Remove the pile of "Update copyright to ..." that I'd put in, and
[deliverable/binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23
24 #include <sys/types.h>
25 #include <signal.h>
26 #include "gdb_string.h"
27 #include <sys/param.h>
28 #include <fcntl.h>
29 #include <unistd.h>
30
31 #ifndef SVR4_SHARED_LIBS
32 /* SunOS shared libs need the nlist structure. */
33 #include <a.out.h>
34 #else
35 #include "elf/external.h"
36 #endif
37
38 #include <link.h>
39
40 #include "symtab.h"
41 #include "bfd.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "gdbcore.h"
45 #include "command.h"
46 #include "target.h"
47 #include "frame.h"
48 #include "regex.h"
49 #include "inferior.h"
50 #include "environ.h"
51 #include "language.h"
52 #include "gdbcmd.h"
53
54 #define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
55
56 /* On SVR4 systems, for the initial implementation, use some runtime startup
57 symbol as the "startup mapping complete" breakpoint address. The models
58 for SunOS and SVR4 dynamic linking debugger support are different in that
59 SunOS hits one breakpoint when all mapping is complete while using the SVR4
60 debugger support takes two breakpoint hits for each file mapped, and
61 there is no way to know when the "last" one is hit. Both these
62 mechanisms should be tied to a "breakpoint service routine" that
63 gets automatically executed whenever one of the breakpoints indicating
64 a change in mapping is hit. This is a future enhancement. (FIXME) */
65
66 #define BKPT_AT_SYMBOL 1
67
68 #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
69 static char *bkpt_names[] = {
70 #ifdef SOLIB_BKPT_NAME
71 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
72 #endif
73 "_start",
74 "main",
75 NULL
76 };
77 #endif
78
79 /* Symbols which are used to locate the base of the link map structures. */
80
81 #ifndef SVR4_SHARED_LIBS
82 static char *debug_base_symbols[] = {
83 "_DYNAMIC",
84 "_DYNAMIC__MGC",
85 NULL
86 };
87 #endif
88
89 static char *main_name_list[] = {
90 "main_$main",
91 NULL
92 };
93
94 /* local data declarations */
95
96 /* If true, then shared library symbols will be added automatically
97 when the inferior is created. This is almost always what users
98 will want to have happen; but for very large programs, the startup
99 time will be excessive, and so if this is a problem, the user can
100 clear this flag and then add the shared library symbols as needed.
101 Note that there is a potential for confusion, since if the shared
102 library symbols are not loaded, commands like "info fun" will *not*
103 report all the functions that are actually present. */
104
105 int auto_solib_add_at_startup = 1;
106
107 #ifndef SVR4_SHARED_LIBS
108
109 #define LM_ADDR(so) ((so) -> lm.lm_addr)
110 #define LM_NEXT(so) ((so) -> lm.lm_next)
111 #define LM_NAME(so) ((so) -> lm.lm_name)
112 /* Test for first link map entry; first entry is a shared library. */
113 #define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
114 static struct link_dynamic dynamic_copy;
115 static struct link_dynamic_2 ld_2_copy;
116 static struct ld_debug debug_copy;
117 static CORE_ADDR debug_addr;
118 static CORE_ADDR flag_addr;
119
120 #else /* SVR4_SHARED_LIBS */
121
122 #define LM_ADDR(so) ((so) -> lm.l_addr)
123 #define LM_NEXT(so) ((so) -> lm.l_next)
124 #define LM_NAME(so) ((so) -> lm.l_name)
125 /* Test for first link map entry; first entry is the exec-file. */
126 #define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
127 static struct r_debug debug_copy;
128 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
129
130 #endif /* !SVR4_SHARED_LIBS */
131
132 struct so_list {
133 struct so_list *next; /* next structure in linked list */
134 struct link_map lm; /* copy of link map from inferior */
135 struct link_map *lmaddr; /* addr in inferior lm was read from */
136 CORE_ADDR lmend; /* upper addr bound of mapped object */
137 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
138 char symbols_loaded; /* flag: symbols read in yet? */
139 char from_tty; /* flag: print msgs? */
140 struct objfile *objfile; /* objfile for loaded lib */
141 struct section_table *sections;
142 struct section_table *sections_end;
143 struct section_table *textsection;
144 bfd *abfd;
145 };
146
147 static struct so_list *so_list_head; /* List of known shared objects */
148 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
149 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
150
151 extern int
152 fdmatch PARAMS ((int, int)); /* In libiberty */
153
154 /* Local function prototypes */
155
156 static void
157 special_symbol_handling PARAMS ((struct so_list *));
158
159 static void
160 sharedlibrary_command PARAMS ((char *, int));
161
162 static int
163 enable_break PARAMS ((void));
164
165 static int
166 disable_break PARAMS ((void));
167
168 static void
169 info_sharedlibrary_command PARAMS ((char *, int));
170
171 static int
172 symbol_add_stub PARAMS ((char *));
173
174 static struct so_list *
175 find_solib PARAMS ((struct so_list *));
176
177 static struct link_map *
178 first_link_map_member PARAMS ((void));
179
180 static CORE_ADDR
181 locate_base PARAMS ((void));
182
183 static void
184 solib_map_sections PARAMS ((struct so_list *));
185
186 #ifdef SVR4_SHARED_LIBS
187
188 static CORE_ADDR
189 elf_locate_base PARAMS ((void));
190
191 #else
192
193 static void
194 allocate_rt_common_objfile PARAMS ((void));
195
196 static void
197 solib_add_common_symbols PARAMS ((struct rtc_symb *));
198
199 #endif
200
201 /*
202
203 LOCAL FUNCTION
204
205 solib_map_sections -- open bfd and build sections for shared lib
206
207 SYNOPSIS
208
209 static void solib_map_sections (struct so_list *so)
210
211 DESCRIPTION
212
213 Given a pointer to one of the shared objects in our list
214 of mapped objects, use the recorded name to open a bfd
215 descriptor for the object, build a section table, and then
216 relocate all the section addresses by the base address at
217 which the shared object was mapped.
