2007-08-08 Michael Snyder <msnyder@access-company.com>
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24
25 #include "elf/external.h"
26 #include "elf/common.h"
27 #include "elf/mips.h"
28
29 #include "symtab.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcore.h"
34 #include "target.h"
35 #include "inferior.h"
36
37 #include "gdb_assert.h"
38
39 #include "solist.h"
40 #include "solib.h"
41 #include "solib-svr4.h"
42
43 #include "bfd-target.h"
44 #include "elf-bfd.h"
45 #include "exec.h"
46
47 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
48 static int svr4_have_link_map_offsets (void);
49
50 /* This hook is set to a function that provides native link map
51 offsets if the code in solib-legacy.c is linked in. */
52 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook) (void);
53
54 /* Link map info to include in an allocated so_list entry */
55
56 struct lm_info
57 {
58 /* Pointer to copy of link map from inferior. The type is char *
59 rather than void *, so that we may use byte offsets to find the
60 various fields without the need for a cast. */
61 gdb_byte *lm;
62
63 /* Amount by which addresses in the binary should be relocated to
64 match the inferior. This could most often be taken directly
65 from lm, but when prelinking is involved and the prelink base
66 address changes, we may need a different offset, we want to
67 warn about the difference and compute it only once. */
68 CORE_ADDR l_addr;
69 };
70
71 /* On SVR4 systems, a list of symbols in the dynamic linker where
72 GDB can try to place a breakpoint to monitor shared library
73 events.
74
75 If none of these symbols are found, or other errors occur, then
76 SVR4 systems will fall back to using a symbol as the "startup
77 mapping complete" breakpoint address. */
78
79 static char *solib_break_names[] =
80 {
81 "r_debug_state",
82 "_r_debug_state",
83 "_dl_debug_state",
84 "rtld_db_dlactivity",
85 "_rtld_debug_state",
86
87 NULL
88 };
89
90 #define BKPT_AT_SYMBOL 1
91
92 #if defined (BKPT_AT_SYMBOL)
93 static char *bkpt_names[] =
94 {
95 #ifdef SOLIB_BKPT_NAME
96 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
97 #endif
98 "_start",
99 "__start",
100 "main",
101 NULL
102 };
103 #endif
104
105 static char *main_name_list[] =
106 {
107 "main_$main",
108 NULL
109 };
110
111 /* link map access functions */
112
113 static CORE_ADDR
114 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
115 {
116 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
117
118 return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
119 builtin_type_void_data_ptr);
120 }
121
122 static int
123 HAS_LM_DYNAMIC_FROM_LINK_MAP ()
124 {
125 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
126
127 return lmo->l_ld_offset >= 0;
128 }
129
130 static CORE_ADDR
131 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
132 {
133 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
134
135 return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
136 builtin_type_void_data_ptr);
137 }
138
139 static CORE_ADDR
140 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
141 {
142 if (so->lm_info->l_addr == (CORE_ADDR)-1)
143 {
144 struct bfd_section *dyninfo_sect;
145 CORE_ADDR l_addr, l_dynaddr, dynaddr, align = 0x1000;
146
147 l_addr = LM_ADDR_FROM_LINK_MAP (so);
148
149 if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
150 goto set_addr;
151
152 l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
153
154 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
155 if (dyninfo_sect == NULL)
156 goto set_addr;
157
158 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
159
160 if (dynaddr + l_addr != l_dynaddr)
161 {
162 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
163 {
164 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
165 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
166 int i;
167
168 align = 1;
169
170 for (i = 0; i < ehdr->e_phnum; i++)
171 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
172 align = phdr[i].p_align;
173 }
174
175 /* Turn it into a mask. */
176 align--;
177
178 /* If the changes match the alignment requirements, we
179 assume we're using a core file that was generated by the
180 same binary, just prelinked with a different base offset.
181 If it doesn't match, we may have a different binary, the
182 same binary with the dynamic table loaded at an unrelated
183 location, or anything, really. To avoid regressions,
184 don't adjust the base offset in the latter case, although
185 odds are that, if things really changed, debugging won't
186 quite work. */
187 if ((l_addr & align) == ((l_dynaddr - dynaddr) & align))
188 {
189 l_addr = l_dynaddr - dynaddr;
190
191 warning (_(".dynamic section for \"%s\" "
192 "is not at the expected address"), so->so_name);
193 warning (_("difference appears to be caused by prelink, "
194 "adjusting expectations"));
195 }
196 else
197 warning (_(".dynamic section for \"%s\" "
198 "is not at the expected address "
199 "(wrong library or version mismatch?)"), so->so_name);
200 }
201
202 set_addr:
203 so->lm_info->l_addr = l_addr;
204 }
205
206 return so->lm_info->l_addr;
207 }
208
209 static CORE_ADDR
210 LM_NEXT (struct so_list *so)
211 {
212 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
213
214 return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
215 builtin_type_void_data_ptr);
216 }
217
218 static CORE_ADDR
219 LM_NAME (struct so_list *so)
220 {
221 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
222
223 return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
224 builtin_type_void_data_ptr);
225 }
226
227 static int
228 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
229 {
230 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
231
232 /* Assume that everything is a library if the dynamic loader was loaded
233 late by a static executable. */
234 if (bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
235 return 0;
236
237 return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
238 builtin_type_void_data_ptr) == 0;
239 }
240
241 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
242
243 /* Validity flag for debug_loader_offset. */
244 static int debug_loader_offset_p;
245
246 /* Load address for the dynamic linker, inferred. */
247 static CORE_ADDR debug_loader_offset;
248
249 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
250 static char *debug_loader_name;
251
252 /* Local function prototypes */
253
254 static int match_main (char *);
255
256 static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
257
258 /*
259
260 LOCAL FUNCTION
261
262 bfd_lookup_symbol -- lookup the value for a specific symbol
263
264 SYNOPSIS
265
266 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
267
268 DESCRIPTION
269
270 An expensive way to lookup the value of a single symbol for
271 bfd's that are only temporary anyway. This is used by the
272 shared library support to find the address of the debugger
273 notification routine in the shared library.
