* solib-svr4.c (enable_break): Simplify return value.
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24
25 #include "elf/external.h"
26 #include "elf/common.h"
27 #include "elf/mips.h"
28
29 #include "symtab.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcore.h"
34 #include "target.h"
35 #include "inferior.h"
36
37 #include "gdb_assert.h"
38
39 #include "solist.h"
40 #include "solib.h"
41 #include "solib-svr4.h"
42
43 #include "bfd-target.h"
44 #include "elf-bfd.h"
45 #include "exec.h"
46
47 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
48 static int svr4_have_link_map_offsets (void);
49
50 /* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
53
54 /* Link map info to include in an allocated so_list entry */
55
56 struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
61 gdb_byte *lm;
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
69 };
70
71 /* On SVR4 systems, a list of symbols in the dynamic linker where
72 GDB can try to place a breakpoint to monitor shared library
73 events.
74
75 If none of these symbols are found, or other errors occur, then
76 SVR4 systems will fall back to using a symbol as the "startup
77 mapping complete" breakpoint address. */
78
79 static char *solib_break_names[] =
80 {
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
85 "_rtld_debug_state",
86
87 /* On the 64-bit PowerPC, the linker symbol with the same name as
88 the C function points to a function descriptor, not to the entry
89 point. The linker symbol whose name is the C function name
90 prefixed with a '.' points to the function's entry point. So
91 when we look through this table, we ignore symbols that point
92 into the data section (thus skipping the descriptor's symbol),
93 and eventually try this one, giving us the real entry point
94 address. */
95 "._dl_debug_state",
96
97 NULL
98 };
99
100 #define BKPT_AT_SYMBOL 1
101
102 #if defined (BKPT_AT_SYMBOL)
103 static char *bkpt_names[] =
104 {
105 #ifdef SOLIB_BKPT_NAME
106 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
107 #endif
108 "_start",
109 "__start",
110 "main",
111 NULL
112 };
113 #endif
114
115 static char *main_name_list[] =
116 {
117 "main_$main",
118 NULL
119 };
120
121 /* link map access functions */
122
123 static CORE_ADDR
124 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
125 {
126 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
127
128 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
129 builtin_type_void_data_ptr);
130 }
131
132 static int
133 HAS_LM_DYNAMIC_FROM_LINK_MAP ()
134 {
135 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
136
137 return lmo->l_ld_offset >= 0;
138 }
139
140 static CORE_ADDR
141 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
142 {
143 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
144
145 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
146 builtin_type_void_data_ptr);
147 }
148
149 static CORE_ADDR
150 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
151 {
152 if (so->lm_info->l_addr == (CORE_ADDR)-1)
153 {
154 struct bfd_section *dyninfo_sect;
155 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
156
157 l_addr = LM_ADDR_FROM_LINK_MAP (so);
158
159 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
160 goto set_addr;
161
162 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
163
164 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
165 if (dyninfo_sect == NULL)
166 goto set_addr;
167
168 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
169
170 if (dynaddr + l_addr != l_dynaddr)
171 {
172 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
173 {
174 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
175 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
176 int i;
177
178 align = 1;
179
180 for (i = 0; i < ehdr->e_phnum; i++)
181 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
182 align = phdr[i].p_align;
183 }
184
185 /* Turn it into a mask. */
186 align--;
187
188 /* If the changes match the alignment requirements, we
189 assume we're using a core file that was generated by the
190 same binary, just prelinked with a different base offset.
191 If it doesn't match, we may have a different binary, the
192 same binary with the dynamic table loaded at an unrelated
193 location, or anything, really. To avoid regressions,
194 don't adjust the base offset in the latter case, although
195 odds are that, if things really changed, debugging won't
196 quite work. */
197 if ((l_addr & align) == 0 && ((dynaddr - l_dynaddr) & align) == 0)
198 {
199 l_addr = l_dynaddr - dynaddr;
200
201 warning (_(".dynamic section for \"%s\" "
202 "is not at the expected address"), so->so_name);
203 warning (_("difference appears to be caused by prelink, "
204 "adjusting expectations"));
205 }
206 else
207 warning (_(".dynamic section for \"%s\" "
208 "is not at the expected address "
209 "(wrong library or version mismatch?)"), so->so_name);
210 }
211
212 set_addr:
213 so->lm_info->l_addr = l_addr;
214 }
215
216 return so->lm_info->l_addr;
217 }
218
219 static CORE_ADDR
220 LM_NEXT (struct so_list *so)
221 {
222 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
223
224 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
225 builtin_type_void_data_ptr);
226 }
227
228 static CORE_ADDR
229 LM_NAME (struct so_list *so)
230 {
231 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
232
233 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
234 builtin_type_void_data_ptr);
235 }
236
237 static int
238 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
239 {
240 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
241
242 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
243 builtin_type_void_data_ptr) == 0;
244 }
245
246 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
247 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
248
249 /* Validity flag for debug_loader_offset. */
250 static int debug_loader_offset_p;
251
252 /* Load address for the dynamic linker, inferred. */
253 static CORE_ADDR debug_loader_offset;
254
255 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
256 static char *debug_loader_name;
257
258 /* Local function prototypes */
259
260 static int match_main (char *);
261
262 static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword);
263
264 /*
265
266 LOCAL FUNCTION
267
268 bfd_lookup_symbol -- lookup the value for a specific symbol
269
270 SYNOPSIS
271
272 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
273
274 DESCRIPTION
275
276 An expensive way to lookup the value of a single symbol for
277 bfd's that are only temporary anyway. This is used by the
278 shared library support to find the address of the debugger
279 interface structures in the shared library.
280
281 If SECT_FLAGS is non-zero, only match symbols in sections whose
282 flags include all those in SECT_FLAGS.
