import gdb-1999-09-28 snapshot
[deliverable/binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include "defs.h"
24
25 /* This file is only compilable if link.h is available. */
26
27 #ifdef HAVE_LINK_H
28
29 #include <sys/types.h>
30 #include <signal.h>
31 #include "gdb_string.h"
32 #include <sys/param.h>
33 #include <fcntl.h>
34
35 #ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
37 #include <a.out.h>
38 #else
39 #include "elf/external.h"
40 #endif
41
42 #include <link.h>
43
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "symfile.h"
47 #include "objfiles.h"
48 #include "gdbcore.h"
49 #include "command.h"
50 #include "target.h"
51 #include "frame.h"
52 #include "gnu-regex.h"
53 #include "inferior.h"
54 #include "environ.h"
55 #include "language.h"
56 #include "gdbcmd.h"
57
58 #define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
59
60 /* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68 #ifdef SVR4_SHARED_LIBS
69 static char *solib_break_names[] =
70 {
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76 };
77 #endif
78
79 #define BKPT_AT_SYMBOL 1
80
81 #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
82 static char *bkpt_names[] =
83 {
84 #ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86 #endif
87 "_start",
88 "main",
89 NULL
90 };
91 #endif
92
93 /* Symbols which are used to locate the base of the link map structures. */
94
95 #ifndef SVR4_SHARED_LIBS
96 static char *debug_base_symbols[] =
97 {
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101 };
102 #endif
103
104 static char *main_name_list[] =
105 {
106 "main_$main",
107 NULL
108 };
109
110 /* local data declarations */
111
112 #ifndef SVR4_SHARED_LIBS
113
114 #define LM_ADDR(so) ((so) -> lm.lm_addr)
115 #define LM_NEXT(so) ((so) -> lm.lm_next)
116 #define LM_NAME(so) ((so) -> lm.lm_name)
117 /* Test for first link map entry; first entry is a shared library. */
118 #define IGNORE_FIRST_LINK_MAP_ENTRY(x) (0)
119 static struct link_dynamic dynamic_copy;
120 static struct link_dynamic_2 ld_2_copy;
121 static struct ld_debug debug_copy;
122 static CORE_ADDR debug_addr;
123 static CORE_ADDR flag_addr;
124
125 #else /* SVR4_SHARED_LIBS */
126
127 #define LM_ADDR(so) ((so) -> lm.l_addr)
128 #define LM_NEXT(so) ((so) -> lm.l_next)
129 #define LM_NAME(so) ((so) -> lm.l_name)
130 /* Test for first link map entry; first entry is the exec-file. */
131 #define IGNORE_FIRST_LINK_MAP_ENTRY(x) ((x).l_prev == NULL)
132 static struct r_debug debug_copy;
133 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
134
135 #endif /* !SVR4_SHARED_LIBS */
136
137 struct so_list
138 {
139 struct so_list *next; /* next structure in linked list */
140 struct link_map lm; /* copy of link map from inferior */
141 struct link_map *lmaddr; /* addr in inferior lm was read from */
142 CORE_ADDR lmend; /* upper addr bound of mapped object */
143 char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
144 char symbols_loaded; /* flag: symbols read in yet? */
145 char from_tty; /* flag: print msgs? */
146 struct objfile *objfile; /* objfile for loaded lib */
147 struct section_table *sections;
148 struct section_table *sections_end;
149 struct section_table *textsection;
150 bfd *abfd;
151 };
152
153 static struct so_list *so_list_head; /* List of known shared objects */
154 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
155 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
156
157 static int solib_cleanup_queued = 0; /* make_run_cleanup called */
158
159 extern int
160 fdmatch PARAMS ((int, int)); /* In libiberty */
161
162 /* Local function prototypes */
163
164 static void
165 do_clear_solib PARAMS ((PTR));
166
167 static int
168 match_main PARAMS ((char *));
169
170 static void
171 special_symbol_handling PARAMS ((struct so_list *));
172
173 static void
174 sharedlibrary_command PARAMS ((char *, int));
175
176 static int
177 enable_break PARAMS ((void));
178
179 static void
180 info_sharedlibrary_command PARAMS ((char *, int));
181
182 static int symbol_add_stub PARAMS ((PTR));
183
184 static struct so_list *
185 find_solib PARAMS ((struct so_list *));
186
187 static struct link_map *
188 first_link_map_member PARAMS ((void));
189
190 static CORE_ADDR
191 locate_base PARAMS ((void));
192
193 static int solib_map_sections PARAMS ((PTR));
194
195 #ifdef SVR4_SHARED_LIBS
196
197 static CORE_ADDR
198 elf_locate_base PARAMS ((void));
199
200 #else
201
202 static int
203 disable_break PARAMS ((void));
204
205 static void
206 allocate_rt_common_objfile PARAMS ((void));
207
208 static void
209 solib_add_common_symbols PARAMS ((struct rtc_symb *));
210
211 #endif
212
213 void _initialize_solib PARAMS ((void));
214
215 /* If non-zero, this is a prefix that will be added to the front of the name
216 shared libraries with an absolute filename for loading. */
217 static char *solib_absolute_prefix = NULL;
218
219 /* If non-empty, this is a search path for loading non-absolute shared library
220 symbol files. This takes precedence over the environment variables PATH
221 and LD_LIBRARY_PATH. */
222 static char *solib_search_path = NULL;
223
224 /*
225
226 LOCAL FUNCTION
227
228 solib_map_sections -- open bfd and build sections for shared lib
229
230 SYNOPSIS
231
232 static int solib_map_sections (struct so_list *so)
233
234 DESCRIPTION
235
236 Given a pointer to one of the shared objects in our list
237 of mapped objects, use the recorded name to open a bfd
238 descriptor for the object, build a section table, and then
239 relocate all the section addresses by the base address at
240 which the shared object was mapped.