218
219 FIXMES
220
221 In most (all?) cases the shared object file name recorded in the
222 dynamic linkage tables will be a fully qualified pathname. For
223 cases where it isn't, do we really mimic the systems search
224 mechanism correctly in the below code (particularly the tilde
225 expansion stuff?).
226 */
227
228 static void
229 solib_map_sections (so)
230 struct so_list *so;
231 {
232 char *filename;
233 char *scratch_pathname;
234 int scratch_chan;
235 struct section_table *p;
236 struct cleanup *old_chain;
237 bfd *abfd;
238
239 filename = tilde_expand (so -> so_name);
240 old_chain = make_cleanup (free, filename);
241
242 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
243 1, filename, O_RDONLY, 0, &scratch_pathname);
244 if (scratch_chan < 0)
245 {
246 scratch_chan = openp (get_in_environ
247 (inferior_environ, "LD_LIBRARY_PATH"),
248 1, filename, O_RDONLY, 0, &scratch_pathname);
249 }
250 if (scratch_chan < 0)
251 {
252 perror_with_name (filename);
253 }
254 /* Leave scratch_pathname allocated. abfd->name will point to it. */
255
256 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
257 if (!abfd)
258 {
259 close (scratch_chan);
260 error ("Could not open `%s' as an executable file: %s",
261 scratch_pathname, bfd_errmsg (bfd_get_error ()));
262 }
263 /* Leave bfd open, core_xfer_memory and "info files" need it. */
264 so -> abfd = abfd;
265 abfd -> cacheable = true;
266
267 /* copy full path name into so_name, so that later symbol_file_add can find
268 it */
269 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
270 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
271 strcpy (so->so_name, scratch_pathname);
272
273 if (!bfd_check_format (abfd, bfd_object))
274 {
275 error ("\"%s\": not in executable format: %s.",
276 scratch_pathname, bfd_errmsg (bfd_get_error ()));
277 }
278 if (build_section_table (abfd, &so -> sections, &so -> sections_end))
279 {
280 error ("Can't find the file sections in `%s': %s",
281 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
282 }
283
284 for (p = so -> sections; p < so -> sections_end; p++)
285 {
286 /* Relocate the section binding addresses as recorded in the shared
287 object's file by the base address to which the object was actually
288 mapped. */
289 p -> addr += (CORE_ADDR) LM_ADDR (so);
290 p -> endaddr += (CORE_ADDR) LM_ADDR (so);
291 so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
292 if (STREQ (p -> the_bfd_section -> name, ".text"))
293 {
294 so -> textsection = p;
295 }
296 }
297
298 /* Free the file names, close the file now. */
299 do_cleanups (old_chain);
300 }
301
302 #ifndef SVR4_SHARED_LIBS
303
304 /* Allocate the runtime common object file. */
305
306 static void
307 allocate_rt_common_objfile ()
308 {
309 struct objfile *objfile;
310 struct objfile *last_one;
311
312 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
313 memset (objfile, 0, sizeof (struct objfile));
314 objfile -> md = NULL;
315 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
316 free);
317 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
318 free);
319 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
320 free);
321 objfile -> name = mstrsave (objfile -> md, "rt_common");
322
323 /* Add this file onto the tail of the linked list of other such files. */
324
325 objfile -> next = NULL;
326 if (object_files == NULL)
327 object_files = objfile;
328 else
329 {
330 for (last_one = object_files;
331 last_one -> next;
332 last_one = last_one -> next);
333 last_one -> next = objfile;
334 }
335
336 rt_common_objfile = objfile;
337 }
338
339 /* Read all dynamically loaded common symbol definitions from the inferior
340 and put them into the minimal symbol table for the runtime common
341 objfile. */
342
343 static void
344 solib_add_common_symbols (rtc_symp)
345 struct rtc_symb *rtc_symp;
346 {
347 struct rtc_symb inferior_rtc_symb;
348 struct nlist inferior_rtc_nlist;
349 int len;
350 char *name;
351 char *origname;
352
353 /* Remove any runtime common symbols from previous runs. */
354
355 if (rt_common_objfile != NULL && rt_common_objfile -> minimal_symbol_count)
356 {
357 obstack_free (&rt_common_objfile -> symbol_obstack, 0);
358 obstack_specify_allocation (&rt_common_objfile -> symbol_obstack, 0, 0,
359 xmalloc, free);
360 rt_common_objfile -> minimal_symbol_count = 0;
361 rt_common_objfile -> msymbols = NULL;
362 }
363
364 init_minimal_symbol_collection ();
365 make_cleanup (discard_minimal_symbols, 0);
366
367 while (rtc_symp)
368 {
369 read_memory ((CORE_ADDR) rtc_symp,
370 (char *) &inferior_rtc_symb,
371 sizeof (inferior_rtc_symb));
372 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
373 (char *) &inferior_rtc_nlist,
374 sizeof(inferior_rtc_nlist));
375 if (inferior_rtc_nlist.n_type == N_COMM)
376 {
377 /* FIXME: The length of the symbol name is not available, but in the
378 current implementation the common symbol is allocated immediately
379 behind the name of the symbol. */
380 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
381
382 origname = name = xmalloc (len);
383 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
384
385 /* Allocate the runtime common objfile if necessary. */
386 if (rt_common_objfile == NULL)
387 allocate_rt_common_objfile ();
388
389 name = obsavestring (name, strlen (name),
390 &rt_common_objfile -> symbol_obstack);
391 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
392 mst_bss, rt_common_objfile);
393 free (origname);
394 }
395 rtc_symp = inferior_rtc_symb.rtc_next;
396 }
397
398 /* Install any minimal symbols that have been collected as the current
399 minimal symbols for the runtime common objfile. */
400
401 install_minimal_symbols (rt_common_objfile);
402 }
403
404 #endif /* SVR4_SHARED_LIBS */
405
406
407 #ifdef SVR4_SHARED_LIBS
408
409 #ifdef HANDLE_SVR4_EXEC_EMULATORS
410
411 /*
412 Solaris BCP (the part of Solaris which allows it to run SunOS4
413 a.out files) throws in another wrinkle. Solaris does not fill
414 in the usual a.out link map structures when running BCP programs,
415 the only way to get at them is via groping around in the dynamic
416 linker.
