* target.h: Add enum target_waitkind, enum target_signal, and
[deliverable/binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include "defs.h"
22
23 #include <sys/types.h>
24 #include <signal.h>
25 #include <string.h>
26 #include <link.h>
27 #include <sys/param.h>
28 #include <fcntl.h>
29
30 #ifndef SVR4_SHARED_LIBS
31 /* SunOS shared libs need the nlist structure. */
32 #include <a.out.h>
33 #endif
34
35 #include "symtab.h"
36 #include "bfd.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbcore.h"
40 #include "command.h"
41 #include "target.h"
42 #include "frame.h"
43 #include "regex.h"
44 #include "inferior.h"
45 #include "language.h"
46
47 #define MAX_PATH_SIZE 256 /* FIXME: Should be dynamic */
48
49 /* On SVR4 systems, for the initial implementation, use some runtime startup
50 symbol as the "startup mapping complete" breakpoint address. The models
51 for SunOS and SVR4 dynamic linking debugger support are different in that
52 SunOS hits one breakpoint when all mapping is complete while using the SVR4
53 debugger support takes two breakpoint hits for each file mapped, and
54 there is no way to know when the "last" one is hit. Both these
55 mechanisms should be tied to a "breakpoint service routine" that
56 gets automatically executed whenever one of the breakpoints indicating
57 a change in mapping is hit. This is a future enhancement. (FIXME) */
58
59 #define BKPT_AT_SYMBOL 1
60
61 #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
62 static char *bkpt_names[] = {
63 #ifdef SOLIB_BKPT_NAME
64 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
65 #endif
66 "_start",
67 "main",
68 NULL
69 };
70 #endif
71
72 /* local data declarations */
73
74 #ifndef SVR4_SHARED_LIBS
75
76 #define DEBUG_BASE "_DYNAMIC"
77 #define LM_ADDR(so) ((so) -> lm.lm_addr)
78 #define LM_NEXT(so) ((so) -> lm.lm_next)
79 #define LM_NAME(so) ((so) -> lm.lm_name)
80 static struct link_dynamic dynamic_copy;
81 static struct link_dynamic_2 ld_2_copy;
82 static struct ld_debug debug_copy;
83 static CORE_ADDR debug_addr;
84 static CORE_ADDR flag_addr;
85
86 #else /* SVR4_SHARED_LIBS */
87
88 #define DEBUG_BASE "_r_debug"
89 #define LM_ADDR(so) ((so) -> lm.l_addr)
90 #define LM_NEXT(so) ((so) -> lm.l_next)
91 #define LM_NAME(so) ((so) -> lm.l_name)
92 static struct r_debug debug_copy;
93 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
94
95 #endif /* !SVR4_SHARED_LIBS */
96
97 struct so_list {
98 struct so_list *next; /* next structure in linked list */
99 struct link_map lm; /* copy of link map from inferior */
100 struct link_map *lmaddr; /* addr in inferior lm was read from */
101 CORE_ADDR lmend; /* upper addr bound of mapped object */
102 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
103 char symbols_loaded; /* flag: symbols read in yet? */
104 char from_tty; /* flag: print msgs? */
105 struct objfile *objfile; /* objfile for loaded lib */
106 struct section_table *sections;
107 struct section_table *sections_end;
108 struct section_table *textsection;
109 bfd *abfd;
110 };
111
112 static struct so_list *so_list_head; /* List of known shared objects */
113 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
114 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
115
116 extern int
117 fdmatch PARAMS ((int, int)); /* In libiberty */
118
119 /* Local function prototypes */
120
121 static void
122 special_symbol_handling PARAMS ((struct so_list *));
123
124 static void
125 sharedlibrary_command PARAMS ((char *, int));
126
127 static int
128 enable_break PARAMS ((void));
129
130 static int
131 disable_break PARAMS ((void));
132
133 static void
134 info_sharedlibrary_command PARAMS ((char *, int));
135
136 static int
137 symbol_add_stub PARAMS ((char *));
138
139 static struct so_list *
140 find_solib PARAMS ((struct so_list *));
141
142 static struct link_map *
143 first_link_map_member PARAMS ((void));
144
145 static CORE_ADDR
146 locate_base PARAMS ((void));
147
148 static void
149 solib_map_sections PARAMS ((struct so_list *));
150
151 #ifdef SVR4_SHARED_LIBS
152
153 static int
154 look_for_base PARAMS ((int, CORE_ADDR));
155
156 static CORE_ADDR
157 bfd_lookup_symbol PARAMS ((bfd *, char *));
158
159 #else
160
161 static void
162 solib_add_common_symbols PARAMS ((struct rtc_symb *, struct objfile *));
163
164 #endif
165
166 /*
167
168 LOCAL FUNCTION
169
170 solib_map_sections -- open bfd and build sections for shared lib
171
172 SYNOPSIS
173
174 static void solib_map_sections (struct so_list *so)
175
176 DESCRIPTION
177
178 Given a pointer to one of the shared objects in our list
179 of mapped objects, use the recorded name to open a bfd
180 descriptor for the object, build a section table, and then
181 relocate all the section addresses by the base address at
182 which the shared object was mapped.
