1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "elf/external.h"
23 #include "elf/common.h"
34 #include "gdbthread.h"
37 #include "gdb_assert.h"
41 #include "solib-svr4.h"
43 #include "bfd-target.h"
47 #include "exceptions.h"
50 static struct link_map_offsets
*svr4_fetch_link_map_offsets (void);
51 static int svr4_have_link_map_offsets (void);
52 static void svr4_relocate_main_executable (void);
54 /* Link map info to include in an allocated so_list entry. */
58 /* Amount by which addresses in the binary should be relocated to
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
65 CORE_ADDR l_addr
, l_addr_inferior
;
66 unsigned int l_addr_p
: 1;
68 /* The target location of lm. */
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld
, l_next
, l_prev
, l_name
;
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
83 static const char * const solib_break_names
[] =
89 "__dl_rtld_db_dlactivity",
95 static const char * const bkpt_names
[] =
103 static const char * const main_name_list
[] =
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110 the same shared library. */
113 svr4_same_1 (const char *gdb_so_name
, const char *inferior_so_name
)
115 if (strcmp (gdb_so_name
, inferior_so_name
) == 0)
118 /* On Solaris, when starting inferior we think that dynamic linker is
119 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120 contains /lib/ld.so.1. Sometimes one file is a link to another, but
121 sometimes they have identical content, but are not linked to each
122 other. We don't restrict this check for Solaris, but the chances
123 of running into this situation elsewhere are very low. */
124 if (strcmp (gdb_so_name
, "/usr/lib/ld.so.1") == 0
125 && strcmp (inferior_so_name
, "/lib/ld.so.1") == 0)
128 /* Similarly, we observed the same issue with sparc64, but with
129 different locations. */
130 if (strcmp (gdb_so_name
, "/usr/lib/sparcv9/ld.so.1") == 0
131 && strcmp (inferior_so_name
, "/lib/sparcv9/ld.so.1") == 0)
138 svr4_same (struct so_list
*gdb
, struct so_list
*inferior
)
140 return (svr4_same_1 (gdb
->so_original_name
, inferior
->so_original_name
));
143 static struct lm_info
*
144 lm_info_read (CORE_ADDR lm_addr
)
146 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
148 struct lm_info
*lm_info
;
149 struct cleanup
*back_to
;
151 lm
= xmalloc (lmo
->link_map_size
);
152 back_to
= make_cleanup (xfree
, lm
);
154 if (target_read_memory (lm_addr
, lm
, lmo
->link_map_size
) != 0)
156 warning (_("Error reading shared library list entry at %s"),
157 paddress (target_gdbarch (), lm_addr
)),
162 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
164 lm_info
= xzalloc (sizeof (*lm_info
));
165 lm_info
->lm_addr
= lm_addr
;
167 lm_info
->l_addr_inferior
= extract_typed_address (&lm
[lmo
->l_addr_offset
],
169 lm_info
->l_ld
= extract_typed_address (&lm
[lmo
->l_ld_offset
], ptr_type
);
170 lm_info
->l_next
= extract_typed_address (&lm
[lmo
->l_next_offset
],
172 lm_info
->l_prev
= extract_typed_address (&lm
[lmo
->l_prev_offset
],
174 lm_info
->l_name
= extract_typed_address (&lm
[lmo
->l_name_offset
],
178 do_cleanups (back_to
);
184 has_lm_dynamic_from_link_map (void)
186 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
188 return lmo
->l_ld_offset
>= 0;
192 lm_addr_check (const struct so_list
*so
, bfd
*abfd
)
194 if (!so
->lm_info
->l_addr_p
)
196 struct bfd_section
*dyninfo_sect
;
197 CORE_ADDR l_addr
, l_dynaddr
, dynaddr
;
199 l_addr
= so
->lm_info
->l_addr_inferior
;
201 if (! abfd
|| ! has_lm_dynamic_from_link_map ())
204 l_dynaddr
= so
->lm_info
->l_ld
;
206 dyninfo_sect
= bfd_get_section_by_name (abfd
, ".dynamic");
207 if (dyninfo_sect
== NULL
)
210 dynaddr
= bfd_section_vma (abfd
, dyninfo_sect
);
212 if (dynaddr
+ l_addr
!= l_dynaddr
)
214 CORE_ADDR align
= 0x1000;
215 CORE_ADDR minpagesize
= align
;
217 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
)
219 Elf_Internal_Ehdr
*ehdr
= elf_tdata (abfd
)->elf_header
;
220 Elf_Internal_Phdr
*phdr
= elf_tdata (abfd
)->phdr
;
225 for (i
= 0; i
< ehdr
->e_phnum
; i
++)
226 if (phdr
[i
].p_type
== PT_LOAD
&& phdr
[i
].p_align
> align
)
227 align
= phdr
[i
].p_align
;
229 minpagesize
= get_elf_backend_data (abfd
)->minpagesize
;
232 /* Turn it into a mask. */
235 /* If the changes match the alignment requirements, we
236 assume we're using a core file that was generated by the
237 same binary, just prelinked with a different base offset.
238 If it doesn't match, we may have a different binary, the
239 same binary with the dynamic table loaded at an unrelated
240 location, or anything, really. To avoid regressions,
241 don't adjust the base offset in the latter case, although
242 odds are that, if things really changed, debugging won't
245 One could expect more the condition
246 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
247 but the one below is relaxed for PPC. The PPC kernel supports
248 either 4k or 64k page sizes. To be prepared for 64k pages,
249 PPC ELF files are built using an alignment requirement of 64k.
250 However, when running on a kernel supporting 4k pages, the memory
251 mapping of the library may not actually happen on a 64k boundary!
253 (In the usual case where (l_addr & align) == 0, this check is
254 equivalent to the possibly expected check above.)
256 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
258 l_addr
= l_dynaddr
- dynaddr
;
260 if ((l_addr
& (minpagesize
- 1)) == 0
261 && (l_addr
& align
) == ((l_dynaddr
- dynaddr
) & align
))
264 printf_unfiltered (_("Using PIC (Position Independent Code) "
265 "prelink displacement %s for \"%s\".\n"),
266 paddress (target_gdbarch (), l_addr
),
271 /* There is no way to verify the library file matches. prelink
272 can during prelinking of an unprelinked file (or unprelinking
273 of a prelinked file) shift the DYNAMIC segment by arbitrary
274 offset without any page size alignment. There is no way to
275 find out the ELF header and/or Program Headers for a limited
276 verification if it they match. One could do a verification
277 of the DYNAMIC segment. Still the found address is the best
278 one GDB could find. */
280 warning (_(".dynamic section for \"%s\" "
281 "is not at the expected address "
282 "(wrong library or version mismatch?)"), so
->so_name
);
287 so
->lm_info
->l_addr
= l_addr
;
288 so
->lm_info
->l_addr_p
= 1;
291 return so
->lm_info
->l_addr
;
294 /* Per pspace SVR4 specific data. */
298 CORE_ADDR debug_base
; /* Base of dynamic linker structures. */
300 /* Validity flag for debug_loader_offset. */
301 int debug_loader_offset_p
;
303 /* Load address for the dynamic linker, inferred. */
304 CORE_ADDR debug_loader_offset
;
306 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
307 char *debug_loader_name
;
309 /* Load map address for the main executable. */
310 CORE_ADDR main_lm_addr
;
312 CORE_ADDR interp_text_sect_low
;
313 CORE_ADDR interp_text_sect_high
;
314 CORE_ADDR interp_plt_sect_low
;
315 CORE_ADDR interp_plt_sect_high
;
318 /* Per-program-space data key. */
319 static const struct program_space_data
*solib_svr4_pspace_data
;
322 svr4_pspace_data_cleanup (struct program_space
*pspace
, void *arg
)
324 struct svr4_info
*info
;
326 info
= program_space_data (pspace
, solib_svr4_pspace_data
);
330 /* Get the current svr4 data. If none is found yet, add it now. This
331 function always returns a valid object. */
333 static struct svr4_info
*
336 struct svr4_info
*info
;
338 info
= program_space_data (current_program_space
, solib_svr4_pspace_data
);
342 info
= XZALLOC (struct svr4_info
);
343 set_program_space_data (current_program_space
, solib_svr4_pspace_data
, info
);
347 /* Local function prototypes */
349 static int match_main (const char *);
351 /* Read program header TYPE from inferior memory. The header is found
352 by scanning the OS auxillary vector.