241
242 FIXMES
243
244 In most (all?) cases the shared object file name recorded in the
245 dynamic linkage tables will be a fully qualified pathname. For
246 cases where it isn't, do we really mimic the systems search
247 mechanism correctly in the below code (particularly the tilde
248 expansion stuff?).
249 */
250
251 static int
252 solib_map_sections (arg)
253 PTR arg;
254 {
255 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
256 char *filename;
257 char *scratch_pathname;
258 int scratch_chan;
259 struct section_table *p;
260 struct cleanup *old_chain;
261 bfd *abfd;
262
263 filename = tilde_expand (so->so_name);
264
265 if (solib_absolute_prefix && ROOTED_P (filename))
266 /* Prefix shared libraries with absolute filenames with
267 SOLIB_ABSOLUTE_PREFIX. */
268 {
269 char *pfxed_fn;
270 int pfx_len;
271
272 pfx_len = strlen (solib_absolute_prefix);
273
274 /* Remove trailing slashes. */
275 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
276 pfx_len--;
277
278 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
279 strcpy (pfxed_fn, solib_absolute_prefix);
280 strcat (pfxed_fn, filename);
281 free (filename);
282
283 filename = pfxed_fn;
284 }
285
286 old_chain = make_cleanup (free, filename);
287
288 scratch_chan = -1;
289
290 if (solib_search_path)
291 scratch_chan = openp (solib_search_path,
292 1, filename, O_RDONLY, 0, &scratch_pathname);
293 if (scratch_chan < 0)
294 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
295 1, filename, O_RDONLY, 0, &scratch_pathname);
296 if (scratch_chan < 0)
297 {
298 scratch_chan = openp (get_in_environ
299 (inferior_environ, "LD_LIBRARY_PATH"),
300 1, filename, O_RDONLY, 0, &scratch_pathname);
301 }
302 if (scratch_chan < 0)
303 {
304 perror_with_name (filename);
305 }
306 /* Leave scratch_pathname allocated. abfd->name will point to it. */
307
308 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
309 if (!abfd)
310 {
311 close (scratch_chan);
312 error ("Could not open `%s' as an executable file: %s",
313 scratch_pathname, bfd_errmsg (bfd_get_error ()));
314 }
315 /* Leave bfd open, core_xfer_memory and "info files" need it. */
316 so->abfd = abfd;
317 abfd->cacheable = true;
318
319 /* copy full path name into so_name, so that later symbol_file_add can find
320 it */
321 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
322 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
323 strcpy (so->so_name, scratch_pathname);
324
325 if (!bfd_check_format (abfd, bfd_object))
326 {
327 error ("\"%s\": not in executable format: %s.",
328 scratch_pathname, bfd_errmsg (bfd_get_error ()));
329 }
330 if (build_section_table (abfd, &so->sections, &so->sections_end))
331 {
332 error ("Can't find the file sections in `%s': %s",
333 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
334 }
335
336 for (p = so->sections; p < so->sections_end; p++)
337 {
338 /* Relocate the section binding addresses as recorded in the shared
339 object's file by the base address to which the object was actually
340 mapped. */
341 p->addr += (CORE_ADDR) LM_ADDR (so);
342 p->endaddr += (CORE_ADDR) LM_ADDR (so);
343 so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
344 if (STREQ (p->the_bfd_section->name, ".text"))
345 {
346 so->textsection = p;
347 }
348 }
349
350 /* Free the file names, close the file now. */
351 do_cleanups (old_chain);
352
353 return (1);
354 }
355
356 #ifndef SVR4_SHARED_LIBS
357
358 /* Allocate the runtime common object file. */
359
360 static void
361 allocate_rt_common_objfile ()
362 {
363 struct objfile *objfile;
364 struct objfile *last_one;
365
366 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
367 memset (objfile, 0, sizeof (struct objfile));
368 objfile->md = NULL;
369 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
370 xmalloc, free);
371 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
372 free);
373 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
374 free);
375 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
376 free);
377 objfile->name = mstrsave (objfile->md, "rt_common");
378
379 /* Add this file onto the tail of the linked list of other such files. */
