* solib-svr4.c (enable_break): Add the dynamic linker also if
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "elf/external.h"
24 #include "elf/common.h"
25 #include "elf/mips.h"
26
27 #include "symtab.h"
28 #include "bfd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcore.h"
32 #include "target.h"
33 #include "inferior.h"
34
35 #include "gdb_assert.h"
36
37 #include "solist.h"
38 #include "solib.h"
39 #include "solib-svr4.h"
40
41 #include "bfd-target.h"
42 #include "elf-bfd.h"
43 #include "exec.h"
44 #include "auxv.h"
45
46 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
47 static int svr4_have_link_map_offsets (void);
48
49 /* This hook is set to a function that provides native link map
50 offsets if the code in solib-legacy.c is linked in. */
51 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
52
53 /* Link map info to include in an allocated so_list entry */
54
55 struct lm_info
56 {
57 /* Pointer to copy of link map from inferior. The type is char *
58 rather than void *, so that we may use byte offsets to find the
59 various fields without the need for a cast. */
60 gdb_byte *lm;
61
62 /* Amount by which addresses in the binary should be relocated to
63 match the inferior. This could most often be taken directly
64 from lm, but when prelinking is involved and the prelink base
65 address changes, we may need a different offset, we want to
66 warn about the difference and compute it only once. */
67 CORE_ADDR l_addr;
68 };
69
70 /* On SVR4 systems, a list of symbols in the dynamic linker where
71 GDB can try to place a breakpoint to monitor shared library
72 events.
73
74 If none of these symbols are found, or other errors occur, then
75 SVR4 systems will fall back to using a symbol as the "startup
76 mapping complete" breakpoint address. */
77
78 static char *solib_break_names[] =
79 {
80 "r_debug_state",
81 "_r_debug_state",
82 "_dl_debug_state",
83 "rtld_db_dlactivity",
84 "_rtld_debug_state",
85
86 NULL
87 };
88
89 #define BKPT_AT_SYMBOL 1
90
91 #if defined (BKPT_AT_SYMBOL)
92 static char *bkpt_names[] =
93 {
94 #ifdef SOLIB_BKPT_NAME
95 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
96 #endif
97 "_start",
98 "__start",
99 "main",
100 NULL
101 };
102 #endif
103
104 static char *main_name_list[] =
105 {
106 "main_$main",
107 NULL
108 };
109
110 /* link map access functions */
111
112 static CORE_ADDR
113 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
114 {
115 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
116
117 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
118 builtin_type_void_data_ptr);
119 }
120
121 static int
122 HAS_LM_DYNAMIC_FROM_LINK_MAP ()
123 {
124 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
125
126 return lmo->l_ld_offset >= 0;
127 }
128
129 static CORE_ADDR
130 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
131 {
132 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
133
134 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
135 builtin_type_void_data_ptr);
136 }
137
138 static CORE_ADDR
139 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
140 {
141 if (so->lm_info->l_addr == (CORE_ADDR)-1)
142 {
143 struct bfd_section *dyninfo_sect;
144 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
145
146 l_addr = LM_ADDR_FROM_LINK_MAP (so);
147
148 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
149 goto set_addr;
150
151 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
152
153 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
154 if (dyninfo_sect == NULL)
155 goto set_addr;
156
157 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
158
159 if (dynaddr + l_addr != l_dynaddr)
160 {
161 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
162 {
163 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
164 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
165 int i;
166
167 align = 1;
168
169 for (i = 0; i < ehdr->e_phnum; i++)
170 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
171 align = phdr[i].p_align;
172 }
173
174 /* Turn it into a mask. */
175 align--;
176
177 /* If the changes match the alignment requirements, we
178 assume we're using a core file that was generated by the
179 same binary, just prelinked with a different base offset.
180 If it doesn't match, we may have a different binary, the
181 same binary with the dynamic table loaded at an unrelated
182 location, or anything, really. To avoid regressions,
183 don't adjust the base offset in the latter case, although
184 odds are that, if things really changed, debugging won't
185 quite work. */
186 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
187 {
188 l_addr = l_dynaddr - dynaddr;
189
190 warning (_(".dynamic section for \"%s\" "
191 "is not at the expected address"), so->so_name);
192 warning (_("difference appears to be caused by prelink, "
193 "adjusting expectations"));
194 }
195 else
196 warning (_(".dynamic section for \"%s\" "
197 "is not at the expected address "
198 "(wrong library or version mismatch?)"), so->so_name);
199 }
200
201 set_addr:
202 so->lm_info->l_addr = l_addr;
203 }
204
205 return so->lm_info->l_addr;
206 }
207
208 static CORE_ADDR
209 LM_NEXT (struct so_list *so)
210 {
211 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
212
213 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
214 builtin_type_void_data_ptr);
215 }
216
217 static CORE_ADDR
218 LM_NAME (struct so_list *so)
219 {
220 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
221
222 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
223 builtin_type_void_data_ptr);
224 }
225
226 static int
227 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
228 {
229 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
230
231 /* Assume that everything is a library if the dynamic loader was loaded
232 late by a static executable. */
233 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
234 return 0;
235
236 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
237 builtin_type_void_data_ptr) == 0;
238 }
239
240 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
241
242 /* Validity flag for debug_loader_offset. */
243 static int debug_loader_offset_p;
244
245 /* Load address for the dynamic linker, inferred. */
246 static CORE_ADDR debug_loader_offset;
247
248 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
249 static char *debug_loader_name;
250
251 /* Local function prototypes */
252
253 static int match_main (char *);
254
255 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
256
257 /*
258
259 LOCAL FUNCTION
260
261 bfd_lookup_symbol -- lookup the value for a specific symbol
262
263 SYNOPSIS
264
265 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
266
267 DESCRIPTION
268
269 An expensive way to lookup the value of a single symbol for
270 bfd's that are only temporary anyway. This is used by the
271 shared library support to find the address of the debugger
272 notification routine in the shared library.