354 If TYPE == -1, return the program headers instead of the contents of
357 Return a pointer to allocated memory holding the program header contents,
358 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
359 size of those contents is returned to P_SECT_SIZE. Likewise, the target
360 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
363 read_program_header (int type
, int *p_sect_size
, int *p_arch_size
)
365 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
366 CORE_ADDR at_phdr
, at_phent
, at_phnum
, pt_phdr
= 0;
367 int arch_size
, sect_size
;
372 /* Get required auxv elements from target. */
373 if (target_auxv_search (¤t_target
, AT_PHDR
, &at_phdr
) <= 0)
375 if (target_auxv_search (¤t_target
, AT_PHENT
, &at_phent
) <= 0)
377 if (target_auxv_search (¤t_target
, AT_PHNUM
, &at_phnum
) <= 0)
379 if (!at_phdr
|| !at_phnum
)
382 /* Determine ELF architecture type. */
383 if (at_phent
== sizeof (Elf32_External_Phdr
))
385 else if (at_phent
== sizeof (Elf64_External_Phdr
))
390 /* Find the requested segment. */
394 sect_size
= at_phent
* at_phnum
;
396 else if (arch_size
== 32)
398 Elf32_External_Phdr phdr
;
401 /* Search for requested PHDR. */
402 for (i
= 0; i
< at_phnum
; i
++)
406 if (target_read_memory (at_phdr
+ i
* sizeof (phdr
),
407 (gdb_byte
*)&phdr
, sizeof (phdr
)))
410 p_type
= extract_unsigned_integer ((gdb_byte
*) phdr
.p_type
,
413 if (p_type
== PT_PHDR
)
416 pt_phdr
= extract_unsigned_integer ((gdb_byte
*) phdr
.p_vaddr
,
427 /* Retrieve address and size. */
428 sect_addr
= extract_unsigned_integer ((gdb_byte
*)phdr
.p_vaddr
,
430 sect_size
= extract_unsigned_integer ((gdb_byte
*)phdr
.p_memsz
,
435 Elf64_External_Phdr phdr
;
438 /* Search for requested PHDR. */
439 for (i
= 0; i
< at_phnum
; i
++)
443 if (target_read_memory (at_phdr
+ i
* sizeof (phdr
),
444 (gdb_byte
*)&phdr
, sizeof (phdr
)))
447 p_type
= extract_unsigned_integer ((gdb_byte
*) phdr
.p_type
,
450 if (p_type
== PT_PHDR
)
453 pt_phdr
= extract_unsigned_integer ((gdb_byte
*) phdr
.p_vaddr
,
464 /* Retrieve address and size. */
465 sect_addr
= extract_unsigned_integer ((gdb_byte
*)phdr
.p_vaddr
,
467 sect_size
= extract_unsigned_integer ((gdb_byte
*)phdr
.p_memsz
,
471 /* PT_PHDR is optional, but we really need it
472 for PIE to make this work in general. */
476 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
477 Relocation offset is the difference between the two. */
478 sect_addr
= sect_addr
+ (at_phdr
- pt_phdr
);
481 /* Read in requested program header. */
482 buf
= xmalloc (sect_size
);
483 if (target_read_memory (sect_addr
, buf
, sect_size
))
490 *p_arch_size
= arch_size
;
492 *p_sect_size
= sect_size
;
498 /* Return program interpreter string. */
500 find_program_interpreter (void)
502 gdb_byte
*buf
= NULL
;
504 /* If we have an exec_bfd, use its section table. */
506 && bfd_get_flavour (exec_bfd
) == bfd_target_elf_flavour
)
508 struct bfd_section
*interp_sect
;
510 interp_sect
= bfd_get_section_by_name (exec_bfd
, ".interp");
511 if (interp_sect
!= NULL
)
513 int sect_size
= bfd_section_size (exec_bfd
, interp_sect
);
515 buf
= xmalloc (sect_size
);
516 bfd_get_section_contents (exec_bfd
, interp_sect
, buf
, 0, sect_size
);
520 /* If we didn't find it, use the target auxillary vector. */
522 buf
= read_program_header (PT_INTERP
, NULL
, NULL
);
528 /* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
529 returned and the corresponding PTR is set. */
532 scan_dyntag (int dyntag
, bfd
*abfd
, CORE_ADDR
*ptr
)
534 int arch_size
, step
, sect_size
;
536 CORE_ADDR dyn_ptr
, dyn_addr
;
537 gdb_byte
*bufend
, *bufstart
, *buf
;
538 Elf32_External_Dyn
*x_dynp_32
;
539 Elf64_External_Dyn
*x_dynp_64
;
540 struct bfd_section
*sect
;
541 struct target_section
*target_section
;
546 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
549 arch_size
= bfd_get_arch_size (abfd
);
553 /* Find the start address of the .dynamic section. */
554 sect
= bfd_get_section_by_name (abfd
, ".dynamic");
558 for (target_section
= current_target_sections
->sections
;
559 target_section
< current_target_sections
->sections_end
;
561 if (sect
== target_section
->the_bfd_section
)
563 if (target_section
< current_target_sections
->sections_end
)
564 dyn_addr
= target_section
->addr
;
567 /* ABFD may come from OBJFILE acting only as a symbol file without being
568 loaded into the target (see add_symbol_file_command). This case is
569 such fallback to the file VMA address without the possibility of
570 having the section relocated to its actual in-memory address. */
572 dyn_addr
= bfd_section_vma (abfd
, sect
);
575 /* Read in .dynamic from the BFD. We will get the actual value
576 from memory later. */
577 sect_size
= bfd_section_size (abfd
, sect
);
578 buf
= bufstart
= alloca (sect_size
);
579 if (!bfd_get_section_contents (abfd
, sect
,
583 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
584 step
= (arch_size
== 32) ? sizeof (Elf32_External_Dyn
)
585 : sizeof (Elf64_External_Dyn
);
586 for (bufend
= buf
+ sect_size
;
592 x_dynp_32
= (Elf32_External_Dyn
*) buf
;
593 dyn_tag
= bfd_h_get_32 (abfd
, (bfd_byte
*) x_dynp_32
->d_tag
);
594 dyn_ptr
= bfd_h_get_32 (abfd
, (bfd_byte
*) x_dynp_32
->d_un
.d_ptr
);
598 x_dynp_64
= (Elf64_External_Dyn
*) buf
;
599 dyn_tag
= bfd_h_get_64 (abfd
, (bfd_byte
*) x_dynp_64
->d_tag
);
600 dyn_ptr
= bfd_h_get_64 (abfd
, (bfd_byte
*) x_dynp_64
->d_un
.d_ptr
);
602 if (dyn_tag
== DT_NULL
)
604 if (dyn_tag
== dyntag
)
606 /* If requested, try to read the runtime value of this .dynamic
610 struct type
*ptr_type
;
614 ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
615 ptr_addr
= dyn_addr
+ (buf
- bufstart
) + arch_size
/ 8;
616 if (target_read_memory (ptr_addr
, ptr_buf
, arch_size
/ 8) == 0)
617 dyn_ptr
= extract_typed_address (ptr_buf
, ptr_type
);
627 /* Scan for DYNTAG in .dynamic section of the target's main executable,
628 found by consulting the OS auxillary vector. If DYNTAG is found 1 is
629 returned and the corresponding PTR is set. */
632 scan_dyntag_auxv (int dyntag
, CORE_ADDR
*ptr
)
634 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
635 int sect_size
, arch_size
, step
;
638 gdb_byte
*bufend
, *bufstart
, *buf
;
640 /* Read in .dynamic section. */
641 buf
= bufstart
= read_program_header (PT_DYNAMIC
, §_size
, &arch_size
);
645 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
646 step
= (arch_size
== 32) ? sizeof (Elf32_External_Dyn
)
647 : sizeof (Elf64_External_Dyn
);
648 for (bufend
= buf
+ sect_size
;
654 Elf32_External_Dyn
*dynp
= (Elf32_External_Dyn
*) buf
;
656 dyn_tag
= extract_unsigned_integer ((gdb_byte
*) dynp
->d_tag
,
658 dyn_ptr
= extract_unsigned_integer ((gdb_byte
*) dynp
->d_un
.d_ptr
,
663 Elf64_External_Dyn
*dynp
= (Elf64_External_Dyn
*) buf
;
665 dyn_tag
= extract_unsigned_integer ((gdb_byte
*) dynp
->d_tag
,
667 dyn_ptr
= extract_unsigned_integer ((gdb_byte
*) dynp
->d_un
.d_ptr
,
670 if (dyn_tag
== DT_NULL
)
673 if (dyn_tag
== dyntag
)
687 /* Locate the base address of dynamic linker structs for SVR4 elf
690 For SVR4 elf targets the address of the dynamic linker's runtime
691 structure is contained within the dynamic info section in the
692 executable file. The dynamic section is also mapped into the
693 inferior address space. Because the runtime loader fills in the
694 real address before starting the inferior, we have to read in the
695 dynamic info section from the inferior address space.
696 If there are any errors while trying to find the address, we
697 silently return 0, otherwise the found address is returned. */
700 elf_locate_base (void)
702 struct minimal_symbol
*msymbol
;
705 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
706 instead of DT_DEBUG, although they sometimes contain an unused
708 if (scan_dyntag (DT_MIPS_RLD_MAP
, exec_bfd
, &dyn_ptr
)
709 || scan_dyntag_auxv (DT_MIPS_RLD_MAP
, &dyn_ptr
))
711 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
713 int pbuf_size
= TYPE_LENGTH (ptr_type
);
715 pbuf
= alloca (pbuf_size
);
716 /* DT_MIPS_RLD_MAP contains a pointer to the address
717 of the dynamic link structure. */
718 if (target_read_memory (dyn_ptr
, pbuf
, pbuf_size
))
720 return extract_typed_address (pbuf
, ptr_type
);
724 if (scan_dyntag (DT_DEBUG
, exec_bfd
, &dyn_ptr
)
725 || scan_dyntag_auxv (DT_DEBUG
, &dyn_ptr
))
728 /* This may be a static executable. Look for the symbol
729 conventionally named _r_debug, as a last resort. */
730 msymbol
= lookup_minimal_symbol ("_r_debug", NULL
, symfile_objfile
);
732 return SYMBOL_VALUE_ADDRESS (msymbol
);
734 /* DT_DEBUG entry not found. */
738 /* Locate the base address of dynamic linker structs.
740 For both the SunOS and SVR4 shared library implementations, if the
741 inferior executable has been linked dynamically, there is a single
742 address somewhere in the inferior's data space which is the key to
743 locating all of the dynamic linker's runtime structures. This
744 address is the value of the debug base symbol. The job of this
745 function is to find and return that address, or to return 0 if there
746 is no such address (the executable is statically linked for example).