417 The dynamic linker and it's structures are located in the shared
418 C library, which gets run as the executable's "interpreter" by
419 the kernel.
420
421 Note that we can assume nothing about the process state at the time
422 we need to find these structures. We may be stopped on the first
423 instruction of the interpreter (C shared library), the first
424 instruction of the executable itself, or somewhere else entirely
425 (if we attached to the process for example).
426 */
427
428 static char *debug_base_symbols[] = {
429 "r_debug", /* Solaris 2.3 */
430 "_r_debug", /* Solaris 2.1, 2.2 */
431 NULL
432 };
433
434 static int
435 look_for_base PARAMS ((int, CORE_ADDR));
436
437 static CORE_ADDR
438 bfd_lookup_symbol PARAMS ((bfd *, char *));
439
440 /*
441
442 LOCAL FUNCTION
443
444 bfd_lookup_symbol -- lookup the value for a specific symbol
445
446 SYNOPSIS
447
448 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
449
450 DESCRIPTION
451
452 An expensive way to lookup the value of a single symbol for
453 bfd's that are only temporary anyway. This is used by the
454 shared library support to find the address of the debugger
455 interface structures in the shared library.
456
457 Note that 0 is specifically allowed as an error return (no
458 such symbol).
459 */
460
461 static CORE_ADDR
462 bfd_lookup_symbol (abfd, symname)
463 bfd *abfd;
464 char *symname;
465 {
466 unsigned int storage_needed;
467 asymbol *sym;
468 asymbol **symbol_table;
469 unsigned int number_of_symbols;
470 unsigned int i;
471 struct cleanup *back_to;
472 CORE_ADDR symaddr = 0;
473
474 storage_needed = bfd_get_symtab_upper_bound (abfd);
475
476 if (storage_needed > 0)
477 {
478 symbol_table = (asymbol **) xmalloc (storage_needed);
479 back_to = make_cleanup (free, (PTR)symbol_table);
480 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
481
482 for (i = 0; i < number_of_symbols; i++)
483 {
484 sym = *symbol_table++;
485 if (STREQ (sym -> name, symname))
486 {
487 /* Bfd symbols are section relative. */
488 symaddr = sym -> value + sym -> section -> vma;
489 break;
490 }
491 }
492 do_cleanups (back_to);
493 }
494 return (symaddr);
495 }
496
497 /*
498
499 LOCAL FUNCTION
500
501 look_for_base -- examine file for each mapped address segment
502
503 SYNOPSYS
504
505 static int look_for_base (int fd, CORE_ADDR baseaddr)
506
507 DESCRIPTION
508
509 This function is passed to proc_iterate_over_mappings, which
510 causes it to get called once for each mapped address space, with
511 an open file descriptor for the file mapped to that space, and the
512 base address of that mapped space.
513
514 Our job is to find the debug base symbol in the file that this
515 fd is open on, if it exists, and if so, initialize the dynamic
516 linker structure base address debug_base.
517
518 Note that this is a computationally expensive proposition, since
519 we basically have to open a bfd on every call, so we specifically
520 avoid opening the exec file.
521 */
522
523 static int
524 look_for_base (fd, baseaddr)
525 int fd;
526 CORE_ADDR baseaddr;
527 {
528 bfd *interp_bfd;
529 CORE_ADDR address = 0;
530 char **symbolp;
531
532 /* If the fd is -1, then there is no file that corresponds to this
533 mapped memory segment, so skip it. Also, if the fd corresponds
534 to the exec file, skip it as well. */
535
536 if (fd == -1
537 || (exec_bfd != NULL
538 && fdmatch (fileno ((GDB_FILE *)(exec_bfd -> iostream)), fd)))
539 {
540 return (0);
541 }
542
543 /* Try to open whatever random file this fd corresponds to. Note that
544 we have no way currently to find the filename. Don't gripe about
545 any problems we might have, just fail. */
546
547 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
548 {
549 return (0);
550 }
551 if (!bfd_check_format (interp_bfd, bfd_object))
552 {
553 /* FIXME-leak: on failure, might not free all memory associated with
554 interp_bfd. */
555 bfd_close (interp_bfd);
556 return (0);
557 }
558
559 /* Now try to find our debug base symbol in this file, which we at
560 least know to be a valid ELF executable or shared library. */
561
562 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
563 {
564 address = bfd_lookup_symbol (interp_bfd, *symbolp);
565 if (address != 0)
566 {
567 break;
568 }
569 }
570 if (address == 0)
571 {
572 /* FIXME-leak: on failure, might not free all memory associated with
573 interp_bfd. */
574 bfd_close (interp_bfd);
575 return (0);
576 }
577
578 /* Eureka! We found the symbol. But now we may need to relocate it
579 by the base address. If the symbol's value is less than the base
580 address of the shared library, then it hasn't yet been relocated
581 by the dynamic linker, and we have to do it ourself. FIXME: Note
582 that we make the assumption that the first segment that corresponds
583 to the shared library has the base address to which the library
584 was relocated. */
585
586 if (address < baseaddr)
587 {
588 address += baseaddr;
589 }
590 debug_base = address;
591 /* FIXME-leak: on failure, might not free all memory associated with
592 interp_bfd. */
593 bfd_close (interp_bfd);
594 return (1);
595 }
596 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
597
598 /*
599
600 LOCAL FUNCTION
601
602 elf_locate_base -- locate the base address of dynamic linker structs
603 for SVR4 elf targets.
604
605 SYNOPSIS
606
607 CORE_ADDR elf_locate_base (void)
608
609 DESCRIPTION
610
611 For SVR4 elf targets the address of the dynamic linker's runtime
612 structure is contained within the dynamic info section in the
613 executable file. The dynamic section is also mapped into the
614 inferior address space. Because the runtime loader fills in the
615 real address before starting the inferior, we have to read in the
616 dynamic info section from the inferior address space.