183
184 FIXMES
185
186 In most (all?) cases the shared object file name recorded in the
187 dynamic linkage tables will be a fully qualified pathname. For
188 cases where it isn't, do we really mimic the systems search
189 mechanism correctly in the below code (particularly the tilde
190 expansion stuff?).
191 */
192
193 static void
194 solib_map_sections (so)
195 struct so_list *so;
196 {
197 char *filename;
198 char *scratch_pathname;
199 int scratch_chan;
200 struct section_table *p;
201 struct cleanup *old_chain;
202 bfd *abfd;
203
204 filename = tilde_expand (so -> so_name);
205 old_chain = make_cleanup (free, filename);
206
207 scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
208 &scratch_pathname);
209 if (scratch_chan < 0)
210 {
211 scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
212 O_RDONLY, 0, &scratch_pathname);
213 }
214 if (scratch_chan < 0)
215 {
216 perror_with_name (filename);
217 }
218 /* Leave scratch_pathname allocated. abfd->name will point to it. */
219
220 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
221 if (!abfd)
222 {
223 close (scratch_chan);
224 error ("Could not open `%s' as an executable file: %s",
225 scratch_pathname, bfd_errmsg (bfd_error));
226 }
227 /* Leave bfd open, core_xfer_memory and "info files" need it. */
228 so -> abfd = abfd;
229 abfd -> cacheable = true;
230
231 if (!bfd_check_format (abfd, bfd_object))
232 {
233 error ("\"%s\": not in executable format: %s.",
234 scratch_pathname, bfd_errmsg (bfd_error));
235 }
236 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
237 {
238 error ("Can't find the file sections in `%s': %s",
239 bfd_get_filename (exec_bfd), bfd_errmsg (bfd_error));
240 }
241
242 for (p = so -> sections; p < so -> sections_end; p++)
243 {
244 /* Relocate the section binding addresses as recorded in the shared
245 object's file by the base address to which the object was actually
246 mapped. */
247 p -> addr += (CORE_ADDR) LM_ADDR (so);
248 p -> endaddr += (CORE_ADDR) LM_ADDR (so);
249 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
250 if (STREQ (p -> sec_ptr -> name, ".text"))
251 {
252 so -> textsection = p;
253 }
254 }
255
256 /* Free the file names, close the file now. */
257 do_cleanups (old_chain);
258 }
259
260 /* Read all dynamically loaded common symbol definitions from the inferior
261 and add them to the minimal symbol table for the shared library objfile. */
262
263 #ifndef SVR4_SHARED_LIBS
264
265 /* In GDB 4.9 this routine was a real performance hog. According to
266 some gprof data which mtranle@paris.IntelliCorp.COM (Minh Tran-Le)
267 sent, almost all the time spend in solib_add (up to 20 minutes with
268 35 shared libraries) was spent here, with 5/6 in
269 lookup_minimal_symbol and 1/6 in read_memory.
270
271 To fix this, we moved the call to special_symbol_handling out of the
272 loop in solib_add, so this only gets called once, rather than once
273 for every shared library, and also removed the call to lookup_minimal_symbol
274 in this routine. */
275
276 static void
277 solib_add_common_symbols (rtc_symp, objfile)
278 struct rtc_symb *rtc_symp;
279 struct objfile *objfile;
280 {
281 struct rtc_symb inferior_rtc_symb;
282 struct nlist inferior_rtc_nlist;
283 int len;
284 char *name;
285 char *origname;
286
287 init_minimal_symbol_collection ();
288 make_cleanup (discard_minimal_symbols, 0);
289
290 while (rtc_symp)
291 {
292 read_memory ((CORE_ADDR) rtc_symp,
293 (char *) &inferior_rtc_symb,
294 sizeof (inferior_rtc_symb));
295 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
296 (char *) &inferior_rtc_nlist,
297 sizeof(inferior_rtc_nlist));
298 if (inferior_rtc_nlist.n_type == N_COMM)
299 {
300 /* FIXME: The length of the symbol name is not available, but in the
301 current implementation the common symbol is allocated immediately
302 behind the name of the symbol. */
303 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
304
305 origname = name = xmalloc (len);
306 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
307
308 /* Don't enter the symbol twice if the target is re-run. */
309
310 if (name[0] == bfd_get_symbol_leading_char (objfile->obfd))
311 {
312 name++;
313 }
314
315 #if 0
316 /* I think this is unnecessary, GDB can probably deal with
317 duplicate minimal symbols, more or less. And the duplication
318 which used to happen because this was called for each shared
319 library is gone now that we are just called once. */
320 /* FIXME: Do we really want to exclude symbols which happen
321 to match symbols for other locations in the inferior's
322 address space, even when they are in different linkage units? */
323 if (lookup_minimal_symbol (name, (struct objfile *) NULL) == NULL)
324 #endif
325 {
326 name = obsavestring (name, strlen (name),
327 &objfile -> symbol_obstack);
328 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
329 mst_bss, objfile);
330 }
331 free (origname);
332 }
333 rtc_symp = inferior_rtc_symb.rtc_next;
334 }
335
336 /* Install any minimal symbols that have been collected as the current
337 minimal symbols for this objfile. */
338
339 install_minimal_symbols (objfile);
340 }
341
342 #endif /* SVR4_SHARED_LIBS */
343
344 #ifdef SVR4_SHARED_LIBS
345
346 /*
347
348 LOCAL FUNCTION
349
350 bfd_lookup_symbol -- lookup the value for a specific symbol
351
352 SYNOPSIS
353
354 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
355
356 DESCRIPTION
357
358 An expensive way to lookup the value of a single symbol for
359 bfd's that are only temporary anyway. This is used by the
360 shared library support to find the address of the debugger
361 interface structures in the shared library.