274
275 The returned symbol may be in a code or data section; functions
276 will normally be in a code section, but may be in a data section
277 if this architecture uses function descriptors.
278
279 Note that 0 is specifically allowed as an error return (no
280 such symbol).
281 */
282
283 static CORE_ADDR
284 bfd_lookup_symbol (bfd *abfd, char *symname)
285 {
286 long storage_needed;
287 asymbol *sym;
288 asymbol **symbol_table;
289 unsigned int number_of_symbols;
290 unsigned int i;
291 struct cleanup *back_to;
292 CORE_ADDR symaddr = 0;
293
294 storage_needed = bfd_get_symtab_upper_bound (abfd);
295
296 if (storage_needed > 0)
297 {
298 symbol_table = (asymbol **) xmalloc (storage_needed);
299 back_to = make_cleanup (xfree, symbol_table);
300 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
301
302 for (i = 0; i < number_of_symbols; i++)
303 {
304 sym = *symbol_table++;
305 if (strcmp (sym->name, symname) == 0
306 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
307 {
308 /* BFD symbols are section relative. */
309 symaddr = sym->value + sym->section->vma;
310 break;
311 }
312 }
313 do_cleanups (back_to);
314 }
315
316 if (symaddr)
317 return symaddr;
318
319 /* On FreeBSD, the dynamic linker is stripped by default. So we'll
320 have to check the dynamic string table too. */
321
322 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
323
324 if (storage_needed > 0)
325 {
326 symbol_table = (asymbol **) xmalloc (storage_needed);
327 back_to = make_cleanup (xfree, symbol_table);
328 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
329
330 for (i = 0; i < number_of_symbols; i++)
331 {
332 sym = *symbol_table++;
333
334 if (strcmp (sym->name, symname) == 0
335 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
336 {
337 /* BFD symbols are section relative. */
338 symaddr = sym->value + sym->section->vma;
339 break;
340 }
341 }
342 do_cleanups (back_to);
343 }
344
345 return symaddr;
346 }
347
348 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
349 returned and the corresponding PTR is set. */
350
351 static int
352 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
353 {
354 int arch_size, step, sect_size;
355 long dyn_tag;
356 CORE_ADDR dyn_ptr, dyn_addr;
357 gdb_byte *bufend, *buf;
358 Elf32_External_Dyn *x_dynp_32;
359 Elf64_External_Dyn *x_dynp_64;
360 struct bfd_section *sect;
361
362 if (abfd == NULL)
363 return 0;
364 arch_size = bfd_get_arch_size (abfd);
365 if (arch_size == -1)
366 return 0;
367
368 /* Find the start address of the .dynamic section. */
369 sect = bfd_get_section_by_name (abfd, ".dynamic");
370 if (sect == NULL)
371 return 0;
372 dyn_addr = bfd_section_vma (abfd, sect);
373
374 /* Read in .dynamic section, silently ignore errors. */
375 sect_size = bfd_section_size (abfd, sect);
376 buf = alloca (sect_size);
377 if (target_read_memory (dyn_addr, buf, sect_size))
378 {
379 /* If target_read_memory fails, try reading the BFD file. */
380 if (!bfd_get_section_contents (abfd, sect,
381 buf, 0, sect_size))
382 return 0;
383 }
384
385 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
386 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
387 : sizeof (Elf64_External_Dyn);
388 for (bufend = buf + sect_size;
389 buf < bufend;
390 buf += step)
391 {
392 if (arch_size == 32)
393 {
394 x_dynp_32 = (Elf32_External_Dyn *) buf;
395 dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
396 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
397 }
398 else
399 {
400 x_dynp_64 = (Elf64_External_Dyn *) buf;
401 dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
402 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
403 }
404 if (dyn_tag == DT_NULL)
405 return 0;
406 if (dyn_tag == dyntag)
407 {
408 if (ptr)
409 *ptr = dyn_ptr;
410 return 1;
411 }
412 }
413
414 return 0;
415 }
416
417
418 /*
419
420 LOCAL FUNCTION
421
422 elf_locate_base -- locate the base address of dynamic linker structs
423 for SVR4 elf targets.
424
425 SYNOPSIS
426
427 CORE_ADDR elf_locate_base (void)
428
429 DESCRIPTION
430
431 For SVR4 elf targets the address of the dynamic linker's runtime
432 structure is contained within the dynamic info section in the
433 executable file. The dynamic section is also mapped into the
434 inferior address space. Because the runtime loader fills in the
435 real address before starting the inferior, we have to read in the
436 dynamic info section from the inferior address space.
437 If there are any errors while trying to find the address, we
438 silently return 0, otherwise the found address is returned.
439
440 */
441
442 static CORE_ADDR
443 elf_locate_base (void)
444 {
445 struct minimal_symbol *msymbol;
446 CORE_ADDR dyn_ptr;
447
448 /* Find DT_DEBUG. */
449 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr))
450 return dyn_ptr;
451
452 /* Find DT_MIPS_RLD_MAP. */
453 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr))
454 {
455 gdb_byte *pbuf;
456 int pbuf_size = TYPE_LENGTH (builtin_type_void_data_ptr);
457 pbuf = alloca (pbuf_size);
458 /* DT_MIPS_RLD_MAP contains a pointer to the address
459 of the dynamic link structure. */
460 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
461 return 0;
462 return extract_typed_address (pbuf, builtin_type_void_data_ptr);
463 }
464
465 /* This may be a static executable. Look for the symbol
466 conventionally named _r_debug, as a last resort. */
467 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
468 if (msymbol != NULL)
469 return SYMBOL_VALUE_ADDRESS (msymbol);
470
471 /* DT_DEBUG entry not found. */
472 return 0;
473 }
474
475 /*
476
477 LOCAL FUNCTION
478
479 locate_base -- locate the base address of dynamic linker structs
480
481 SYNOPSIS
482
483 CORE_ADDR locate_base (void)
484
485 DESCRIPTION
486
487 For both the SunOS and SVR4 shared library implementations, if the
488 inferior executable has been linked dynamically, there is a single
489 address somewhere in the inferior's data space which is the key to
490 locating all of the dynamic linker's runtime structures. This
491 address is the value of the debug base symbol. The job of this
492 function is to find and return that address, or to return 0 if there
493 is no such address (the executable is statically linked for example).