748 For SunOS, the job is almost trivial, since the dynamic linker and
749 all of it's structures are statically linked to the executable at
750 link time. Thus the symbol for the address we are looking for has
751 already been added to the minimal symbol table for the executable's
752 objfile at the time the symbol file's symbols were read, and all we
753 have to do is look it up there. Note that we explicitly do NOT want
754 to find the copies in the shared library.
756 The SVR4 version is a bit more complicated because the address
757 is contained somewhere in the dynamic info section. We have to go
758 to a lot more work to discover the address of the debug base symbol.
759 Because of this complexity, we cache the value we find and return that
760 value on subsequent invocations. Note there is no copy in the
761 executable symbol tables. */
764 locate_base (struct svr4_info
*info
)
766 /* Check to see if we have a currently valid address, and if so, avoid
767 doing all this work again and just return the cached address. If
768 we have no cached address, try to locate it in the dynamic info
769 section for ELF executables. There's no point in doing any of this
770 though if we don't have some link map offsets to work with. */
772 if (info
->debug_base
== 0 && svr4_have_link_map_offsets ())
773 info
->debug_base
= elf_locate_base ();
774 return info
->debug_base
;
777 /* Find the first element in the inferior's dynamic link map, and
778 return its address in the inferior. Return zero if the address
779 could not be determined.
781 FIXME: Perhaps we should validate the info somehow, perhaps by
782 checking r_version for a known version number, or r_state for
786 solib_svr4_r_map (struct svr4_info
*info
)
788 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
789 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
791 volatile struct gdb_exception ex
;
793 TRY_CATCH (ex
, RETURN_MASK_ERROR
)
795 addr
= read_memory_typed_address (info
->debug_base
+ lmo
->r_map_offset
,
798 exception_print (gdb_stderr
, ex
);
802 /* Find r_brk from the inferior's debug base. */
805 solib_svr4_r_brk (struct svr4_info
*info
)
807 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
808 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
810 return read_memory_typed_address (info
->debug_base
+ lmo
->r_brk_offset
,
814 /* Find the link map for the dynamic linker (if it is not in the
815 normal list of loaded shared objects). */
818 solib_svr4_r_ldsomap (struct svr4_info
*info
)
820 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
821 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
822 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
825 /* Check version, and return zero if `struct r_debug' doesn't have
826 the r_ldsomap member. */
828 = read_memory_unsigned_integer (info
->debug_base
+ lmo
->r_version_offset
,
829 lmo
->r_version_size
, byte_order
);
830 if (version
< 2 || lmo
->r_ldsomap_offset
== -1)
833 return read_memory_typed_address (info
->debug_base
+ lmo
->r_ldsomap_offset
,
837 /* On Solaris systems with some versions of the dynamic linker,
838 ld.so's l_name pointer points to the SONAME in the string table
839 rather than into writable memory. So that GDB can find shared
840 libraries when loading a core file generated by gcore, ensure that
841 memory areas containing the l_name string are saved in the core
845 svr4_keep_data_in_core (CORE_ADDR vaddr
, unsigned long size
)
847 struct svr4_info
*info
;
850 struct cleanup
*old_chain
;
853 info
= get_svr4_info ();
855 info
->debug_base
= 0;
857 if (!info
->debug_base
)
860 ldsomap
= solib_svr4_r_ldsomap (info
);
864 new = XZALLOC (struct so_list
);
865 old_chain
= make_cleanup (xfree
, new);
866 new->lm_info
= lm_info_read (ldsomap
);
867 make_cleanup (xfree
, new->lm_info
);
868 name_lm
= new->lm_info
? new->lm_info
->l_name
: 0;
869 do_cleanups (old_chain
);
871 return (name_lm
>= vaddr
&& name_lm
< vaddr
+ size
);
874 /* Implement the "open_symbol_file_object" target_so_ops method.
876 If no open symbol file, attempt to locate and open the main symbol
877 file. On SVR4 systems, this is the first link map entry. If its
878 name is here, we can open it. Useful when attaching to a process
879 without first loading its symbol file. */
882 open_symbol_file_object (void *from_ttyp
)
884 CORE_ADDR lm
, l_name
;
887 int from_tty
= *(int *)from_ttyp
;
888 struct link_map_offsets
*lmo
= svr4_fetch_link_map_offsets ();
889 struct type
*ptr_type
= builtin_type (target_gdbarch ())->builtin_data_ptr
;
890 int l_name_size
= TYPE_LENGTH (ptr_type
);
891 gdb_byte
*l_name_buf
= xmalloc (l_name_size
);
892 struct cleanup
*cleanups
= make_cleanup (xfree
, l_name_buf
);
893 struct svr4_info
*info
= get_svr4_info ();
896 if (!query (_("Attempt to reload symbols from process? ")))
898 do_cleanups (cleanups
);
902 /* Always locate the debug struct, in case it has moved. */
903 info
->debug_base
= 0;
904 if (locate_base (info
) == 0)
906 do_cleanups (cleanups
);
907 return 0; /* failed somehow... */
910 /* First link map member should be the executable. */
911 lm
= solib_svr4_r_map (info
);
914 do_cleanups (cleanups
);
915 return 0; /* failed somehow... */
918 /* Read address of name from target memory to GDB. */
919 read_memory (lm
+ lmo
->l_name_offset
, l_name_buf
, l_name_size
);
921 /* Convert the address to host format. */
922 l_name
= extract_typed_address (l_name_buf
, ptr_type
);
926 do_cleanups (cleanups
);
927 return 0; /* No filename. */
930 /* Now fetch the filename from target memory. */
931 target_read_string (l_name
, &filename
, SO_NAME_MAX_PATH_SIZE
- 1, &errcode
);
932 make_cleanup (xfree
, filename
);
936 warning (_("failed to read exec filename from attached file: %s"),
937 safe_strerror (errcode
));
938 do_cleanups (cleanups
);
942 /* Have a pathname: read the symbol file. */
943 symbol_file_add_main (filename
, from_tty
);
945 do_cleanups (cleanups
);
949 /* Data exchange structure for the XML parser as returned by
950 svr4_current_sos_via_xfer_libraries. */
952 struct svr4_library_list
954 struct so_list
*head
, **tailp
;
956 /* Inferior address of struct link_map used for the main executable. It is
957 NULL if not known. */
961 /* Implementation for target_so_ops.free_so. */
964 svr4_free_so (struct so_list
*so
)
969 /* Free so_list built so far (called via cleanup). */
972 svr4_free_library_list (void *p_list
)
974 struct so_list
*list
= *(struct so_list
**) p_list
;
978 struct so_list
*next
= list
->next
;
987 #include "xml-support.h"
989 /* Handle the start of a <library> element. Note: new elements are added
990 at the tail of the list, keeping the list in order. */
993 library_list_start_library (struct gdb_xml_parser
*parser
,
994 const struct gdb_xml_element
*element
,
995 void *user_data
, VEC(gdb_xml_value_s
) *attributes
)
997 struct svr4_library_list
*list
= user_data
;
998 const char *name
= xml_find_attribute (attributes
, "name")->value
;
999 ULONGEST
*lmp
= xml_find_attribute (attributes
, "lm")->value
;
1000 ULONGEST
*l_addrp
= xml_find_attribute (attributes
, "l_addr")->value
;
1001 ULONGEST
*l_ldp
= xml_find_attribute (attributes
, "l_ld")->value
;
1002 struct so_list
*new_elem
;
1004 new_elem
= XZALLOC (struct so_list
);
1005 new_elem
->lm_info
= XZALLOC (struct lm_info
);
1006 new_elem
->lm_info
->lm_addr
= *lmp
;
1007 new_elem
->lm_info
->l_addr_inferior
= *l_addrp
;
1008 new_elem
->lm_info
->l_ld
= *l_ldp
;
1010 strncpy (new_elem
->so_name
, name
, sizeof (new_elem
->so_name
) - 1);
1011 new_elem
->so_name
[sizeof (new_elem
->so_name
) - 1] = 0;
1012 strcpy (new_elem
->so_original_name
, new_elem
->so_name
);
1014 *list
->tailp
= new_elem
;
1015 list
->tailp
= &new_elem
->next
;
1018 /* Handle the start of a <library-list-svr4> element. */
1021 svr4_library_list_start_list (struct gdb_xml_parser
*parser
,
1022 const struct gdb_xml_element
*element
,
1023 void *user_data
, VEC(gdb_xml_value_s
) *attributes
)
1025 struct svr4_library_list
*list
= user_data
;
1026 const char *version
= xml_find_attribute (attributes
, "version")->value
;
1027 struct gdb_xml_value
*main_lm
= xml_find_attribute (attributes
, "main-lm");
1029 if (strcmp (version
, "1.0") != 0)
1030 gdb_xml_error (parser
,
1031 _("SVR4 Library list has unsupported version \"%s\""),
1035 list
->main_lm
= *(ULONGEST
*) main_lm
->value
;
1038 /* The allowed elements and attributes for an XML library list.