362
363 Note that 0 is specifically allowed as an error return (no
364 such symbol).
365
366 FIXME: See if there is a less "expensive" way of doing this.
367 Also see if there is already another bfd or gdb function
368 that specifically does this, and if so, use it.
369 */
370
371 static CORE_ADDR
372 bfd_lookup_symbol (abfd, symname)
373 bfd *abfd;
374 char *symname;
375 {
376 unsigned int storage_needed;
377 asymbol *sym;
378 asymbol **symbol_table;
379 unsigned int number_of_symbols;
380 unsigned int i;
381 struct cleanup *back_to;
382 CORE_ADDR symaddr = 0;
383
384 storage_needed = get_symtab_upper_bound (abfd);
385
386 if (storage_needed > 0)
387 {
388 symbol_table = (asymbol **) xmalloc (storage_needed);
389 back_to = make_cleanup (free, (PTR)symbol_table);
390 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
391
392 for (i = 0; i < number_of_symbols; i++)
393 {
394 sym = *symbol_table++;
395 if (STREQ (sym -> name, symname))
396 {
397 /* Bfd symbols are section relative. */
398 symaddr = sym -> value + sym -> section -> vma;
399 break;
400 }
401 }
402 do_cleanups (back_to);
403 }
404 return (symaddr);
405 }
406
407 /*
408
409 LOCAL FUNCTION
410
411 look_for_base -- examine file for each mapped address segment
412
413 SYNOPSYS
414
415 static int look_for_base (int fd, CORE_ADDR baseaddr)
416
417 DESCRIPTION
418
419 This function is passed to proc_iterate_over_mappings, which
420 causes it to get called once for each mapped address space, with
421 an open file descriptor for the file mapped to that space, and the
422 base address of that mapped space.
423
424 Our job is to find the symbol DEBUG_BASE in the file that this
425 fd is open on, if it exists, and if so, initialize the dynamic
426 linker structure base address debug_base.
427
428 Note that this is a computationally expensive proposition, since
429 we basically have to open a bfd on every call, so we specifically
430 avoid opening the exec file.
431 */
432
433 static int
434 look_for_base (fd, baseaddr)
435 int fd;
436 CORE_ADDR baseaddr;
437 {
438 bfd *interp_bfd;
439 CORE_ADDR address;
440
441 /* If the fd is -1, then there is no file that corresponds to this
442 mapped memory segment, so skip it. Also, if the fd corresponds
443 to the exec file, skip it as well. */
444
445 if ((fd == -1) || fdmatch (fileno ((GDB_FILE *)(exec_bfd -> iostream)), fd))
446 {
447 return (0);
448 }
449
450 /* Try to open whatever random file this fd corresponds to. Note that
451 we have no way currently to find the filename. Don't gripe about
452 any problems we might have, just fail. */
453
454 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
455 {
456 return (0);
457 }
458 if (!bfd_check_format (interp_bfd, bfd_object))
459 {
460 bfd_close (interp_bfd);
461 return (0);
462 }
463
464 /* Now try to find our DEBUG_BASE symbol in this file, which we at
465 least know to be a valid ELF executable or shared library. */
466
467 if ((address = bfd_lookup_symbol (interp_bfd, DEBUG_BASE)) == 0)
468 {
469 bfd_close (interp_bfd);
470 return (0);
471 }
472
473 /* Eureka! We found the symbol. But now we may need to relocate it
474 by the base address. If the symbol's value is less than the base
475 address of the shared library, then it hasn't yet been relocated
476 by the dynamic linker, and we have to do it ourself. FIXME: Note
477 that we make the assumption that the first segment that corresponds
478 to the shared library has the base address to which the library
479 was relocated. */
480
481 if (address < baseaddr)
482 {
483 address += baseaddr;
484 }
485 debug_base = address;
486 bfd_close (interp_bfd);
487 return (1);
488 }
489
490 #endif
491
492 /*
493
494 LOCAL FUNCTION
495
496 locate_base -- locate the base address of dynamic linker structs
497
498 SYNOPSIS
499
500 CORE_ADDR locate_base (void)
501
502 DESCRIPTION
503
504 For both the SunOS and SVR4 shared library implementations, if the
505 inferior executable has been linked dynamically, there is a single
506 address somewhere in the inferior's data space which is the key to
507 locating all of the dynamic linker's runtime structures. This
508 address is the value of the symbol defined by the macro DEBUG_BASE.
509 The job of this function is to find and return that address, or to
510 return 0 if there is no such address (the executable is statically
511 linked for example).