494
495 For SunOS, the job is almost trivial, since the dynamic linker and
496 all of it's structures are statically linked to the executable at
497 link time. Thus the symbol for the address we are looking for has
498 already been added to the minimal symbol table for the executable's
499 objfile at the time the symbol file's symbols were read, and all we
500 have to do is look it up there. Note that we explicitly do NOT want
501 to find the copies in the shared library.
502
503 The SVR4 version is a bit more complicated because the address
504 is contained somewhere in the dynamic info section. We have to go
505 to a lot more work to discover the address of the debug base symbol.
506 Because of this complexity, we cache the value we find and return that
507 value on subsequent invocations. Note there is no copy in the
508 executable symbol tables.
509
510 */
511
512 static CORE_ADDR
513 locate_base (void)
514 {
515 /* Check to see if we have a currently valid address, and if so, avoid
516 doing all this work again and just return the cached address. If
517 we have no cached address, try to locate it in the dynamic info
518 section for ELF executables. There's no point in doing any of this
519 though if we don't have some link map offsets to work with. */
520
521 if (debug_base == 0 && svr4_have_link_map_offsets ())
522 {
523 if (exec_bfd != NULL
524 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
525 debug_base = elf_locate_base ();
526 }
527 return (debug_base);
528 }
529
530 /* Find the first element in the inferior's dynamic link map, and
531 return its address in the inferior.
532
533 FIXME: Perhaps we should validate the info somehow, perhaps by
534 checking r_version for a known version number, or r_state for
535 RT_CONSISTENT. */
536
537 static CORE_ADDR
538 solib_svr4_r_map (void)
539 {
540 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
541
542 return read_memory_typed_address (debug_base + lmo->r_map_offset,
543 builtin_type_void_data_ptr);
544 }
545
546 /* Find the link map for the dynamic linker (if it is not in the
547 normal list of loaded shared objects). */
548
549 static CORE_ADDR
550 solib_svr4_r_ldsomap (void)
551 {
552 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
553 ULONGEST version;
554
555 /* Check version, and return zero if `struct r_debug' doesn't have
556 the r_ldsomap member. */
557 version = read_memory_unsigned_integer (debug_base + lmo->r_version_offset,
558 lmo->r_version_size);
559 if (version < 2 || lmo->r_ldsomap_offset == -1)
560 return 0;
561
562 return read_memory_typed_address (debug_base + lmo->r_ldsomap_offset,
563 builtin_type_void_data_ptr);
564 }
565
566 /*
567
568 LOCAL FUNCTION
569
570 open_symbol_file_object
571
572 SYNOPSIS
573
574 void open_symbol_file_object (void *from_tty)
575
576 DESCRIPTION
577
578 If no open symbol file, attempt to locate and open the main symbol
579 file. On SVR4 systems, this is the first link map entry. If its
580 name is here, we can open it. Useful when attaching to a process
581 without first loading its symbol file.
582
583 If FROM_TTYP dereferences to a non-zero integer, allow messages to
584 be printed. This parameter is a pointer rather than an int because
585 open_symbol_file_object() is called via catch_errors() and
586 catch_errors() requires a pointer argument. */
587
588 static int
589 open_symbol_file_object (void *from_ttyp)
590 {
591 CORE_ADDR lm, l_name;
592 char *filename;
593 int errcode;
594 int from_tty = *(int *)from_ttyp;
595 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
596 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
597 gdb_byte *l_name_buf = xmalloc (l_name_size);
598 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
599
600 if (symfile_objfile)
601 if (!query ("Attempt to reload symbols from process? "))
602 return 0;
603
604 if ((debug_base = locate_base ()) == 0)
605 return 0; /* failed somehow... */
606
607 /* First link map member should be the executable. */
608 lm = solib_svr4_r_map ();
609 if (lm == 0)
610 return 0; /* failed somehow... */
611
612 /* Read address of name from target memory to GDB. */
613 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
614
615 /* Convert the address to host format. */
616 l_name = extract_typed_address (l_name_buf, builtin_type_void_data_ptr);
617
618 /* Free l_name_buf. */
619 do_cleanups (cleanups);
620
621 if (l_name == 0)
622 return 0; /* No filename. */
623
624 /* Now fetch the filename from target memory. */
625 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
626 make_cleanup (xfree, filename);
627
628 if (errcode)
629 {
630 warning (_("failed to read exec filename from attached file: %s"),
631 safe_strerror (errcode));
632 return 0;
633 }
634
635 /* Have a pathname: read the symbol file. */
636 symbol_file_add_main (filename, from_tty);
637
638 return 1;
639 }
640
641 /* If no shared library information is available from the dynamic
642 linker, build a fallback list from other sources. */
643
644 static struct so_list *
645 svr4_default_sos (void)
646 {
647 struct so_list *head = NULL;
648 struct so_list **link_ptr = &head;
649
650 if (debug_loader_offset_p)
651 {
652 struct so_list *new = XZALLOC (struct so_list);
653
654 new->lm_info = xmalloc (sizeof (struct lm_info));
655
656 /* Nothing will ever check the cached copy of the link
657 map if we set l_addr. */
658 new->lm_info->l_addr = debug_loader_offset;
659 new->lm_info->lm = NULL;
660
661 strncpy (new->so_name, debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
662 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
663 strcpy (new->so_original_name, new->so_name);
664
665 *link_ptr = new;
666 link_ptr = &new->next;
667 }
668
669 return head;
670 }
671
672 /* LOCAL FUNCTION
673
674 current_sos -- build a list of currently loaded shared objects
675
676 SYNOPSIS
677
678 struct so_list *current_sos ()
679
680 DESCRIPTION
681
682 Build a list of `struct so_list' objects describing the shared
683 objects currently loaded in the inferior. This list does not
684 include an entry for the main executable file.