283
284 Note that 0 is specifically allowed as an error return (no
285 such symbol).
286 */
287
288 static CORE_ADDR
289 bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags)
290 {
291 long storage_needed;
292 asymbol *sym;
293 asymbol **symbol_table;
294 unsigned int number_of_symbols;
295 unsigned int i;
296 struct cleanup *back_to;
297 CORE_ADDR symaddr = 0;
298
299 storage_needed = bfd_get_symtab_upper_bound (abfd);
300
301 if (storage_needed > 0)
302 {
303 symbol_table = (asymbol **) xmalloc (storage_needed);
304 back_to = make_cleanup (xfree, symbol_table);
305 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
306
307 for (i = 0; i < number_of_symbols; i++)
308 {
309 sym = *symbol_table++;
310 if (strcmp (sym->name, symname) == 0
311 && (sym->section->flags & sect_flags) == sect_flags)
312 {
313 /* Bfd symbols are section relative. */
314 symaddr = sym->value + sym->section->vma;
315 break;
316 }
317 }
318 do_cleanups (back_to);
319 }
320
321 if (symaddr)
322 return symaddr;
323
324 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
325 have to check the dynamic string table too. */
326
327 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
328
329 if (storage_needed > 0)
330 {
331 symbol_table = (asymbol **) xmalloc (storage_needed);
332 back_to = make_cleanup (xfree, symbol_table);
333 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
334
335 for (i = 0; i < number_of_symbols; i++)
336 {
337 sym = *symbol_table++;
338
339 if (strcmp (sym->name, symname) == 0
340 && (sym->section->flags & sect_flags) == sect_flags)
341 {
342 /* Bfd symbols are section relative. */
343 symaddr = sym->value + sym->section->vma;
344 break;
345 }
346 }
347 do_cleanups (back_to);
348 }
349
350 return symaddr;
351 }
352
353 /*
354
355 LOCAL FUNCTION
356
357 elf_locate_base -- locate the base address of dynamic linker structs
358 for SVR4 elf targets.
359
360 SYNOPSIS
361
362 CORE_ADDR elf_locate_base (void)
363
364 DESCRIPTION
365
366 For SVR4 elf targets the address of the dynamic linker's runtime
367 structure is contained within the dynamic info section in the
368 executable file. The dynamic section is also mapped into the
369 inferior address space. Because the runtime loader fills in the
370 real address before starting the inferior, we have to read in the
371 dynamic info section from the inferior address space.
372 If there are any errors while trying to find the address, we
373 silently return 0, otherwise the found address is returned.
374
375 */
376
377 static CORE_ADDR
378 elf_locate_base (void)
379 {
380 struct bfd_section *dyninfo_sect;
381 int dyninfo_sect_size;
382 CORE_ADDR dyninfo_addr;
383 gdb_byte *buf;
384 gdb_byte *bufend;
385 int arch_size;
386
387 /* Find the start address of the .dynamic section. */
388 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
389 if (dyninfo_sect == NULL)
390 return 0;
391 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
392
393 /* Read in .dynamic section, silently ignore errors. */
394 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
395 buf = alloca (dyninfo_sect_size);
396 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
397 return 0;
398
399 /* Find the DT_DEBUG entry in the the .dynamic section.
400 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
401 no DT_DEBUG entries. */
402
403 arch_size = bfd_get_arch_size (exec_bfd);
404 if (arch_size == -1) /* failure */
405 return 0;
406
407 if (arch_size == 32)
408 { /* 32-bit elf */
409 for (bufend = buf + dyninfo_sect_size;
410 buf < bufend;
411 buf += sizeof (Elf32_External_Dyn))
412 {
413 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
414 long dyn_tag;
415 CORE_ADDR dyn_ptr;
416
417 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
418 if (dyn_tag == DT_NULL)
419 break;
420 else if (dyn_tag == DT_DEBUG)
421 {
422 dyn_ptr = bfd_h_get_32 (exec_bfd,
423 (bfd_byte *) x_dynp->d_un.d_ptr);
424 return dyn_ptr;
425 }
426 else if (dyn_tag == DT_MIPS_RLD_MAP)
427 {
428 gdb_byte *pbuf;
429 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
430
431 pbuf = alloca (pbuf_size);
432 /* DT_MIPS_RLD_MAP contains a pointer to the address
433 of the dynamic link structure. */
434 dyn_ptr = bfd_h_get_32 (exec_bfd,
435 (bfd_byte *) x_dynp->d_un.d_ptr);
436 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
437 return 0;
438 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
439 }
440 }
441 }
442 else /* 64-bit elf */
443 {
444 for (bufend = buf + dyninfo_sect_size;
445 buf < bufend;
446 buf += sizeof (Elf64_External_Dyn))
447 {
448 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
449 long dyn_tag;
450 CORE_ADDR dyn_ptr;
451
452 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
453 if (dyn_tag == DT_NULL)
454 break;
455 else if (dyn_tag == DT_DEBUG)
456 {
457 dyn_ptr = bfd_h_get_64 (exec_bfd,
458 (bfd_byte *) x_dynp->d_un.d_ptr);
459 return dyn_ptr;
460 }
461 else if (dyn_tag == DT_MIPS_RLD_MAP)
462 {
463 gdb_byte *pbuf;
464 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
465
466 pbuf = alloca (pbuf_size);
467 /* DT_MIPS_RLD_MAP contains a pointer to the address
468 of the dynamic link structure. */
469 dyn_ptr = bfd_h_get_64 (exec_bfd,
470 (bfd_byte *) x_dynp->d_un.d_ptr);
471 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
472 return 0;
473 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
474 }
475 }
476 }
477
478 /* DT_DEBUG entry not found. */
479 return 0;
480 }
481
482 /*
483
484 LOCAL FUNCTION
485
486 locate_base -- locate the base address of dynamic linker structs
487
488 SYNOPSIS
489
490 CORE_ADDR locate_base (void)
491
492 DESCRIPTION
493
494 For both the SunOS and SVR4 shared library implementations, if the
495 inferior executable has been linked dynamically, there is a single
496 address somewhere in the inferior's data space which is the key to
497 locating all of the dynamic linker's runtime structures. This
498 address is the value of the debug base symbol. The job of this
499 function is to find and return that address, or to return 0 if there
500 is no such address (the executable is statically linked for example).