512
513 For SunOS, the job is almost trivial, since the dynamic linker and
514 all of it's structures are statically linked to the executable at
515 link time. Thus the symbol for the address we are looking for has
516 already been added to the minimal symbol table for the executable's
517 objfile at the time the symbol file's symbols were read, and all we
518 have to do is look it up there. Note that we explicitly do NOT want
519 to find the copies in the shared library.
520
521 The SVR4 version is much more complicated because the dynamic linker
522 and it's structures are located in the shared C library, which gets
523 run as the executable's "interpreter" by the kernel. We have to go
524 to a lot more work to discover the address of DEBUG_BASE. Because
525 of this complexity, we cache the value we find and return that value
526 on subsequent invocations. Note there is no copy in the executable
527 symbol tables.
528
529 Note that we can assume nothing about the process state at the time
530 we need to find this address. We may be stopped on the first instruc-
531 tion of the interpreter (C shared library), the first instruction of
532 the executable itself, or somewhere else entirely (if we attached
533 to the process for example).
534
535 */
536
537 static CORE_ADDR
538 locate_base ()
539 {
540
541 #ifndef SVR4_SHARED_LIBS
542
543 struct minimal_symbol *msymbol;
544 CORE_ADDR address = 0;
545
546 /* For SunOS, we want to limit the search for DEBUG_BASE to the executable
547 being debugged, since there is a duplicate named symbol in the shared
548 library. We don't want the shared library versions. */
549
550 msymbol = lookup_minimal_symbol (DEBUG_BASE, symfile_objfile);
551 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
552 {
553 address = SYMBOL_VALUE_ADDRESS (msymbol);
554 }
555 return (address);
556
557 #else /* SVR4_SHARED_LIBS */
558
559 /* Check to see if we have a currently valid address, and if so, avoid
560 doing all this work again and just return the cached address. If
561 we have no cached address, ask the /proc support interface to iterate
562 over the list of mapped address segments, calling look_for_base() for
563 each segment. When we are done, we will have either found the base
564 address or not. */
565
566 if (debug_base == 0)
567 {
568 proc_iterate_over_mappings (look_for_base);
569 }
570 return (debug_base);
571
572 #endif /* !SVR4_SHARED_LIBS */
573
574 }
575
576 /*
577
578 LOCAL FUNCTION
579
580 first_link_map_member -- locate first member in dynamic linker's map
581
582 SYNOPSIS
583
584 static struct link_map *first_link_map_member (void)
585
586 DESCRIPTION
587
588 Read in a copy of the first member in the inferior's dynamic
589 link map from the inferior's dynamic linker structures, and return
590 a pointer to the copy in our address space.
591 */
592
593 static struct link_map *
594 first_link_map_member ()
595 {
596 struct link_map *lm = NULL;
597
598 #ifndef SVR4_SHARED_LIBS
599
600 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
601 if (dynamic_copy.ld_version >= 2)
602 {
603 /* It is a version that we can deal with, so read in the secondary
604 structure and find the address of the link map list from it. */
605 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
606 sizeof (struct link_dynamic_2));
607 lm = ld_2_copy.ld_loaded;
608 }
609
610 #else /* SVR4_SHARED_LIBS */
611
612 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
613 /* FIXME: Perhaps we should validate the info somehow, perhaps by
614 checking r_version for a known version number, or r_state for
615 RT_CONSISTENT. */
616 lm = debug_copy.r_map;
617
618 #endif /* !SVR4_SHARED_LIBS */
619
620 return (lm);
621 }
622
623 /*
624
625 LOCAL FUNCTION
626
627 find_solib -- step through list of shared objects
628
629 SYNOPSIS
630
631 struct so_list *find_solib (struct so_list *so_list_ptr)
632
633 DESCRIPTION
634
635 This module contains the routine which finds the names of any
636 loaded "images" in the current process. The argument in must be
637 NULL on the first call, and then the returned value must be passed
638 in on subsequent calls. This provides the capability to "step" down
639 the list of loaded objects. On the last object, a NULL value is
640 returned.
641
642 The arg and return value are "struct link_map" pointers, as defined
643 in <link.h>.