685
686 Note that we only gather information directly available from the
687 inferior --- we don't examine any of the shared library files
688 themselves. The declaration of `struct so_list' says which fields
689 we provide values for. */
690
691 static struct so_list *
692 svr4_current_sos (void)
693 {
694 CORE_ADDR lm;
695 struct so_list *head = 0;
696 struct so_list **link_ptr = &head;
697 CORE_ADDR ldsomap = 0;
698
699 /* Make sure we've looked up the inferior's dynamic linker's base
700 structure. */
701 if (! debug_base)
702 {
703 debug_base = locate_base ();
704
705 /* If we can't find the dynamic linker's base structure, this
706 must not be a dynamically linked executable. Hmm. */
707 if (! debug_base)
708 return svr4_default_sos ();
709 }
710
711 /* Walk the inferior's link map list, and build our list of
712 `struct so_list' nodes. */
713 lm = solib_svr4_r_map ();
714
715 while (lm)
716 {
717 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
718 struct so_list *new = XZALLOC (struct so_list);
719 struct cleanup *old_chain = make_cleanup (xfree, new);
720
721 new->lm_info = xmalloc (sizeof (struct lm_info));
722 make_cleanup (xfree, new->lm_info);
723
724 new->lm_info->l_addr = (CORE_ADDR)-1;
725 new->lm_info->lm = xzalloc (lmo->link_map_size);
726 make_cleanup (xfree, new->lm_info->lm);
727
728 read_memory (lm, new->lm_info->lm, lmo->link_map_size);
729
730 lm = LM_NEXT (new);
731
732 /* For SVR4 versions, the first entry in the link map is for the
733 inferior executable, so we must ignore it. For some versions of
734 SVR4, it has no name. For others (Solaris 2.3 for example), it
735 does have a name, so we can no longer use a missing name to
736 decide when to ignore it. */
737 if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
738 free_so (new);
739 else
740 {
741 int errcode;
742 char *buffer;
743
744 /* Extract this shared object's name. */
745 target_read_string (LM_NAME (new), &buffer,
746 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
747 if (errcode != 0)
748 warning (_("Can't read pathname for load map: %s."),
749 safe_strerror (errcode));
750 else
751 {
752 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
753 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
754 strcpy (new->so_original_name, new->so_name);
755 }
756 xfree (buffer);
757
758 /* If this entry has no name, or its name matches the name
759 for the main executable, don't include it in the list. */
760 if (! new->so_name[0]
761 || match_main (new->so_name))
762 free_so (new);
763 else
764 {
765 new->next = 0;
766 *link_ptr = new;
767 link_ptr = &new->next;
768 }
769 }
770
771 /* On Solaris, the dynamic linker is not in the normal list of
772 shared objects, so make sure we pick it up too. Having
773 symbol information for the dynamic linker is quite crucial
774 for skipping dynamic linker resolver code. */
775 if (lm == 0 && ldsomap == 0)
776 lm = ldsomap = solib_svr4_r_ldsomap ();
777
778 discard_cleanups (old_chain);
779 }
780
781 if (head == NULL)
782 return svr4_default_sos ();
783
784 return head;
785 }
786
787 /* Get the address of the link_map for a given OBJFILE. Loop through
788 the link maps, and return the address of the one corresponding to
789 the given objfile. Note that this function takes into account that
790 objfile can be the main executable, not just a shared library. The
791 main executable has always an empty name field in the linkmap. */
792
793 CORE_ADDR
794 svr4_fetch_objfile_link_map (struct objfile *objfile)
795 {
796 CORE_ADDR lm;
797
798 if ((debug_base = locate_base ()) == 0)
799 return 0; /* failed somehow... */
800
801 /* Position ourselves on the first link map. */
802 lm = solib_svr4_r_map ();
803 while (lm)
804 {
805 /* Get info on the layout of the r_debug and link_map structures. */
806 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
807 int errcode;
808 char *buffer;
809 struct lm_info objfile_lm_info;
810 struct cleanup *old_chain;
811 CORE_ADDR name_address;
812 int l_name_size = TYPE_LENGTH (builtin_type_void_data_ptr);
813 gdb_byte *l_name_buf = xmalloc (l_name_size);
814 old_chain = make_cleanup (xfree, l_name_buf);
815
816 /* Set up the buffer to contain the portion of the link_map
817 structure that gdb cares about. Note that this is not the
818 whole link_map structure. */
819 objfile_lm_info.lm = xzalloc (lmo->link_map_size);
820 make_cleanup (xfree, objfile_lm_info.lm);
821
822 /* Read the link map into our internal structure. */
823 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size);
824
825 /* Read address of name from target memory to GDB. */
826 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
827
828 /* Extract this object's name. */
829 name_address = extract_typed_address (l_name_buf,
830 builtin_type_void_data_ptr);
831 target_read_string (name_address, &buffer,
832 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
833 make_cleanup (xfree, buffer);
834 if (errcode != 0)
835 warning (_("Can't read pathname for load map: %s."),
836 safe_strerror (errcode));
837 else
838 {
839 /* Is this the linkmap for the file we want? */
840 /* If the file is not a shared library and has no name,
841 we are sure it is the main executable, so we return that. */
842
843 if (buffer
844 && ((strcmp (buffer, objfile->name) == 0)
845 || (!(objfile->flags & OBJF_SHARED)
846 && (strcmp (buffer, "") == 0))))
847 {