617 If there are any errors while trying to find the address, we
618 silently return 0, otherwise the found address is returned.
619
620 */
621
622 static CORE_ADDR
623 elf_locate_base ()
624 {
625 sec_ptr dyninfo_sect;
626 int dyninfo_sect_size;
627 CORE_ADDR dyninfo_addr;
628 char *buf;
629 char *bufend;
630
631 /* Find the start address of the .dynamic section. */
632 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
633 if (dyninfo_sect == NULL)
634 return 0;
635 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
636
637 /* Read in .dynamic section, silently ignore errors. */
638 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
639 buf = alloca (dyninfo_sect_size);
640 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
641 return 0;
642
643 /* Find the DT_DEBUG entry in the the .dynamic section.
644 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
645 no DT_DEBUG entries. */
646 /* FIXME: In lack of a 64 bit ELF ABI the following code assumes
647 a 32 bit ELF ABI target. */
648 for (bufend = buf + dyninfo_sect_size;
649 buf < bufend;
650 buf += sizeof (Elf32_External_Dyn))
651 {
652 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *)buf;
653 long dyn_tag;
654 CORE_ADDR dyn_ptr;
655
656 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
657 if (dyn_tag == DT_NULL)
658 break;
659 else if (dyn_tag == DT_DEBUG)
660 {
661 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
662 return dyn_ptr;
663 }
664 #ifdef DT_MIPS_RLD_MAP
665 else if (dyn_tag == DT_MIPS_RLD_MAP)
666 {
667 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
668
669 /* DT_MIPS_RLD_MAP contains a pointer to the address
670 of the dynamic link structure. */
671 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
672 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
673 return 0;
674 return extract_unsigned_integer (pbuf, sizeof (pbuf));
675 }
676 #endif
677 }
678
679 /* DT_DEBUG entry not found. */
680 return 0;
681 }
682
683 #endif /* SVR4_SHARED_LIBS */
684
685 /*
686
687 LOCAL FUNCTION
688
689 locate_base -- locate the base address of dynamic linker structs
690
691 SYNOPSIS
692
693 CORE_ADDR locate_base (void)
694
695 DESCRIPTION
696
697 For both the SunOS and SVR4 shared library implementations, if the
698 inferior executable has been linked dynamically, there is a single
699 address somewhere in the inferior's data space which is the key to
700 locating all of the dynamic linker's runtime structures. This
701 address is the value of the debug base symbol. The job of this
702 function is to find and return that address, or to return 0 if there
703 is no such address (the executable is statically linked for example).
704
705 For SunOS, the job is almost trivial, since the dynamic linker and
706 all of it's structures are statically linked to the executable at
707 link time. Thus the symbol for the address we are looking for has
708 already been added to the minimal symbol table for the executable's
709 objfile at the time the symbol file's symbols were read, and all we
710 have to do is look it up there. Note that we explicitly do NOT want
711 to find the copies in the shared library.
712
713 The SVR4 version is a bit more complicated because the address
714 is contained somewhere in the dynamic info section. We have to go
715 to a lot more work to discover the address of the debug base symbol.
716 Because of this complexity, we cache the value we find and return that
717 value on subsequent invocations. Note there is no copy in the
718 executable symbol tables.
719
720 */
721
722 static CORE_ADDR
723 locate_base ()
724 {
725
726 #ifndef SVR4_SHARED_LIBS
727
728 struct minimal_symbol *msymbol;
729 CORE_ADDR address = 0;
730 char **symbolp;
731
732 /* For SunOS, we want to limit the search for the debug base symbol to the
733 executable being debugged, since there is a duplicate named symbol in the
734 shared library. We don't want the shared library versions. */
735
736 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
737 {
738 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
739 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
740 {
741 address = SYMBOL_VALUE_ADDRESS (msymbol);
742 return (address);
743 }
744 }
745 return (0);
746
747 #else /* SVR4_SHARED_LIBS */
748
749 /* Check to see if we have a currently valid address, and if so, avoid
750 doing all this work again and just return the cached address. If
751 we have no cached address, try to locate it in the dynamic info
752 section for ELF executables. */
753
754 if (debug_base == 0)
755 {
756 if (exec_bfd != NULL
757 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
758 debug_base = elf_locate_base ();
759 #ifdef HANDLE_SVR4_EXEC_EMULATORS
760 /* Try it the hard way for emulated executables. */
761 else if (inferior_pid != 0)
762 proc_iterate_over_mappings (look_for_base);
763 #endif
764 }
765 return (debug_base);
766
767 #endif /* !SVR4_SHARED_LIBS */
768
769 }
770
771 /*
772
773 LOCAL FUNCTION
774
775 first_link_map_member -- locate first member in dynamic linker's map
776
777 SYNOPSIS
778
779 static struct link_map *first_link_map_member (void)
780
781 DESCRIPTION
782
783 Read in a copy of the first member in the inferior's dynamic
784 link map from the inferior's dynamic linker structures, and return
785 a pointer to the copy in our address space.
786 */
787
788 static struct link_map *
789 first_link_map_member ()
790 {
791 struct link_map *lm = NULL;
792
793 #ifndef SVR4_SHARED_LIBS
794
795 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
796 if (dynamic_copy.ld_version >= 2)
797 {
798 /* It is a version that we can deal with, so read in the secondary
799 structure and find the address of the link map list from it. */
800 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
801 sizeof (struct link_dynamic_2));
802 lm = ld_2_copy.ld_loaded;
803 }
804
805 #else /* SVR4_SHARED_LIBS */
806
807 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
808 /* FIXME: Perhaps we should validate the info somehow, perhaps by
809 checking r_version for a known version number, or r_state for
810 RT_CONSISTENT. */
811 lm = debug_copy.r_map;
812
813 #endif /* !SVR4_SHARED_LIBS */
814
815 return (lm);
816 }
817
818 /*
819
820 LOCAL FUNCTION
821
822 find_solib -- step through list of shared objects
823
824 SYNOPSIS
825
826 struct so_list *find_solib (struct so_list *so_list_ptr)
827
828 DESCRIPTION
829
830 This module contains the routine which finds the names of any
831 loaded "images" in the current process. The argument in must be
832 NULL on the first call, and then the returned value must be passed
833 in on subsequent calls. This provides the capability to "step" down
834 the list of loaded objects. On the last object, a NULL value is
835 returned.