501
502 For SunOS, the job is almost trivial, since the dynamic linker and
503 all of it's structures are statically linked to the executable at
504 link time. Thus the symbol for the address we are looking for has
505 already been added to the minimal symbol table for the executable's
506 objfile at the time the symbol file's symbols were read, and all we
507 have to do is look it up there. Note that we explicitly do NOT want
508 to find the copies in the shared library.
509
510 The SVR4 version is a bit more complicated because the address
511 is contained somewhere in the dynamic info section. We have to go
512 to a lot more work to discover the address of the debug base symbol.
513 Because of this complexity, we cache the value we find and return that
514 value on subsequent invocations. Note there is no copy in the
515 executable symbol tables.
516
517 */
518
519 static CORE_ADDR
520 locate_base (void)
521 {
522 /* Check to see if we have a currently valid address, and if so, avoid
523 doing all this work again and just return the cached address. If
524 we have no cached address, try to locate it in the dynamic info
525 section for ELF executables. There's no point in doing any of this
526 though if we don't have some link map offsets to work with. */
527
528 if (debug_base == 0 && svr4_have_link_map_offsets ())
529 {
530 if (exec_bfd != NULL
531 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
532 debug_base = elf_locate_base ();
533 }
534 return (debug_base);
535 }
536
537 /* Find the first element in the inferior's dynamic link map, and
538 return its address in the inferior.
539
540 FIXME: Perhaps we should validate the info somehow, perhaps by
541 checking r_version for a known version number, or r_state for
542 RT_CONSISTENT. */
543
544 static CORE_ADDR
545 solib_svr4_r_map (void)
546 {
547 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
548
549 return read_memory_typed_address (debug_base + lmo->r_map_offset,
550 builtin_type_void_data_ptr);
551 }
552
553 /* Find the link map for the dynamic linker (if it is not in the
554 normal list of loaded shared objects). */
555
556 static CORE_ADDR
557 solib_svr4_r_ldsomap (void)
558 {
559 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
560 ULONGEST version;
561
562 /* Check version, and return zero if `struct r_debug' doesn't have
563 the r_ldsomap member. */
564 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
565 lmo->r_version_size);
566 if (version < 2 || lmo->r_ldsomap_offset == -1)
567 return 0;
568
569 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
570 builtin_type_void_data_ptr);
571 }
572
573 /*
574
575 LOCAL FUNCTION
576
577 open_symbol_file_object
578
579 SYNOPSIS
580
581 void open_symbol_file_object (void *from_tty)
582
583 DESCRIPTION
584
585 If no open symbol file, attempt to locate and open the main symbol
586 file. On SVR4 systems, this is the first link map entry. If its
587 name is here, we can open it. Useful when attaching to a process
588 without first loading its symbol file.
589
590 If FROM_TTYP dereferences to a non-zero integer, allow messages to
591 be printed. This parameter is a pointer rather than an int because
592 open_symbol_file_object() is called via catch_errors() and
593 catch_errors() requires a pointer argument. */
594
595 static int
596 open_symbol_file_object (void *from_ttyp)
597 {
598 CORE_ADDR lm, l_name;
599 char *filename;
600 int errcode;
601 int from_tty = *(int *)from_ttyp;
602 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
603 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
604 gdb_byte *l_name_buf = xmalloc (l_name_size);
605 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
606
607 if (symfile_objfile)
608 if (!query ("Attempt to reload symbols from process? "))
609 return 0;
610
611 if ((debug_base = locate_base ()) == 0)
612 return 0; /* failed somehow... */
613
614 /* First link map member should be the executable. */
615 lm = solib_svr4_r_map ();
616 if (lm == 0)
617 return 0; /* failed somehow... */
618
619 /* Read address of name from target memory to GDB. */
620 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
621
622 /* Convert the address to host format. */
623 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
624
625 /* Free l_name_buf. */
626 do_cleanups (cleanups);
627
628 if (l_name == 0)
629 return 0; /* No filename. */
630
631 /* Now fetch the filename from target memory. */
632 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
633
634 if (errcode)
635 {
636 warning (_("failed to read exec filename from attached file: %s"),
637 safe_strerror (errcode));
638 return 0;
639 }
640
641 make_cleanup (xfree, filename);
642 /* Have a pathname: read the symbol file. */
643 symbol_file_add_main (filename, from_tty);
644
645 return 1;
646 }
647
648 /* If no shared library information is available from the dynamic
649 linker, build a fallback list from other sources. */
650
651 static struct so_list *
652 svr4_default_sos (void)
653 {
654 struct so_list *head = NULL;
655 struct so_list **link_ptr = &head;
656
657 if (debug_loader_offset_p)
658 {
659 struct so_list *new = XZALLOC (struct so_list);
660
661 new->lm_info = xmalloc (sizeof (struct lm_info));
662
663 /* Nothing will ever check the cached copy of the link
664 map if we set l_addr. */
665 new->lm_info->l_addr = debug_loader_offset;
666 new->lm_info->lm = NULL;
667
668 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
669 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
670 strcpy (new->so_original_name, new->so_name);
671
672 *link_ptr = new;
673 link_ptr = &new->next;
674 }
675
676 return head;
677 }
678
679 /* LOCAL FUNCTION
680
681 current_sos -- build a list of currently loaded shared objects
682
683 SYNOPSIS
684
685 struct so_list *current_sos ()
686
687 DESCRIPTION
688
689 Build a list of `struct so_list' objects describing the shared
690 objects currently loaded in the inferior. This list does not
691 include an entry for the main executable file.
