 0;
3055 info->debug_loader_offset_p = 0;
3056 info->debug_loader_offset = 0;
3057 xfree (info->debug_loader_name);
3058 info->debug_loader_name = NULL;
3059 }
3060
3061 /* Clear any bits of ADDR that wouldn't fit in a target-format
3062 data pointer. "Data pointer" here refers to whatever sort of
3063 address the dynamic linker uses to manage its sections. At the
3064 moment, we don't support shared libraries on any processors where
3065 code and data pointers are different sizes.
3066
3067 This isn't really the right solution. What we really need here is
3068 a way to do arithmetic on CORE_ADDR values that respects the
3069 natural pointer/address correspondence. (For example, on the MIPS,
3070 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3071 sign-extend the value. There, simply truncating the bits above
3072 gdbarch_ptr_bit, as we do below, is no good.) This should probably
3073 be a new gdbarch method or something. */
3074 static CORE_ADDR
3075 svr4_truncate_ptr (CORE_ADDR addr)
3076 {
3077 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
3078 /* We don't need to truncate anything, and the bit twiddling below
3079 will fail due to overflow problems. */
3080 return addr;
3081 else
3082 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
3083 }
3084
3085
3086 static void
3087 svr4_relocate_section_addresses (struct so_list *so,
3088 struct target_section *sec)
3089 {
3090 bfd *abfd = sec->the_bfd_section->owner;
3091
3092 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3093 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
3094 }
3095 \f
3096
3097 /* Architecture-specific operations. */
3098
3099 /* Per-architecture data key. */
3100 static struct gdbarch_data *solib_svr4_data;
3101
3102 struct solib_svr4_ops
3103 {
3104 /* Return a description of the layout of `struct link_map'. */
3105 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3106 };
3107
3108 /* Return a default for the architecture-specific operations. */
3109
3110 static void *
3111 solib_svr4_init (struct obstack *obstack)
3112 {
3113 struct solib_svr4_ops *ops;
3114
3115 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
3116 ops->fetch_link_map_offsets = NULL;
3117 return ops;
3118 }
3119
3120 /* Set the architecture-specific `struct link_map_offsets' fetcher for
3121 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
3122
3123 void
3124 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3125 struct link_map_offsets *(*flmo) (void))
3126 {
3127 struct solib_svr4_ops *ops
3128 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
3129
3130 ops->fetch_link_map_offsets = flmo;
3131
3132 set_solib_ops (gdbarch, &svr4_so_ops);
3133 set_gdbarch_iterate_over_objfiles_in_search_order
3134 (gdbarch, svr4_iterate_over_objfiles_in_search_order);
3135 }
3136
3137 /* Fetch a link_map_offsets structure using the architecture-specific
3138 `struct link_map_offsets' fetcher. */
3139
3140 static struct link_map_offsets *
3141 svr4_fetch_link_map_offsets (void)
3142 {
3143 struct solib_svr4_ops *ops
3144 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3145 solib_svr4_data);
3146
3147 gdb_assert (ops->fetch_link_map_offsets);
3148 return ops->fetch_link_map_offsets ();
3149 }
3150
3151 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3152
3153 static int
3154 svr4_have_link_map_offsets (void)
3155 {
3156 struct solib_svr4_ops *ops
3157 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3158 solib_svr4_data);
3159
3160 return (ops->fetch_link_map_offsets != NULL);
3161 }
3162 \f
3163
3164 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
3165 `struct r_debug' and a `struct link_map' that are binary compatible
3166 with the original SVR4 implementation. */
3167