1039 The root element is a <library-list>. */
1041 static const struct gdb_xml_attribute svr4_library_attributes
[] =
1043 { "name", GDB_XML_AF_NONE
, NULL
, NULL
},
1044 { "lm", GDB_XML_AF_NONE
, gdb_xml_parse_attr_ulongest
, NULL
},
1045 { "l_addr", GDB_XML_AF_NONE
, gdb_xml_parse_attr_ulongest
, NULL
},
1046 { "l_ld", GDB_XML_AF_NONE
, gdb_xml_parse_attr_ulongest
, NULL
},
1047 { NULL
, GDB_XML_AF_NONE
, NULL
, NULL
}
1050 static const struct gdb_xml_element svr4_library_list_children
[] =
1053 "library", svr4_library_attributes
, NULL
,
1054 GDB_XML_EF_REPEATABLE
| GDB_XML_EF_OPTIONAL
,
1055 library_list_start_library
, NULL
1057 { NULL
, NULL
, NULL
, GDB_XML_EF_NONE
, NULL
, NULL
}
1060 static const struct gdb_xml_attribute svr4_library_list_attributes
[] =
1062 { "version", GDB_XML_AF_NONE
, NULL
, NULL
},
1063 { "main-lm", GDB_XML_AF_OPTIONAL
, gdb_xml_parse_attr_ulongest
, NULL
},
1064 { NULL
, GDB_XML_AF_NONE
, NULL
, NULL
}
1067 static const struct gdb_xml_element svr4_library_list_elements
[] =
1069 { "library-list-svr4", svr4_library_list_attributes
, svr4_library_list_children
,
1070 GDB_XML_EF_NONE
, svr4_library_list_start_list
, NULL
},
1071 { NULL
, NULL
, NULL
, GDB_XML_EF_NONE
, NULL
, NULL
}
1074 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1076 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1077 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1078 empty, caller is responsible for freeing all its entries. */
1081 svr4_parse_libraries (const char *document
, struct svr4_library_list
*list
)
1083 struct cleanup
*back_to
= make_cleanup (svr4_free_library_list
,
1086 memset (list
, 0, sizeof (*list
));
1087 list
->tailp
= &list
->head
;
1088 if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1089 svr4_library_list_elements
, document
, list
) == 0)
1091 /* Parsed successfully, keep the result. */
1092 discard_cleanups (back_to
);
1096 do_cleanups (back_to
);
1100 /* Attempt to get so_list from target via qXfer:libraries:read packet.
1102 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1103 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1104 empty, caller is responsible for freeing all its entries. */
1107 svr4_current_sos_via_xfer_libraries (struct svr4_library_list
*list
)
1109 char *svr4_library_document
;
1111 struct cleanup
*back_to
;
1113 /* Fetch the list of shared libraries. */
1114 svr4_library_document
= target_read_stralloc (¤t_target
,
1115 TARGET_OBJECT_LIBRARIES_SVR4
,
1117 if (svr4_library_document
== NULL
)
1120 back_to
= make_cleanup (xfree
, svr4_library_document
);
1121 result
= svr4_parse_libraries (svr4_library_document
, list
);
1122 do_cleanups (back_to
);
1130 svr4_current_sos_via_xfer_libraries (struct svr4_library_list
*list
)
1137 /* If no shared library information is available from the dynamic
1138 linker, build a fallback list from other sources. */
1140 static struct so_list
*
1141 svr4_default_sos (void)
1143 struct svr4_info
*info
= get_svr4_info ();
1144 struct so_list
*new;
1146 if (!info
->debug_loader_offset_p
)
1149 new = XZALLOC (struct so_list
);
1151 new->lm_info
= xzalloc (sizeof (struct lm_info
));
1153 /* Nothing will ever check the other fields if we set l_addr_p. */
1154 new->lm_info
->l_addr
= info
->debug_loader_offset
;
1155 new->lm_info
->l_addr_p
= 1;
1157 strncpy (new->so_name
, info
->debug_loader_name
, SO_NAME_MAX_PATH_SIZE
- 1);
1158 new->so_name
[SO_NAME_MAX_PATH_SIZE
- 1] = '\0';
1159 strcpy (new->so_original_name
, new->so_name
);
1164 /* Read the whole inferior libraries chain starting at address LM. Add the
1165 entries to the tail referenced by LINK_PTR_PTR. Ignore the first entry if
1166 IGNORE_FIRST and set global MAIN_LM_ADDR according to it. */
1169 svr4_read_so_list (CORE_ADDR lm
, struct so_list
***link_ptr_ptr
,
1172 CORE_ADDR prev_lm
= 0, next_lm
;
1174 for (; lm
!= 0; prev_lm
= lm
, lm
= next_lm
)
1176 struct so_list
*new;
1177 struct cleanup
*old_chain
;
1181 new = XZALLOC (struct so_list
);
1182 old_chain
= make_cleanup_free_so (new);
1184 new->lm_info
= lm_info_read (lm
);
1185 if (new->lm_info
== NULL
)
1187 do_cleanups (old_chain
);
1191 next_lm
= new->lm_info
->l_next
;
1193 if (new->lm_info
->l_prev
!= prev_lm
)
1195 warning (_("Corrupted shared library list: %s != %s"),
1196 paddress (target_gdbarch (), prev_lm
),
1197 paddress (target_gdbarch (), new->lm_info
->l_prev
));
1198 do_cleanups (old_chain
);
1202 /* For SVR4 versions, the first entry in the link map is for the
1203 inferior executable, so we must ignore it. For some versions of
1204 SVR4, it has no name. For others (Solaris 2.3 for example), it
1205 does have a name, so we can no longer use a missing name to
1206 decide when to ignore it. */
1207 if (ignore_first
&& new->lm_info
->l_prev
== 0)
1209 struct svr4_info
*info
= get_svr4_info ();
1211 info
->main_lm_addr
= new->lm_info
->lm_addr
;
1212 do_cleanups (old_chain
);
1216 /* Extract this shared object's name. */
1217 target_read_string (new->lm_info
->l_name
, &buffer
,
1218 SO_NAME_MAX_PATH_SIZE
- 1, &errcode
);
1221 warning (_("Can't read pathname for load map: %s."),
1222 safe_strerror (errcode
));
1223 do_cleanups (old_chain
);
1227 strncpy (new->so_name
, buffer
, SO_NAME_MAX_PATH_SIZE
- 1);
1228 new->so_name
[SO_NAME_MAX_PATH_SIZE
- 1] = '\0';
1229 strcpy (new->so_original_name
, new->so_name
);
1232 /* If this entry has no name, or its name matches the name
1233 for the main executable, don't include it in the list. */
1234 if (! new->so_name
[0] || match_main (new->so_name
))
1236 do_cleanups (old_chain
);
1240 discard_cleanups (old_chain
);
1242 **link_ptr_ptr
= new;
1243 *link_ptr_ptr
= &new->next
;
1247 /* Implement the "current_sos" target_so_ops method. */
1249 static struct so_list
*
1250 svr4_current_sos (void)
1253 struct so_list
*head
= NULL
;
1254 struct so_list
**link_ptr
= &head
;
1255 struct svr4_info
*info
;
1256 struct cleanup
*back_to
;
1258 struct svr4_library_list library_list
;
1260 /* Fall back to manual examination of the target if the packet is not
1261 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1262 tests a case where gdbserver cannot find the shared libraries list while
1263 GDB itself is able to find it via SYMFILE_OBJFILE.
1265 Unfortunately statically linked inferiors will also fall back through this
1266 suboptimal code path. */
1268 if (svr4_current_sos_via_xfer_libraries (&library_list
))
1270 if (library_list
.main_lm
)
1272 info
= get_svr4_info ();
1273 info
->main_lm_addr
= library_list
.main_lm
;
1276 return library_list
.head
? library_list
.head
: svr4_default_sos ();
1279 info
= get_svr4_info ();
1281 /* Always locate the debug struct, in case it has moved. */
1282 info
->debug_base
= 0;
1285 /* If we can't find the dynamic linker's base structure, this
1286 must not be a dynamically linked executable. Hmm. */
1287 if (! info
->debug_base
)
1288 return svr4_default_sos ();
1290 /* Assume that everything is a library if the dynamic loader was loaded
1291 late by a static executable. */
1292 if (exec_bfd
&& bfd_get_section_by_name (exec_bfd
, ".dynamic") == NULL
)
1297 back_to
= make_cleanup (svr4_free_library_list
, &head
);
1299 /* Walk the inferior's link map list, and build our list of
1300 `struct so_list' nodes. */
1301 lm
= solib_svr4_r_map (info
);
1303 svr4_read_so_list (lm
, &link_ptr
, ignore_first
);
1305 /* On Solaris, the dynamic linker is not in the normal list of
1306 shared objects, so make sure we pick it up too. Having
1307 symbol information for the dynamic linker is quite crucial
1308 for skipping dynamic linker resolver code. */
1309 lm
= solib_svr4_r_ldsomap (info
);
1311 svr4_read_so_list (lm
, &link_ptr
, 0);
1313 discard_cleanups (back_to
);
1316 return svr4_default_sos ();
1321 /* Get the address of the link_map for a given OBJFILE. */
1324 svr4_fetch_objfile_link_map (struct objfile
*objfile
)
1327 struct svr4_info
*info
= get_svr4_info ();
1329 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1330 if (info
->main_lm_addr
== 0)
1331 solib_add (NULL
, 0, ¤t_target
, auto_solib_add
);
1333 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1334 if (objfile
== symfile_objfile
)
1335 return info
->main_lm_addr
;
1337 /* The other link map addresses may be found by examining the list
1338 of shared libraries. */
1339 for (so
= master_so_list (); so
; so
= so
->next
)
1340 if (so
->objfile
== objfile
)
1341 return so
->lm_info
->lm_addr
;
1347 /* On some systems, the only way to recognize the link map entry for
1348 the main executable file is by looking at its name. Return
1349 non-zero iff SONAME matches one of the known main executable names. */
1352 match_main (const char *soname
)
1354 const char * const *mainp
;
1356 for (mainp
= main_name_list
; *mainp
!= NULL
; mainp
++)
1358 if (strcmp (soname
, *mainp
) == 0)
1365 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1366 SVR4 run time loader. */
1369 svr4_in_dynsym_resolve_code (CORE_ADDR pc
)
1371 struct svr4_info
*info
= get_svr4_info ();
1373 return ((pc
>= info
->interp_text_sect_low
1374 && pc
< info
->interp_text_sect_high
)
1375 || (pc
>= info
->interp_plt_sect_low
1376 && pc
< info
->interp_plt_sect_high
)
1377 || in_plt_section (pc
, NULL
)
1378 || in_gnu_ifunc_stub (pc
));
1381 /* Given an executable's ABFD and target, compute the entry-point
1385 exec_entry_point (struct bfd
*abfd
, struct target_ops
*targ
)
1389 /* KevinB wrote ... for most targets, the address returned by
1390 bfd_get_start_address() is the entry point for the start
1391 function. But, for some targets, bfd_get_start_address() returns
1392 the address of a function descriptor from which the entry point
1393 address may be extracted. This address is extracted by
1394 gdbarch_convert_from_func_ptr_addr(). The method
1395 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1396 function for targets which don't use function descriptors. */
1397 addr
= gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1398 bfd_get_start_address (abfd
),
1400 return gdbarch_addr_bits_remove (target_gdbarch (), addr
);
1403 /* Helper function for gdb_bfd_lookup_symbol. */
1406 cmp_name_and_sec_flags (asymbol
*sym
, void *data
)
1408 return (strcmp (sym
->name
, (const char *) data
) == 0
1409 && (sym
->section
->flags
& (SEC_CODE
| SEC_DATA
)) != 0);
1411 /* Arrange for dynamic linker to hit breakpoint.
