* mipsnbsd-tdep.c (mipsnbsd_ilp32_fetch_link_map_offsets): Set
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "elf/external.h"
24 #include "elf/common.h"
25 #include "elf/mips.h"
26
27 #include "symtab.h"
28 #include "bfd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcore.h"
32 #include "target.h"
33 #include "inferior.h"
34
35 #include "gdb_assert.h"
36
37 #include "solist.h"
38 #include "solib.h"
39 #include "solib-svr4.h"
40
41 #include "bfd-target.h"
42 #include "elf-bfd.h"
43 #include "exec.h"
44 #include "auxv.h"
45
46 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
47 static int svr4_have_link_map_offsets (void);
48
49 /* Link map info to include in an allocated so_list entry */
50
51 struct lm_info
52 {
53 /* Pointer to copy of link map from inferior. The type is char *
54 rather than void *, so that we may use byte offsets to find the
55 various fields without the need for a cast. */
56 gdb_byte *lm;
57
58 /* Amount by which addresses in the binary should be relocated to
59 match the inferior. This could most often be taken directly
60 from lm, but when prelinking is involved and the prelink base
61 address changes, we may need a different offset, we want to
62 warn about the difference and compute it only once. */
63 CORE_ADDR l_addr;
64 };
65
66 /* On SVR4 systems, a list of symbols in the dynamic linker where
67 GDB can try to place a breakpoint to monitor shared library
68 events.
69
70 If none of these symbols are found, or other errors occur, then
71 SVR4 systems will fall back to using a symbol as the "startup
72 mapping complete" breakpoint address. */
73
74 static char *solib_break_names[] =
75 {
76 "r_debug_state",
77 "_r_debug_state",
78 "_dl_debug_state",
79 "rtld_db_dlactivity",
80 "_rtld_debug_state",
81
82 NULL
83 };
84
85 #define BKPT_AT_SYMBOL 1
86
87 #if defined (BKPT_AT_SYMBOL)
88 static char *bkpt_names[] =
89 {
90 #ifdef SOLIB_BKPT_NAME
91 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
92 #endif
93 "_start",
94 "__start",
95 "main",
96 NULL
97 };
98 #endif
99
100 static char *main_name_list[] =
101 {
102 "main_$main",
103 NULL
104 };
105
106 /* link map access functions */
107
108 static CORE_ADDR
109 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
110 {
111 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
112
113 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
114 builtin_type_void_data_ptr);
115 }
116
117 static int
118 HAS_LM_DYNAMIC_FROM_LINK_MAP ()
119 {
120 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
121
122 return lmo->l_ld_offset >= 0;
123 }
124
125 static CORE_ADDR
126 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
127 {
128 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
129
130 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
131 builtin_type_void_data_ptr);
132 }
133
134 static CORE_ADDR
135 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
136 {
137 if (so->lm_info->l_addr == (CORE_ADDR)-1)
138 {
139 struct bfd_section *dyninfo_sect;
140 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
141
142 l_addr = LM_ADDR_FROM_LINK_MAP (so);
143
144 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
145 goto set_addr;
146
147 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
148
149 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
150 if (dyninfo_sect == NULL)
151 goto set_addr;
152
153 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
154
155 if (dynaddr + l_addr != l_dynaddr)
156 {
157 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
158 {
159 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
160 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
161 int i;
162
163 align = 1;
164
165 for (i = 0; i < ehdr->e_phnum; i++)
166 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
167 align = phdr[i].p_align;
168 }
169
170 /* Turn it into a mask. */
171 align--;
172
173 /* If the changes match the alignment requirements, we
174 assume we're using a core file that was generated by the
175 same binary, just prelinked with a different base offset.
176 If it doesn't match, we may have a different binary, the
177 same binary with the dynamic table loaded at an unrelated
178 location, or anything, really. To avoid regressions,
179 don't adjust the base offset in the latter case, although
180 odds are that, if things really changed, debugging won't
181 quite work. */
182 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
183 {
184 l_addr = l_dynaddr - dynaddr;
185
186 warning (_(".dynamic section for \"%s\" "
187 "is not at the expected address"), so->so_name);
188 warning (_("difference appears to be caused by prelink, "
189 "adjusting expectations"));
190 }
191 else
192 warning (_(".dynamic section for \"%s\" "
193 "is not at the expected address "
194 "(wrong library or version mismatch?)"), so->so_name);
195 }
196
197 set_addr:
198 so->lm_info->l_addr = l_addr;
199 }
200
201 return so->lm_info->l_addr;
202 }
203
204 static CORE_ADDR
205 LM_NEXT (struct so_list *so)
206 {
207 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
208
209 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
210 builtin_type_void_data_ptr);
211 }
212
213 static CORE_ADDR
214 LM_NAME (struct so_list *so)
215 {
216 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
217
218 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
219 builtin_type_void_data_ptr);
220 }
221
222 static int
223 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
224 {
225 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
226
227 /* Assume that everything is a library if the dynamic loader was loaded
228 late by a static executable. */
229 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
230 return 0;
231
232 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
233 builtin_type_void_data_ptr) == 0;
234 }
235
236 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
237
238 /* Validity flag for debug_loader_offset. */
239 static int debug_loader_offset_p;
240
241 /* Load address for the dynamic linker, inferred. */
242 static CORE_ADDR debug_loader_offset;
243
244 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
245 static char *debug_loader_name;
246
247 /* Local function prototypes */
248
249 static int match_main (char *);
250
251 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
252
253 /*
254
255 LOCAL FUNCTION
256
257 bfd_lookup_symbol -- lookup the value for a specific symbol
258
259 SYNOPSIS
260
261 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
262
263 DESCRIPTION
264
265 An expensive way to lookup the value of a single symbol for
266 bfd's that are only temporary anyway. This is used by the
267 shared library support to find the address of the debugger
268 notification routine in the shared library.
269
270 The returned symbol may be in a code or data section; functions
271 will normally be in a code section, but may be in a data section
272 if this architecture uses function descriptors.
273
274 Note that 0 is specifically allowed as an error return (no
275 such symbol).