692
693 Note that we only gather information directly available from the
694 inferior --- we don't examine any of the shared library files
695 themselves. The declaration of `struct so_list' says which fields
696 we provide values for. */
697
698 static struct so_list *
699 svr4_current_sos (void)
700 {
701 CORE_ADDR lm;
702 struct so_list *head = 0;
703 struct so_list **link_ptr = &head;
704 CORE_ADDR ldsomap = 0;
705
706 /* Make sure we've looked up the inferior's dynamic linker's base
707 structure. */
708 if (! debug_base)
709 {
710 debug_base = locate_base ();
711
712 /* If we can't find the dynamic linker's base structure, this
713 must not be a dynamically linked executable. Hmm. */
714 if (! debug_base)
715 return svr4_default_sos ();
716 }
717
718 /* Walk the inferior's link map list, and build our list of
719 `struct so_list' nodes. */
720 lm = solib_svr4_r_map ();
721
722 while (lm)
723 {
724 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
725 struct so_list *new = XZALLOC (struct so_list);
726 struct cleanup *old_chain = make_cleanup (xfree, new);
727
728 new->lm_info = xmalloc (sizeof (struct lm_info));
729 make_cleanup (xfree, new->lm_info);
730
731 new->lm_info->l_addr = (CORE_ADDR)-1;
732 new->lm_info->lm = xzalloc (lmo->link_map_size);
733 make_cleanup (xfree, new->lm_info->lm);
734
735 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
736
737 lm = LM_NEXT (new);
738
739 /* For SVR4 versions, the first entry in the link map is for the
740 inferior executable, so we must ignore it. For some versions of
741 SVR4, it has no name. For others (Solaris 2.3 for example), it
742 does have a name, so we can no longer use a missing name to
743 decide when to ignore it. */
744 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
745 free_so (new);
746 else
747 {
748 int errcode;
749 char *buffer;
750
751 /* Extract this shared object's name. */
752 target_read_string (LM_NAME (new), &buffer,
753 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
754 if (errcode != 0)
755 warning (_("Can't read pathname for load map: %s."),
756 safe_strerror (errcode));
757 else
758 {
759 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
760 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
761 xfree (buffer);
762 strcpy (new->so_original_name, new->so_name);
763 }
764
765 /* If this entry has no name, or its name matches the name
766 for the main executable, don't include it in the list. */
767 if (! new->so_name[0]
768 || match_main (new->so_name))
769 free_so (new);
770 else
771 {
772 new->next = 0;
773 *link_ptr = new;
774 link_ptr = &new->next;
775 }
776 }
777
778 /* On Solaris, the dynamic linker is not in the normal list of
779 shared objects, so make sure we pick it up too. Having
780 symbol information for the dynamic linker is quite crucial
781 for skipping dynamic linker resolver code. */
782 if (lm == 0 && ldsomap == 0)
783 lm = ldsomap = solib_svr4_r_ldsomap ();
784
785 discard_cleanups (old_chain);
786 }
787
788 if (head == NULL)
789 return svr4_default_sos ();
790
791 return head;
792 }
793
794 /* Get the address of the link_map for a given OBJFILE. Loop through
795 the link maps, and return the address of the one corresponding to
796 the given objfile. Note that this function takes into account that
797 objfile can be the main executable, not just a shared library. The
798 main executable has always an empty name field in the linkmap. */
799
800 CORE_ADDR
801 svr4_fetch_objfile_link_map (struct objfile *objfile)
802 {
803 CORE_ADDR lm;
804
805 if ((debug_base = locate_base ()) == 0)
806 return 0; /* failed somehow... */
807
808 /* Position ourselves on the first link map. */
809 lm = solib_svr4_r_map ();
810 while (lm)
811 {
812 /* Get info on the layout of the r_debug and link_map structures. */
813 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
814 int errcode;
815 char *buffer;
816 struct lm_info objfile_lm_info;
817 struct cleanup *old_chain;
818 CORE_ADDR name_address;
819 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
820 gdb_byte *l_name_buf = xmalloc (l_name_size);
821 old_chain = make_cleanup (xfree, l_name_buf);
822
823 /* Set up the buffer to contain the portion of the link_map
824 structure that gdb cares about. Note that this is not the
825 whole link_map structure. */
826 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
827 make_cleanup (xfree, objfile_lm_info.lm);
828
829 /* Read the link map into our internal structure. */
830 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
831
832 /* Read address of name from target memory to GDB. */
833 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
834
835 /* Extract this object's name. */
836 name_address = extract_typed_address (l_name_buf,
837 builtin_type_void_data_ptr);
838 target_read_string (name_address, &buffer,
839 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
840 make_cleanup (xfree, buffer);
841 if (errcode != 0)
842 warning (_("Can't read pathname for load map: %s."),
843 safe_strerror (errcode));
844 else
845 {
846 /* Is this the linkmap for the file we want? */
847 /* If the file is not a shared library and has no name,
848 we are sure it is the main executable, so we return that. */
849 if ((buffer && strcmp (buffer, objfile->name) == 0)
850 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0)))
851 {
852 do_cleanups (old_chain);