1413 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1414 debugger interface, support for arranging for the inferior to hit
1415 a breakpoint after mapping in the shared libraries. This function
1416 enables that breakpoint.
1418 For SunOS, there is a special flag location (in_debugger) which we
1419 set to 1. When the dynamic linker sees this flag set, it will set
1420 a breakpoint at a location known only to itself, after saving the
1421 original contents of that place and the breakpoint address itself,
1422 in it's own internal structures. When we resume the inferior, it
1423 will eventually take a SIGTRAP when it runs into the breakpoint.
1424 We handle this (in a different place) by restoring the contents of
1425 the breakpointed location (which is only known after it stops),
1426 chasing around to locate the shared libraries that have been
1427 loaded, then resuming.
1429 For SVR4, the debugger interface structure contains a member (r_brk)
1430 which is statically initialized at the time the shared library is
1431 built, to the offset of a function (_r_debug_state) which is guaran-
1432 teed to be called once before mapping in a library, and again when
1433 the mapping is complete. At the time we are examining this member,
1434 it contains only the unrelocated offset of the function, so we have
1435 to do our own relocation. Later, when the dynamic linker actually
1436 runs, it relocates r_brk to be the actual address of _r_debug_state().
1438 The debugger interface structure also contains an enumeration which
1439 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1440 depending upon whether or not the library is being mapped or unmapped,
1441 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
1444 enable_break (struct svr4_info
*info
, int from_tty
)
1446 struct minimal_symbol
*msymbol
;
1447 const char * const *bkpt_namep
;
1448 asection
*interp_sect
;
1449 gdb_byte
*interp_name
;
1452 info
->interp_text_sect_low
= info
->interp_text_sect_high
= 0;
1453 info
->interp_plt_sect_low
= info
->interp_plt_sect_high
= 0;
1455 /* If we already have a shared library list in the target, and
1456 r_debug contains r_brk, set the breakpoint there - this should
1457 mean r_brk has already been relocated. Assume the dynamic linker
1458 is the object containing r_brk. */
1460 solib_add (NULL
, from_tty
, ¤t_target
, auto_solib_add
);
1462 if (info
->debug_base
&& solib_svr4_r_map (info
) != 0)
1463 sym_addr
= solib_svr4_r_brk (info
);
1467 struct obj_section
*os
;
1469 sym_addr
= gdbarch_addr_bits_remove
1470 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1474 /* On at least some versions of Solaris there's a dynamic relocation
1475 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1476 we get control before the dynamic linker has self-relocated.
1477 Check if SYM_ADDR is in a known section, if it is assume we can
1478 trust its value. This is just a heuristic though, it could go away
1479 or be replaced if it's getting in the way.
1481 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1482 however it's spelled in your particular system) is ARM or Thumb.
1483 That knowledge is encoded in the address, if it's Thumb the low bit
1484 is 1. However, we've stripped that info above and it's not clear
1485 what all the consequences are of passing a non-addr_bits_remove'd
1486 address to create_solib_event_breakpoint. The call to
1487 find_pc_section verifies we know about the address and have some
1488 hope of computing the right kind of breakpoint to use (via
1489 symbol info). It does mean that GDB needs to be pointed at a
1490 non-stripped version of the dynamic linker in order to obtain
1491 information it already knows about. Sigh. */
1493 os
= find_pc_section (sym_addr
);
1496 /* Record the relocated start and end address of the dynamic linker
1497 text and plt section for svr4_in_dynsym_resolve_code. */
1499 CORE_ADDR load_addr
;
1501 tmp_bfd
= os
->objfile
->obfd
;
1502 load_addr
= ANOFFSET (os
->objfile
->section_offsets
,
1503 SECT_OFF_TEXT (os
->objfile
));
1505 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".text");
1508 info
->interp_text_sect_low
=
1509 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
1510 info
->interp_text_sect_high
=
1511 info
->interp_text_sect_low
1512 + bfd_section_size (tmp_bfd
, interp_sect
);
1514 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".plt");
1517 info
->interp_plt_sect_low
=
1518 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
1519 info
->interp_plt_sect_high
=
1520 info
->interp_plt_sect_low
1521 + bfd_section_size (tmp_bfd
, interp_sect
);
1524 create_solib_event_breakpoint (target_gdbarch (), sym_addr
);
1529 /* Find the program interpreter; if not found, warn the user and drop
1530 into the old breakpoint at symbol code. */
1531 interp_name
= find_program_interpreter ();
1534 CORE_ADDR load_addr
= 0;
1535 int load_addr_found
= 0;
1536 int loader_found_in_list
= 0;
1538 bfd
*tmp_bfd
= NULL
;
1539 struct target_ops
*tmp_bfd_target
;
1540 volatile struct gdb_exception ex
;
1544 /* Now we need to figure out where the dynamic linker was
1545 loaded so that we can load its symbols and place a breakpoint
1546 in the dynamic linker itself.
1548 This address is stored on the stack. However, I've been unable
1549 to find any magic formula to find it for Solaris (appears to
1550 be trivial on GNU/Linux). Therefore, we have to try an alternate
1551 mechanism to find the dynamic linker's base address. */
1553 TRY_CATCH (ex
, RETURN_MASK_ALL
)
1555 tmp_bfd
= solib_bfd_open (interp_name
);
1557 if (tmp_bfd
== NULL
)
1558 goto bkpt_at_symbol
;
1560 /* Now convert the TMP_BFD into a target. That way target, as
1561 well as BFD operations can be used. */
1562 tmp_bfd_target
= target_bfd_reopen (tmp_bfd
);
1563 /* target_bfd_reopen acquired its own reference, so we can
1564 release ours now. */
1565 gdb_bfd_unref (tmp_bfd
);
1567 /* On a running target, we can get the dynamic linker's base
1568 address from the shared library table. */
1569 so
= master_so_list ();
1572 if (svr4_same_1 (interp_name
, so
->so_original_name
))
1574 load_addr_found
= 1;
1575 loader_found_in_list
= 1;
1576 load_addr
= lm_addr_check (so
, tmp_bfd
);
1582 /* If we were not able to find the base address of the loader
1583 from our so_list, then try using the AT_BASE auxilliary entry. */
1584 if (!load_addr_found
)
1585 if (target_auxv_search (¤t_target
, AT_BASE
, &load_addr
) > 0)
1587 int addr_bit
= gdbarch_addr_bit (target_gdbarch ());
1589 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1590 that `+ load_addr' will overflow CORE_ADDR width not creating
1591 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1594 if (addr_bit
< (sizeof (CORE_ADDR
) * HOST_CHAR_BIT
))
1596 CORE_ADDR space_size
= (CORE_ADDR
) 1 << addr_bit
;
1597 CORE_ADDR tmp_entry_point
= exec_entry_point (tmp_bfd
,
1600 gdb_assert (load_addr
< space_size
);
1602 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1603 64bit ld.so with 32bit executable, it should not happen. */
1605 if (tmp_entry_point
< space_size
1606 && tmp_entry_point
+ load_addr
>= space_size
)
1607 load_addr
-= space_size
;
1610 load_addr_found
= 1;
1613 /* Otherwise we find the dynamic linker's base address by examining
1614 the current pc (which should point at the entry point for the
1615 dynamic linker) and subtracting the offset of the entry point.