273
274 The returned symbol may be in a code or data section; functions
275 will normally be in a code section, but may be in a data section
276 if this architecture uses function descriptors.
277
278 Note that 0 is specifically allowed as an error return (no
279 such symbol).
280 */
281
282 static CORE_ADDR
283 bfd_lookup_symbol (bfd *abfd, char *symname)
284 {
285 long storage_needed;
286 asymbol *sym;
287 asymbol **symbol_table;
288 unsigned int number_of_symbols;
289 unsigned int i;
290 struct cleanup *back_to;
291 CORE_ADDR symaddr = 0;
292
293 storage_needed = bfd_get_symtab_upper_bound (abfd);
294
295 if (storage_needed > 0)
296 {
297 symbol_table = (asymbol **) xmalloc (storage_needed);
298 back_to = make_cleanup (xfree, symbol_table);
299 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
300
301 for (i = 0; i < number_of_symbols; i++)
302 {
303 sym = *symbol_table++;
304 if (strcmp (sym->name, symname) == 0
305 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
306 {
307 /* BFD symbols are section relative. */
308 symaddr = sym->value + sym->section->vma;
309 break;
310 }
311 }
312 do_cleanups (back_to);
313 }
314
315 if (symaddr)
316 return symaddr;
317
318 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
319 have to check the dynamic string table too. */
320
321 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
322
323 if (storage_needed > 0)
324 {
325 symbol_table = (asymbol **) xmalloc (storage_needed);
326 back_to = make_cleanup (xfree, symbol_table);
327 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
328
329 for (i = 0; i < number_of_symbols; i++)
330 {
331 sym = *symbol_table++;
332
333 if (strcmp (sym->name, symname) == 0
334 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
335 {
336 /* BFD symbols are section relative. */
337 symaddr = sym->value + sym->section->vma;
338 break;
339 }
340 }
341 do_cleanups (back_to);
342 }
343
344 return symaddr;
345 }
346
347 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
348 returned and the corresponding PTR is set. */
349
350 static int
351 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
352 {
353 int arch_size, step, sect_size;
354 long dyn_tag;
355 CORE_ADDR dyn_ptr, dyn_addr;
356 gdb_byte *bufend, *bufstart, *buf;
357 Elf32_External_Dyn *x_dynp_32;
358 Elf64_External_Dyn *x_dynp_64;
359 struct bfd_section *sect;
360
361 if (abfd == NULL)
362 return 0;
363 arch_size = bfd_get_arch_size (abfd);
364 if (arch_size == -1)
365 return 0;
366
367 /* Find the start address of the .dynamic section. */
368 sect = bfd_get_section_by_name (abfd, ".dynamic");
369 if (sect == NULL)
370 return 0;
371 dyn_addr = bfd_section_vma (abfd, sect);
372
373 /* Read in .dynamic from the BFD. We will get the actual value
374 from memory later. */
375 sect_size = bfd_section_size (abfd, sect);
376 buf = bufstart = alloca (sect_size);
377 if (!bfd_get_section_contents (abfd, sect,
378 buf, 0, sect_size))
379 return 0;
380
381 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
382 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
383 : sizeof (Elf64_External_Dyn);
384 for (bufend = buf + sect_size;
385 buf < bufend;
386 buf += step)
387 {
388 if (arch_size == 32)
389 {
390 x_dynp_32 = (Elf32_External_Dyn *) buf;
391 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
392 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
393 }
394 else
395 {
396 x_dynp_64 = (Elf64_External_Dyn *) buf;
397 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
398 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
399 }
400 if (dyn_tag == DT_NULL)
401 return 0;
402 if (dyn_tag == dyntag)
403 {
404 /* If requested, try to read the runtime value of this .dynamic
405 entry. */
406 if (ptr)
407 {
408 gdb_byte ptr_buf[8];
409 CORE_ADDR ptr_addr;
410
411 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
412 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
413 dyn_ptr = extract_typed_address (ptr_buf,
414 builtin_type_void_data_ptr);
415 *ptr = dyn_ptr;
416 }
417 return 1;
418 }
419 }
420
421 return 0;
422 }
423
424
425 /*
426
427 LOCAL FUNCTION
428
429 elf_locate_base -- locate the base address of dynamic linker structs
430 for SVR4 elf targets.
431
432 SYNOPSIS
433
434 CORE_ADDR elf_locate_base (void)
435
436 DESCRIPTION
437
438 For SVR4 elf targets the address of the dynamic linker's runtime
439 structure is contained within the dynamic info section in the
440 executable file. The dynamic section is also mapped into the
441 inferior address space. Because the runtime loader fills in the
442 real address before starting the inferior, we have to read in the
443 dynamic info section from the inferior address space.
444 If there are any errors while trying to find the address, we
445 silently return 0, otherwise the found address is returned.
446
447 */
448
449 static CORE_ADDR
450 elf_locate_base (void)
451 {
452 struct minimal_symbol *msymbol;
453 CORE_ADDR dyn_ptr;
454
455 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
456 instead of DT_DEBUG, although they sometimes contain an unused
457 DT_DEBUG. */
458 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr))
459 {
460 gdb_byte *pbuf;
461 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
462 pbuf = alloca (pbuf_size);
463 /* DT_MIPS_RLD_MAP contains a pointer to the address
464 of the dynamic link structure. */
465 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
466 return 0;
467 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
468 }
469
470 /* Find DT_DEBUG. */
471 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr))
472 return dyn_ptr;
473
474 /* This may be a static executable. Look for the symbol
475 conventionally named _r_debug, as a last resort. */
476 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
477 if (msymbol != NULL)
478 return SYMBOL_VALUE_ADDRESS (msymbol);
479
480 /* DT_DEBUG entry not found. */
481 return 0;
482 }
483
484 /*
485
486 LOCAL FUNCTION
487
488 locate_base -- locate the base address of dynamic linker structs
489
490 SYNOPSIS
491
492 CORE_ADDR locate_base (void)
493
494 DESCRIPTION
495
496 For both the SunOS and SVR4 shared library implementations, if the
497 inferior executable has been linked dynamically, there is a single
498 address somewhere in the inferior's data space which is the key to
499 locating all of the dynamic linker's runtime structures. This
500 address is the value of the debug base symbol. The job of this
501 function is to find and return that address, or to return 0 if there
502 is no such address (the executable is statically linked for example).