644 */
645
646 static struct so_list *
647 find_solib (so_list_ptr)
648 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
649 {
650 struct so_list *so_list_next = NULL;
651 struct link_map *lm = NULL;
652 struct so_list *new;
653
654 if (so_list_ptr == NULL)
655 {
656 /* We are setting up for a new scan through the loaded images. */
657 if ((so_list_next = so_list_head) == NULL)
658 {
659 /* We have not already read in the dynamic linking structures
660 from the inferior, lookup the address of the base structure. */
661 debug_base = locate_base ();
662 if (debug_base != 0)
663 {
664 /* Read the base structure in and find the address of the first
665 link map list member. */
666 lm = first_link_map_member ();
667 }
668 }
669 }
670 else
671 {
672 /* We have been called before, and are in the process of walking
673 the shared library list. Advance to the next shared object. */
674 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
675 {
676 /* We have hit the end of the list, so check to see if any were
677 added, but be quiet if we can't read from the target any more. */
678 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
679 (char *) &(so_list_ptr -> lm),
680 sizeof (struct link_map));
681 if (status == 0)
682 {
683 lm = LM_NEXT (so_list_ptr);
684 }
685 else
686 {
687 lm = NULL;
688 }
689 }
690 so_list_next = so_list_ptr -> next;
691 }
692 if ((so_list_next == NULL) && (lm != NULL))
693 {
694 /* Get next link map structure from inferior image and build a local
695 abbreviated load_map structure */
696 new = (struct so_list *) xmalloc (sizeof (struct so_list));
697 memset ((char *) new, 0, sizeof (struct so_list));
698 new -> lmaddr = lm;
699 /* Add the new node as the next node in the list, or as the root
700 node if this is the first one. */
701 if (so_list_ptr != NULL)
702 {
703 so_list_ptr -> next = new;
704 }
705 else
706 {
707 so_list_head = new;
708 }
709 so_list_next = new;
710 read_memory ((CORE_ADDR) lm, (char *) &(new -> lm),
711 sizeof (struct link_map));
712 /* For the SVR4 version, there is one entry that has no name
713 (for the inferior executable) since it is not a shared object. */
714 if (LM_NAME (new) != 0)
715 {
716 if (!target_read_string((CORE_ADDR) LM_NAME (new), new -> so_name,
717 MAX_PATH_SIZE - 1))
718 error ("find_solib: Can't read pathname for load map\n");
719 new -> so_name[MAX_PATH_SIZE - 1] = 0;
720 solib_map_sections (new);
721 }
722 }
723 return (so_list_next);
724 }
725
726 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
727
728 static int
729 symbol_add_stub (arg)
730 char *arg;
731 {
732 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
733
734 so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
735 (unsigned int) so -> textsection -> addr,
736 0, 0, 0);
737 return (1);
738 }
739
740 /*
741
742 GLOBAL FUNCTION
743
744 solib_add -- add a shared library file to the symtab and section list
745
746 SYNOPSIS
747
748 void solib_add (char *arg_string, int from_tty,
749 struct target_ops *target)
750
751 DESCRIPTION
752
753 */
754
755 void
756 solib_add (arg_string, from_tty, target)
757 char *arg_string;
758 int from_tty;
759 struct target_ops *target;
760 {
761 register struct so_list *so = NULL; /* link map state variable */
762
763 /* Last shared library that we read. */
764 struct so_list *so_last = NULL;
765
766 char *re_err;
767 int count;
768 int old;
769
770 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
771 {
772 error ("Invalid regexp: %s", re_err);
773 }
774
775 /* Getting new symbols may change our opinion about what is
776 frameless. */
777 reinit_frame_cache ();
778
779 while ((so = find_solib (so)) != NULL)
780 {
781 if (so -> so_name[0] && re_exec (so -> so_name))
782 {
783 so -> from_tty = from_tty;
784 if (so -> symbols_loaded)
785 {
786 if (from_tty)
787 {
788 printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
789 }
790 }
791 else if (catch_errors
792 (symbol_add_stub, (char *) so,
793 "Error while reading shared library symbols:\n",
794 RETURN_MASK_ALL))
795 {
796 so_last = so;
797 so -> symbols_loaded = 1;
798 }
799 }
800 }
801
802 /* Now add the shared library sections to the section table of the
803 specified target, if any. */
804 if (target)
805 {
806 /* Count how many new section_table entries there are. */
807 so = NULL;
808 count = 0;
809 while ((so = find_solib (so)) != NULL)
810 {
811 if (so -> so_name[0])
812 {
813 count += so -> sections_end - so -> sections;
814 }
815 }
816
817 if (count)
818 {
819 /* Reallocate the target's section table including the new size. */
820 if (target -> to_sections)
821 {
822 old = target -> to_sections_end - target -> to_sections;
823 target -> to_sections = (struct section_table *)
824 xrealloc ((char *)target -> to_sections,
825 (sizeof (struct section_table)) * (count + old));
826 }
827 else
828 {
829 old = 0;
830 target -> to_sections = (struct section_table *)
831 xmalloc ((sizeof (struct section_table)) * count);
832 }
833 target -> to_sections_end = target -> to_sections + (count + old);
834
835 /* Add these section table entries to the target's table. */
836 while ((so = find_solib (so)) != NULL)
837 {
838 if (so -> so_name[0])
839 {
840 count = so -> sections_end - so -> sections;
841 memcpy ((char *) (target -> to_sections + old),
842 so -> sections,
843 (sizeof (struct section_table)) * count);
844 old += count;
845 }
846 }
847 }
848 }
849
850 /* Calling this once at the end means that we put all the minimal
851 symbols for commons into the objfile for the last shared library.
852 Since they are in common, this should not be a problem. If we
853 delete the objfile with the minimal symbols, we can put all the
854 symbols into a new objfile (and will on the next call to solib_add).
855
856 An alternate approach would be to create an objfile just for
857 common minsyms, thus not needing any objfile argument to
858 solib_add_common_symbols. */
859
860 if (so_last)
861 special_symbol_handling (so_last);
862 }
863
864 /*
865
866 LOCAL FUNCTION
867
868 info_sharedlibrary_command -- code for "info sharedlibrary"
869
870 SYNOPSIS
871
872 static void info_sharedlibrary_command ()
873
874 DESCRIPTION
875
876 Walk through the shared library list and print information
877 about each attached library.