853 return lm;
854 }
855 }
856 /* Not the file we wanted, continue checking. */
857 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
858 builtin_type_void_data_ptr);
859 do_cleanups (old_chain);
860 }
861 return 0;
862 }
863
864 /* On some systems, the only way to recognize the link map entry for
865 the main executable file is by looking at its name. Return
866 non-zero iff SONAME matches one of the known main executable names. */
867
868 static int
869 match_main (char *soname)
870 {
871 char **mainp;
872
873 for (mainp = main_name_list; *mainp != NULL; mainp++)
874 {
875 if (strcmp (soname, *mainp) == 0)
876 return (1);
877 }
878
879 return (0);
880 }
881
882 /* Return 1 if PC lies in the dynamic symbol resolution code of the
883 SVR4 run time loader. */
884 static CORE_ADDR interp_text_sect_low;
885 static CORE_ADDR interp_text_sect_high;
886 static CORE_ADDR interp_plt_sect_low;
887 static CORE_ADDR interp_plt_sect_high;
888
889 static int
890 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
891 {
892 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
893 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
894 || in_plt_section (pc, NULL));
895 }
896
897 /* Given an executable's ABFD and target, compute the entry-point
898 address. */
899
900 static CORE_ADDR
901 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
902 {
903 /* KevinB wrote ... for most targets, the address returned by
904 bfd_get_start_address() is the entry point for the start
905 function. But, for some targets, bfd_get_start_address() returns
906 the address of a function descriptor from which the entry point
907 address may be extracted. This address is extracted by
908 gdbarch_convert_from_func_ptr_addr(). The method
909 gdbarch_convert_from_func_ptr_addr() is the merely the identify
910 function for targets which don't use function descriptors. */
911 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
912 bfd_get_start_address (abfd),
913 targ);
914 }
915
916 /*
917
918 LOCAL FUNCTION
919
920 enable_break -- arrange for dynamic linker to hit breakpoint
921
922 SYNOPSIS
923
924 int enable_break (void)
925
926 DESCRIPTION
927
928 Both the SunOS and the SVR4 dynamic linkers have, as part of their
929 debugger interface, support for arranging for the inferior to hit
930 a breakpoint after mapping in the shared libraries. This function
931 enables that breakpoint.
932
933 For SunOS, there is a special flag location (in_debugger) which we
934 set to 1. When the dynamic linker sees this flag set, it will set
935 a breakpoint at a location known only to itself, after saving the
936 original contents of that place and the breakpoint address itself,
937 in it's own internal structures. When we resume the inferior, it
938 will eventually take a SIGTRAP when it runs into the breakpoint.
939 We handle this (in a different place) by restoring the contents of
940 the breakpointed location (which is only known after it stops),
941 chasing around to locate the shared libraries that have been
942 loaded, then resuming.
943
944 For SVR4, the debugger interface structure contains a member (r_brk)
945 which is statically initialized at the time the shared library is
946 built, to the offset of a function (_r_debug_state) which is guaran-
947 teed to be called once before mapping in a library, and again when
948 the mapping is complete. At the time we are examining this member,
949 it contains only the unrelocated offset of the function, so we have
950 to do our own relocation. Later, when the dynamic linker actually
951 runs, it relocates r_brk to be the actual address of _r_debug_state().
952
953 The debugger interface structure also contains an enumeration which
954 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
955 depending upon whether or not the library is being mapped or unmapped,
956 and then set to RT_CONSISTENT after the library is mapped/unmapped.
957 */
958
959 static int
960 enable_break (void)
961 {
962 #ifdef BKPT_AT_SYMBOL
963
964 struct minimal_symbol *msymbol;
965 char **bkpt_namep;
966 asection *interp_sect;
967
968 /* First, remove all the solib event breakpoints. Their addresses
969 may have changed since the last time we ran the program. */
970 remove_solib_event_breakpoints ();
971
972 interp_text_sect_low = interp_text_sect_high = 0;
973 interp_plt_sect_low = interp_plt_sect_high = 0;
974
975 /* Find the .interp section; if not found, warn the user and drop
976 into the old breakpoint at symbol code. */
977 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
978 if (interp_sect)
979 {
980 unsigned int interp_sect_size;
981 char *buf;
982 CORE_ADDR load_addr = 0;
983 int load_addr_found = 0;
984 struct so_list *so;
985 bfd *tmp_bfd = NULL;
986 struct target_ops *tmp_bfd_target;
987 int tmp_fd = -1;
988 char *tmp_pathname = NULL;
989 CORE_ADDR sym_addr = 0;
990
991 /* Read the contents of the .interp section into a local buffer;
992 the contents specify the dynamic linker this program uses. */
993 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
994 buf = alloca (interp_sect_size);
995 bfd_get_section_contents (exec_bfd, interp_sect,
996 buf, 0, interp_sect_size);
997
998 /* Now we need to figure out where the dynamic linker was
999 loaded so that we can load its symbols and place a breakpoint
1000 in the dynamic linker itself.