836
837 The arg and return value are "struct link_map" pointers, as defined
838 in <link.h>.
839 */
840
841 static struct so_list *
842 find_solib (so_list_ptr)
843 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
844 {
845 struct so_list *so_list_next = NULL;
846 struct link_map *lm = NULL;
847 struct so_list *new;
848
849 if (so_list_ptr == NULL)
850 {
851 /* We are setting up for a new scan through the loaded images. */
852 if ((so_list_next = so_list_head) == NULL)
853 {
854 /* We have not already read in the dynamic linking structures
855 from the inferior, lookup the address of the base structure. */
856 debug_base = locate_base ();
857 if (debug_base != 0)
858 {
859 /* Read the base structure in and find the address of the first
860 link map list member. */
861 lm = first_link_map_member ();
862 }
863 }
864 }
865 else
866 {
867 /* We have been called before, and are in the process of walking
868 the shared library list. Advance to the next shared object. */
869 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
870 {
871 /* We have hit the end of the list, so check to see if any were
872 added, but be quiet if we can't read from the target any more. */
873 int status = target_read_memory ((CORE_ADDR) so_list_ptr -> lmaddr,
874 (char *) &(so_list_ptr -> lm),
875 sizeof (struct link_map));
876 if (status == 0)
877 {
878 lm = LM_NEXT (so_list_ptr);
879 }
880 else
881 {
882 lm = NULL;
883 }
884 }
885 so_list_next = so_list_ptr -> next;
886 }
887 if ((so_list_next == NULL) && (lm != NULL))
888 {
889 /* Get next link map structure from inferior image and build a local
890 abbreviated load_map structure */
891 new = (struct so_list *) xmalloc (sizeof (struct so_list));
892 memset ((char *) new, 0, sizeof (struct so_list));
893 new -> lmaddr = lm;
894 /* Add the new node as the next node in the list, or as the root
895 node if this is the first one. */
896 if (so_list_ptr != NULL)
897 {
898 so_list_ptr -> next = new;
899 }
900 else
901 {
902 so_list_head = new;
903 }
904 so_list_next = new;
905 read_memory ((CORE_ADDR) lm, (char *) &(new -> lm),
906 sizeof (struct link_map));
907 /* For SVR4 versions, the first entry in the link map is for the
908 inferior executable, so we must ignore it. For some versions of
909 SVR4, it has no name. For others (Solaris 2.3 for example), it
910 does have a name, so we can no longer use a missing name to
911 decide when to ignore it. */
912 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new -> lm))
913 {
914 int errcode;
915 char *buffer;
916 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
917 MAX_PATH_SIZE - 1, &errcode);
918 if (errcode != 0)
919 error ("find_solib: Can't read pathname for load map: %s\n",
920 safe_strerror (errcode));
921 strncpy (new -> so_name, buffer, MAX_PATH_SIZE - 1);
922 new -> so_name[MAX_PATH_SIZE - 1] = '\0';
923 free (buffer);
924 solib_map_sections (new);
925 }
926 }
927 return (so_list_next);
928 }
929
930 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
931
932 static int
933 symbol_add_stub (arg)
934 char *arg;
935 {
936 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
937
938 so -> objfile =
939 symbol_file_add (so -> so_name, so -> from_tty,
940 (so->textsection == NULL
941 ? 0
942 : (unsigned int) so -> textsection -> addr),
943 0, 0, 0);
944 return (1);
945 }
946
947 /* This function will check the so name to see if matches the main list.
948 In some system the main object is in the list, which we want to exclude */
949
950 static int match_main (soname)
951 char *soname;
952 {
953 char **mainp;
954
955 for (mainp = main_name_list; *mainp != NULL; mainp++)
956 {
957 if (strcmp (soname, *mainp) == 0)
958 return (1);
959 }
960
961 return (0);
962 }
963
964 /*
965
966 GLOBAL FUNCTION
967
968 solib_add -- add a shared library file to the symtab and section list
969
970 SYNOPSIS
971
972 void solib_add (char *arg_string, int from_tty,
973 struct target_ops *target)
974
975 DESCRIPTION
976
977 */
978
979 void
980 solib_add (arg_string, from_tty, target)
981 char *arg_string;
982 int from_tty;
983 struct target_ops *target;
984 {
985 register struct so_list *so = NULL; /* link map state variable */
986
987 /* Last shared library that we read. */
988 struct so_list *so_last = NULL;
989
990 char *re_err;
991 int count;
992 int old;
993
994 if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
995 {
996 error ("Invalid regexp: %s", re_err);
997 }
998
999 /* Add the shared library sections to the section table of the
1000 specified target, if any. */
1001 if (target)
1002 {
1003 /* Count how many new section_table entries there are. */
1004 so = NULL;
1005 count = 0;
1006 while ((so = find_solib (so)) != NULL)
1007 {
1008 if (so -> so_name[0] && !match_main (so -> so_name))
1009 {
1010 count += so -> sections_end - so -> sections;
1011 }
1012 }
1013
1014 if (count)
1015 {
1016 /* Reallocate the target's section table including the new size. */
1017 if (target -> to_sections)
1018 {
1019 old = target -> to_sections_end - target -> to_sections;
1020 target -> to_sections = (struct section_table *)
1021 xrealloc ((char *)target -> to_sections,