503
504 For SunOS, the job is almost trivial, since the dynamic linker and
505 all of it's structures are statically linked to the executable at
506 link time. Thus the symbol for the address we are looking for has
507 already been added to the minimal symbol table for the executable's
508 objfile at the time the symbol file's symbols were read, and all we
509 have to do is look it up there. Note that we explicitly do NOT want
510 to find the copies in the shared library.
511
512 The SVR4 version is a bit more complicated because the address
513 is contained somewhere in the dynamic info section. We have to go
514 to a lot more work to discover the address of the debug base symbol.
515 Because of this complexity, we cache the value we find and return that
516 value on subsequent invocations. Note there is no copy in the
517 executable symbol tables.
518
519 */
520
521 static CORE_ADDR
522 locate_base (void)
523 {
524 /* Check to see if we have a currently valid address, and if so, avoid
525 doing all this work again and just return the cached address. If
526 we have no cached address, try to locate it in the dynamic info
527 section for ELF executables. There's no point in doing any of this
528 though if we don't have some link map offsets to work with. */
529
530 if (debug_base == 0 && svr4_have_link_map_offsets ())
531 {
532 if (exec_bfd != NULL
533 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
534 debug_base = elf_locate_base ();
535 }
536 return (debug_base);
537 }
538
539 /* Find the first element in the inferior's dynamic link map, and
540 return its address in the inferior.
541
542 FIXME: Perhaps we should validate the info somehow, perhaps by
543 checking r_version for a known version number, or r_state for
544 RT_CONSISTENT. */
545
546 static CORE_ADDR
547 solib_svr4_r_map (void)
548 {
549 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
550
551 return read_memory_typed_address (debug_base + lmo->r_map_offset,
552 builtin_type_void_data_ptr);
553 }
554
555 /* Find the link map for the dynamic linker (if it is not in the
556 normal list of loaded shared objects). */
557
558 static CORE_ADDR
559 solib_svr4_r_ldsomap (void)
560 {
561 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
562 ULONGEST version;
563
564 /* Check version, and return zero if `struct r_debug' doesn't have
565 the r_ldsomap member. */
566 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
567 lmo->r_version_size);
568 if (version < 2 || lmo->r_ldsomap_offset == -1)
569 return 0;
570
571 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
572 builtin_type_void_data_ptr);
573 }
574
575 /*
576
577 LOCAL FUNCTION
578
579 open_symbol_file_object
580
581 SYNOPSIS
582
583 void open_symbol_file_object (void *from_tty)
584
585 DESCRIPTION
586
587 If no open symbol file, attempt to locate and open the main symbol
588 file. On SVR4 systems, this is the first link map entry. If its
589 name is here, we can open it. Useful when attaching to a process
590 without first loading its symbol file.
591
592 If FROM_TTYP dereferences to a non-zero integer, allow messages to
593 be printed. This parameter is a pointer rather than an int because
594 open_symbol_file_object() is called via catch_errors() and
595 catch_errors() requires a pointer argument. */
596
597 static int
598 open_symbol_file_object (void *from_ttyp)
599 {
600 CORE_ADDR lm, l_name;
601 char *filename;
602 int errcode;
603 int from_tty = *(int *)from_ttyp;
604 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
605 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
606 gdb_byte *l_name_buf = xmalloc (l_name_size);
607 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
608
609 if (symfile_objfile)
610 if (!query ("Attempt to reload symbols from process? "))
611 return 0;
612
613 if ((debug_base = locate_base ()) == 0)
614 return 0; /* failed somehow... */
615
616 /* First link map member should be the executable. */
617 lm = solib_svr4_r_map ();
618 if (lm == 0)
619 return 0; /* failed somehow... */
620
621 /* Read address of name from target memory to GDB. */
622 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
623
624 /* Convert the address to host format. */
625 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
626
627 /* Free l_name_buf. */
628 do_cleanups (cleanups);
629
630 if (l_name == 0)
631 return 0; /* No filename. */
632
633 /* Now fetch the filename from target memory. */
634 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
635 make_cleanup (xfree, filename);
636
637 if (errcode)
638 {
639 warning (_("failed to read exec filename from attached file: %s"),
640 safe_strerror (errcode));
641 return 0;
642 }
643
644 /* Have a pathname: read the symbol file. */
645 symbol_file_add_main (filename, from_tty);
646
647 return 1;
648 }
649
650 /* If no shared library information is available from the dynamic
651 linker, build a fallback list from other sources. */
652
653 static struct so_list *
654 svr4_default_sos (void)
655 {
656 struct so_list *head = NULL;
657 struct so_list **link_ptr = &head;
658
659 if (debug_loader_offset_p)
660 {
661 struct so_list *new = XZALLOC (struct so_list);
662
663 new->lm_info = xmalloc (sizeof (struct lm_info));
664
665 /* Nothing will ever check the cached copy of the link
666 map if we set l_addr. */
667 new->lm_info->l_addr = debug_loader_offset;
668 new->lm_info->lm = NULL;
669
670 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
671 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
672 strcpy (new->so_original_name, new->so_name);
673
674 *link_ptr = new;
675 link_ptr = &new->next;
676 }
677
678 return head;
679 }
680
681 /* LOCAL FUNCTION
682
683 current_sos -- build a list of currently loaded shared objects
684
685 SYNOPSIS
686
687 struct so_list *current_sos ()
688
689 DESCRIPTION
690
691 Build a list of `struct so_list' objects describing the shared
692 objects currently loaded in the inferior. This list does not
693 include an entry for the main executable file.