878 */
879
880 static void
881 info_sharedlibrary_command (ignore, from_tty)
882 char *ignore;
883 int from_tty;
884 {
885 register struct so_list *so = NULL; /* link map state variable */
886 int header_done = 0;
887
888 if (exec_bfd == NULL)
889 {
890 printf_unfiltered ("No exec file.\n");
891 return;
892 }
893 while ((so = find_solib (so)) != NULL)
894 {
895 if (so -> so_name[0])
896 {
897 if (!header_done)
898 {
899 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
900 "Shared Object Library");
901 header_done++;
902 }
903 printf_unfiltered ("%-12s",
904 local_hex_string_custom ((unsigned long) LM_ADDR (so),
905 "08l"));
906 printf_unfiltered ("%-12s",
907 local_hex_string_custom ((unsigned long) so -> lmend,
908 "08l"));
909 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
910 printf_unfiltered ("%s\n", so -> so_name);
911 }
912 }
913 if (so_list_head == NULL)
914 {
915 printf_unfiltered ("No shared libraries loaded at this time.\n");
916 }
917 }
918
919 /*
920
921 GLOBAL FUNCTION
922
923 solib_address -- check to see if an address is in a shared lib
924
925 SYNOPSIS
926
927 int solib_address (CORE_ADDR address)
928
929 DESCRIPTION
930
931 Provides a hook for other gdb routines to discover whether or
932 not a particular address is within the mapped address space of
933 a shared library. Any address between the base mapping address
934 and the first address beyond the end of the last mapping, is
935 considered to be within the shared library address space, for
936 our purposes.
937
938 For example, this routine is called at one point to disable
939 breakpoints which are in shared libraries that are not currently
940 mapped in.
941 */
942
943 int
944 solib_address (address)
945 CORE_ADDR address;
946 {
947 register struct so_list *so = 0; /* link map state variable */
948
949 while ((so = find_solib (so)) != NULL)
950 {
951 if (so -> so_name[0])
952 {
953 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
954 (address < (CORE_ADDR) so -> lmend))
955 {
956 return (1);
957 }
958 }
959 }
960 return (0);
961 }
962
963 /* Called by free_all_symtabs */
964
965 void
966 clear_solib()
967 {
968 struct so_list *next;
969 char *bfd_filename;
970
971 while (so_list_head)
972 {
973 if (so_list_head -> sections)
974 {
975 free ((PTR)so_list_head -> sections);
976 }
977 if (so_list_head -> abfd)
978 {
979 bfd_filename = bfd_get_filename (so_list_head -> abfd);
980 bfd_close (so_list_head -> abfd);
981 }
982 else
983 /* This happens for the executable on SVR4. */
984 bfd_filename = NULL;
985
986 next = so_list_head -> next;
987 if (bfd_filename)
988 free ((PTR)bfd_filename);
989 free ((PTR)so_list_head);
990 so_list_head = next;
991 }
992 debug_base = 0;
993 }
994
995 /*
996
997 LOCAL FUNCTION
998
999 disable_break -- remove the "mapping changed" breakpoint
1000
1001 SYNOPSIS
1002
1003 static int disable_break ()
1004
1005 DESCRIPTION
1006
1007 Removes the breakpoint that gets hit when the dynamic linker
1008 completes a mapping change.
1009
1010 */
1011
1012 static int
1013 disable_break ()
1014 {
1015 int status = 1;
1016
1017 #ifndef SVR4_SHARED_LIBS
1018
1019 int in_debugger = 0;
1020
1021 /* Read the debugger structure from the inferior to retrieve the
1022 address of the breakpoint and the original contents of the
1023 breakpoint address. Remove the breakpoint by writing the original
1024 contents back. */
1025
1026 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1027
1028 /* Set `in_debugger' to zero now. */
1029
1030 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1031
1032 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
1033 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1034 sizeof (debug_copy.ldd_bp_inst));
1035
1036 #else /* SVR4_SHARED_LIBS */
1037
1038 /* Note that breakpoint address and original contents are in our address
1039 space, so we just need to write the original contents back. */
1040
1041 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1042 {
1043 status = 0;
1044 }
1045
1046 #endif /* !SVR4_SHARED_LIBS */
1047
1048 /* For the SVR4 version, we always know the breakpoint address. For the
1049 SunOS version we don't know it until the above code is executed.
1050 Grumble if we are stopped anywhere besides the breakpoint address. */
1051
1052 if (stop_pc != breakpoint_addr)
1053 {
1054 warning ("stopped at unknown breakpoint while handling shared libraries");
1055 }
1056
1057 return (status);
1058 }
1059
1060 /*
1061
1062 LOCAL FUNCTION
1063
1064 enable_break -- arrange for dynamic linker to hit breakpoint
1065
1066 SYNOPSIS
1067
1068 int enable_break (void)
1069
1070 DESCRIPTION
1071
1072 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1073 debugger interface, support for arranging for the inferior to hit
1074 a breakpoint after mapping in the shared libraries. This function
1075 enables that breakpoint.