1617 This is more fragile than the previous approaches, but is a good
1618 fallback method because it has actually been working well in
1620 if (!load_addr_found
)
1622 struct regcache
*regcache
1623 = get_thread_arch_regcache (inferior_ptid
, target_gdbarch ());
1625 load_addr
= (regcache_read_pc (regcache
)
1626 - exec_entry_point (tmp_bfd
, tmp_bfd_target
));
1629 if (!loader_found_in_list
)
1631 info
->debug_loader_name
= xstrdup (interp_name
);
1632 info
->debug_loader_offset_p
= 1;
1633 info
->debug_loader_offset
= load_addr
;
1634 solib_add (NULL
, from_tty
, ¤t_target
, auto_solib_add
);
1637 /* Record the relocated start and end address of the dynamic linker
1638 text and plt section for svr4_in_dynsym_resolve_code. */
1639 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".text");
1642 info
->interp_text_sect_low
=
1643 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
1644 info
->interp_text_sect_high
=
1645 info
->interp_text_sect_low
1646 + bfd_section_size (tmp_bfd
, interp_sect
);
1648 interp_sect
= bfd_get_section_by_name (tmp_bfd
, ".plt");
1651 info
->interp_plt_sect_low
=
1652 bfd_section_vma (tmp_bfd
, interp_sect
) + load_addr
;
1653 info
->interp_plt_sect_high
=
1654 info
->interp_plt_sect_low
1655 + bfd_section_size (tmp_bfd
, interp_sect
);
1658 /* Now try to set a breakpoint in the dynamic linker. */
1659 for (bkpt_namep
= solib_break_names
; *bkpt_namep
!= NULL
; bkpt_namep
++)
1661 sym_addr
= gdb_bfd_lookup_symbol (tmp_bfd
, cmp_name_and_sec_flags
,
1662 (void *) *bkpt_namep
);
1668 /* Convert 'sym_addr' from a function pointer to an address.
1669 Because we pass tmp_bfd_target instead of the current
1670 target, this will always produce an unrelocated value. */
1671 sym_addr
= gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1675 /* We're done with both the temporary bfd and target. Closing
1676 the target closes the underlying bfd, because it holds the
1677 only remaining reference. */
1678 target_close (tmp_bfd_target
);
1682 create_solib_event_breakpoint (target_gdbarch (), load_addr
+ sym_addr
);
1683 xfree (interp_name
);
1687 /* For whatever reason we couldn't set a breakpoint in the dynamic
1688 linker. Warn and drop into the old code. */
1690 xfree (interp_name
);
1691 warning (_("Unable to find dynamic linker breakpoint function.\n"
1692 "GDB will be unable to debug shared library initializers\n"
1693 "and track explicitly loaded dynamic code."));
1696 /* Scan through the lists of symbols, trying to look up the symbol and
1697 set a breakpoint there. Terminate loop when we/if we succeed. */
1699 for (bkpt_namep
= solib_break_names
; *bkpt_namep
!= NULL
; bkpt_namep
++)
1701 msymbol
= lookup_minimal_symbol (*bkpt_namep
, NULL
, symfile_objfile
);
1702 if ((msymbol
!= NULL
) && (SYMBOL_VALUE_ADDRESS (msymbol
) != 0))
1704 sym_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
1705 sym_addr
= gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1708 create_solib_event_breakpoint (target_gdbarch (), sym_addr
);
1713 if (interp_name
!= NULL
&& !current_inferior ()->attach_flag
)
1715 for (bkpt_namep
= bkpt_names
; *bkpt_namep
!= NULL
; bkpt_namep
++)
1717 msymbol
= lookup_minimal_symbol (*bkpt_namep
, NULL
, symfile_objfile
);
1718 if ((msymbol
!= NULL
) && (SYMBOL_VALUE_ADDRESS (msymbol
) != 0))
1720 sym_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
1721 sym_addr
= gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1724 create_solib_event_breakpoint (target_gdbarch (), sym_addr
);
1732 /* Implement the "special_symbol_handling" target_so_ops method. */
1735 svr4_special_symbol_handling (void)
1737 /* Nothing to do. */
1740 /* Read the ELF program headers from ABFD. Return the contents and
1741 set *PHDRS_SIZE to the size of the program headers. */
1744 read_program_headers_from_bfd (bfd
*abfd
, int *phdrs_size
)
1746 Elf_Internal_Ehdr
*ehdr
;
1749 ehdr
= elf_elfheader (abfd
);
1751 *phdrs_size
= ehdr
->e_phnum
* ehdr
->e_phentsize
;
1752 if (*phdrs_size
== 0)
1755 buf
= xmalloc (*phdrs_size
);
1756 if (bfd_seek (abfd
, ehdr
->e_phoff
, SEEK_SET
) != 0
1757 || bfd_bread (buf
, *phdrs_size
, abfd
) != *phdrs_size
)
1766 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1767 exec_bfd. Otherwise return 0.
1769 We relocate all of the sections by the same amount. This
1770 behavior is mandated by recent editions of the System V ABI.
1771 According to the System V Application Binary Interface,
1772 Edition 4.1, page 5-5:
1774 ... Though the system chooses virtual addresses for
1775 individual processes, it maintains the segments' relative
1776 positions. Because position-independent code uses relative
1777 addressesing between segments, the difference between
1778 virtual addresses in memory must match the difference
1779 between virtual addresses in the file. The difference
1780 between the virtual address of any segment in memory and
1781 the corresponding virtual address in the file is thus a
1782 single constant value for any one executable or shared
1783 object in a given process. This difference is the base
1784 address. One use of the base address is to relocate the
1785 memory image of the program during dynamic linking.
1787 The same language also appears in Edition 4.0 of the System V
1788 ABI and is left unspecified in some of the earlier editions.
1790 Decide if the objfile needs to be relocated. As indicated above, we will
1791 only be here when execution is stopped. But during attachment PC can be at
1792 arbitrary address therefore regcache_read_pc can be misleading (contrary to
1793 the auxv AT_ENTRY value). Moreover for executable with interpreter section
1794 regcache_read_pc would point to the interpreter and not the main executable.
1796 So, to summarize, relocations are necessary when the start address obtained
1797 from the executable is different from the address in auxv AT_ENTRY entry.
1799 [ The astute reader will note that we also test to make sure that
1800 the executable in question has the DYNAMIC flag set. It is my
1801 opinion that this test is unnecessary (undesirable even). It
1802 was added to avoid inadvertent relocation of an executable
1803 whose e_type member in the ELF header is not ET_DYN. There may
1804 be a time in the future when it is desirable to do relocations
1805 on other types of files as well in which case this condition
1806 should either be removed or modified to accomodate the new file
1807 type. - Kevin, Nov 2000. ] */
1810 svr4_exec_displacement (CORE_ADDR
*displacementp
)
1812 /* ENTRY_POINT is a possible function descriptor - before
1813 a call to gdbarch_convert_from_func_ptr_addr. */
1814 CORE_ADDR entry_point
, displacement
;
1816 if (exec_bfd
== NULL
)
1819 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
1820 being executed themselves and PIE (Position Independent Executable)
1821 executables are ET_DYN. */
1823 if ((bfd_get_file_flags (exec_bfd
) & DYNAMIC
) == 0)
1826 if (target_auxv_search (¤t_target
, AT_ENTRY
, &entry_point
) <= 0)
1829 displacement
= entry_point
- bfd_get_start_address (exec_bfd
);
1831 /* Verify the DISPLACEMENT candidate complies with the required page
1832 alignment. It is cheaper than the program headers comparison below. */
1834 if (bfd_get_flavour (exec_bfd
) == bfd_target_elf_flavour
)
1836 const struct elf_backend_data
*elf
= get_elf_backend_data (exec_bfd
);
1838 /* p_align of PT_LOAD segments does not specify any alignment but
1839 only congruency of addresses:
1840 p_offset % p_align == p_vaddr % p_align
1841 Kernel is free to load the executable with lower alignment. */
1843 if ((displacement
& (elf
->minpagesize
- 1)) != 0)
1847 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1848 comparing their program headers. If the program headers in the auxilliary
1849 vector do not match the program headers in the executable, then we are
1850 looking at a different file than the one used by the kernel - for
1851 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
1853 if (bfd_get_flavour (exec_bfd
) == bfd_target_elf_flavour
)
1855 /* Be optimistic and clear OK only if GDB was able to verify the headers
1856 really do not match. */
1857 int phdrs_size
, phdrs2_size
, ok
= 1;
1858 gdb_byte
*buf
, *buf2
;
1861 buf
= read_program_header (-1, &phdrs_size
, &arch_size
);
1862 buf2
= read_program_headers_from_bfd (exec_bfd
, &phdrs2_size
);
1863 if (buf
!= NULL
&& buf2
!= NULL
)
1865 enum bfd_endian byte_order
= gdbarch_byte_order (target_gdbarch ());
1867 /* We are dealing with three different addresses. EXEC_BFD
1868 represents current address in on-disk file. target memory content
1869 may be different from EXEC_BFD as the file may have been prelinked
1870 to a different address after the executable has been loaded.
1871 Moreover the address of placement in target memory can be
1872 different from what the program headers in target memory say -
1873 this is the goal of PIE.