694
695 Note that we only gather information directly available from the
696 inferior --- we don't examine any of the shared library files
697 themselves. The declaration of `struct so_list' says which fields
698 we provide values for. */
699
700 static struct so_list *
701 svr4_current_sos (void)
702 {
703 CORE_ADDR lm;
704 struct so_list *head = 0;
705 struct so_list **link_ptr = &head;
706 CORE_ADDR ldsomap = 0;
707
708 /* Make sure we've looked up the inferior's dynamic linker's base
709 structure. */
710 if (! debug_base)
711 {
712 debug_base = locate_base ();
713
714 /* If we can't find the dynamic linker's base structure, this
715 must not be a dynamically linked executable. Hmm. */
716 if (! debug_base)
717 return svr4_default_sos ();
718 }
719
720 /* Walk the inferior's link map list, and build our list of
721 `struct so_list' nodes. */
722 lm = solib_svr4_r_map ();
723
724 while (lm)
725 {
726 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
727 struct so_list *new = XZALLOC (struct so_list);
728 struct cleanup *old_chain = make_cleanup (xfree, new);
729
730 new->lm_info = xmalloc (sizeof (struct lm_info));
731 make_cleanup (xfree, new->lm_info);
732
733 new->lm_info->l_addr = (CORE_ADDR)-1;
734 new->lm_info->lm = xzalloc (lmo->link_map_size);
735 make_cleanup (xfree, new->lm_info->lm);
736
737 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
738
739 lm = LM_NEXT (new);
740
741 /* For SVR4 versions, the first entry in the link map is for the
742 inferior executable, so we must ignore it. For some versions of
743 SVR4, it has no name. For others (Solaris 2.3 for example), it
744 does have a name, so we can no longer use a missing name to
745 decide when to ignore it. */
746 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
747 free_so (new);
748 else
749 {
750 int errcode;
751 char *buffer;
752
753 /* Extract this shared object's name. */
754 target_read_string (LM_NAME (new), &buffer,
755 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
756 if (errcode != 0)
757 warning (_("Can't read pathname for load map: %s."),
758 safe_strerror (errcode));
759 else
760 {
761 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
762 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
763 strcpy (new->so_original_name, new->so_name);
764 }
765 xfree (buffer);
766
767 /* If this entry has no name, or its name matches the name
768 for the main executable, don't include it in the list. */
769 if (! new->so_name[0]
770 || match_main (new->so_name))
771 free_so (new);
772 else
773 {
774 new->next = 0;
775 *link_ptr = new;
776 link_ptr = &new->next;
777 }
778 }
779
780 /* On Solaris, the dynamic linker is not in the normal list of
781 shared objects, so make sure we pick it up too. Having
782 symbol information for the dynamic linker is quite crucial
783 for skipping dynamic linker resolver code. */
784 if (lm == 0 && ldsomap == 0)
785 lm = ldsomap = solib_svr4_r_ldsomap ();
786
787 discard_cleanups (old_chain);
788 }
789
790 if (head == NULL)
791 return svr4_default_sos ();
792
793 return head;
794 }
795
796 /* Get the address of the link_map for a given OBJFILE. Loop through
797 the link maps, and return the address of the one corresponding to
798 the given objfile. Note that this function takes into account that
799 objfile can be the main executable, not just a shared library. The
800 main executable has always an empty name field in the linkmap. */
801
802 CORE_ADDR
803 svr4_fetch_objfile_link_map (struct objfile *objfile)
804 {
805 CORE_ADDR lm;
806
807 if ((debug_base = locate_base ()) == 0)
808 return 0; /* failed somehow... */
809
810 /* Position ourselves on the first link map. */
811 lm = solib_svr4_r_map ();
812 while (lm)
813 {
814 /* Get info on the layout of the r_debug and link_map structures. */
815 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
816 int errcode;
817 char *buffer;
818 struct lm_info objfile_lm_info;
819 struct cleanup *old_chain;
820 CORE_ADDR name_address;
821 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
822 gdb_byte *l_name_buf = xmalloc (l_name_size);
823 old_chain = make_cleanup (xfree, l_name_buf);
824
825 /* Set up the buffer to contain the portion of the link_map
826 structure that gdb cares about. Note that this is not the
827 whole link_map structure. */
828 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
829 make_cleanup (xfree, objfile_lm_info.lm);
830
831 /* Read the link map into our internal structure. */
832 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
833
834 /* Read address of name from target memory to GDB. */
835 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
836
837 /* Extract this object's name. */
838 name_address = extract_typed_address (l_name_buf,
839 builtin_type_void_data_ptr);
840 target_read_string (name_address, &buffer,
841 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
842 make_cleanup (xfree, buffer);
843 if (errcode != 0)
844 warning (_("Can't read pathname for load map: %s."),
845 safe_strerror (errcode));
846 else
847 {
848 /* Is this the linkmap for the file we want? */
849 /* If the file is not a shared library and has no name,
850 we are sure it is the main executable, so we return that. */
851
852 if (buffer
853 && ((strcmp (buffer, objfile->name) == 0)
854 || (!(objfile->flags & OBJF_SHARED)
855 && (strcmp (buffer, "") == 0))))
856 {
857 do_cleanups (old_chain);
858 return lm;
859 }
860 }
861 /* Not the file we wanted, continue checking. */
862 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
863 builtin_type_void_data_ptr);
864 do_cleanups (old_chain);
865 }
866 return 0;
867 }
868
869 /* On some systems, the only way to recognize the link map entry for
870 the main executable file is by looking at its name. Return
871 non-zero iff SONAME matches one of the known main executable names. */
872
873 static int
874 match_main (char *soname)
875 {
876 char **mainp;
877
878 for (mainp = main_name_list; *mainp != NULL; mainp++)
879 {
880 if (strcmp (soname, *mainp) == 0)
881 return (1);
882 }
883
884 return (0);
885 }
886
887 /* Return 1 if PC lies in the dynamic symbol resolution code of the
888 SVR4 run time loader. */
889 static CORE_ADDR interp_text_sect_low;
890 static CORE_ADDR interp_text_sect_high;
891 static CORE_ADDR interp_plt_sect_low;