380
381 objfile->next = NULL;
382 if (object_files == NULL)
383 object_files = objfile;
384 else
385 {
386 for (last_one = object_files;
387 last_one->next;
388 last_one = last_one->next);
389 last_one->next = objfile;
390 }
391
392 rt_common_objfile = objfile;
393 }
394
395 /* Read all dynamically loaded common symbol definitions from the inferior
396 and put them into the minimal symbol table for the runtime common
397 objfile. */
398
399 static void
400 solib_add_common_symbols (rtc_symp)
401 struct rtc_symb *rtc_symp;
402 {
403 struct rtc_symb inferior_rtc_symb;
404 struct nlist inferior_rtc_nlist;
405 int len;
406 char *name;
407
408 /* Remove any runtime common symbols from previous runs. */
409
410 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
411 {
412 obstack_free (&rt_common_objfile->symbol_obstack, 0);
413 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
414 xmalloc, free);
415 rt_common_objfile->minimal_symbol_count = 0;
416 rt_common_objfile->msymbols = NULL;
417 }
418
419 init_minimal_symbol_collection ();
420 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
421
422 while (rtc_symp)
423 {
424 read_memory ((CORE_ADDR) rtc_symp,
425 (char *) &inferior_rtc_symb,
426 sizeof (inferior_rtc_symb));
427 read_memory ((CORE_ADDR) inferior_rtc_symb.rtc_sp,
428 (char *) &inferior_rtc_nlist,
429 sizeof (inferior_rtc_nlist));
430 if (inferior_rtc_nlist.n_type == N_COMM)
431 {
432 /* FIXME: The length of the symbol name is not available, but in the
433 current implementation the common symbol is allocated immediately
434 behind the name of the symbol. */
435 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
436
437 name = xmalloc (len);
438 read_memory ((CORE_ADDR) inferior_rtc_nlist.n_un.n_name, name, len);
439
440 /* Allocate the runtime common objfile if necessary. */
441 if (rt_common_objfile == NULL)
442 allocate_rt_common_objfile ();
443
444 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
445 mst_bss, rt_common_objfile);
446 free (name);
447 }
448 rtc_symp = inferior_rtc_symb.rtc_next;
449 }
450
451 /* Install any minimal symbols that have been collected as the current
452 minimal symbols for the runtime common objfile. */
453
454 install_minimal_symbols (rt_common_objfile);
455 }
456
457 #endif /* SVR4_SHARED_LIBS */
458
459
460 #ifdef SVR4_SHARED_LIBS
461
462 static CORE_ADDR
463 bfd_lookup_symbol PARAMS ((bfd *, char *));
464
465 /*
466
467 LOCAL FUNCTION
468
469 bfd_lookup_symbol -- lookup the value for a specific symbol
470
471 SYNOPSIS
472
473 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
474
475 DESCRIPTION
476
477 An expensive way to lookup the value of a single symbol for
478 bfd's that are only temporary anyway. This is used by the
479 shared library support to find the address of the debugger
480 interface structures in the shared library.
481
482 Note that 0 is specifically allowed as an error return (no
483 such symbol).
484 */
485
486 static CORE_ADDR
487 bfd_lookup_symbol (abfd, symname)
488 bfd *abfd;
489 char *symname;
490 {
491 unsigned int storage_needed;
492 asymbol *sym;
493 asymbol **symbol_table;
494 unsigned int number_of_symbols;
495 unsigned int i;
496 struct cleanup *back_to;
497 CORE_ADDR symaddr = 0;
498
499 storage_needed = bfd_get_symtab_upper_bound (abfd);
500
501 if (storage_needed > 0)
502 {
503 symbol_table = (asymbol **) xmalloc (storage_needed);
504 back_to = make_cleanup (free, (PTR) symbol_table);
505 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
506
507 for (i = 0; i < number_of_symbols; i++)
508 {
509 sym = *symbol_table++;
510 if (STREQ (sym->name, symname))
511 {
512 /* Bfd symbols are section relative. */
513 symaddr = sym->value + sym->section->vma;
514 break;
515 }
516 }
517 do_cleanups (back_to);
518 }
519 return (symaddr);
520 }
521
522 #ifdef HANDLE_SVR4_EXEC_EMULATORS
523
524 /*
525 Solaris BCP (the part of Solaris which allows it to run SunOS4
526 a.out files) throws in another wrinkle. Solaris does not fill
527 in the usual a.out link map structures when running BCP programs,
528 the only way to get at them is via groping around in the dynamic
529 linker.