276 */
277
278 static CORE_ADDR
279 bfd_lookup_symbol (bfd *abfd, char *symname)
280 {
281 long storage_needed;
282 asymbol *sym;
283 asymbol **symbol_table;
284 unsigned int number_of_symbols;
285 unsigned int i;
286 struct cleanup *back_to;
287 CORE_ADDR symaddr = 0;
288
289 storage_needed = bfd_get_symtab_upper_bound (abfd);
290
291 if (storage_needed > 0)
292 {
293 symbol_table = (asymbol **) xmalloc (storage_needed);
294 back_to = make_cleanup (xfree, symbol_table);
295 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
296
297 for (i = 0; i < number_of_symbols; i++)
298 {
299 sym = *symbol_table++;
300 if (strcmp (sym->name, symname) == 0
301 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
302 {
303 /* BFD symbols are section relative. */
304 symaddr = sym->value + sym->section->vma;
305 break;
306 }
307 }
308 do_cleanups (back_to);
309 }
310
311 if (symaddr)
312 return symaddr;
313
314 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
315 have to check the dynamic string table too. */
316
317 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
318
319 if (storage_needed > 0)
320 {
321 symbol_table = (asymbol **) xmalloc (storage_needed);
322 back_to = make_cleanup (xfree, symbol_table);
323 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
324
325 for (i = 0; i < number_of_symbols; i++)
326 {
327 sym = *symbol_table++;
328
329 if (strcmp (sym->name, symname) == 0
330 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
331 {
332 /* BFD symbols are section relative. */
333 symaddr = sym->value + sym->section->vma;
334 break;
335 }
336 }
337 do_cleanups (back_to);
338 }
339
340 return symaddr;
341 }
342
343 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
344 returned and the corresponding PTR is set. */
345
346 static int
347 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
348 {
349 int arch_size, step, sect_size;
350 long dyn_tag;
351 CORE_ADDR dyn_ptr, dyn_addr;
352 gdb_byte *bufend, *bufstart, *buf;
353 Elf32_External_Dyn *x_dynp_32;
354 Elf64_External_Dyn *x_dynp_64;
355 struct bfd_section *sect;
356
357 if (abfd == NULL)
358 return 0;
359 arch_size = bfd_get_arch_size (abfd);
360 if (arch_size == -1)
361 return 0;
362
363 /* Find the start address of the .dynamic section. */
364 sect = bfd_get_section_by_name (abfd, ".dynamic");
365 if (sect == NULL)
366 return 0;
367 dyn_addr = bfd_section_vma (abfd, sect);
368
369 /* Read in .dynamic from the BFD. We will get the actual value
370 from memory later. */
371 sect_size = bfd_section_size (abfd, sect);
372 buf = bufstart = alloca (sect_size);
373 if (!bfd_get_section_contents (abfd, sect,
374 buf, 0, sect_size))
375 return 0;
376
377 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
378 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
379 : sizeof (Elf64_External_Dyn);
380 for (bufend = buf + sect_size;
381 buf < bufend;
382 buf += step)
383 {
384 if (arch_size == 32)
385 {
386 x_dynp_32 = (Elf32_External_Dyn *) buf;
387 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
388 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
389 }
390 else
391 {
392 x_dynp_64 = (Elf64_External_Dyn *) buf;
393 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
394 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
395 }
396 if (dyn_tag == DT_NULL)
397 return 0;
398 if (dyn_tag == dyntag)
399 {
400 /* If requested, try to read the runtime value of this .dynamic
401 entry. */
402 if (ptr)
403 {
404 gdb_byte ptr_buf[8];
405 CORE_ADDR ptr_addr;
406
407 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
408 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
409 dyn_ptr = extract_typed_address (ptr_buf,
410 builtin_type_void_data_ptr);
411 *ptr = dyn_ptr;
412 }
413 return 1;
414 }
415 }
416
417 return 0;
418 }
419
420
421 /*
422
423 LOCAL FUNCTION
424
425 elf_locate_base -- locate the base address of dynamic linker structs
426 for SVR4 elf targets.
427
428 SYNOPSIS
429
430 CORE_ADDR elf_locate_base (void)
431
432 DESCRIPTION
433
434 For SVR4 elf targets the address of the dynamic linker's runtime
435 structure is contained within the dynamic info section in the
436 executable file. The dynamic section is also mapped into the
437 inferior address space. Because the runtime loader fills in the
438 real address before starting the inferior, we have to read in the
439 dynamic info section from the inferior address space.
440 If there are any errors while trying to find the address, we
441 silently return 0, otherwise the found address is returned.
442
443 */
444
445 static CORE_ADDR
446 elf_locate_base (void)
447 {
448 struct minimal_symbol *msymbol;
449 CORE_ADDR dyn_ptr;
450
451 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
452 instead of DT_DEBUG, although they sometimes contain an unused
453 DT_DEBUG. */
454 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr))
455 {
456 gdb_byte *pbuf;
457 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
458 pbuf = alloca (pbuf_size);
459 /* DT_MIPS_RLD_MAP contains a pointer to the address
460 of the dynamic link structure. */
461 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
462 return 0;
463 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
464 }
465
466 /* Find DT_DEBUG. */
467 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr))
468 return dyn_ptr;
469
470 /* This may be a static executable. Look for the symbol
471 conventionally named _r_debug, as a last resort. */
472 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
473 if (msymbol != NULL)
474 return SYMBOL_VALUE_ADDRESS (msymbol);
475
476 /* DT_DEBUG entry not found. */
477 return 0;
478 }
479
480 /*
481
482 LOCAL FUNCTION
483
484 locate_base -- locate the base address of dynamic linker structs
485
486 SYNOPSIS
487
488 CORE_ADDR locate_base (void)
489
490 DESCRIPTION
491
492 For both the SunOS and SVR4 shared library implementations, if the
493 inferior executable has been linked dynamically, there is a single
494 address somewhere in the inferior's data space which is the key to
495 locating all of the dynamic linker's runtime structures. This
496 address is the value of the debug base symbol. The job of this
497 function is to find and return that address, or to return 0 if there
498 is no such address (the executable is statically linked for example).