1022 (sizeof (struct section_table)) * (count + old));
1023 }
1024 else
1025 {
1026 old = 0;
1027 target -> to_sections = (struct section_table *)
1028 xmalloc ((sizeof (struct section_table)) * count);
1029 }
1030 target -> to_sections_end = target -> to_sections + (count + old);
1031
1032 /* Add these section table entries to the target's table. */
1033 while ((so = find_solib (so)) != NULL)
1034 {
1035 if (so -> so_name[0])
1036 {
1037 count = so -> sections_end - so -> sections;
1038 memcpy ((char *) (target -> to_sections + old),
1039 so -> sections,
1040 (sizeof (struct section_table)) * count);
1041 old += count;
1042 }
1043 }
1044 }
1045 }
1046
1047 /* Now add the symbol files. */
1048 while ((so = find_solib (so)) != NULL)
1049 {
1050 if (so -> so_name[0] && re_exec (so -> so_name) &&
1051 !match_main (so -> so_name))
1052 {
1053 so -> from_tty = from_tty;
1054 if (so -> symbols_loaded)
1055 {
1056 if (from_tty)
1057 {
1058 printf_unfiltered ("Symbols already loaded for %s\n", so -> so_name);
1059 }
1060 }
1061 else if (catch_errors
1062 (symbol_add_stub, (char *) so,
1063 "Error while reading shared library symbols:\n",
1064 RETURN_MASK_ALL))
1065 {
1066 so_last = so;
1067 so -> symbols_loaded = 1;
1068 }
1069 }
1070 }
1071
1072 /* Getting new symbols may change our opinion about what is
1073 frameless. */
1074 if (so_last)
1075 reinit_frame_cache ();
1076
1077 if (so_last)
1078 special_symbol_handling (so_last);
1079 }
1080
1081 /*
1082
1083 LOCAL FUNCTION
1084
1085 info_sharedlibrary_command -- code for "info sharedlibrary"
1086
1087 SYNOPSIS
1088
1089 static void info_sharedlibrary_command ()
1090
1091 DESCRIPTION
1092
1093 Walk through the shared library list and print information
1094 about each attached library.
1095 */
1096
1097 static void
1098 info_sharedlibrary_command (ignore, from_tty)
1099 char *ignore;
1100 int from_tty;
1101 {
1102 register struct so_list *so = NULL; /* link map state variable */
1103 int header_done = 0;
1104
1105 if (exec_bfd == NULL)
1106 {
1107 printf_unfiltered ("No exec file.\n");
1108 return;
1109 }
1110 while ((so = find_solib (so)) != NULL)
1111 {
1112 if (so -> so_name[0])
1113 {
1114 if (!header_done)
1115 {
1116 printf_unfiltered("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
1117 "Shared Object Library");
1118 header_done++;
1119 }
1120 /* FIXME-32x64: need print_address_numeric with field width or
1121 some such. */
1122 printf_unfiltered ("%-12s",
1123 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1124 "08l"));
1125 printf_unfiltered ("%-12s",
1126 local_hex_string_custom ((unsigned long) so -> lmend,
1127 "08l"));
1128 printf_unfiltered ("%-12s", so -> symbols_loaded ? "Yes" : "No");
1129 printf_unfiltered ("%s\n", so -> so_name);
1130 }
1131 }
1132 if (so_list_head == NULL)
1133 {
1134 printf_unfiltered ("No shared libraries loaded at this time.\n");
1135 }
1136 }
1137
1138 /*
1139
1140 GLOBAL FUNCTION
1141
1142 solib_address -- check to see if an address is in a shared lib
1143
1144 SYNOPSIS
1145
1146 int solib_address (CORE_ADDR address)
1147
1148 DESCRIPTION
1149
1150 Provides a hook for other gdb routines to discover whether or
1151 not a particular address is within the mapped address space of
1152 a shared library. Any address between the base mapping address
1153 and the first address beyond the end of the last mapping, is
1154 considered to be within the shared library address space, for
1155 our purposes.
1156
1157 For example, this routine is called at one point to disable
1158 breakpoints which are in shared libraries that are not currently
1159 mapped in.
1160 */
1161
1162 int
1163 solib_address (address)
1164 CORE_ADDR address;
1165 {
1166 register struct so_list *so = 0; /* link map state variable */
1167
1168 while ((so = find_solib (so)) != NULL)
1169 {
1170 if (so -> so_name[0])
1171 {
1172 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1173 (address < (CORE_ADDR) so -> lmend))
1174 {
1175 return (1);
1176 }
1177 }
1178 }
1179 return (0);
1180 }
1181
1182 /* Called by free_all_symtabs */
1183
1184 void
1185 clear_solib()
1186 {
1187 struct so_list *next;
1188 char *bfd_filename;
1189
1190 while (so_list_head)
1191 {
1192 if (so_list_head -> sections)
1193 {
1194 free ((PTR)so_list_head -> sections);
1195 }
1196 if (so_list_head -> abfd)
1197 {
1198 bfd_filename = bfd_get_filename (so_list_head -> abfd);
1199 if (!bfd_close (so_list_head -> abfd))
1200 warning ("cannot close \"%s\": %s",
1201 bfd_filename, bfd_errmsg (bfd_get_error ()));
1202 }
1203 else
1204 /* This happens for the executable on SVR4. */
1205 bfd_filename = NULL;
1206
1207 next = so_list_head -> next;
1208 if (bfd_filename)
1209 free ((PTR)bfd_filename);
1210 free ((PTR)so_list_head);
1211 so_list_head = next;
1212 }
1213 debug_base = 0;
1214 }
1215
1216 /*
1217
1218 LOCAL FUNCTION
1219
1220 disable_break -- remove the "mapping changed" breakpoint
1221
1222 SYNOPSIS
1223
1224 static int disable_break ()
1225
1226 DESCRIPTION
1227
1228 Removes the breakpoint that gets hit when the dynamic linker
1229 completes a mapping change.