892 static CORE_ADDR interp_plt_sect_high;
893
894 int
895 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
896 {
897 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
898 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
899 || in_plt_section (pc, NULL));
900 }
901
902 /* Given an executable's ABFD and target, compute the entry-point
903 address. */
904
905 static CORE_ADDR
906 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
907 {
908 /* KevinB wrote ... for most targets, the address returned by
909 bfd_get_start_address() is the entry point for the start
910 function. But, for some targets, bfd_get_start_address() returns
911 the address of a function descriptor from which the entry point
912 address may be extracted. This address is extracted by
913 gdbarch_convert_from_func_ptr_addr(). The method
914 gdbarch_convert_from_func_ptr_addr() is the merely the identify
915 function for targets which don't use function descriptors. */
916 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
917 bfd_get_start_address (abfd),
918 targ);
919 }
920
921 /*
922
923 LOCAL FUNCTION
924
925 enable_break -- arrange for dynamic linker to hit breakpoint
926
927 SYNOPSIS
928
929 int enable_break (void)
930
931 DESCRIPTION
932
933 Both the SunOS and the SVR4 dynamic linkers have, as part of their
934 debugger interface, support for arranging for the inferior to hit
935 a breakpoint after mapping in the shared libraries. This function
936 enables that breakpoint.
937
938 For SunOS, there is a special flag location (in_debugger) which we
939 set to 1. When the dynamic linker sees this flag set, it will set
940 a breakpoint at a location known only to itself, after saving the
941 original contents of that place and the breakpoint address itself,
942 in it's own internal structures. When we resume the inferior, it
943 will eventually take a SIGTRAP when it runs into the breakpoint.
944 We handle this (in a different place) by restoring the contents of
945 the breakpointed location (which is only known after it stops),
946 chasing around to locate the shared libraries that have been
947 loaded, then resuming.
948
949 For SVR4, the debugger interface structure contains a member (r_brk)
950 which is statically initialized at the time the shared library is
951 built, to the offset of a function (_r_debug_state) which is guaran-
952 teed to be called once before mapping in a library, and again when
953 the mapping is complete. At the time we are examining this member,
954 it contains only the unrelocated offset of the function, so we have
955 to do our own relocation. Later, when the dynamic linker actually
956 runs, it relocates r_brk to be the actual address of _r_debug_state().
957
958 The debugger interface structure also contains an enumeration which
959 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
960 depending upon whether or not the library is being mapped or unmapped,
961 and then set to RT_CONSISTENT after the library is mapped/unmapped.
962 */
963
964 static int
965 enable_break (void)
966 {
967 #ifdef BKPT_AT_SYMBOL
968
969 struct minimal_symbol *msymbol;
970 char **bkpt_namep;
971 asection *interp_sect;
972
973 /* First, remove all the solib event breakpoints. Their addresses
974 may have changed since the last time we ran the program. */
975 remove_solib_event_breakpoints ();
976
977 interp_text_sect_low = interp_text_sect_high = 0;
978 interp_plt_sect_low = interp_plt_sect_high = 0;
979
980 /* Find the .interp section; if not found, warn the user and drop
981 into the old breakpoint at symbol code. */
982 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
983 if (interp_sect)
984 {
985 unsigned int interp_sect_size;
986 char *buf;
987 CORE_ADDR load_addr = 0;
988 int load_addr_found = 0;
989 int loader_found_in_list = 0;
990 struct so_list *so;
991 bfd *tmp_bfd = NULL;
992 struct target_ops *tmp_bfd_target;
993 int tmp_fd = -1;
994 char *tmp_pathname = NULL;
995 CORE_ADDR sym_addr = 0;
996
997 /* Read the contents of the .interp section into a local buffer;
998 the contents specify the dynamic linker this program uses. */
999 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1000 buf = alloca (interp_sect_size);
1001 bfd_get_section_contents (exec_bfd, interp_sect,
1002 buf, 0, interp_sect_size);
1003
1004 /* Now we need to figure out where the dynamic linker was
1005 loaded so that we can load its symbols and place a breakpoint
1006 in the dynamic linker itself.
1007
1008 This address is stored on the stack. However, I've been unable
1009 to find any magic formula to find it for Solaris (appears to
1010 be trivial on GNU/Linux). Therefore, we have to try an alternate
1011 mechanism to find the dynamic linker's base address. */
1012
1013 tmp_fd = solib_open (buf, &tmp_pathname);
1014 if (tmp_fd >= 0)
1015 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
1016
1017 if (tmp_bfd == NULL)
1018 goto bkpt_at_symbol;
1019
1020 /* Make sure the dynamic linker's really a useful object. */
1021 if (!bfd_check_format (tmp_bfd, bfd_object))
1022 {
1023 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
1024 bfd_close (tmp_bfd);
1025 goto bkpt_at_symbol;
1026 }
1027
1028 /* Now convert the TMP_BFD into a target. That way target, as
1029 well as BFD operations can be used. Note that closing the
1030 target will also close the underlying bfd. */
1031 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1032
1033 /* On a running target, we can get the dynamic linker's base
1034 address from the shared library table. */
1035 solib_add (NULL, 0, &current_target, auto_solib_add);
1036 so = master_so_list ();
1037 while (so)
1038 {
1039 if (strcmp (buf, so->so_original_name) == 0)
1040 {
1041 load_addr_found = 1;
1042 loader_found_in_list = 1;
1043 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1044 break;
1045 }
1046 so = so->next;
1047 }
1048
1049 /* If we were not able to find the base address of the loader
1050 from our so_list, then try using the AT_BASE auxilliary entry. */
1051 if (!load_addr_found)
1052 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1053 load_addr_found = 1;
1054
1055 /* Otherwise we find the dynamic linker's base address by examining
1056 the current pc (which should point at the entry point for the
1057 dynamic linker) and subtracting the offset of the entry point.