848 do_cleanups (old_chain);
849 return lm;
850 }
851 }
852 /* Not the file we wanted, continue checking. */
853 lm = extract_typed_address (objfile_lm_info.lm + lmo->l_next_offset,
854 builtin_type_void_data_ptr);
855 do_cleanups (old_chain);
856 }
857 return 0;
858 }
859
860 /* On some systems, the only way to recognize the link map entry for
861 the main executable file is by looking at its name. Return
862 non-zero iff SONAME matches one of the known main executable names. */
863
864 static int
865 match_main (char *soname)
866 {
867 char **mainp;
868
869 for (mainp = main_name_list; *mainp != NULL; mainp++)
870 {
871 if (strcmp (soname, *mainp) == 0)
872 return (1);
873 }
874
875 return (0);
876 }
877
878 /* Return 1 if PC lies in the dynamic symbol resolution code of the
879 SVR4 run time loader. */
880 static CORE_ADDR interp_text_sect_low;
881 static CORE_ADDR interp_text_sect_high;
882 static CORE_ADDR interp_plt_sect_low;
883 static CORE_ADDR interp_plt_sect_high;
884
885 int
886 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
887 {
888 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
889 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
890 || in_plt_section (pc, NULL));
891 }
892
893 /* Given an executable's ABFD and target, compute the entry-point
894 address. */
895
896 static CORE_ADDR
897 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
898 {
899 /* KevinB wrote ... for most targets, the address returned by
900 bfd_get_start_address() is the entry point for the start
901 function. But, for some targets, bfd_get_start_address() returns
902 the address of a function descriptor from which the entry point
903 address may be extracted. This address is extracted by
904 gdbarch_convert_from_func_ptr_addr(). The method
905 gdbarch_convert_from_func_ptr_addr() is the merely the identify
906 function for targets which don't use function descriptors. */
907 return gdbarch_convert_from_func_ptr_addr (current_gdbarch,
908 bfd_get_start_address (abfd),
909 targ);
910 }
911
912 /*
913
914 LOCAL FUNCTION
915
916 enable_break -- arrange for dynamic linker to hit breakpoint
917
918 SYNOPSIS
919
920 int enable_break (void)
921
922 DESCRIPTION
923
924 Both the SunOS and the SVR4 dynamic linkers have, as part of their
925 debugger interface, support for arranging for the inferior to hit
926 a breakpoint after mapping in the shared libraries. This function
927 enables that breakpoint.
928
929 For SunOS, there is a special flag location (in_debugger) which we
930 set to 1. When the dynamic linker sees this flag set, it will set
931 a breakpoint at a location known only to itself, after saving the
932 original contents of that place and the breakpoint address itself,
933 in it's own internal structures. When we resume the inferior, it
934 will eventually take a SIGTRAP when it runs into the breakpoint.
935 We handle this (in a different place) by restoring the contents of
936 the breakpointed location (which is only known after it stops),
937 chasing around to locate the shared libraries that have been
938 loaded, then resuming.
939
940 For SVR4, the debugger interface structure contains a member (r_brk)
941 which is statically initialized at the time the shared library is
942 built, to the offset of a function (_r_debug_state) which is guaran-
943 teed to be called once before mapping in a library, and again when
944 the mapping is complete. At the time we are examining this member,
945 it contains only the unrelocated offset of the function, so we have
946 to do our own relocation. Later, when the dynamic linker actually
947 runs, it relocates r_brk to be the actual address of _r_debug_state().
948
949 The debugger interface structure also contains an enumeration which
950 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
951 depending upon whether or not the library is being mapped or unmapped,
952 and then set to RT_CONSISTENT after the library is mapped/unmapped.
953 */
954
955 static int
956 enable_break (void)
957 {
958 #ifdef BKPT_AT_SYMBOL
959
960 struct minimal_symbol *msymbol;
961 char **bkpt_namep;
962 asection *interp_sect;
963
964 /* First, remove all the solib event breakpoints. Their addresses
965 may have changed since the last time we ran the program. */
966 remove_solib_event_breakpoints ();
967
968 interp_text_sect_low = interp_text_sect_high = 0;
969 interp_plt_sect_low = interp_plt_sect_high = 0;
970
971 /* Find the .interp section; if not found, warn the user and drop
972 into the old breakpoint at symbol code. */
973 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
974 if (interp_sect)
975 {
976 unsigned int interp_sect_size;
977 char *buf;
978 CORE_ADDR load_addr = 0;
979 int load_addr_found = 0;
980 struct so_list *so;
981 bfd *tmp_bfd = NULL;
982 struct target_ops *tmp_bfd_target;
983 int tmp_fd = -1;
984 char *tmp_pathname = NULL;
985 CORE_ADDR sym_addr = 0;
986
987 /* Read the contents of the .interp section into a local buffer;
988 the contents specify the dynamic linker this program uses. */
989 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
990 buf = alloca (interp_sect_size);
991 bfd_get_section_contents (exec_bfd, interp_sect,
992 buf, 0, interp_sect_size);
993
994 /* Now we need to figure out where the dynamic linker was
995 loaded so that we can load its symbols and place a breakpoint
996 in the dynamic linker itself.