499
500 For SunOS, the job is almost trivial, since the dynamic linker and
501 all of it's structures are statically linked to the executable at
502 link time. Thus the symbol for the address we are looking for has
503 already been added to the minimal symbol table for the executable's
504 objfile at the time the symbol file's symbols were read, and all we
505 have to do is look it up there. Note that we explicitly do NOT want
506 to find the copies in the shared library.
507
508 The SVR4 version is a bit more complicated because the address
509 is contained somewhere in the dynamic info section. We have to go
510 to a lot more work to discover the address of the debug base symbol.
511 Because of this complexity, we cache the value we find and return that
512 value on subsequent invocations. Note there is no copy in the
513 executable symbol tables.
514
515 */
516
517 static CORE_ADDR
518 locate_base (void)
519 {
520 /* Check to see if we have a currently valid address, and if so, avoid
521 doing all this work again and just return the cached address. If
522 we have no cached address, try to locate it in the dynamic info
523 section for ELF executables. There's no point in doing any of this
524 though if we don't have some link map offsets to work with. */
525
526 if (debug_base == 0 && svr4_have_link_map_offsets ())
527 {
528 if (exec_bfd != NULL
529 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
530 debug_base = elf_locate_base ();
531 }
532 return (debug_base);
533 }
534
535 /* Find the first element in the inferior's dynamic link map, and
536 return its address in the inferior.
537
538 FIXME: Perhaps we should validate the info somehow, perhaps by
539 checking r_version for a known version number, or r_state for
540 RT_CONSISTENT. */
541
542 static CORE_ADDR
543 solib_svr4_r_map (void)
544 {
545 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
546
547 return read_memory_typed_address (debug_base + lmo->r_map_offset,
548 builtin_type_void_data_ptr);
549 }
550
551 /* Find r_brk from the inferior's debug base. */
552
553 static CORE_ADDR
554 solib_svr4_r_brk (void)
555 {
556 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
557
558 return read_memory_typed_address (debug_base + lmo->r_brk_offset,
559 builtin_type_void_data_ptr);
560 }
561
562 /* Find the link map for the dynamic linker (if it is not in the
563 normal list of loaded shared objects). */
564
565 static CORE_ADDR
566 solib_svr4_r_ldsomap (void)
567 {
568 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
569 ULONGEST version;
570
571 /* Check version, and return zero if `struct r_debug' doesn't have
572 the r_ldsomap member. */
573 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
574 lmo->r_version_size);
575 if (version < 2 || lmo->r_ldsomap_offset == -1)
576 return 0;
577
578 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
579 builtin_type_void_data_ptr);
580 }
581
582 /*
583
584 LOCAL FUNCTION
585
586 open_symbol_file_object
587
588 SYNOPSIS
589
590 void open_symbol_file_object (void *from_tty)
591
592 DESCRIPTION
593
594 If no open symbol file, attempt to locate and open the main symbol
595 file. On SVR4 systems, this is the first link map entry. If its
596 name is here, we can open it. Useful when attaching to a process
597 without first loading its symbol file.
598
599 If FROM_TTYP dereferences to a non-zero integer, allow messages to
600 be printed. This parameter is a pointer rather than an int because
601 open_symbol_file_object() is called via catch_errors() and
602 catch_errors() requires a pointer argument. */
603
604 static int
605 open_symbol_file_object (void *from_ttyp)
606 {
607 CORE_ADDR lm, l_name;
608 char *filename;
609 int errcode;
610 int from_tty = *(int *)from_ttyp;
611 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
612 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
613 gdb_byte *l_name_buf = xmalloc (l_name_size);
614 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
615
616 if (symfile_objfile)
617 if (!query ("Attempt to reload symbols from process? "))
618 return 0;
619
620 /* Always locate the debug struct, in case it has moved. */
621 debug_base = 0;
622 if (locate_base () == 0)
623 return 0; /* failed somehow... */
624
625 /* First link map member should be the executable. */
626 lm = solib_svr4_r_map ();
627 if (lm == 0)
628 return 0; /* failed somehow... */
629
630 /* Read address of name from target memory to GDB. */
631 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
632
633 /* Convert the address to host format. */
634 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
635
636 /* Free l_name_buf. */
637 do_cleanups (cleanups);
638
639 if (l_name == 0)
640 return 0; /* No filename. */
641
642 /* Now fetch the filename from target memory. */
643 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
644 make_cleanup (xfree, filename);
645
646 if (errcode)
647 {
648 warning (_("failed to read exec filename from attached file: %s"),
649 safe_strerror (errcode));
650 return 0;
651 }
652
653 /* Have a pathname: read the symbol file. */
654 symbol_file_add_main (filename, from_tty);
655
656 return 1;
657 }
658
659 /* If no shared library information is available from the dynamic
660 linker, build a fallback list from other sources. */
661
662 static struct so_list *
663 svr4_default_sos (void)
664 {
665 struct so_list *head = NULL;
666 struct so_list **link_ptr = &head;
667
668 if (debug_loader_offset_p)
669 {
670 struct so_list *new = XZALLOC (struct so_list);
671
672 new->lm_info = xmalloc (sizeof (struct lm_info));
673
674 /* Nothing will ever check the cached copy of the link
675 map if we set l_addr. */
676 new->lm_info->l_addr = debug_loader_offset;
677 new->lm_info->lm = NULL;
678
679 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
680 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
681 strcpy (new->so_original_name, new->so_name);
682
683 *link_ptr = new;
684 link_ptr = &new->next;
685 }
686
687 return head;
688 }
689
690 /* LOCAL FUNCTION
691
692 current_sos -- build a list of currently loaded shared objects
693
694 SYNOPSIS
695
696 struct so_list *current_sos ()
697
698 DESCRIPTION
699
700 Build a list of `struct so_list' objects describing the shared
701 objects currently loaded in the inferior. This list does not
702 include an entry for the main executable file.