1058
1059 This is more fragile than the previous approaches, but is a good
1060 fallback method because it has actually been working well in
1061 most cases. */
1062 if (!load_addr_found)
1063 load_addr = (read_pc ()
1064 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1065
1066 if (!loader_found_in_list)
1067 {
1068 debug_loader_name = xstrdup (buf);
1069 debug_loader_offset_p = 1;
1070 debug_loader_offset = load_addr;
1071 solib_add (NULL, 0, &current_target, auto_solib_add);
1072 }
1073
1074 /* Record the relocated start and end address of the dynamic linker
1075 text and plt section for svr4_in_dynsym_resolve_code. */
1076 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1077 if (interp_sect)
1078 {
1079 interp_text_sect_low =
1080 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1081 interp_text_sect_high =
1082 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1083 }
1084 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1085 if (interp_sect)
1086 {
1087 interp_plt_sect_low =
1088 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1089 interp_plt_sect_high =
1090 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1091 }
1092
1093 /* Now try to set a breakpoint in the dynamic linker. */
1094 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1095 {
1096 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1097 if (sym_addr != 0)
1098 break;
1099 }
1100
1101 if (sym_addr != 0)
1102 /* Convert 'sym_addr' from a function pointer to an address.
1103 Because we pass tmp_bfd_target instead of the current
1104 target, this will always produce an unrelocated value. */
1105 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1106 sym_addr,
1107 tmp_bfd_target);
1108
1109 /* We're done with both the temporary bfd and target. Remember,
1110 closing the target closes the underlying bfd. */
1111 target_close (tmp_bfd_target, 0);
1112
1113 if (sym_addr != 0)
1114 {
1115 create_solib_event_breakpoint (load_addr + sym_addr);
1116 return 1;
1117 }
1118
1119 /* For whatever reason we couldn't set a breakpoint in the dynamic
1120 linker. Warn and drop into the old code. */
1121 bkpt_at_symbol:
1122 xfree (tmp_pathname);
1123 warning (_("Unable to find dynamic linker breakpoint function.\n"
1124 "GDB will be unable to debug shared library initializers\n"
1125 "and track explicitly loaded dynamic code."));
1126 }
1127
1128 /* Scan through the lists of symbols, trying to look up the symbol and
1129 set a breakpoint there. Terminate loop when we/if we succeed. */
1130
1131 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1132 {
1133 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1134 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1135 {
1136 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1137 return 1;
1138 }
1139 }
1140
1141 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1142 {
1143 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1144 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1145 {
1146 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1147 return 1;
1148 }
1149 }
1150 #endif /* BKPT_AT_SYMBOL */
1151
1152 return 0;
1153 }
1154
1155 /*
1156
1157 LOCAL FUNCTION
1158
1159 special_symbol_handling -- additional shared library symbol handling
1160
1161 SYNOPSIS
1162
1163 void special_symbol_handling ()
1164
1165 DESCRIPTION
1166
1167 Once the symbols from a shared object have been loaded in the usual
1168 way, we are called to do any system specific symbol handling that
1169 is needed.
1170
1171 For SunOS4, this consisted of grunging around in the dynamic
1172 linkers structures to find symbol definitions for "common" symbols
1173 and adding them to the minimal symbol table for the runtime common
1174 objfile.
1175
1176 However, for SVR4, there's nothing to do.
1177
1178 */
1179
1180 static void
1181 svr4_special_symbol_handling (void)
1182 {
1183 }
1184
1185 /* Relocate the main executable. This function should be called upon
1186 stopping the inferior process at the entry point to the program.
1187 The entry point from BFD is compared to the PC and if they are
1188 different, the main executable is relocated by the proper amount.
1189
1190 As written it will only attempt to relocate executables which
1191 lack interpreter sections. It seems likely that only dynamic
1192 linker executables will get relocated, though it should work
1193 properly for a position-independent static executable as well. */
1194
1195 static void
1196 svr4_relocate_main_executable (void)
1197 {
1198 asection *interp_sect;
1199 CORE_ADDR pc = read_pc ();
1200
1201 /* Decide if the objfile needs to be relocated. As indicated above,
1202 we will only be here when execution is stopped at the beginning
1203 of the program. Relocation is necessary if the address at which
1204 we are presently stopped differs from the start address stored in
1205 the executable AND there's no interpreter section. The condition
1206 regarding the interpreter section is very important because if
1207 there *is* an interpreter section, execution will begin there
1208 instead. When there is an interpreter section, the start address
1209 is (presumably) used by the interpreter at some point to start
1210 execution of the program.
1211
1212 If there is an interpreter, it is normal for it to be set to an
1213 arbitrary address at the outset. The job of finding it is
1214 handled in enable_break().
1215
1216 So, to summarize, relocations are necessary when there is no
1217 interpreter section and the start address obtained from the
1218 executable is different from the address at which GDB is
1219 currently stopped.