997
998 This address is stored on the stack. However, I've been unable
999 to find any magic formula to find it for Solaris (appears to
1000 be trivial on GNU/Linux). Therefore, we have to try an alternate
1001 mechanism to find the dynamic linker's base address. */
1002
1003 /* TODO drow/2006-09-12: This is somewhat fragile, because it
1004 relies on read_pc. On both Solaris and GNU/Linux we can use
1005 the AT_BASE auxilliary entry, which GDB now knows how to
1006 access, to find the base address. */
1007
1008 tmp_fd = solib_open (buf, &tmp_pathname);
1009 if (tmp_fd >= 0)
1010 tmp_bfd = bfd_fopen (tmp_pathname, gnutarget, FOPEN_RB, tmp_fd);
1011 xfree (tmp_pathname);
1012
1013 if (tmp_bfd == NULL)
1014 goto bkpt_at_symbol;
1015
1016 /* Make sure the dynamic linker's really a useful object. */
1017 if (!bfd_check_format (tmp_bfd, bfd_object))
1018 {
1019 warning (_("Unable to grok dynamic linker %s as an object file"), buf);
1020 bfd_close (tmp_bfd);
1021 goto bkpt_at_symbol;
1022 }
1023
1024 /* Now convert the TMP_BFD into a target. That way target, as
1025 well as BFD operations can be used. Note that closing the
1026 target will also close the underlying bfd. */
1027 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1028
1029 /* On a running target, we can get the dynamic linker's base
1030 address from the shared library table. */
1031 solib_add (NULL, 0, &current_target, auto_solib_add);
1032 so = master_so_list ();
1033 while (so)
1034 {
1035 if (strcmp (buf, so->so_original_name) == 0)
1036 {
1037 load_addr_found = 1;
1038 load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1039 break;
1040 }
1041 so = so->next;
1042 }
1043
1044 /* Otherwise we find the dynamic linker's base address by examining
1045 the current pc (which should point at the entry point for the
1046 dynamic linker) and subtracting the offset of the entry point. */
1047 if (!load_addr_found)
1048 {
1049 load_addr = (read_pc ()
1050 - exec_entry_point (tmp_bfd, tmp_bfd_target));
1051 debug_loader_name = xstrdup (buf);
1052 debug_loader_offset_p = 1;
1053 debug_loader_offset = load_addr;
1054 solib_add (NULL, 0, &current_target, auto_solib_add);
1055 }
1056
1057 /* Record the relocated start and end address of the dynamic linker
1058 text and plt section for svr4_in_dynsym_resolve_code. */
1059 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1060 if (interp_sect)
1061 {
1062 interp_text_sect_low =
1063 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1064 interp_text_sect_high =
1065 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1066 }
1067 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1068 if (interp_sect)
1069 {
1070 interp_plt_sect_low =
1071 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1072 interp_plt_sect_high =
1073 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1074 }
1075
1076 /* Now try to set a breakpoint in the dynamic linker. */
1077 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1078 {
1079 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1080 if (sym_addr != 0)
1081 break;
1082 }
1083
1084 if (sym_addr != 0)
1085 /* Convert 'sym_addr' from a function pointer to an address.
1086 Because we pass tmp_bfd_target instead of the current
1087 target, this will always produce an unrelocated value. */
1088 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1089 sym_addr,
1090 tmp_bfd_target);
1091
1092 /* We're done with both the temporary bfd and target. Remember,
1093 closing the target closes the underlying bfd. */
1094 target_close (tmp_bfd_target, 0);
1095
1096 if (sym_addr != 0)
1097 {
1098 create_solib_event_breakpoint (load_addr + sym_addr);
1099 return 1;
1100 }
1101
1102 /* For whatever reason we couldn't set a breakpoint in the dynamic
1103 linker. Warn and drop into the old code. */
1104 bkpt_at_symbol:
1105 warning (_("Unable to find dynamic linker breakpoint function.\n"
1106 "GDB will be unable to debug shared library initializers\n"
1107 "and track explicitly loaded dynamic code."));
1108 }
1109
1110 /* Scan through the lists of symbols, trying to look up the symbol and
1111 set a breakpoint there. Terminate loop when we/if we succeed. */
1112
1113 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1114 {
1115 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1116 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1117 {
1118 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1119 return 1;
1120 }
1121 }
1122
1123 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1124 {
1125 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1126 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1127 {
1128 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1129 return 1;
1130 }
1131 }
1132 #endif /* BKPT_AT_SYMBOL */
1133
1134 return 0;
1135 }
1136
1137 /*
1138
1139 LOCAL FUNCTION
1140
1141 special_symbol_handling -- additional shared library symbol handling
1142
1143 SYNOPSIS
1144
1145 void special_symbol_handling ()
1146
1147 DESCRIPTION
1148
1149 Once the symbols from a shared object have been loaded in the usual
1150 way, we are called to do any system specific symbol handling that
1151 is needed.
1152
1153 For SunOS4, this consisted of grunging around in the dynamic
1154 linkers structures to find symbol definitions for "common" symbols
1155 and adding them to the minimal symbol table for the runtime common
1156 objfile.
1157
1158 However, for SVR4, there's nothing to do.
1159
1160 */
1161
1162 static void
1163 svr4_special_symbol_handling (void)
1164 {
1165 }
1166
1167 /* Relocate the main executable. This function should be called upon
1168 stopping the inferior process at the entry point to the program.
1169 The entry point from BFD is compared to the PC and if they are
1170 different, the main executable is relocated by the proper amount.
1171
1172 As written it will only attempt to relocate executables which
1173 lack interpreter sections. It seems likely that only dynamic
1174 linker executables will get relocated, though it should work
1175 properly for a position-independent static executable as well. */
1176
1177 static void
1178 svr4_relocate_main_executable (void)
1179 {
1180 asection *interp_sect;
1181 CORE_ADDR pc = read_pc ();
1182
1183 /* Decide if the objfile needs to be relocated. As indicated above,
1184 we will only be here when execution is stopped at the beginning
1185 of the program. Relocation is necessary if the address at which
1186 we are presently stopped differs from the start address stored in
1187 the executable AND there's no interpreter section. The condition
1188 regarding the interpreter section is very important because if
1189 there *is* an interpreter section, execution will begin there
1190 instead. When there is an interpreter section, the start address
1191 is (presumably) used by the interpreter at some point to start
1192 execution of the program.
1193
1194 If there is an interpreter, it is normal for it to be set to an
1195 arbitrary address at the outset. The job of finding it is
1196 handled in enable_break().
1197
1198 So, to summarize, relocations are necessary when there is no
1199 interpreter section and the start address obtained from the
1200 executable is different from the address at which GDB is
1201 currently stopped.
1202
1203 [ The astute reader will note that we also test to make sure that
1204 the executable in question has the DYNAMIC flag set. It is my
1205 opinion that this test is unnecessary (undesirable even). It
1206 was added to avoid inadvertent relocation of an executable
1207 whose e_type member in the ELF header is not ET_DYN. There may
1208 be a time in the future when it is desirable to do relocations
1209 on other types of files as well in which case this condition
1210 should either be removed or modified to accomodate the new file
1211 type. (E.g, an ET_EXEC executable which has been built to be
1212 position-independent could safely be relocated by the OS if
1213 desired. It is true that this violates the ABI, but the ABI
1214 has been known to be bent from time to time.) - Kevin, Nov 2000. ]
1215 */
1216
1217 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1218 if (interp_sect == NULL
1219 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0
1220 && (exec_entry_point (exec_bfd, &exec_ops) != pc))
1221 {
1222 struct cleanup *old_chain;
1223 struct section_offsets *new_offsets;
1224 int i, changed;
1225 CORE_ADDR displacement;
1226
1227 /* It is necessary to relocate the objfile. The amount to
1228 relocate by is simply the address at which we are stopped
1229 minus the starting address from the executable.