703
704 Note that we only gather information directly available from the
705 inferior --- we don't examine any of the shared library files
706 themselves. The declaration of `struct so_list' says which fields
707 we provide values for. */
708
709 static struct so_list *
710 svr4_current_sos (void)
711 {
712 CORE_ADDR lm;
713 struct so_list *head = 0;
714 struct so_list **link_ptr = &head;
715 CORE_ADDR ldsomap = 0;
716
717 /* Always locate the debug struct, in case it has moved. */
718 debug_base = 0;
719 locate_base ();
720
721 /* If we can't find the dynamic linker's base structure, this
722 must not be a dynamically linked executable. Hmm. */
723 if (! debug_base)
724 return svr4_default_sos ();
725
726 /* Walk the inferior's link map list, and build our list of
727 `struct so_list' nodes. */
728 lm = solib_svr4_r_map ();
729
730 while (lm)
731 {
732 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
733 struct so_list *new = XZALLOC (struct so_list);
734 struct cleanup *old_chain = make_cleanup (xfree, new);
735
736 new->lm_info = xmalloc (sizeof (struct lm_info));
737 make_cleanup (xfree, new->lm_info);
738
739 new->lm_info->l_addr = (CORE_ADDR)-1;
740 new->lm_info->lm = xzalloc (lmo->link_map_size);
741 make_cleanup (xfree, new->lm_info->lm);
742
743 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
744
745 lm = LM_NEXT (new);
746
747 /* For SVR4 versions, the first entry in the link map is for the
748 inferior executable, so we must ignore it. For some versions of
749 SVR4, it has no name. For others (Solaris 2.3 for example), it
750 does have a name, so we can no longer use a missing name to
751 decide when to ignore it. */
752 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
753 free_so (new);
754 else
755 {
756 int errcode;
757 char *buffer;
758
759 /* Extract this shared object's name. */
760 target_read_string (LM_NAME (new), &buffer,
761 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
762 if (errcode != 0)
763 warning (_("Can't read pathname for load map: %s."),
764 safe_strerror (errcode));
765 else
766 {
767 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
768 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
769 strcpy (new->so_original_name, new->so_name);
770 }
771 xfree (buffer);
772
773 /* If this entry has no name, or its name matches the name
774 for the main executable, don't include it in the list. */
775 if (! new->so_name[0]
776 || match_main (new->so_name))
777 free_so (new);
778 else
779 {
780 new->next = 0;
781 *link_ptr = new;
782 link_ptr = &new->next;
783 }
784 }
785
786 /* On Solaris, the dynamic linker is not in the normal list of
787 shared objects, so make sure we pick it up too. Having
788 symbol information for the dynamic linker is quite crucial
789 for skipping dynamic linker resolver code. */
790 if (lm == 0 && ldsomap == 0)
791 lm = ldsomap = solib_svr4_r_ldsomap ();
792
793 discard_cleanups (old_chain);
794 }
795
796 if (head == NULL)
797 return svr4_default_sos ();
798
799 return head;
800 }
801
802 /* Get the address of the link_map for a given OBJFILE. Loop through
803 the link maps, and return the address of the one corresponding to
804 the given objfile. Note that this function takes into account that
805 objfile can be the main executable, not just a shared library. The
806 main executable has always an empty name field in the linkmap. */
807
808 CORE_ADDR
809 svr4_fetch_objfile_link_map (struct objfile *objfile)
810 {
811 CORE_ADDR lm;
812
813 if (locate_base () == 0)
814 return 0; /* failed somehow... */
815
816 /* Position ourselves on the first link map. */
817 lm = solib_svr4_r_map ();
818 while (lm)
819 {
820 /* Get info on the layout of the r_debug and link_map structures. */
821 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
822 int errcode;
823 char *buffer;
824 struct lm_info objfile_lm_info;
825 struct cleanup *old_chain;
826 CORE_ADDR name_address;
827 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
828 gdb_byte *l_name_buf = xmalloc (l_name_size);
829 old_chain = make_cleanup (xfree, l_name_buf);
830
831 /* Set up the buffer to contain the portion of the link_map
832 structure that gdb cares about. Note that this is not the
833 whole link_map structure. */
834 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
835 make_cleanup (xfree, objfile_lm_info.lm);
836
837 /* Read the link map into our internal structure. */
838 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
839
840 /* Read address of name from target memory to GDB. */
841 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
842
843 /* Extract this object's name. */
844 name_address = extract_typed_address (l_name_buf,
845 builtin_type_void_data_ptr);
846 target_read_string (name_address, &buffer,
847 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
848 make_cleanup (xfree, buffer);
849 if (errcode != 0)
850 warning (_("Can't read pathname for load map: %s."),
851 safe_strerror (errcode));
852 else
853 {
854 /* Is this the linkmap for the file we want? */
855 /* If the file is not a shared library and has no name,
856 we are sure it is the main executable, so we return that. */
857
858 if (buffer
859 && ((strcmp (buffer, objfile->name) == 0)
860 || (!(objfile->flags & OBJF_SHARED)
861 && (strcmp (buffer, "") == 0))))
862 {
863 do_cleanups (old_chain);
864 return lm;
865 }
866 }
867 /* Not the file we wanted, continue checking. */
868 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
869 builtin_type_void_data_ptr);
870 do_cleanups (old_chain);
871 }
872 return 0;
873 }
874
875 /* On some systems, the only way to recognize the link map entry for
876 the main executable file is by looking at its name. Return
877 non-zero iff SONAME matches one of the known main executable names. */
878
879 static int
880 match_main (char *soname)
881 {
882 char **mainp;
883
884 for (mainp = main_name_list; *mainp != NULL; mainp++)
885 {
886 if (strcmp (soname, *mainp) == 0)
887 return (1);
888 }
889
890 return (0);
891 }
892
893 /* Return 1 if PC lies in the dynamic symbol resolution code of the
894 SVR4 run time loader. */
895 static CORE_ADDR interp_text_sect_low;
896 static CORE_ADDR interp_text_sect_high;
897 static CORE_ADDR interp_plt_sect_low;
898 static CORE_ADDR interp_plt_sect_high;
899
900 int
901 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
902 {
903 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
904 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
905 || in_plt_section (pc, NULL));
906 }
907
908 /* Given an executable's ABFD and target, compute the entry-point
909 address. */
910
911 static CORE_ADDR
912 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
913 {
914 /* KevinB wrote ... for most targets, the address returned by
915 bfd_get_start_address() is the entry point for the start
916 function. But, for some targets, bfd_get_start_address() returns
917 the address of a function descriptor from which the entry point
918 address may be extracted. This address is extracted by
919 gdbarch_convert_from_func_ptr_addr(). The method
920 gdbarch_convert_from_func_ptr_addr() is the merely the identify
921 function for targets which don't use function descriptors. */
922 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
923 bfd_get_start_address (abfd),
924 targ);
925 }
926
927 /*
928
929 LOCAL FUNCTION
930
931 enable_break -- arrange for dynamic linker to hit breakpoint
932
933 SYNOPSIS
934
935 int enable_break (void)
936
937 DESCRIPTION
938
939 Both the SunOS and the SVR4 dynamic linkers have, as part of their
940 debugger interface, support for arranging for the inferior to hit
941 a breakpoint after mapping in the shared libraries. This function
942 enables that breakpoint.