1076
1077 For SunOS, there is a special flag location (in_debugger) which we
1078 set to 1. When the dynamic linker sees this flag set, it will set
1079 a breakpoint at a location known only to itself, after saving the
1080 original contents of that place and the breakpoint address itself,
1081 in it's own internal structures. When we resume the inferior, it
1082 will eventually take a SIGTRAP when it runs into the breakpoint.
1083 We handle this (in a different place) by restoring the contents of
1084 the breakpointed location (which is only known after it stops),
1085 chasing around to locate the shared libraries that have been
1086 loaded, then resuming.
1087
1088 For SVR4, the debugger interface structure contains a member (r_brk)
1089 which is statically initialized at the time the shared library is
1090 built, to the offset of a function (_r_debug_state) which is guaran-
1091 teed to be called once before mapping in a library, and again when
1092 the mapping is complete. At the time we are examining this member,
1093 it contains only the unrelocated offset of the function, so we have
1094 to do our own relocation. Later, when the dynamic linker actually
1095 runs, it relocates r_brk to be the actual address of _r_debug_state().
1096
1097 The debugger interface structure also contains an enumeration which
1098 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1099 depending upon whether or not the library is being mapped or unmapped,
1100 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1101 */
1102
1103 static int
1104 enable_break ()
1105 {
1106 int success = 0;
1107
1108 #ifndef SVR4_SHARED_LIBS
1109
1110 int j;
1111 int in_debugger;
1112
1113 /* Get link_dynamic structure */
1114
1115 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1116 sizeof (dynamic_copy));
1117 if (j)
1118 {
1119 /* unreadable */
1120 return (0);
1121 }
1122
1123 /* Calc address of debugger interface structure */
1124
1125 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1126
1127 /* Calc address of `in_debugger' member of debugger interface structure */
1128
1129 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1130 (char *) &debug_copy);
1131
1132 /* Write a value of 1 to this member. */
1133
1134 in_debugger = 1;
1135 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1136 success = 1;
1137
1138 #else /* SVR4_SHARED_LIBS */
1139
1140 #ifdef BKPT_AT_SYMBOL
1141
1142 struct minimal_symbol *msymbol;
1143 char **bkpt_namep;
1144 CORE_ADDR bkpt_addr;
1145
1146 /* Scan through the list of symbols, trying to look up the symbol and
1147 set a breakpoint there. Terminate loop when we/if we succeed. */
1148
1149 breakpoint_addr = 0;
1150 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1151 {
1152 msymbol = lookup_minimal_symbol (*bkpt_namep, symfile_objfile);
1153 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1154 {
1155 bkpt_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1156 if (target_insert_breakpoint (bkpt_addr, shadow_contents) == 0)
1157 {
1158 breakpoint_addr = bkpt_addr;
1159 success = 1;
1160 break;
1161 }
1162 }
1163 }
1164
1165 #else /* !BKPT_AT_SYMBOL */
1166
1167 struct symtab_and_line sal;
1168
1169 /* Read the debugger interface structure directly. */
1170
1171 read_memory (debug_base, (char *) &debug_copy, sizeof (debug_copy));
1172
1173 /* Set breakpoint at the debugger interface stub routine that will
1174 be called just prior to each mapping change and again after the
1175 mapping change is complete. Set up the (nonexistent) handler to
1176 deal with hitting these breakpoints. (FIXME). */
1177
1178 warning ("'%s': line %d: missing SVR4 support code", __FILE__, __LINE__);
1179 success = 1;
1180
1181 #endif /* BKPT_AT_SYMBOL */
1182
1183 #endif /* !SVR4_SHARED_LIBS */
1184
1185 return (success);
1186 }
1187
1188 /*
1189
1190 GLOBAL FUNCTION
1191
1192 solib_create_inferior_hook -- shared library startup support
1193
1194 SYNOPSIS
1195
1196 void solib_create_inferior_hook()
1197
1198 DESCRIPTION
1199
1200 When gdb starts up the inferior, it nurses it along (through the
1201 shell) until it is ready to execute it's first instruction. At this
1202 point, this function gets called via expansion of the macro
1203 SOLIB_CREATE_INFERIOR_HOOK.
1204
1205 For SunOS executables, this first instruction is typically the
1206 one at "_start", or a similar text label, regardless of whether
1207 the executable is statically or dynamically linked. The runtime
1208 startup code takes care of dynamically linking in any shared
1209 libraries, once gdb allows the inferior to continue.
1210
1211 For SVR4 executables, this first instruction is either the first
1212 instruction in the dynamic linker (for dynamically linked
1213 executables) or the instruction at "start" for statically linked
1214 executables. For dynamically linked executables, the system
1215 first exec's /lib/libc.so.N, which contains the dynamic linker,
1216 and starts it running. The dynamic linker maps in any needed
1217 shared libraries, maps in the actual user executable, and then
1218 jumps to "start" in the user executable.
1219
1220 For both SunOS shared libraries, and SVR4 shared libraries, we
1221 can arrange to cooperate with the dynamic linker to discover the
1222 names of shared libraries that are dynamically linked, and the
1223 base addresses to which they are linked.