1230
1231 We relocate all of the sections by the same amount. This
1232 behavior is mandated by recent editions of the System V ABI.
1233 According to the System V Application Binary Interface,
1234 Edition 4.1, page 5-5:
1235
1236 ... Though the system chooses virtual addresses for
1237 individual processes, it maintains the segments' relative
1238 positions. Because position-independent code uses relative
1239 addressesing between segments, the difference between
1240 virtual addresses in memory must match the difference
1241 between virtual addresses in the file. The difference
1242 between the virtual address of any segment in memory and
1243 the corresponding virtual address in the file is thus a
1244 single constant value for any one executable or shared
1245 object in a given process. This difference is the base
1246 address. One use of the base address is to relocate the
1247 memory image of the program during dynamic linking.
1248
1249 The same language also appears in Edition 4.0 of the System V
1250 ABI and is left unspecified in some of the earlier editions. */
1251
1252 displacement = pc - exec_entry_point (exec_bfd, &exec_ops);
1253 changed = 0;
1254
1255 new_offsets = xcalloc (symfile_objfile->num_sections,
1256 sizeof (struct section_offsets));
1257 old_chain = make_cleanup (xfree, new_offsets);
1258
1259 for (i = 0; i < symfile_objfile->num_sections; i++)
1260 {
1261 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i))
1262 changed = 1;
1263 new_offsets->offsets[i] = displacement;
1264 }
1265
1266 if (changed)
1267 objfile_relocate (symfile_objfile, new_offsets);
1268
1269 do_cleanups (old_chain);
1270 }
1271 }
1272
1273 /*
1274
1275 GLOBAL FUNCTION
1276
1277 svr4_solib_create_inferior_hook -- shared library startup support
1278
1279 SYNOPSIS
1280
1281 void svr4_solib_create_inferior_hook ()
1282
1283 DESCRIPTION
1284
1285 When gdb starts up the inferior, it nurses it along (through the
1286 shell) until it is ready to execute it's first instruction. At this
1287 point, this function gets called via expansion of the macro
1288 SOLIB_CREATE_INFERIOR_HOOK.
1289
1290 For SunOS executables, this first instruction is typically the
1291 one at "_start", or a similar text label, regardless of whether
1292 the executable is statically or dynamically linked. The runtime
1293 startup code takes care of dynamically linking in any shared
1294 libraries, once gdb allows the inferior to continue.
1295
1296 For SVR4 executables, this first instruction is either the first
1297 instruction in the dynamic linker (for dynamically linked
1298 executables) or the instruction at "start" for statically linked
1299 executables. For dynamically linked executables, the system
1300 first exec's /lib/libc.so.N, which contains the dynamic linker,
1301 and starts it running. The dynamic linker maps in any needed
1302 shared libraries, maps in the actual user executable, and then
1303 jumps to "start" in the user executable.
1304
1305 For both SunOS shared libraries, and SVR4 shared libraries, we
1306 can arrange to cooperate with the dynamic linker to discover the
1307 names of shared libraries that are dynamically linked, and the
1308 base addresses to which they are linked.
1309
1310 This function is responsible for discovering those names and
1311 addresses, and saving sufficient information about them to allow
1312 their symbols to be read at a later time.
1313
1314 FIXME
1315
1316 Between enable_break() and disable_break(), this code does not
1317 properly handle hitting breakpoints which the user might have
1318 set in the startup code or in the dynamic linker itself. Proper
1319 handling will probably have to wait until the implementation is
1320 changed to use the "breakpoint handler function" method.
1321
1322 Also, what if child has exit()ed? Must exit loop somehow.
1323 */
1324
1325 static void
1326 svr4_solib_create_inferior_hook (void)
1327 {
1328 /* Relocate the main executable if necessary. */
1329 svr4_relocate_main_executable ();
1330
1331 if (!svr4_have_link_map_offsets ())
1332 return;
1333
1334 if (!enable_break ())
1335 return;
1336
1337 #if defined(_SCO_DS)
1338 /* SCO needs the loop below, other systems should be using the
1339 special shared library breakpoints and the shared library breakpoint
1340 service routine.
1341
1342 Now run the target. It will eventually hit the breakpoint, at
1343 which point all of the libraries will have been mapped in and we
1344 can go groveling around in the dynamic linker structures to find
1345 out what we need to know about them. */
1346
1347 clear_proceed_status ();
1348 stop_soon = STOP_QUIETLY;
1349 stop_signal = TARGET_SIGNAL_0;
1350 do
1351 {
1352 target_resume (pid_to_ptid (-1), 0, stop_signal);
1353 wait_for_inferior ();
1354 }
1355 while (stop_signal != TARGET_SIGNAL_TRAP);
1356 stop_soon = NO_STOP_QUIETLY;
1357 #endif /* defined(_SCO_DS) */
1358 }
1359
1360 static void
1361 svr4_clear_solib (void)
1362 {
1363 debug_base = 0;
1364 debug_loader_offset_p = 0;
1365 debug_loader_offset = 0;
1366 xfree (debug_loader_name);
1367 debug_loader_name = NULL;
1368 }
1369
1370 static void
1371 svr4_free_so (struct so_list *so)
1372 {
1373 xfree (so->lm_info->lm);
1374 xfree (so->lm_info);
1375 }
1376
1377
1378 /* Clear any bits of ADDR that wouldn't fit in a target-format
1379 data pointer. "Data pointer" here refers to whatever sort of
1380 address the dynamic linker uses to manage its sections. At the
1381 moment, we don't support shared libraries on any processors where
1382 code and data pointers are different sizes.