1001
1002 This address is stored on the stack. However, I've been unable
1003 to find any magic formula to find it for Solaris (appears to
1004 be trivial on GNU/Linux). Therefore, we have to try an alternate
1005 mechanism to find the dynamic linker's base address. */
1006
1007 /* TODO drow/2006-09-12: This is somewhat fragile, because it
1008 relies on read_pc. On both Solaris and GNU/Linux we can use
1009 the AT_BASE auxilliary entry, which GDB now knows how to
1010 access, to find the base address. */
1011
1012 tmp_fd = solib_open (buf, &tmp_pathname);
1013 if (tmp_fd >= 0)
1014 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
1015
1016 if (tmp_bfd == NULL)
1017 goto bkpt_at_symbol;
1018
1019 /* Make sure the dynamic linker's really a useful object. */
1020 if (!bfd_check_format (tmp_bfd, bfd_object))
1021 {
1022 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
1023 bfd_close (tmp_bfd);
1024 goto bkpt_at_symbol;
1025 }
1026
1027 /* Now convert the TMP_BFD into a target. That way target, as
1028 well as BFD operations can be used. Note that closing the
1029 target will also close the underlying bfd. */
1030 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1031
1032 /* On a running target, we can get the dynamic linker's base
1033 address from the shared library table. */
1034 solib_add (NULL, 0, NULL, auto_solib_add);
1035 so = master_so_list ();
1036 while (so)
1037 {
1038 if (strcmp (buf, so->so_original_name) == 0)
1039 {
1040 load_addr_found = 1;
1041 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1042 break;
1043 }
1044 so = so->next;
1045 }
1046
1047 /* Otherwise we find the dynamic linker's base address by examining
1048 the current pc (which should point at the entry point for the
1049 dynamic linker) and subtracting the offset of the entry point. */
1050 if (!load_addr_found)
1051 {
1052 load_addr = (read_pc ()
1053 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1054 debug_loader_name = xstrdup (buf);
1055 debug_loader_offset_p = 1;
1056 debug_loader_offset = load_addr;
1057 solib_add (NULL, 0, NULL, auto_solib_add);
1058 }
1059
1060 /* Record the relocated start and end address of the dynamic linker
1061 text and plt section for svr4_in_dynsym_resolve_code. */
1062 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1063 if (interp_sect)
1064 {
1065 interp_text_sect_low =
1066 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1067 interp_text_sect_high =
1068 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1069 }
1070 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1071 if (interp_sect)
1072 {
1073 interp_plt_sect_low =
1074 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1075 interp_plt_sect_high =
1076 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1077 }
1078
1079 /* Now try to set a breakpoint in the dynamic linker. */
1080 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1081 {
1082 /* On ABI's that use function descriptors, there are usually
1083 two linker symbols associated with each C function: one
1084 pointing at the actual entry point of the machine code,
1085 and one pointing at the function's descriptor. The
1086 latter symbol has the same name as the C function.
1087
1088 What we're looking for here is the machine code entry
1089 point, so we are only interested in symbols in code
1090 sections. */
1091 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE);
1092 if (sym_addr != 0)
1093 break;
1094 }
1095
1096 /* We're done with both the temporary bfd and target. Remember,
1097 closing the target closes the underlying bfd. */
1098 target_close (tmp_bfd_target, 0);
1099
1100 if (sym_addr != 0)
1101 {
1102 create_solib_event_breakpoint (load_addr + sym_addr);
1103 return 1;
1104 }
1105
1106 /* For whatever reason we couldn't set a breakpoint in the dynamic
1107 linker. Warn and drop into the old code. */
1108 bkpt_at_symbol:
1109 warning (_("Unable to find dynamic linker breakpoint function.\n"
1110 "GDB will be unable to debug shared library initializers\n"
1111 "and track explicitly loaded dynamic code."));
1112 }
1113
1114 /* Scan through the list of symbols, trying to look up the symbol and
1115 set a breakpoint there. Terminate loop when we/if we succeed. */
1116
1117 breakpoint_addr = 0;
1118 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1119 {
1120 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1121 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1122 {
1123 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1124 return 1;
1125 }
1126 }
1127 #endif /* BKPT_AT_SYMBOL */
1128
1129 return 0;
1130 }
1131
1132 /*
1133
1134 LOCAL FUNCTION
1135
1136 special_symbol_handling -- additional shared library symbol handling
1137
1138 SYNOPSIS
1139
1140 void special_symbol_handling ()
1141
1142 DESCRIPTION
1143
1144 Once the symbols from a shared object have been loaded in the usual
1145 way, we are called to do any system specific symbol handling that
1146 is needed.
1147
1148 For SunOS4, this consisted of grunging around in the dynamic
1149 linkers structures to find symbol definitions for "common" symbols
1150 and adding them to the minimal symbol table for the runtime common
1151 objfile.
1152
1153 However, for SVR4, there's nothing to do.
1154
1155 */
1156
1157 static void
1158 svr4_special_symbol_handling (void)
1159 {
1160 }
1161
1162 /* Relocate the main executable. This function should be called upon
1163 stopping the inferior process at the entry point to the program.
1164 The entry point from BFD is compared to the PC and if they are
1165 different, the main executable is relocated by the proper amount.
1166
1167 As written it will only attempt to relocate executables which
1168 lack interpreter sections. It seems likely that only dynamic
1169 linker executables will get relocated, though it should work
1170 properly for a position-independent static executable as well. */
1171
1172 static void
1173 svr4_relocate_main_executable (void)
1174 {
1175 asection *interp_sect;
1176 CORE_ADDR pc = read_pc ();
1177
1178 /* Decide if the objfile needs to be relocated. As indicated above,
1179 we will only be here when execution is stopped at the beginning
1180 of the program. Relocation is necessary if the address at which
1181 we are presently stopped differs from the start address stored in
1182 the executable AND there's no interpreter section. The condition
1183 regarding the interpreter section is very important because if
1184 there *is* an interpreter section, execution will begin there
1185 instead. When there is an interpreter section, the start address
1186 is (presumably) used by the interpreter at some point to start
1187 execution of the program.
1188
1189 If there is an interpreter, it is normal for it to be set to an
1190 arbitrary address at the outset. The job of finding it is
1191 handled in enable_break().
1192
1193 So, to summarize, relocations are necessary when there is no
1194 interpreter section and the start address obtained from the
1195 executable is different from the address at which GDB is
1196 currently stopped.