1875 Detected DISPLACEMENT covers both the offsets of PIE placement and
1876 possible new prelink performed after start of the program. Here
1877 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1878 content offset for the verification purpose. */
1880 if (phdrs_size
!= phdrs2_size
1881 || bfd_get_arch_size (exec_bfd
) != arch_size
)
1883 else if (arch_size
== 32
1884 && phdrs_size
>= sizeof (Elf32_External_Phdr
)
1885 && phdrs_size
% sizeof (Elf32_External_Phdr
) == 0)
1887 Elf_Internal_Ehdr
*ehdr2
= elf_tdata (exec_bfd
)->elf_header
;
1888 Elf_Internal_Phdr
*phdr2
= elf_tdata (exec_bfd
)->phdr
;
1889 CORE_ADDR displacement
= 0;
1892 /* DISPLACEMENT could be found more easily by the difference of
1893 ehdr2->e_entry. But we haven't read the ehdr yet, and we
1894 already have enough information to compute that displacement
1895 with what we've read. */
1897 for (i
= 0; i
< ehdr2
->e_phnum
; i
++)
1898 if (phdr2
[i
].p_type
== PT_LOAD
)
1900 Elf32_External_Phdr
*phdrp
;
1901 gdb_byte
*buf_vaddr_p
, *buf_paddr_p
;
1902 CORE_ADDR vaddr
, paddr
;
1903 CORE_ADDR displacement_vaddr
= 0;
1904 CORE_ADDR displacement_paddr
= 0;
1906 phdrp
= &((Elf32_External_Phdr
*) buf
)[i
];
1907 buf_vaddr_p
= (gdb_byte
*) &phdrp
->p_vaddr
;
1908 buf_paddr_p
= (gdb_byte
*) &phdrp
->p_paddr
;
1910 vaddr
= extract_unsigned_integer (buf_vaddr_p
, 4,
1912 displacement_vaddr
= vaddr
- phdr2
[i
].p_vaddr
;
1914 paddr
= extract_unsigned_integer (buf_paddr_p
, 4,
1916 displacement_paddr
= paddr
- phdr2
[i
].p_paddr
;
1918 if (displacement_vaddr
== displacement_paddr
)
1919 displacement
= displacement_vaddr
;
1924 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
1926 for (i
= 0; i
< phdrs_size
/ sizeof (Elf32_External_Phdr
); i
++)
1928 Elf32_External_Phdr
*phdrp
;
1929 Elf32_External_Phdr
*phdr2p
;
1930 gdb_byte
*buf_vaddr_p
, *buf_paddr_p
;
1931 CORE_ADDR vaddr
, paddr
;
1932 asection
*plt2_asect
;
1934 phdrp
= &((Elf32_External_Phdr
*) buf
)[i
];
1935 buf_vaddr_p
= (gdb_byte
*) &phdrp
->p_vaddr
;
1936 buf_paddr_p
= (gdb_byte
*) &phdrp
->p_paddr
;
1937 phdr2p
= &((Elf32_External_Phdr
*) buf2
)[i
];
1939 /* PT_GNU_STACK is an exception by being never relocated by
1940 prelink as its addresses are always zero. */
1942 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
1945 /* Check also other adjustment combinations - PR 11786. */
1947 vaddr
= extract_unsigned_integer (buf_vaddr_p
, 4,
1949 vaddr
-= displacement
;
1950 store_unsigned_integer (buf_vaddr_p
, 4, byte_order
, vaddr
);
1952 paddr
= extract_unsigned_integer (buf_paddr_p
, 4,
1954 paddr
-= displacement
;
1955 store_unsigned_integer (buf_paddr_p
, 4, byte_order
, paddr
);
1957 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
1960 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
1961 plt2_asect
= bfd_get_section_by_name (exec_bfd
, ".plt");
1965 gdb_byte
*buf_filesz_p
= (gdb_byte
*) &phdrp
->p_filesz
;
1968 content2
= (bfd_get_section_flags (exec_bfd
, plt2_asect
)
1969 & SEC_HAS_CONTENTS
) != 0;
1971 filesz
= extract_unsigned_integer (buf_filesz_p
, 4,
1974 /* PLT2_ASECT is from on-disk file (exec_bfd) while
1975 FILESZ is from the in-memory image. */
1977 filesz
+= bfd_get_section_size (plt2_asect
);
1979 filesz
-= bfd_get_section_size (plt2_asect
);
1981 store_unsigned_integer (buf_filesz_p
, 4, byte_order
,
1984 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
1992 else if (arch_size
== 64
1993 && phdrs_size
>= sizeof (Elf64_External_Phdr
)
1994 && phdrs_size
% sizeof (Elf64_External_Phdr
) == 0)
1996 Elf_Internal_Ehdr
*ehdr2
= elf_tdata (exec_bfd
)->elf_header
;
1997 Elf_Internal_Phdr
*phdr2
= elf_tdata (exec_bfd
)->phdr
;
1998 CORE_ADDR displacement
= 0;
2001 /* DISPLACEMENT could be found more easily by the difference of
2002 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2003 already have enough information to compute that displacement
2004 with what we've read. */
2006 for (i
= 0; i
< ehdr2
->e_phnum
; i
++)
2007 if (phdr2
[i
].p_type
== PT_LOAD
)
2009 Elf64_External_Phdr
*phdrp
;
2010 gdb_byte
*buf_vaddr_p
, *buf_paddr_p
;
2011 CORE_ADDR vaddr
, paddr
;
2012 CORE_ADDR displacement_vaddr
= 0;
2013 CORE_ADDR displacement_paddr
= 0;
2015 phdrp
= &((Elf64_External_Phdr
*) buf
)[i
];
2016 buf_vaddr_p
= (gdb_byte
*) &phdrp
->p_vaddr
;
2017 buf_paddr_p
= (gdb_byte
*) &phdrp
->p_paddr
;
2019 vaddr
= extract_unsigned_integer (buf_vaddr_p
, 8,
2021 displacement_vaddr
= vaddr
- phdr2
[i
].p_vaddr
;
2023 paddr
= extract_unsigned_integer (buf_paddr_p
, 8,
2025 displacement_paddr
= paddr
- phdr2
[i
].p_paddr
;
2027 if (displacement_vaddr
== displacement_paddr
)
2028 displacement
= displacement_vaddr
;
2033 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2035 for (i
= 0; i
< phdrs_size
/ sizeof (Elf64_External_Phdr
); i
++)
2037 Elf64_External_Phdr
*phdrp
;
2038 Elf64_External_Phdr
*phdr2p
;
2039 gdb_byte
*buf_vaddr_p
, *buf_paddr_p
;
2040 CORE_ADDR vaddr
, paddr
;
2041 asection
*plt2_asect
;
2043 phdrp
= &((Elf64_External_Phdr
*) buf
)[i
];
2044 buf_vaddr_p
= (gdb_byte
*) &phdrp
->p_vaddr
;
2045 buf_paddr_p
= (gdb_byte
*) &phdrp
->p_paddr
;
2046 phdr2p
= &((Elf64_External_Phdr
*) buf2
)[i
];
2048 /* PT_GNU_STACK is an exception by being never relocated by
2049 prelink as its addresses are always zero. */
2051 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2054 /* Check also other adjustment combinations - PR 11786. */
2056 vaddr
= extract_unsigned_integer (buf_vaddr_p
, 8,
2058 vaddr
-= displacement
;
2059 store_unsigned_integer (buf_vaddr_p
, 8, byte_order
, vaddr
);
2061 paddr
= extract_unsigned_integer (buf_paddr_p
, 8,
2063 paddr
-= displacement
;
2064 store_unsigned_integer (buf_paddr_p
, 8, byte_order
, paddr
);
2066 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2069 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2070 plt2_asect
= bfd_get_section_by_name (exec_bfd
, ".plt");
2074 gdb_byte
*buf_filesz_p
= (gdb_byte
*) &phdrp
->p_filesz
;
2077 content2
= (bfd_get_section_flags (exec_bfd
, plt2_asect
)
2078 & SEC_HAS_CONTENTS
) != 0;
2080 filesz
= extract_unsigned_integer (buf_filesz_p
, 8,
2083 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2084 FILESZ is from the in-memory image. */
2086 filesz
+= bfd_get_section_size (plt2_asect
);
2088 filesz
-= bfd_get_section_size (plt2_asect
);
2090 store_unsigned_integer (buf_filesz_p
, 8, byte_order
,
2093 if (memcmp (phdrp
, phdr2p
, sizeof (*phdrp
)) == 0)
2114 /* It can be printed repeatedly as there is no easy way to check
2115 the executable symbols/file has been already relocated to
2118 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2119 "displacement %s for \"%s\".\n"),
2120 paddress (target_gdbarch (), displacement
),
2121 bfd_get_filename (exec_bfd
));
2124 *displacementp
= displacement
;
2128 /* Relocate the main executable. This function should be called upon
2129 stopping the inferior process at the entry point to the program.
2130 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2131 different, the main executable is relocated by the proper amount. */
2134 svr4_relocate_main_executable (void)
2136 CORE_ADDR displacement
;
2138 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2139 probably contains the offsets computed using the PIE displacement
2140 from the previous run, which of course are irrelevant for this run.
2141 So we need to determine the new PIE displacement and recompute the
2142 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2143 already contains pre-computed offsets.
2145 If we cannot compute the PIE displacement, either:
2147 - The executable is not PIE.
2149 - SYMFILE_OBJFILE does not match the executable started in the target.
2150 This can happen for main executable symbols loaded at the host while
2151 `ld.so --ld-args main-executable' is loaded in the target.
2153 Then we leave the section offsets untouched and use them as is for
2156 - These section offsets were properly reset earlier, and thus
2157 already contain the correct values. This can happen for instance
2158 when reconnecting via the remote protocol to a target that supports
2159 the `qOffsets' packet.