1230
1231 */
1232
1233 static int
1234 disable_break ()
1235 {
1236 int status = 1;
1237
1238 #ifndef SVR4_SHARED_LIBS
1239
1240 int in_debugger = 0;
1241
1242 /* Read the debugger structure from the inferior to retrieve the
1243 address of the breakpoint and the original contents of the
1244 breakpoint address. Remove the breakpoint by writing the original
1245 contents back. */
1246
1247 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1248
1249 /* Set `in_debugger' to zero now. */
1250
1251 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1252
1253 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
1254 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1255 sizeof (debug_copy.ldd_bp_inst));
1256
1257 #else /* SVR4_SHARED_LIBS */
1258
1259 /* Note that breakpoint address and original contents are in our address
1260 space, so we just need to write the original contents back. */
1261
1262 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1263 {
1264 status = 0;
1265 }
1266
1267 #endif /* !SVR4_SHARED_LIBS */
1268
1269 /* For the SVR4 version, we always know the breakpoint address. For the
1270 SunOS version we don't know it until the above code is executed.
1271 Grumble if we are stopped anywhere besides the breakpoint address. */
1272
1273 if (stop_pc != breakpoint_addr)
1274 {
1275 warning ("stopped at unknown breakpoint while handling shared libraries");
1276 }
1277
1278 return (status);
1279 }
1280
1281 /*
1282
1283 LOCAL FUNCTION
1284
1285 enable_break -- arrange for dynamic linker to hit breakpoint
1286
1287 SYNOPSIS
1288
1289 int enable_break (void)
1290
1291 DESCRIPTION
1292
1293 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1294 debugger interface, support for arranging for the inferior to hit
1295 a breakpoint after mapping in the shared libraries. This function
1296 enables that breakpoint.
1297
1298 For SunOS, there is a special flag location (in_debugger) which we
1299 set to 1. When the dynamic linker sees this flag set, it will set
1300 a breakpoint at a location known only to itself, after saving the
1301 original contents of that place and the breakpoint address itself,
1302 in it's own internal structures. When we resume the inferior, it
1303 will eventually take a SIGTRAP when it runs into the breakpoint.
1304 We handle this (in a different place) by restoring the contents of
1305 the breakpointed location (which is only known after it stops),
1306 chasing around to locate the shared libraries that have been
1307 loaded, then resuming.
1308
1309 For SVR4, the debugger interface structure contains a member (r_brk)
1310 which is statically initialized at the time the shared library is
1311 built, to the offset of a function (_r_debug_state) which is guaran-
1312 teed to be called once before mapping in a library, and again when
1313 the mapping is complete. At the time we are examining this member,
1314 it contains only the unrelocated offset of the function, so we have
1315 to do our own relocation. Later, when the dynamic linker actually
1316 runs, it relocates r_brk to be the actual address of _r_debug_state().
1317
1318 The debugger interface structure also contains an enumeration which
1319 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1320 depending upon whether or not the library is being mapped or unmapped,
1321 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1322 */
1323
1324 static int
1325 enable_break ()
1326 {
1327 int success = 0;
1328
1329 #ifndef SVR4_SHARED_LIBS
1330
1331 int j;
1332 int in_debugger;
1333
1334 /* Get link_dynamic structure */
1335
1336 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1337 sizeof (dynamic_copy));
1338 if (j)
1339 {
1340 /* unreadable */
1341 return (0);
1342 }
1343
1344 /* Calc address of debugger interface structure */
1345
1346 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1347
1348 /* Calc address of `in_debugger' member of debugger interface structure */
1349
1350 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1351 (char *) &debug_copy);
1352
1353 /* Write a value of 1 to this member. */
1354
1355 in_debugger = 1;
1356 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1357 success = 1;
1358
1359 #else /* SVR4_SHARED_LIBS */
1360
1361 #ifdef BKPT_AT_SYMBOL
1362
1363 struct minimal_symbol *msymbol;
1364 char **bkpt_namep;
1365 CORE_ADDR bkpt_addr;
1366
1367 /* Scan through the list of symbols, trying to look up the symbol and
1368 set a breakpoint there. Terminate loop when we/if we succeed. */
1369
1370 breakpoint_addr = 0;
1371 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1372 {
1373 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1374 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1375 {
1376 bkpt_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1377 if (target_insert_breakpoint (bkpt_addr, shadow_contents) == 0)
1378 {
1379 breakpoint_addr = bkpt_addr;
1380 success = 1;
1381 break;
1382 }
1383 }
1384 }
1385
1386 #else /* !BKPT_AT_SYMBOL */
1387
1388 struct symtab_and_line sal;
1389
1390 /* Read the debugger interface structure directly. */
1391
1392 read_memory (debug_base, (char *) &debug_copy, sizeof (debug_copy));
1393
1394 /* Set breakpoint at the debugger interface stub routine that will
1395 be called just prior to each mapping change and again after the
1396 mapping change is complete. Set up the (nonexistent) handler to
1397 deal with hitting these breakpoints. (FIXME). */
1398
1399 warning ("'%s': line %d: missing SVR4 support code", __FILE__, __LINE__);
1400 success = 1;
1401
1402 #endif /* BKPT_AT_SYMBOL */
1403
1404 #endif /* !SVR4_SHARED_LIBS */
1405
1406 return (success);
1407 }
1408
1409 /*
1410
1411 GLOBAL FUNCTION
1412
1413 solib_create_inferior_hook -- shared library startup support
1414
1415 SYNOPSIS
1416
1417 void solib_create_inferior_hook()
1418
1419 DESCRIPTION
1420
1421 When gdb starts up the inferior, it nurses it along (through the
1422 shell) until it is ready to execute it's first instruction. At this
1423 point, this function gets called via expansion of the macro
1424 SOLIB_CREATE_INFERIOR_HOOK.
1425
1426 For SunOS executables, this first instruction is typically the
1427 one at "_start", or a similar text label, regardless of whether
1428 the executable is statically or dynamically linked. The runtime
1429 startup code takes care of dynamically linking in any shared
1430 libraries, once gdb allows the inferior to continue.