3168 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3169 for an ILP32 SVR4 system. */
3170
3171 struct link_map_offsets *
3172 svr4_ilp32_fetch_link_map_offsets (void)
3173 {
3174 static struct link_map_offsets lmo;
3175 static struct link_map_offsets *lmp = NULL;
3176
3177 if (lmp == NULL)
3178 {
3179 lmp = &lmo;
3180
3181 lmo.r_version_offset = 0;
3182 lmo.r_version_size = 4;
3183 lmo.r_map_offset = 4;
3184 lmo.r_brk_offset = 8;
3185 lmo.r_ldsomap_offset = 20;
3186
3187 /* Everything we need is in the first 20 bytes. */
3188 lmo.link_map_size = 20;
3189 lmo.l_addr_offset = 0;
3190 lmo.l_name_offset = 4;
3191 lmo.l_ld_offset = 8;
3192 lmo.l_next_offset = 12;
3193 lmo.l_prev_offset = 16;
3194 }
3195
3196 return lmp;
3197 }
3198
3199 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3200 for an LP64 SVR4 system. */
3201
3202 struct link_map_offsets *
3203 svr4_lp64_fetch_link_map_offsets (void)
3204 {
3205 static struct link_map_offsets lmo;
3206 static struct link_map_offsets *lmp = NULL;
3207
3208 if (lmp == NULL)
3209 {
3210 lmp = &lmo;
3211
3212 lmo.r_version_offset = 0;
3213 lmo.r_version_size = 4;
3214 lmo.r_map_offset = 8;
3215 lmo.r_brk_offset = 16;
3216 lmo.r_ldsomap_offset = 40;
3217
3218 /* Everything we need is in the first 40 bytes. */
3219 lmo.link_map_size = 40;
3220 lmo.l_addr_offset = 0;
3221 lmo.l_name_offset = 8;
3222 lmo.l_ld_offset = 16;
3223 lmo.l_next_offset = 24;
3224 lmo.l_prev_offset = 32;
3225 }
3226
3227 return lmp;
3228 }
3229 \f
3230
3231 struct target_so_ops svr4_so_ops;
3232
3233 /* Search order for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3234 different rule for symbol lookup. The lookup begins here in the DSO, not in
3235 the main executable. */
3236
3237 static void
3238 svr4_iterate_over_objfiles_in_search_order
3239 (struct gdbarch *gdbarch,
3240 iterate_over_objfiles_in_search_order_cb_ftype *cb,
3241 void *cb_data, struct objfile *current_objfile)
3242 {
3243 bool checked_current_objfile = false;
3244 if (current_objfile != nullptr)
3245 {
3246 bfd *abfd;
3247
3248 if (current_objfile->separate_debug_objfile_backlink != nullptr)
3249 current_objfile = current_objfile->separate_debug_objfile_backlink;
3250
3251 if (current_objfile == current_program_space->symfile_object_file)
3252 abfd = current_program_space->exec_bfd ();
3253 else
3254 abfd = current_objfile->obfd;
3255
3256 if (abfd != nullptr
3257 && scan_dyntag (DT_SYMBOLIC, abfd, nullptr, nullptr) == 1)
3258 {
3259 checked_current_objfile = true;
3260 if (cb (current_objfile, cb_data) != 0)
3261 return;
3262 }
3263 }
3264
3265 for (objfile *objfile : current_program_space->objfiles ())
3266 {
3267 if (checked_current_objfile && objfile == current_objfile)
3268 continue;
3269 if (cb (objfile, cb_data) != 0)
3270 return;
3271 }
3272 }
3273
3274 void _initialize_svr4_solib ();
3275 void
3276 _initialize_svr4_solib ()
3277 {
3278 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
3279
3280 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
3281 svr4_so_ops.free_so = svr4_free_so;
3282 svr4_so_ops.clear_so = svr4_clear_so;
3283 svr4_so_ops.clear_solib = svr4_clear_solib;
3284 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3285 svr4_so_ops.current_sos = svr4_current_sos;
3286 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
3287 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
3288 svr4_so_ops.bfd_open = solib_bfd_open;
3289 svr4_so_ops.same = svr4_same;
3290 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
3291 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3292 svr4_so_ops.handle_event = svr4_handle_solib_event;
3293
3294 gdb::observers::free_objfile.attach (svr4_free_objfile_observer);
3295 }
This page took 0.114286 seconds and 5 git commands to generate.