2161 - The section offsets were not reset earlier, and the best we can
2162 hope is that the old offsets are still applicable to the new run. */
2164 if (! svr4_exec_displacement (&displacement
))
2167 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2170 if (symfile_objfile
)
2172 struct section_offsets
*new_offsets
;
2175 new_offsets
= alloca (symfile_objfile
->num_sections
2176 * sizeof (*new_offsets
));
2178 for (i
= 0; i
< symfile_objfile
->num_sections
; i
++)
2179 new_offsets
->offsets
[i
] = displacement
;
2181 objfile_relocate (symfile_objfile
, new_offsets
);
2187 for (asect
= exec_bfd
->sections
; asect
!= NULL
; asect
= asect
->next
)
2188 exec_set_section_address (bfd_get_filename (exec_bfd
), asect
->index
,
2189 (bfd_section_vma (exec_bfd
, asect
)
2194 /* Implement the "create_inferior_hook" target_solib_ops method.
2196 For SVR4 executables, this first instruction is either the first
2197 instruction in the dynamic linker (for dynamically linked
2198 executables) or the instruction at "start" for statically linked
2199 executables. For dynamically linked executables, the system
2200 first exec's /lib/libc.so.N, which contains the dynamic linker,
2201 and starts it running. The dynamic linker maps in any needed
2202 shared libraries, maps in the actual user executable, and then
2203 jumps to "start" in the user executable.
2205 We can arrange to cooperate with the dynamic linker to discover the
2206 names of shared libraries that are dynamically linked, and the base
2207 addresses to which they are linked.
2209 This function is responsible for discovering those names and
2210 addresses, and saving sufficient information about them to allow
2211 their symbols to be read at a later time. */
2214 svr4_solib_create_inferior_hook (int from_tty
)
2216 struct svr4_info
*info
;
2218 info
= get_svr4_info ();
2220 /* Relocate the main executable if necessary. */
2221 svr4_relocate_main_executable ();
2223 /* No point setting a breakpoint in the dynamic linker if we can't
2224 hit it (e.g., a core file, or a trace file). */
2225 if (!target_has_execution
)
2228 if (!svr4_have_link_map_offsets ())
2231 if (!enable_break (info
, from_tty
))
2236 svr4_clear_solib (void)
2238 struct svr4_info
*info
;
2240 info
= get_svr4_info ();
2241 info
->debug_base
= 0;
2242 info
->debug_loader_offset_p
= 0;
2243 info
->debug_loader_offset
= 0;
2244 xfree (info
->debug_loader_name
);
2245 info
->debug_loader_name
= NULL
;
2248 /* Clear any bits of ADDR that wouldn't fit in a target-format
2249 data pointer. "Data pointer" here refers to whatever sort of
2250 address the dynamic linker uses to manage its sections. At the
2251 moment, we don't support shared libraries on any processors where
2252 code and data pointers are different sizes.
2254 This isn't really the right solution. What we really need here is
2255 a way to do arithmetic on CORE_ADDR values that respects the
2256 natural pointer/address correspondence. (For example, on the MIPS,
2257 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2258 sign-extend the value. There, simply truncating the bits above
2259 gdbarch_ptr_bit, as we do below, is no good.) This should probably
2260 be a new gdbarch method or something. */
2262 svr4_truncate_ptr (CORE_ADDR addr
)
2264 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR
) * 8)
2265 /* We don't need to truncate anything, and the bit twiddling below
2266 will fail due to overflow problems. */
2269 return addr
& (((CORE_ADDR
) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
2274 svr4_relocate_section_addresses (struct so_list
*so
,
2275 struct target_section
*sec
)
2277 sec
->addr
= svr4_truncate_ptr (sec
->addr
+ lm_addr_check (so
,
2279 sec
->endaddr
= svr4_truncate_ptr (sec
->endaddr
+ lm_addr_check (so
,
2284 /* Architecture-specific operations. */
2286 /* Per-architecture data key. */
2287 static struct gdbarch_data
*solib_svr4_data
;
2289 struct solib_svr4_ops
2291 /* Return a description of the layout of `struct link_map'. */
2292 struct link_map_offsets
*(*fetch_link_map_offsets
)(void);
2295 /* Return a default for the architecture-specific operations. */
2298 solib_svr4_init (struct obstack
*obstack
)
2300 struct solib_svr4_ops
*ops
;
2302 ops
= OBSTACK_ZALLOC (obstack
, struct solib_svr4_ops
);
2303 ops
->fetch_link_map_offsets
= NULL
;
2307 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2308 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
2311 set_solib_svr4_fetch_link_map_offsets (struct gdbarch
*gdbarch
,
2312 struct link_map_offsets
*(*flmo
) (void))
2314 struct solib_svr4_ops
*ops
= gdbarch_data (gdbarch
, solib_svr4_data
);
2316 ops
->fetch_link_map_offsets
= flmo
;
2318 set_solib_ops (gdbarch
, &svr4_so_ops
);
2321 /* Fetch a link_map_offsets structure using the architecture-specific
2322 `struct link_map_offsets' fetcher. */
2324 static struct link_map_offsets
*
2325 svr4_fetch_link_map_offsets (void)
2327 struct solib_svr4_ops
*ops
= gdbarch_data (target_gdbarch (), solib_svr4_data
);
2329 gdb_assert (ops
->fetch_link_map_offsets
);
2330 return ops
->fetch_link_map_offsets ();
2333 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
2336 svr4_have_link_map_offsets (void)
2338 struct solib_svr4_ops
*ops
= gdbarch_data (target_gdbarch (), solib_svr4_data
);
2340 return (ops
->fetch_link_map_offsets
!= NULL
);
2344 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2345 `struct r_debug' and a `struct link_map' that are binary compatible
2346 with the origional SVR4 implementation. */
2348 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2349 for an ILP32 SVR4 system. */
2351 struct link_map_offsets
*
2352 svr4_ilp32_fetch_link_map_offsets (void)
2354 static struct link_map_offsets lmo
;
2355 static struct link_map_offsets
*lmp
= NULL
;
2361 lmo
.r_version_offset
= 0;
2362 lmo
.r_version_size
= 4;
2363 lmo
.r_map_offset
= 4;
2364 lmo
.r_brk_offset
= 8;
2365 lmo
.r_ldsomap_offset
= 20;
2367 /* Everything we need is in the first 20 bytes. */
2368 lmo
.link_map_size
= 20;
2369 lmo
.l_addr_offset
= 0;
2370 lmo
.l_name_offset
= 4;
2371 lmo
.l_ld_offset
= 8;
2372 lmo
.l_next_offset
= 12;
2373 lmo
.l_prev_offset
= 16;
2379 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2380 for an LP64 SVR4 system. */
2382 struct link_map_offsets
*
2383 svr4_lp64_fetch_link_map_offsets (void)
2385 static struct link_map_offsets lmo
;
2386 static struct link_map_offsets
*lmp
= NULL
;
2392 lmo
.r_version_offset
= 0;
2393 lmo
.r_version_size
= 4;
2394 lmo
.r_map_offset
= 8;
2395 lmo
.r_brk_offset
= 16;
2396 lmo
.r_ldsomap_offset
= 40;
2398 /* Everything we need is in the first 40 bytes. */
2399 lmo
.link_map_size
= 40;
2400 lmo
.l_addr_offset
= 0;
2401 lmo
.l_name_offset
= 8;
2402 lmo
.l_ld_offset
= 16;
2403 lmo
.l_next_offset
= 24;
2404 lmo
.l_prev_offset
= 32;
2411 struct target_so_ops svr4_so_ops
;
2413 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
2414 different rule for symbol lookup. The lookup begins here in the DSO, not in
2415 the main executable. */
2417 static struct symbol
*
2418 elf_lookup_lib_symbol (const struct objfile
*objfile
,
2420 const domain_enum domain
)
2424 if (objfile
== symfile_objfile
)
2428 /* OBJFILE should have been passed as the non-debug one. */
2429 gdb_assert (objfile
->separate_debug_objfile_backlink
== NULL
);
2431 abfd
= objfile
->obfd
;
2434 if (abfd
== NULL
|| scan_dyntag (DT_SYMBOLIC
, abfd
, NULL
) != 1)
2437 return lookup_global_symbol_from_objfile (objfile
, name
, domain
);
2440 extern initialize_file_ftype _initialize_svr4_solib
; /* -Wmissing-prototypes */
2443 _initialize_svr4_solib (void)
2445 solib_svr4_data
= gdbarch_data_register_pre_init (solib_svr4_init
);
2446 solib_svr4_pspace_data
2447 = register_program_space_data_with_cleanup (NULL
, svr4_pspace_data_cleanup
);
2449 svr4_so_ops
.relocate_section_addresses
= svr4_relocate_section_addresses
;
2450 svr4_so_ops
.free_so
= svr4_free_so
;
2451 svr4_so_ops
.clear_solib
= svr4_clear_solib
;
2452 svr4_so_ops
.solib_create_inferior_hook
= svr4_solib_create_inferior_hook
;
2453 svr4_so_ops
.special_symbol_handling
= svr4_special_symbol_handling
;
2454 svr4_so_ops
.current_sos
= svr4_current_sos
;
2455 svr4_so_ops
.open_symbol_file_object
= open_symbol_file_object
;
2456 svr4_so_ops
.in_dynsym_resolve_code
= svr4_in_dynsym_resolve_code
;
2457 svr4_so_ops
.bfd_open
= solib_bfd_open
;
2458 svr4_so_ops
.lookup_lib_global_symbol
= elf_lookup_lib_symbol
;
2459 svr4_so_ops
.same
= svr4_same
;
2460 svr4_so_ops
.keep_data_in_core
= svr4_keep_data_in_core
;