943
944 For SunOS, there is a special flag location (in_debugger) which we
945 set to 1. When the dynamic linker sees this flag set, it will set
946 a breakpoint at a location known only to itself, after saving the
947 original contents of that place and the breakpoint address itself,
948 in it's own internal structures. When we resume the inferior, it
949 will eventually take a SIGTRAP when it runs into the breakpoint.
950 We handle this (in a different place) by restoring the contents of
951 the breakpointed location (which is only known after it stops),
952 chasing around to locate the shared libraries that have been
953 loaded, then resuming.
954
955 For SVR4, the debugger interface structure contains a member (r_brk)
956 which is statically initialized at the time the shared library is
957 built, to the offset of a function (_r_debug_state) which is guaran-
958 teed to be called once before mapping in a library, and again when
959 the mapping is complete. At the time we are examining this member,
960 it contains only the unrelocated offset of the function, so we have
961 to do our own relocation. Later, when the dynamic linker actually
962 runs, it relocates r_brk to be the actual address of _r_debug_state().
963
964 The debugger interface structure also contains an enumeration which
965 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
966 depending upon whether or not the library is being mapped or unmapped,
967 and then set to RT_CONSISTENT after the library is mapped/unmapped.
968 */
969
970 static int
971 enable_break (void)
972 {
973 #ifdef BKPT_AT_SYMBOL
974
975 struct minimal_symbol *msymbol;
976 char **bkpt_namep;
977 asection *interp_sect;
978 CORE_ADDR sym_addr;
979
980 /* First, remove all the solib event breakpoints. Their addresses
981 may have changed since the last time we ran the program. */
982 remove_solib_event_breakpoints ();
983
984 interp_text_sect_low = interp_text_sect_high = 0;
985 interp_plt_sect_low = interp_plt_sect_high = 0;
986
987 /* If we already have a shared library list in the target, and
988 r_debug contains r_brk, set the breakpoint there - this should
989 mean r_brk has already been relocated. Assume the dynamic linker
990 is the object containing r_brk. */
991
992 solib_add (NULL, 0, &current_target, auto_solib_add);
993 sym_addr = 0;
994 if (debug_base && solib_svr4_r_map () != 0)
995 sym_addr = solib_svr4_r_brk ();
996
997 if (sym_addr != 0)
998 {
999 struct obj_section *os;
1000
1001 os = find_pc_section (sym_addr);
1002 if (os != NULL)
1003 {
1004 /* Record the relocated start and end address of the dynamic linker
1005 text and plt section for svr4_in_dynsym_resolve_code. */
1006 bfd *tmp_bfd;
1007 CORE_ADDR load_addr;
1008
1009 tmp_bfd = os->objfile->obfd;
1010 load_addr = ANOFFSET (os->objfile->section_offsets,
1011 os->objfile->sect_index_text);
1012
1013 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1014 if (interp_sect)
1015 {
1016 interp_text_sect_low =
1017 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1018 interp_text_sect_high =
1019 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1020 }
1021 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1022 if (interp_sect)
1023 {
1024 interp_plt_sect_low =
1025 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1026 interp_plt_sect_high =
1027 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1028 }
1029
1030 create_solib_event_breakpoint (sym_addr);
1031 return 1;
1032 }
1033 }
1034
1035 /* Find the .interp section; if not found, warn the user and drop
1036 into the old breakpoint at symbol code. */
1037 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1038 if (interp_sect)
1039 {
1040 unsigned int interp_sect_size;
1041 char *buf;
1042 CORE_ADDR load_addr = 0;
1043 int load_addr_found = 0;
1044 int loader_found_in_list = 0;
1045 struct so_list *so;
1046 bfd *tmp_bfd = NULL;
1047 struct target_ops *tmp_bfd_target;
1048 int tmp_fd = -1;
1049 char *tmp_pathname = NULL;
1050
1051 /* Read the contents of the .interp section into a local buffer;
1052 the contents specify the dynamic linker this program uses. */
1053 sym_addr = 0;
1054 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1055 buf = alloca (interp_sect_size);
1056 bfd_get_section_contents (exec_bfd, interp_sect,
1057 buf, 0, interp_sect_size);
1058
1059 /* Now we need to figure out where the dynamic linker was
1060 loaded so that we can load its symbols and place a breakpoint
1061 in the dynamic linker itself.
1062
1063 This address is stored on the stack. However, I've been unable
1064 to find any magic formula to find it for Solaris (appears to
1065 be trivial on GNU/Linux). Therefore, we have to try an alternate
1066 mechanism to find the dynamic linker's base address. */
1067
1068 tmp_fd = solib_open (buf, &tmp_pathname);
1069 if (tmp_fd >= 0)
1070 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
1071
1072 if (tmp_bfd == NULL)
1073 goto bkpt_at_symbol;
1074
1075 /* Make sure the dynamic linker's really a useful object. */
1076 if (!bfd_check_format (tmp_bfd, bfd_object))
1077 {
1078 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
1079 bfd_close (tmp_bfd);
1080 goto bkpt_at_symbol;
1081 }
1082
1083 /* Now convert the TMP_BFD into a target. That way target, as
1084 well as BFD operations can be used. Note that closing the
1085 target will also close the underlying bfd. */
1086 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1087
1088 /* On a running target, we can get the dynamic linker's base
1089 address from the shared library table. */
1090 so = master_so_list ();
1091 while (so)
1092 {
1093 if (strcmp (buf, so->so_original_name) == 0)
1094 {
1095 load_addr_found = 1;
1096 loader_found_in_list = 1;
1097 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1098 break;
1099 }
1100 so = so->next;
1101 }
1102
1103 /* If we were not able to find the base address of the loader
1104 from our so_list, then try using the AT_BASE auxilliary entry. */
1105 if (!load_addr_found)
1106 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1107 load_addr_found = 1;
1108
1109 /* Otherwise we find the dynamic linker's base address by examining
1110 the current pc (which should point at the entry point for the
1111 dynamic linker) and subtracting the offset of the entry point.