1220
1221 [ The astute reader will note that we also test to make sure that
1222 the executable in question has the DYNAMIC flag set. It is my
1223 opinion that this test is unnecessary (undesirable even). It
1224 was added to avoid inadvertent relocation of an executable
1225 whose e_type member in the ELF header is not ET_DYN. There may
1226 be a time in the future when it is desirable to do relocations
1227 on other types of files as well in which case this condition
1228 should either be removed or modified to accomodate the new file
1229 type. (E.g, an ET_EXEC executable which has been built to be
1230 position-independent could safely be relocated by the OS if
1231 desired. It is true that this violates the ABI, but the ABI
1232 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1233 */
1234
1235 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1236 if (interp_sect == NULL
1237 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1238 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1239 {
1240 struct cleanup *old_chain;
1241 struct section_offsets *new_offsets;
1242 int i, changed;
1243 CORE_ADDR displacement;
1244
1245 /* It is necessary to relocate the objfile. The amount to
1246 relocate by is simply the address at which we are stopped
1247 minus the starting address from the executable.
1248
1249 We relocate all of the sections by the same amount. This
1250 behavior is mandated by recent editions of the System V ABI.
1251 According to the System V Application Binary Interface,
1252 Edition 4.1, page 5-5:
1253
1254 ... Though the system chooses virtual addresses for
1255 individual processes, it maintains the segments' relative
1256 positions. Because position-independent code uses relative
1257 addressesing between segments, the difference between
1258 virtual addresses in memory must match the difference
1259 between virtual addresses in the file. The difference
1260 between the virtual address of any segment in memory and
1261 the corresponding virtual address in the file is thus a
1262 single constant value for any one executable or shared
1263 object in a given process. This difference is the base
1264 address. One use of the base address is to relocate the
1265 memory image of the program during dynamic linking.
1266
1267 The same language also appears in Edition 4.0 of the System V
1268 ABI and is left unspecified in some of the earlier editions. */
1269
1270 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1271 changed = 0;
1272
1273 new_offsets = xcalloc (symfile_objfile->num_sections,
1274 sizeof (struct section_offsets));
1275 old_chain = make_cleanup (xfree, new_offsets);
1276
1277 for (i = 0; i < symfile_objfile->num_sections; i++)
1278 {
1279 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1280 changed = 1;
1281 new_offsets->offsets[i] = displacement;
1282 }
1283
1284 if (changed)
1285 objfile_relocate (symfile_objfile, new_offsets);
1286
1287 do_cleanups (old_chain);
1288 }
1289 }
1290
1291 /*
1292
1293 GLOBAL FUNCTION
1294
1295 svr4_solib_create_inferior_hook -- shared library startup support
1296
1297 SYNOPSIS
1298
1299 void svr4_solib_create_inferior_hook ()
1300
1301 DESCRIPTION
1302
1303 When gdb starts up the inferior, it nurses it along (through the
1304 shell) until it is ready to execute it's first instruction. At this
1305 point, this function gets called via expansion of the macro
1306 SOLIB_CREATE_INFERIOR_HOOK.
1307
1308 For SunOS executables, this first instruction is typically the
1309 one at "_start", or a similar text label, regardless of whether
1310 the executable is statically or dynamically linked. The runtime
1311 startup code takes care of dynamically linking in any shared
1312 libraries, once gdb allows the inferior to continue.
1313
1314 For SVR4 executables, this first instruction is either the first
1315 instruction in the dynamic linker (for dynamically linked
1316 executables) or the instruction at "start" for statically linked
1317 executables. For dynamically linked executables, the system
1318 first exec's /lib/libc.so.N, which contains the dynamic linker,
1319 and starts it running. The dynamic linker maps in any needed
1320 shared libraries, maps in the actual user executable, and then
1321 jumps to "start" in the user executable.
1322
1323 For both SunOS shared libraries, and SVR4 shared libraries, we
1324 can arrange to cooperate with the dynamic linker to discover the
1325 names of shared libraries that are dynamically linked, and the
1326 base addresses to which they are linked.
1327
1328 This function is responsible for discovering those names and
1329 addresses, and saving sufficient information about them to allow
1330 their symbols to be read at a later time.
1331
1332 FIXME
1333
1334 Between enable_break() and disable_break(), this code does not
1335 properly handle hitting breakpoints which the user might have
1336 set in the startup code or in the dynamic linker itself. Proper
1337 handling will probably have to wait until the implementation is
1338 changed to use the "breakpoint handler function" method.
1339
1340 Also, what if child has exit()ed? Must exit loop somehow.
1341 */
1342
1343 static void
1344 svr4_solib_create_inferior_hook (void)
1345 {
1346 /* Relocate the main executable if necessary. */
1347 svr4_relocate_main_executable ();
1348
1349 if (!svr4_have_link_map_offsets ())
1350 return;
1351
1352 if (!enable_break ())
1353 return;
1354
1355 #if defined(_SCO_DS)
1356 /* SCO needs the loop below, other systems should be using the
1357 special shared library breakpoints and the shared library breakpoint
1358 service routine.
1359
1360 Now run the target. It will eventually hit the breakpoint, at
1361 which point all of the libraries will have been mapped in and we
1362 can go groveling around in the dynamic linker structures to find
1363 out what we need to know about them. */
1364
1365 clear_proceed_status ();
1366 stop_soon = STOP_QUIETLY;
1367 stop_signal = TARGET_SIGNAL_0;
1368 do
1369 {
1370 target_resume (pid_to_ptid (-1), 0, stop_signal);
1371 wait_for_inferior ();
1372 }
1373 while (stop_signal != TARGET_SIGNAL_TRAP);
1374 stop_soon = NO_STOP_QUIETLY;
1375 #endif /* defined(_SCO_DS) */
1376 }
1377
1378 static void
1379 svr4_clear_solib (void)
1380 {
1381 debug_base = 0;
1382 debug_loader_offset_p = 0;
1383 debug_loader_offset = 0;
1384 xfree (debug_loader_name);
1385 debug_loader_name = NULL;
1386 }
1387
1388 static void
1389 svr4_free_so (struct so_list *so)
1390 {
1391 xfree (so->lm_info->lm);
1392 xfree (so->lm_info);
1393 }
1394
1395
1396 /* Clear any bits of ADDR that wouldn't fit in a target-format
1397 data pointer. "Data pointer" here refers to whatever sort of
1398 address the dynamic linker uses to manage its sections. At the
1399 moment, we don't support shared libraries on any processors where
1400 code and data pointers are different sizes.