1431
1432 For SVR4 executables, this first instruction is either the first
1433 instruction in the dynamic linker (for dynamically linked
1434 executables) or the instruction at "start" for statically linked
1435 executables. For dynamically linked executables, the system
1436 first exec's /lib/libc.so.N, which contains the dynamic linker,
1437 and starts it running. The dynamic linker maps in any needed
1438 shared libraries, maps in the actual user executable, and then
1439 jumps to "start" in the user executable.
1440
1441 For both SunOS shared libraries, and SVR4 shared libraries, we
1442 can arrange to cooperate with the dynamic linker to discover the
1443 names of shared libraries that are dynamically linked, and the
1444 base addresses to which they are linked.
1445
1446 This function is responsible for discovering those names and
1447 addresses, and saving sufficient information about them to allow
1448 their symbols to be read at a later time.
1449
1450 FIXME
1451
1452 Between enable_break() and disable_break(), this code does not
1453 properly handle hitting breakpoints which the user might have
1454 set in the startup code or in the dynamic linker itself. Proper
1455 handling will probably have to wait until the implementation is
1456 changed to use the "breakpoint handler function" method.
1457
1458 Also, what if child has exit()ed? Must exit loop somehow.
1459 */
1460
1461 void
1462 solib_create_inferior_hook()
1463 {
1464 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1465 yet. In fact, in the case of a SunOS4 executable being run on
1466 Solaris, we can't get it yet. find_solib will get it when it needs
1467 it. */
1468 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1469 if ((debug_base = locate_base ()) == 0)
1470 {
1471 /* Can't find the symbol or the executable is statically linked. */
1472 return;
1473 }
1474 #endif
1475
1476 if (!enable_break ())
1477 {
1478 warning ("shared library handler failed to enable breakpoint");
1479 return;
1480 }
1481
1482 /* Now run the target. It will eventually hit the breakpoint, at
1483 which point all of the libraries will have been mapped in and we
1484 can go groveling around in the dynamic linker structures to find
1485 out what we need to know about them. */
1486
1487 clear_proceed_status ();
1488 stop_soon_quietly = 1;
1489 stop_signal = TARGET_SIGNAL_0;
1490 do
1491 {
1492 target_resume (-1, 0, stop_signal);
1493 wait_for_inferior ();
1494 }
1495 while (stop_signal != TARGET_SIGNAL_TRAP);
1496 stop_soon_quietly = 0;
1497
1498 /* We are now either at the "mapping complete" breakpoint (or somewhere
1499 else, a condition we aren't prepared to deal with anyway), so adjust
1500 the PC as necessary after a breakpoint, disable the breakpoint, and
1501 add any shared libraries that were mapped in. */
1502
1503 if (DECR_PC_AFTER_BREAK)
1504 {
1505 stop_pc -= DECR_PC_AFTER_BREAK;
1506 write_register (PC_REGNUM, stop_pc);
1507 }
1508
1509 if (!disable_break ())
1510 {
1511 warning ("shared library handler failed to disable breakpoint");
1512 }
1513
1514 if (auto_solib_add_at_startup)
1515 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1516 }
1517
1518 /*
1519
1520 LOCAL FUNCTION
1521
1522 special_symbol_handling -- additional shared library symbol handling
1523
1524 SYNOPSIS
1525
1526 void special_symbol_handling (struct so_list *so)
1527
1528 DESCRIPTION
1529
1530 Once the symbols from a shared object have been loaded in the usual
1531 way, we are called to do any system specific symbol handling that
1532 is needed.
1533
1534 For SunOS4, this consists of grunging around in the dynamic
1535 linkers structures to find symbol definitions for "common" symbols
1536 and adding them to the minimal symbol table for the runtime common
1537 objfile.
1538
1539 */
1540
1541 static void
1542 special_symbol_handling (so)
1543 struct so_list *so;
1544 {
1545 #ifndef SVR4_SHARED_LIBS
1546 int j;
1547
1548 if (debug_addr == 0)
1549 {
1550 /* Get link_dynamic structure */
1551
1552 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1553 sizeof (dynamic_copy));
1554 if (j)
1555 {
1556 /* unreadable */
1557 return;
1558 }
1559
1560 /* Calc address of debugger interface structure */
1561 /* FIXME, this needs work for cross-debugging of core files
1562 (byteorder, size, alignment, etc). */
1563
1564 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1565 }
1566
1567 /* Read the debugger structure from the inferior, just to make sure
1568 we have a current copy. */
1569
1570 j = target_read_memory (debug_addr, (char *) &debug_copy,
1571 sizeof (debug_copy));
1572 if (j)
1573 return; /* unreadable */
1574
1575 /* Get common symbol definitions for the loaded object. */
1576
1577 if (debug_copy.ldd_cp)
1578 {
1579 solib_add_common_symbols (debug_copy.ldd_cp);
1580 }
1581
1582 #endif /* !SVR4_SHARED_LIBS */
1583 }
1584
1585
1586 /*
1587
1588 LOCAL FUNCTION
1589
1590 sharedlibrary_command -- handle command to explicitly add library
1591
1592 SYNOPSIS
1593
1594 static void sharedlibrary_command (char *args, int from_tty)
1595
1596 DESCRIPTION
1597
1598 */
1599
1600 static void
1601 sharedlibrary_command (args, from_tty)
1602 char *args;
1603 int from_tty;
1604 {
1605 dont_repeat ();
1606 solib_add (args, from_tty, (struct target_ops *) 0);
1607 }
1608
1609 void
1610 _initialize_solib()
1611 {
1612
1613 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1614 "Load shared object library symbols for files matching REGEXP.");
1615 add_info ("sharedlibrary", info_sharedlibrary_command,
1616 "Status of loaded shared object libraries.");
1617
1618 add_show_from_set
1619 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1620 (char *) &auto_solib_add_at_startup,
1621 "Set autoloading of shared library symbols at startup.\n\
1622 If nonzero, symbols from all shared object libraries will be loaded\n\
1623 automatically when the inferior begins execution. Otherwise, symbols\n\
1624 must be loaded manually, using `sharedlibrary'.",
1625 &setlist),
1626 &showlist);
1627 }
This page took 0.084738 seconds and 4 git commands to generate.