1112
1113 This is more fragile than the previous approaches, but is a good
1114 fallback method because it has actually been working well in
1115 most cases. */
1116 if (!load_addr_found)
1117 load_addr = (read_pc ()
1118 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1119
1120 if (!loader_found_in_list)
1121 {
1122 debug_loader_name = xstrdup (buf);
1123 debug_loader_offset_p = 1;
1124 debug_loader_offset = load_addr;
1125 solib_add (NULL, 0, &current_target, auto_solib_add);
1126 }
1127
1128 /* Record the relocated start and end address of the dynamic linker
1129 text and plt section for svr4_in_dynsym_resolve_code. */
1130 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1131 if (interp_sect)
1132 {
1133 interp_text_sect_low =
1134 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1135 interp_text_sect_high =
1136 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1137 }
1138 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1139 if (interp_sect)
1140 {
1141 interp_plt_sect_low =
1142 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1143 interp_plt_sect_high =
1144 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1145 }
1146
1147 /* Now try to set a breakpoint in the dynamic linker. */
1148 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1149 {
1150 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1151 if (sym_addr != 0)
1152 break;
1153 }
1154
1155 if (sym_addr != 0)
1156 /* Convert 'sym_addr' from a function pointer to an address.
1157 Because we pass tmp_bfd_target instead of the current
1158 target, this will always produce an unrelocated value. */
1159 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1160 sym_addr,
1161 tmp_bfd_target);
1162
1163 /* We're done with both the temporary bfd and target. Remember,
1164 closing the target closes the underlying bfd. */
1165 target_close (tmp_bfd_target, 0);
1166
1167 if (sym_addr != 0)
1168 {
1169 create_solib_event_breakpoint (load_addr + sym_addr);
1170 return 1;
1171 }
1172
1173 /* For whatever reason we couldn't set a breakpoint in the dynamic
1174 linker. Warn and drop into the old code. */
1175 bkpt_at_symbol:
1176 xfree (tmp_pathname);
1177 warning (_("Unable to find dynamic linker breakpoint function.\n"
1178 "GDB will be unable to debug shared library initializers\n"
1179 "and track explicitly loaded dynamic code."));
1180 }
1181
1182 /* Scan through the lists of symbols, trying to look up the symbol and
1183 set a breakpoint there. Terminate loop when we/if we succeed. */
1184
1185 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1186 {
1187 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1188 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1189 {
1190 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1191 return 1;
1192 }
1193 }
1194
1195 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1196 {
1197 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1198 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1199 {
1200 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1201 return 1;
1202 }
1203 }
1204 #endif /* BKPT_AT_SYMBOL */
1205
1206 return 0;
1207 }
1208
1209 /*
1210
1211 LOCAL FUNCTION
1212
1213 special_symbol_handling -- additional shared library symbol handling
1214
1215 SYNOPSIS
1216
1217 void special_symbol_handling ()
1218
1219 DESCRIPTION
1220
1221 Once the symbols from a shared object have been loaded in the usual
1222 way, we are called to do any system specific symbol handling that
1223 is needed.
1224
1225 For SunOS4, this consisted of grunging around in the dynamic
1226 linkers structures to find symbol definitions for "common" symbols
1227 and adding them to the minimal symbol table for the runtime common
1228 objfile.
1229
1230 However, for SVR4, there's nothing to do.
1231
1232 */
1233
1234 static void
1235 svr4_special_symbol_handling (void)
1236 {
1237 }
1238
1239 /* Relocate the main executable. This function should be called upon
1240 stopping the inferior process at the entry point to the program.
1241 The entry point from BFD is compared to the PC and if they are
1242 different, the main executable is relocated by the proper amount.
1243
1244 As written it will only attempt to relocate executables which
1245 lack interpreter sections. It seems likely that only dynamic
1246 linker executables will get relocated, though it should work
1247 properly for a position-independent static executable as well. */
1248
1249 static void
1250 svr4_relocate_main_executable (void)
1251 {
1252 asection *interp_sect;
1253 CORE_ADDR pc = read_pc ();
1254
1255 /* Decide if the objfile needs to be relocated. As indicated above,
1256 we will only be here when execution is stopped at the beginning
1257 of the program. Relocation is necessary if the address at which
1258 we are presently stopped differs from the start address stored in
1259 the executable AND there's no interpreter section. The condition
1260 regarding the interpreter section is very important because if
1261 there *is* an interpreter section, execution will begin there
1262 instead. When there is an interpreter section, the start address
1263 is (presumably) used by the interpreter at some point to start
1264 execution of the program.
1265
1266 If there is an interpreter, it is normal for it to be set to an
1267 arbitrary address at the outset. The job of finding it is
1268 handled in enable_break().
1269
1270 So, to summarize, relocations are necessary when there is no
1271 interpreter section and the start address obtained from the
1272 executable is different from the address at which GDB is
1273 currently stopped.
1274
1275 [ The astute reader will note that we also test to make sure that
1276 the executable in question has the DYNAMIC flag set. It is my
1277 opinion that this test is unnecessary (undesirable even). It
1278 was added to avoid inadvertent relocation of an executable
1279 whose e_type member in the ELF header is not ET_DYN. There may
1280 be a time in the future when it is desirable to do relocations
1281 on other types of files as well in which case this condition
1282 should either be removed or modified to accomodate the new file
1283 type. (E.g, an ET_EXEC executable which has been built to be
1284 position-independent could safely be relocated by the OS if
1285 desired. It is true that this violates the ABI, but the ABI
1286 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1287 */
1288
1289 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1290 if (interp_sect == NULL
1291 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1292 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1293 {
1294 struct cleanup *old_chain;
1295 struct section_offsets *new_offsets;
1296 int i, changed;
1297 CORE_ADDR displacement;
1298
1299 /* It is necessary to relocate the objfile. The amount to
1300 relocate by is simply the address at which we are stopped
1301 minus the starting address from the executable.