1383
1384 This isn't really the right solution. What we really need here is
1385 a way to do arithmetic on CORE_ADDR values that respects the
1386 natural pointer/address correspondence. (For example, on the MIPS,
1387 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
1388 sign-extend the value. There, simply truncating the bits above
1389 gdbarch_ptr_bit, as we do below, is no good.) This should probably
1390 be a new gdbarch method or something. */
1391 static CORE_ADDR
1392 svr4_truncate_ptr (CORE_ADDR addr)
1393 {
1394 if (gdbarch_ptr_bit (current_gdbarch) == sizeof (CORE_ADDR) * 8)
1395 /* We don't need to truncate anything, and the bit twiddling below
1396 will fail due to overflow problems. */
1397 return addr;
1398 else
1399 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (current_gdbarch)) - 1);
1400 }
1401
1402
1403 static void
1404 svr4_relocate_section_addresses (struct so_list *so,
1405 struct section_table *sec)
1406 {
1407 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
1408 sec->bfd));
1409 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
1410 sec->bfd));
1411 }
1412 \f
1413
1414 /* Architecture-specific operations. */
1415
1416 /* Per-architecture data key. */
1417 static struct gdbarch_data *solib_svr4_data;
1418
1419 struct solib_svr4_ops
1420 {
1421 /* Return a description of the layout of `struct link_map'. */
1422 struct link_map_offsets *(*fetch_link_map_offsets)(void);
1423 };
1424
1425 /* Return a default for the architecture-specific operations. */
1426
1427 static void *
1428 solib_svr4_init (struct obstack *obstack)
1429 {
1430 struct solib_svr4_ops *ops;
1431
1432 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
1433 ops->fetch_link_map_offsets = legacy_svr4_fetch_link_map_offsets_hook;
1434 return ops;
1435 }
1436
1437 /* Set the architecture-specific `struct link_map_offsets' fetcher for
1438 GDBARCH to FLMO. */
1439
1440 void
1441 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
1442 struct link_map_offsets *(*flmo) (void))
1443 {
1444 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
1445
1446 ops->fetch_link_map_offsets = flmo;
1447 }
1448
1449 /* Fetch a link_map_offsets structure using the architecture-specific
1450 `struct link_map_offsets' fetcher. */
1451
1452 static struct link_map_offsets *
1453 svr4_fetch_link_map_offsets (void)
1454 {
1455 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1456
1457 gdb_assert (ops->fetch_link_map_offsets);
1458 return ops->fetch_link_map_offsets ();
1459 }
1460
1461 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
1462
1463 static int
1464 svr4_have_link_map_offsets (void)
1465 {
1466 struct solib_svr4_ops *ops = gdbarch_data (current_gdbarch, solib_svr4_data);
1467 return (ops->fetch_link_map_offsets != NULL);
1468 }
1469 \f
1470
1471 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
1472 `struct r_debug' and a `struct link_map' that are binary compatible
1473 with the origional SVR4 implementation. */
1474
1475 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1476 for an ILP32 SVR4 system. */
1477
1478 struct link_map_offsets *
1479 svr4_ilp32_fetch_link_map_offsets (void)
1480 {
1481 static struct link_map_offsets lmo;
1482 static struct link_map_offsets *lmp = NULL;
1483
1484 if (lmp == NULL)
1485 {
1486 lmp = &lmo;
1487
1488 lmo.r_version_offset = 0;
1489 lmo.r_version_size = 4;
1490 lmo.r_map_offset = 4;
1491 lmo.r_ldsomap_offset = 20;
1492
1493 /* Everything we need is in the first 20 bytes. */
1494 lmo.link_map_size = 20;
1495 lmo.l_addr_offset = 0;
1496 lmo.l_name_offset = 4;
1497 lmo.l_ld_offset = 8;
1498 lmo.l_next_offset = 12;
1499 lmo.l_prev_offset = 16;
1500 }
1501
1502 return lmp;
1503 }
1504
1505 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
1506 for an LP64 SVR4 system. */
1507
1508 struct link_map_offsets *
1509 svr4_lp64_fetch_link_map_offsets (void)
1510 {
1511 static struct link_map_offsets lmo;
1512 static struct link_map_offsets *lmp = NULL;
1513
1514 if (lmp == NULL)
1515 {
1516 lmp = &lmo;
1517
1518 lmo.r_version_offset = 0;
1519 lmo.r_version_size = 4;
1520 lmo.r_map_offset = 8;
1521 lmo.r_ldsomap_offset = 40;
1522
1523 /* Everything we need is in the first 40 bytes. */
1524 lmo.link_map_size = 40;
1525 lmo.l_addr_offset = 0;
1526 lmo.l_name_offset = 8;
1527 lmo.l_ld_offset = 16;
1528 lmo.l_next_offset = 24;
1529 lmo.l_prev_offset = 32;
1530 }
1531
1532 return lmp;
1533 }
1534 \f
1535
1536 struct target_so_ops svr4_so_ops;
1537
1538 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
1539 different rule for symbol lookup. The lookup begins here in the DSO, not in
1540 the main executable. */
1541
1542 static struct symbol *
1543 elf_lookup_lib_symbol (const struct objfile *objfile,
1544 const char *name,
1545 const char *linkage_name,
1546 const domain_enum domain, struct symtab **symtab)
1547 {
1548 if (objfile->obfd == NULL
1549 || scan_dyntag (DT_SYMBOLIC, objfile->obfd, NULL) != 1)
1550 return NULL;
1551
1552 return lookup_global_symbol_from_objfile
1553 (objfile, name, linkage_name, domain, symtab);
1554 }
1555
1556 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
1557
1558 void
1559 _initialize_svr4_solib (void)
1560 {
1561 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
1562
1563 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
1564 svr4_so_ops.free_so = svr4_free_so;
1565 svr4_so_ops.clear_solib = svr4_clear_solib;
1566 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
1567 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
1568 svr4_so_ops.current_sos = svr4_current_sos;
1569 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
1570 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
1571 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
1572
1573 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */
1574 current_target_so_ops = &svr4_so_ops;
1575 }
This page took 0.061023 seconds and 5 git commands to generate.