1401
1402 This isn't really the right solution. What we really need here is
1403 a way to do arithmetic on CORE_ADDR values that respects the
1404 natural pointer/address correspondence. (For example, on the MIPS,
1405 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1406 sign-extend the value. There, simply truncating the bits above
1407 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1408 be a new gdbarch method or something. */
1409 static CORE_ADDR
1410 svr4_truncate_ptr (CORE_ADDR addr)
1411 {
1412 if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8)
1413 /* We don't need to truncate anything, and the bit twiddling below
1414 will fail due to overflow problems. */
1415 return addr;
1416 else
1417 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1);
1418 }
1419
1420
1421 static void
1422 svr4_relocate_section_addresses (struct so_list *so,
1423 struct section_table *sec)
1424 {
1425 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1426 sec->bfd));
1427 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1428 sec->bfd));
1429 }
1430 \f
1431
1432 /* Architecture-specific operations. */
1433
1434 /* Per-architecture data key. */
1435 static struct gdbarch_data *solib_svr4_data;
1436
1437 struct solib_svr4_ops
1438 {
1439 /* Return a description of the layout of `struct link_map'. */
1440 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1441 };
1442
1443 /* Return a default for the architecture-specific operations. */
1444
1445 static void *
1446 solib_svr4_init (struct obstack *obstack)
1447 {
1448 struct solib_svr4_ops *ops;
1449
1450 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1451 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1452 return ops;
1453 }
1454
1455 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1456 GDBARCH to FLMO. */
1457
1458 void
1459 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1460 struct link_map_offsets *(*flmo) (void))
1461 {
1462 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1463
1464 ops->fetch_link_map_offsets = flmo;
1465 }
1466
1467 /* Fetch a link_map_offsets structure using the architecture-specific
1468 `struct link_map_offsets' fetcher. */
1469
1470 static struct link_map_offsets *
1471 svr4_fetch_link_map_offsets (void)
1472 {
1473 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1474
1475 gdb_assert (ops->fetch_link_map_offsets);
1476 return ops->fetch_link_map_offsets ();
1477 }
1478
1479 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1480
1481 static int
1482 svr4_have_link_map_offsets (void)
1483 {
1484 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1485 return (ops->fetch_link_map_offsets != NULL);
1486 }
1487 \f
1488
1489 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1490 `struct r_debug' and a `struct link_map' that are binary compatible
1491 with the origional SVR4 implementation. */
1492
1493 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1494 for an ILP32 SVR4 system. */
1495
1496 struct link_map_offsets *
1497 svr4_ilp32_fetch_link_map_offsets (void)
1498 {
1499 static struct link_map_offsets lmo;
1500 static struct link_map_offsets *lmp = NULL;
1501
1502 if (lmp == NULL)
1503 {
1504 lmp = &lmo;
1505
1506 lmo.r_version_offset = 0;
1507 lmo.r_version_size = 4;
1508 lmo.r_map_offset = 4;
1509 lmo.r_ldsomap_offset = 20;
1510
1511 /* Everything we need is in the first 20 bytes. */
1512 lmo.link_map_size = 20;
1513 lmo.l_addr_offset = 0;
1514 lmo.l_name_offset = 4;
1515 lmo.l_ld_offset = 8;
1516 lmo.l_next_offset = 12;
1517 lmo.l_prev_offset = 16;
1518 }
1519
1520 return lmp;
1521 }
1522
1523 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1524 for an LP64 SVR4 system. */
1525
1526 struct link_map_offsets *
1527 svr4_lp64_fetch_link_map_offsets (void)
1528 {
1529 static struct link_map_offsets lmo;
1530 static struct link_map_offsets *lmp = NULL;
1531
1532 if (lmp == NULL)
1533 {
1534 lmp = &lmo;
1535
1536 lmo.r_version_offset = 0;
1537 lmo.r_version_size = 4;
1538 lmo.r_map_offset = 8;
1539 lmo.r_ldsomap_offset = 40;
1540
1541 /* Everything we need is in the first 40 bytes. */
1542 lmo.link_map_size = 40;
1543 lmo.l_addr_offset = 0;
1544 lmo.l_name_offset = 8;
1545 lmo.l_ld_offset = 16;
1546 lmo.l_next_offset = 24;
1547 lmo.l_prev_offset = 32;
1548 }
1549
1550 return lmp;
1551 }
1552 \f
1553
1554 struct target_so_ops svr4_so_ops;
1555
1556 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1557 different rule for symbol lookup. The lookup begins here in the DSO, not in
1558 the main executable. */
1559
1560 static struct symbol *
1561 elf_lookup_lib_symbol (const struct objfile *objfile,
1562 const char *name,
1563 const char *linkage_name,
1564 const domain_enum domain, struct symtab **symtab)
1565 {
1566 if (objfile->obfd == NULL
1567 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1568 return NULL;
1569
1570 return lookup_global_symbol_from_objfile
1571 (objfile, name, linkage_name, domain, symtab);
1572 }
1573
1574 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1575
1576 void
1577 _initialize_svr4_solib (void)
1578 {
1579 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1580
1581 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1582 svr4_so_ops.free_so = svr4_free_so;
1583 svr4_so_ops.clear_solib = svr4_clear_solib;
1584 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1585 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1586 svr4_so_ops.current_sos = svr4_current_sos;
1587 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1588 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1589 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
1590
1591 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1592 current_target_so_ops = &svr4_so_ops;
1593 }
This page took 0.060909 seconds and 5 git commands to generate.