1302
1303 We relocate all of the sections by the same amount. This
1304 behavior is mandated by recent editions of the System V ABI.
1305 According to the System V Application Binary Interface,
1306 Edition 4.1, page 5-5:
1307
1308 ... Though the system chooses virtual addresses for
1309 individual processes, it maintains the segments' relative
1310 positions. Because position-independent code uses relative
1311 addressesing between segments, the difference between
1312 virtual addresses in memory must match the difference
1313 between virtual addresses in the file. The difference
1314 between the virtual address of any segment in memory and
1315 the corresponding virtual address in the file is thus a
1316 single constant value for any one executable or shared
1317 object in a given process. This difference is the base
1318 address. One use of the base address is to relocate the
1319 memory image of the program during dynamic linking.
1320
1321 The same language also appears in Edition 4.0 of the System V
1322 ABI and is left unspecified in some of the earlier editions. */
1323
1324 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1325 changed = 0;
1326
1327 new_offsets = xcalloc (symfile_objfile->num_sections,
1328 sizeof (struct section_offsets));
1329 old_chain = make_cleanup (xfree, new_offsets);
1330
1331 for (i = 0; i < symfile_objfile->num_sections; i++)
1332 {
1333 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1334 changed = 1;
1335 new_offsets->offsets[i] = displacement;
1336 }
1337
1338 if (changed)
1339 objfile_relocate (symfile_objfile, new_offsets);
1340
1341 do_cleanups (old_chain);
1342 }
1343 }
1344
1345 /*
1346
1347 GLOBAL FUNCTION
1348
1349 svr4_solib_create_inferior_hook -- shared library startup support
1350
1351 SYNOPSIS
1352
1353 void svr4_solib_create_inferior_hook ()
1354
1355 DESCRIPTION
1356
1357 When gdb starts up the inferior, it nurses it along (through the
1358 shell) until it is ready to execute it's first instruction. At this
1359 point, this function gets called via expansion of the macro
1360 SOLIB_CREATE_INFERIOR_HOOK.
1361
1362 For SunOS executables, this first instruction is typically the
1363 one at "_start", or a similar text label, regardless of whether
1364 the executable is statically or dynamically linked. The runtime
1365 startup code takes care of dynamically linking in any shared
1366 libraries, once gdb allows the inferior to continue.
1367
1368 For SVR4 executables, this first instruction is either the first
1369 instruction in the dynamic linker (for dynamically linked
1370 executables) or the instruction at "start" for statically linked
1371 executables. For dynamically linked executables, the system
1372 first exec's /lib/libc.so.N, which contains the dynamic linker,
1373 and starts it running. The dynamic linker maps in any needed
1374 shared libraries, maps in the actual user executable, and then
1375 jumps to "start" in the user executable.
1376
1377 For both SunOS shared libraries, and SVR4 shared libraries, we
1378 can arrange to cooperate with the dynamic linker to discover the
1379 names of shared libraries that are dynamically linked, and the
1380 base addresses to which they are linked.
1381
1382 This function is responsible for discovering those names and
1383 addresses, and saving sufficient information about them to allow
1384 their symbols to be read at a later time.
1385
1386 FIXME
1387
1388 Between enable_break() and disable_break(), this code does not
1389 properly handle hitting breakpoints which the user might have
1390 set in the startup code or in the dynamic linker itself. Proper
1391 handling will probably have to wait until the implementation is
1392 changed to use the "breakpoint handler function" method.
1393
1394 Also, what if child has exit()ed? Must exit loop somehow.
1395 */
1396
1397 static void
1398 svr4_solib_create_inferior_hook (void)
1399 {
1400 /* Relocate the main executable if necessary. */
1401 svr4_relocate_main_executable ();
1402
1403 if (!svr4_have_link_map_offsets ())
1404 return;
1405
1406 if (!enable_break ())
1407 return;
1408
1409 #if defined(_SCO_DS)
1410 /* SCO needs the loop below, other systems should be using the
1411 special shared library breakpoints and the shared library breakpoint
1412 service routine.
1413
1414 Now run the target. It will eventually hit the breakpoint, at
1415 which point all of the libraries will have been mapped in and we
1416 can go groveling around in the dynamic linker structures to find
1417 out what we need to know about them. */
1418
1419 clear_proceed_status ();
1420 stop_soon = STOP_QUIETLY;
1421 stop_signal = TARGET_SIGNAL_0;
1422 do
1423 {
1424 target_resume (pid_to_ptid (-1), 0, stop_signal);
1425 wait_for_inferior (0);
1426 }
1427 while (stop_signal != TARGET_SIGNAL_TRAP);
1428 stop_soon = NO_STOP_QUIETLY;
1429 #endif /* defined(_SCO_DS) */
1430 }
1431
1432 static void
1433 svr4_clear_solib (void)
1434 {
1435 debug_base = 0;
1436 debug_loader_offset_p = 0;
1437 debug_loader_offset = 0;
1438 xfree (debug_loader_name);
1439 debug_loader_name = NULL;
1440 }
1441
1442 static void
1443 svr4_free_so (struct so_list *so)
1444 {
1445 xfree (so->lm_info->lm);
1446 xfree (so->lm_info);
1447 }
1448
1449
1450 /* Clear any bits of ADDR that wouldn't fit in a target-format
1451 data pointer. "Data pointer" here refers to whatever sort of
1452 address the dynamic linker uses to manage its sections. At the
1453 moment, we don't support shared libraries on any processors where
1454 code and data pointers are different sizes.