1197
1198 [ The astute reader will note that we also test to make sure that
1199 the executable in question has the DYNAMIC flag set. It is my
1200 opinion that this test is unnecessary (undesirable even). It
1201 was added to avoid inadvertent relocation of an executable
1202 whose e_type member in the ELF header is not ET_DYN. There may
1203 be a time in the future when it is desirable to do relocations
1204 on other types of files as well in which case this condition
1205 should either be removed or modified to accomodate the new file
1206 type. (E.g, an ET_EXEC executable which has been built to be
1207 position-independent could safely be relocated by the OS if
1208 desired. It is true that this violates the ABI, but the ABI
1209 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1210 */
1211
1212 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1213 if (interp_sect == NULL
1214 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1215 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1216 {
1217 struct cleanup *old_chain;
1218 struct section_offsets *new_offsets;
1219 int i, changed;
1220 CORE_ADDR displacement;
1221
1222 /* It is necessary to relocate the objfile. The amount to
1223 relocate by is simply the address at which we are stopped
1224 minus the starting address from the executable.
1225
1226 We relocate all of the sections by the same amount. This
1227 behavior is mandated by recent editions of the System V ABI.
1228 According to the System V Application Binary Interface,
1229 Edition 4.1, page 5-5:
1230
1231 ... Though the system chooses virtual addresses for
1232 individual processes, it maintains the segments' relative
1233 positions. Because position-independent code uses relative
1234 addressesing between segments, the difference between
1235 virtual addresses in memory must match the difference
1236 between virtual addresses in the file. The difference
1237 between the virtual address of any segment in memory and
1238 the corresponding virtual address in the file is thus a
1239 single constant value for any one executable or shared
1240 object in a given process. This difference is the base
1241 address. One use of the base address is to relocate the
1242 memory image of the program during dynamic linking.
1243
1244 The same language also appears in Edition 4.0 of the System V
1245 ABI and is left unspecified in some of the earlier editions. */
1246
1247 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1248 changed = 0;
1249
1250 new_offsets = xcalloc (symfile_objfile->num_sections,
1251 sizeof (struct section_offsets));
1252 old_chain = make_cleanup (xfree, new_offsets);
1253
1254 for (i = 0; i < symfile_objfile->num_sections; i++)
1255 {
1256 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1257 changed = 1;
1258 new_offsets->offsets[i] = displacement;
1259 }
1260
1261 if (changed)
1262 objfile_relocate (symfile_objfile, new_offsets);
1263
1264 do_cleanups (old_chain);
1265 }
1266 }
1267
1268 /*
1269
1270 GLOBAL FUNCTION
1271
1272 svr4_solib_create_inferior_hook -- shared library startup support
1273
1274 SYNOPSIS
1275
1276 void svr4_solib_create_inferior_hook ()
1277
1278 DESCRIPTION
1279
1280 When gdb starts up the inferior, it nurses it along (through the
1281 shell) until it is ready to execute it's first instruction. At this
1282 point, this function gets called via expansion of the macro
1283 SOLIB_CREATE_INFERIOR_HOOK.
1284
1285 For SunOS executables, this first instruction is typically the
1286 one at "_start", or a similar text label, regardless of whether
1287 the executable is statically or dynamically linked. The runtime
1288 startup code takes care of dynamically linking in any shared
1289 libraries, once gdb allows the inferior to continue.
1290
1291 For SVR4 executables, this first instruction is either the first
1292 instruction in the dynamic linker (for dynamically linked
1293 executables) or the instruction at "start" for statically linked
1294 executables. For dynamically linked executables, the system
1295 first exec's /lib/libc.so.N, which contains the dynamic linker,
1296 and starts it running. The dynamic linker maps in any needed
1297 shared libraries, maps in the actual user executable, and then
1298 jumps to "start" in the user executable.
1299
1300 For both SunOS shared libraries, and SVR4 shared libraries, we
1301 can arrange to cooperate with the dynamic linker to discover the
1302 names of shared libraries that are dynamically linked, and the
1303 base addresses to which they are linked.
1304
1305 This function is responsible for discovering those names and
1306 addresses, and saving sufficient information about them to allow
1307 their symbols to be read at a later time.
1308
1309 FIXME
1310
1311 Between enable_break() and disable_break(), this code does not
1312 properly handle hitting breakpoints which the user might have
1313 set in the startup code or in the dynamic linker itself. Proper
1314 handling will probably have to wait until the implementation is
1315 changed to use the "breakpoint handler function" method.
1316
1317 Also, what if child has exit()ed? Must exit loop somehow.
1318 */
1319
1320 static void
1321 svr4_solib_create_inferior_hook (void)
1322 {
1323 /* Relocate the main executable if necessary. */
1324 svr4_relocate_main_executable ();
1325
1326 if (!svr4_have_link_map_offsets ())
1327 {
1328 warning (_("no shared library support for this OS / ABI"));
1329 return;
1330
1331 }
1332
1333 if (!enable_break ())
1334 return;
1335
1336 #if defined(_SCO_DS)
1337 /* SCO needs the loop below, other systems should be using the
1338 special shared library breakpoints and the shared library breakpoint
1339 service routine.
1340
1341 Now run the target. It will eventually hit the breakpoint, at
1342 which point all of the libraries will have been mapped in and we
1343 can go groveling around in the dynamic linker structures to find
1344 out what we need to know about them. */
1345
1346 clear_proceed_status ();
1347 stop_soon = STOP_QUIETLY;
1348 stop_signal = TARGET_SIGNAL_0;
1349 do
1350 {
1351 target_resume (pid_to_ptid (-1), 0, stop_signal);
1352 wait_for_inferior ();
1353 }
1354 while (stop_signal != TARGET_SIGNAL_TRAP);
1355 stop_soon = NO_STOP_QUIETLY;
1356 #endif /* defined(_SCO_DS) */
1357 }
1358
1359 static void
1360 svr4_clear_solib (void)
1361 {
1362 debug_base = 0;
1363 debug_loader_offset_p = 0;
1364 debug_loader_offset = 0;
1365 xfree (debug_loader_name);
1366 debug_loader_name = NULL;
1367 }
1368
1369 static void
1370 svr4_free_so (struct so_list *so)
1371 {
1372 xfree (so->lm_info->lm);
1373 xfree (so->lm_info);
1374 }
1375
1376
1377 /* Clear any bits of ADDR that wouldn't fit in a target-format
1378 data pointer. "Data pointer" here refers to whatever sort of
1379 address the dynamic linker uses to manage its sections. At the
1380 moment, we don't support shared libraries on any processors where
1381 code and data pointers are different sizes.