1224
1225 This function is responsible for discovering those names and
1226 addresses, and saving sufficient information about them to allow
1227 their symbols to be read at a later time.
1228
1229 FIXME
1230
1231 Between enable_break() and disable_break(), this code does not
1232 properly handle hitting breakpoints which the user might have
1233 set in the startup code or in the dynamic linker itself. Proper
1234 handling will probably have to wait until the implementation is
1235 changed to use the "breakpoint handler function" method.
1236
1237 Also, what if child has exit()ed? Must exit loop somehow.
1238 */
1239
1240 void
1241 solib_create_inferior_hook()
1242 {
1243 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1244 yet. In fact, in the case of a SunOS4 executable being run on
1245 Solaris, we can't get it yet. find_solib will get it when it needs
1246 it. */
1247 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1248 if ((debug_base = locate_base ()) == 0)
1249 {
1250 /* Can't find the symbol or the executable is statically linked. */
1251 return;
1252 }
1253 #endif
1254
1255 if (!enable_break ())
1256 {
1257 warning ("shared library handler failed to enable breakpoint");
1258 return;
1259 }
1260
1261 /* Now run the target. It will eventually hit the breakpoint, at
1262 which point all of the libraries will have been mapped in and we
1263 can go groveling around in the dynamic linker structures to find
1264 out what we need to know about them. */
1265
1266 clear_proceed_status ();
1267 stop_soon_quietly = 1;
1268 stop_signal = 0;
1269 do
1270 {
1271 target_resume (-1, 0, stop_signal);
1272 wait_for_inferior ();
1273 }
1274 while (stop_signal != SIGTRAP);
1275 stop_soon_quietly = 0;
1276
1277 /* We are now either at the "mapping complete" breakpoint (or somewhere
1278 else, a condition we aren't prepared to deal with anyway), so adjust
1279 the PC as necessary after a breakpoint, disable the breakpoint, and
1280 add any shared libraries that were mapped in. */
1281
1282 if (DECR_PC_AFTER_BREAK)
1283 {
1284 stop_pc -= DECR_PC_AFTER_BREAK;
1285 write_register (PC_REGNUM, stop_pc);
1286 }
1287
1288 if (!disable_break ())
1289 {
1290 warning ("shared library handler failed to disable breakpoint");
1291 }
1292
1293 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1294 }
1295
1296 /*
1297
1298 LOCAL FUNCTION
1299
1300 special_symbol_handling -- additional shared library symbol handling
1301
1302 SYNOPSIS
1303
1304 void special_symbol_handling (struct so_list *so)
1305
1306 DESCRIPTION
1307
1308 Once the symbols from a shared object have been loaded in the usual
1309 way, we are called to do any system specific symbol handling that
1310 is needed.
1311
1312 For Suns, this consists of grunging around in the dynamic linkers
1313 structures to find symbol definitions for "common" symbols and
1314 adding them to the minimal symbol table for the corresponding
1315 objfile.
1316
1317 */
1318
1319 static void
1320 special_symbol_handling (so)
1321 struct so_list *so;
1322 {
1323 #ifndef SVR4_SHARED_LIBS
1324 int j;
1325
1326 if (debug_addr == 0)
1327 {
1328 /* Get link_dynamic structure */
1329
1330 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1331 sizeof (dynamic_copy));
1332 if (j)
1333 {
1334 /* unreadable */
1335 return;
1336 }
1337
1338 /* Calc address of debugger interface structure */
1339 /* FIXME, this needs work for cross-debugging of core files
1340 (byteorder, size, alignment, etc). */
1341
1342 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1343 }
1344
1345 /* Read the debugger structure from the inferior, just to make sure
1346 we have a current copy. */
1347
1348 j = target_read_memory (debug_addr, (char *) &debug_copy,
1349 sizeof (debug_copy));
1350 if (j)
1351 return; /* unreadable */
1352
1353 /* Get common symbol definitions for the loaded object. */
1354
1355 if (debug_copy.ldd_cp)
1356 {
1357 solib_add_common_symbols (debug_copy.ldd_cp, so -> objfile);
1358 }
1359
1360 #endif /* !SVR4_SHARED_LIBS */
1361 }
1362
1363
1364 /*
1365
1366 LOCAL FUNCTION
1367
1368 sharedlibrary_command -- handle command to explicitly add library
1369
1370 SYNOPSIS
1371
1372 static void sharedlibrary_command (char *args, int from_tty)
1373
1374 DESCRIPTION
1375
1376 */
1377
1378 static void
1379 sharedlibrary_command (args, from_tty)
1380 char *args;
1381 int from_tty;
1382 {
1383 dont_repeat ();
1384 solib_add (args, from_tty, (struct target_ops *) 0);
1385 }
1386
1387 void
1388 _initialize_solib()
1389 {
1390
1391 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1392 "Load shared object library symbols for files matching REGEXP.");
1393 add_info ("sharedlibrary", info_sharedlibrary_command,
1394 "Status of loaded shared object libraries.");
1395 }
This page took 0.058752 seconds and 4 git commands to generate.