1455
1456 This isn't really the right solution. What we really need here is
1457 a way to do arithmetic on CORE_ADDR values that respects the
1458 natural pointer/address correspondence. (For example, on the MIPS,
1459 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1460 sign-extend the value. There, simply truncating the bits above
1461 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1462 be a new gdbarch method or something. */
1463 static CORE_ADDR
1464 svr4_truncate_ptr (CORE_ADDR addr)
1465 {
1466 if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8)
1467 /* We don't need to truncate anything, and the bit twiddling below
1468 will fail due to overflow problems. */
1469 return addr;
1470 else
1471 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1);
1472 }
1473
1474
1475 static void
1476 svr4_relocate_section_addresses (struct so_list *so,
1477 struct section_table *sec)
1478 {
1479 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1480 sec->bfd));
1481 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1482 sec->bfd));
1483 }
1484 \f
1485
1486 /* Architecture-specific operations. */
1487
1488 /* Per-architecture data key. */
1489 static struct gdbarch_data *solib_svr4_data;
1490
1491 struct solib_svr4_ops
1492 {
1493 /* Return a description of the layout of `struct link_map'. */
1494 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1495 };
1496
1497 /* Return a default for the architecture-specific operations. */
1498
1499 static void *
1500 solib_svr4_init (struct obstack *obstack)
1501 {
1502 struct solib_svr4_ops *ops;
1503
1504 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1505 ops->fetch_link_map_offsets = NULL;
1506 return ops;
1507 }
1508
1509 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1510 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1511
1512 void
1513 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1514 struct link_map_offsets *(*flmo) (void))
1515 {
1516 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1517
1518 ops->fetch_link_map_offsets = flmo;
1519
1520 set_solib_ops (gdbarch, &svr4_so_ops);
1521 }
1522
1523 /* Fetch a link_map_offsets structure using the architecture-specific
1524 `struct link_map_offsets' fetcher. */
1525
1526 static struct link_map_offsets *
1527 svr4_fetch_link_map_offsets (void)
1528 {
1529 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1530
1531 gdb_assert (ops->fetch_link_map_offsets);
1532 return ops->fetch_link_map_offsets ();
1533 }
1534
1535 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1536
1537 static int
1538 svr4_have_link_map_offsets (void)
1539 {
1540 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1541 return (ops->fetch_link_map_offsets != NULL);
1542 }
1543 \f
1544
1545 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1546 `struct r_debug' and a `struct link_map' that are binary compatible
1547 with the origional SVR4 implementation. */
1548
1549 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1550 for an ILP32 SVR4 system. */
1551
1552 struct link_map_offsets *
1553 svr4_ilp32_fetch_link_map_offsets (void)
1554 {
1555 static struct link_map_offsets lmo;
1556 static struct link_map_offsets *lmp = NULL;
1557
1558 if (lmp == NULL)
1559 {
1560 lmp = &lmo;
1561
1562 lmo.r_version_offset = 0;
1563 lmo.r_version_size = 4;
1564 lmo.r_map_offset = 4;
1565 lmo.r_brk_offset = 8;
1566 lmo.r_ldsomap_offset = 20;
1567
1568 /* Everything we need is in the first 20 bytes. */
1569 lmo.link_map_size = 20;
1570 lmo.l_addr_offset = 0;
1571 lmo.l_name_offset = 4;
1572 lmo.l_ld_offset = 8;
1573 lmo.l_next_offset = 12;
1574 lmo.l_prev_offset = 16;
1575 }
1576
1577 return lmp;
1578 }
1579
1580 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1581 for an LP64 SVR4 system. */
1582
1583 struct link_map_offsets *
1584 svr4_lp64_fetch_link_map_offsets (void)
1585 {
1586 static struct link_map_offsets lmo;
1587 static struct link_map_offsets *lmp = NULL;
1588
1589 if (lmp == NULL)
1590 {
1591 lmp = &lmo;
1592
1593 lmo.r_version_offset = 0;
1594 lmo.r_version_size = 4;
1595 lmo.r_map_offset = 8;
1596 lmo.r_brk_offset = 16;
1597 lmo.r_ldsomap_offset = 40;
1598
1599 /* Everything we need is in the first 40 bytes. */
1600 lmo.link_map_size = 40;
1601 lmo.l_addr_offset = 0;
1602 lmo.l_name_offset = 8;
1603 lmo.l_ld_offset = 16;
1604 lmo.l_next_offset = 24;
1605 lmo.l_prev_offset = 32;
1606 }
1607
1608 return lmp;
1609 }
1610 \f
1611
1612 struct target_so_ops svr4_so_ops;
1613
1614 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1615 different rule for symbol lookup. The lookup begins here in the DSO, not in
1616 the main executable. */
1617
1618 static struct symbol *
1619 elf_lookup_lib_symbol (const struct objfile *objfile,
1620 const char *name,
1621 const char *linkage_name,
1622 const domain_enum domain, struct symtab **symtab)
1623 {
1624 if (objfile->obfd == NULL
1625 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1626 return NULL;
1627
1628 return lookup_global_symbol_from_objfile
1629 (objfile, name, linkage_name, domain, symtab);
1630 }
1631
1632 static int
1633 svr4_same (struct so_list *gdb, struct so_list *inferior)
1634 {
1635 if (! strcmp (gdb->so_original_name, inferior->so_original_name))
1636 return 1;
1637
1638 /* On Solaris, when starting inferior we think that dynamic linker is
1639 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
1640 contains /lib/ld.so.1. Sometimes one file is a link to another, but
1641 sometimes they have identical content, but are not linked to each
1642 other. We don't restrict this check for Solaris, but the chances
1643 of running into this situation elsewhere are very low. */
1644 if (strcmp (gdb->so_original_name, "/usr/lib/ld.so.1") == 0
1645 && strcmp (inferior->so_original_name, "/lib/ld.so.1") == 0)
1646 return 1;
1647
1648 return 0;
1649 }
1650
1651 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1652
1653 void
1654 _initialize_svr4_solib (void)
1655 {
1656 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1657
1658 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1659 svr4_so_ops.free_so = svr4_free_so;
1660 svr4_so_ops.clear_solib = svr4_clear_solib;
1661 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1662 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1663 svr4_so_ops.current_sos = svr4_current_sos;
1664 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1665 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1666 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
1667 svr4_so_ops.same = svr4_same;
1668 }
This page took 0.062191 seconds and 5 git commands to generate.