1382
1383 This isn't really the right solution. What we really need here is
1384 a way to do arithmetic on CORE_ADDR values that respects the
1385 natural pointer/address correspondence. (For example, on the MIPS,
1386 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1387 sign-extend the value. There, simply truncating the bits above
1388 TARGET_PTR_BIT, as we do below, is no good.) This should probably
1389 be a new gdbarch method or something. */
1390 static CORE_ADDR
1391 svr4_truncate_ptr (CORE_ADDR addr)
1392 {
1393 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8)
1394 /* We don't need to truncate anything, and the bit twiddling below
1395 will fail due to overflow problems. */
1396 return addr;
1397 else
1398 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1);
1399 }
1400
1401
1402 static void
1403 svr4_relocate_section_addresses (struct so_list *so,
1404 struct section_table *sec)
1405 {
1406 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1407 sec->bfd));
1408 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1409 sec->bfd));
1410 }
1411 \f
1412
1413 /* Architecture-specific operations. */
1414
1415 /* Per-architecture data key. */
1416 static struct gdbarch_data *solib_svr4_data;
1417
1418 struct solib_svr4_ops
1419 {
1420 /* Return a description of the layout of `struct link_map'. */
1421 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1422 };
1423
1424 /* Return a default for the architecture-specific operations. */
1425
1426 static void *
1427 solib_svr4_init (struct obstack *obstack)
1428 {
1429 struct solib_svr4_ops *ops;
1430
1431 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1432 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1433 return ops;
1434 }
1435
1436 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1437 GDBARCH to FLMO. */
1438
1439 void
1440 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1441 struct link_map_offsets *(*flmo) (void))
1442 {
1443 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1444
1445 ops->fetch_link_map_offsets = flmo;
1446 }
1447
1448 /* Fetch a link_map_offsets structure using the architecture-specific
1449 `struct link_map_offsets' fetcher. */
1450
1451 static struct link_map_offsets *
1452 svr4_fetch_link_map_offsets (void)
1453 {
1454 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1455
1456 gdb_assert (ops->fetch_link_map_offsets);
1457 return ops->fetch_link_map_offsets ();
1458 }
1459
1460 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1461
1462 static int
1463 svr4_have_link_map_offsets (void)
1464 {
1465 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1466 return (ops->fetch_link_map_offsets != NULL);
1467 }
1468 \f
1469
1470 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1471 `struct r_debug' and a `struct link_map' that are binary compatible
1472 with the origional SVR4 implementation. */
1473
1474 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1475 for an ILP32 SVR4 system. */
1476
1477 struct link_map_offsets *
1478 svr4_ilp32_fetch_link_map_offsets (void)
1479 {
1480 static struct link_map_offsets lmo;
1481 static struct link_map_offsets *lmp = NULL;
1482
1483 if (lmp == NULL)
1484 {
1485 lmp = &lmo;
1486
1487 lmo.r_version_offset = 0;
1488 lmo.r_version_size = 4;
1489 lmo.r_map_offset = 4;
1490 lmo.r_ldsomap_offset = 20;
1491
1492 /* Everything we need is in the first 20 bytes. */
1493 lmo.link_map_size = 20;
1494 lmo.l_addr_offset = 0;
1495 lmo.l_name_offset = 4;
1496 lmo.l_ld_offset = 8;
1497 lmo.l_next_offset = 12;
1498 lmo.l_prev_offset = 16;
1499 }
1500
1501 return lmp;
1502 }
1503
1504 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1505 for an LP64 SVR4 system. */
1506
1507 struct link_map_offsets *
1508 svr4_lp64_fetch_link_map_offsets (void)
1509 {
1510 static struct link_map_offsets lmo;
1511 static struct link_map_offsets *lmp = NULL;
1512
1513 if (lmp == NULL)
1514 {
1515 lmp = &lmo;
1516
1517 lmo.r_version_offset = 0;
1518 lmo.r_version_size = 4;
1519 lmo.r_map_offset = 8;
1520 lmo.r_ldsomap_offset = 40;
1521
1522 /* Everything we need is in the first 40 bytes. */
1523 lmo.link_map_size = 40;
1524 lmo.l_addr_offset = 0;
1525 lmo.l_name_offset = 8;
1526 lmo.l_ld_offset = 16;
1527 lmo.l_next_offset = 24;
1528 lmo.l_prev_offset = 32;
1529 }
1530
1531 return lmp;
1532 }
1533 \f
1534
1535 static struct target_so_ops svr4_so_ops;
1536
1537 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1538
1539 void
1540 _initialize_svr4_solib (void)
1541 {
1542 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1543
1544 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1545 svr4_so_ops.free_so = svr4_free_so;
1546 svr4_so_ops.clear_solib = svr4_clear_solib;
1547 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1548 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1549 svr4_so_ops.current_sos = svr4_current_sos;
1550 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1551 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1552
1553 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1554 current_target_so_ops = &svr4_so_ops;
1555 }
This page took 0.059699 seconds and 5 git commands to generate.