530 The dynamic linker and it's structures are located in the shared
531 C library, which gets run as the executable's "interpreter" by
532 the kernel.
533
534 Note that we can assume nothing about the process state at the time
535 we need to find these structures. We may be stopped on the first
536 instruction of the interpreter (C shared library), the first
537 instruction of the executable itself, or somewhere else entirely
538 (if we attached to the process for example).
539 */
540
541 static char *debug_base_symbols[] =
542 {
543 "r_debug", /* Solaris 2.3 */
544 "_r_debug", /* Solaris 2.1, 2.2 */
545 NULL
546 };
547
548 static int
549 look_for_base PARAMS ((int, CORE_ADDR));
550
551 /*
552
553 LOCAL FUNCTION
554
555 look_for_base -- examine file for each mapped address segment
556
557 SYNOPSYS
558
559 static int look_for_base (int fd, CORE_ADDR baseaddr)
560
561 DESCRIPTION
562
563 This function is passed to proc_iterate_over_mappings, which
564 causes it to get called once for each mapped address space, with
565 an open file descriptor for the file mapped to that space, and the
566 base address of that mapped space.
567
568 Our job is to find the debug base symbol in the file that this
569 fd is open on, if it exists, and if so, initialize the dynamic
570 linker structure base address debug_base.
571
572 Note that this is a computationally expensive proposition, since
573 we basically have to open a bfd on every call, so we specifically
574 avoid opening the exec file.
575 */
576
577 static int
578 look_for_base (fd, baseaddr)
579 int fd;
580 CORE_ADDR baseaddr;
581 {
582 bfd *interp_bfd;
583 CORE_ADDR address = 0;
584 char **symbolp;
585
586 /* If the fd is -1, then there is no file that corresponds to this
587 mapped memory segment, so skip it. Also, if the fd corresponds
588 to the exec file, skip it as well. */
589
590 if (fd == -1
591 || (exec_bfd != NULL
592 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
593 {
594 return (0);
595 }
596
597 /* Try to open whatever random file this fd corresponds to. Note that
598 we have no way currently to find the filename. Don't gripe about
599 any problems we might have, just fail. */
600
601 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
602 {
603 return (0);
604 }
605 if (!bfd_check_format (interp_bfd, bfd_object))
606 {
607 /* FIXME-leak: on failure, might not free all memory associated with
608 interp_bfd. */
609 bfd_close (interp_bfd);
610 return (0);
611 }
612
613 /* Now try to find our debug base symbol in this file, which we at
614 least know to be a valid ELF executable or shared library. */
615
616 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
617 {
618 address = bfd_lookup_symbol (interp_bfd, *symbolp);
619 if (address != 0)
620 {
621 break;
622 }
623 }
624 if (address == 0)
625 {
626 /* FIXME-leak: on failure, might not free all memory associated with
627 interp_bfd. */
628 bfd_close (interp_bfd);
629 return (0);
630 }
631
632 /* Eureka! We found the symbol. But now we may need to relocate it
633 by the base address. If the symbol's value is less than the base
634 address of the shared library, then it hasn't yet been relocated
635 by the dynamic linker, and we have to do it ourself. FIXME: Note
636 that we make the assumption that the first segment that corresponds
637 to the shared library has the base address to which the library
638 was relocated. */
639
640 if (address < baseaddr)
641 {
642 address += baseaddr;
643 }
644 debug_base = address;
645 /* FIXME-leak: on failure, might not free all memory associated with
646 interp_bfd. */
647 bfd_close (interp_bfd);
648 return (1);
649 }
650 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
651
652 /*
653
654 LOCAL FUNCTION
655
656 elf_locate_base -- locate the base address of dynamic linker structs
657 for SVR4 elf targets.
658
659 SYNOPSIS
660
661 CORE_ADDR elf_locate_base (void)
662
663 DESCRIPTION
664
665 For SVR4 elf targets the address of the dynamic linker's runtime
666 structure is contained within the dynamic info section in the
667 executable file. The dynamic section is also mapped into the
668 inferior address space. Because the runtime loader fills in the
669 real address before starting the inferior, we have to read in the
670 dynamic info section from the inferior address space.
671 If there are any errors while trying to find the address, we
672 silently return 0, otherwise the found address is returned.
673
674 */
675
676 static CORE_ADDR
677 elf_locate_base ()
678 {
679 sec_ptr dyninfo_sect;
680 int dyninfo_sect_size;
681 CORE_ADDR dyninfo_addr;
682 char *buf;
683 char *bufend;
684
685 /* Find the start address of the .dynamic section. */
686 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
687 if (dyninfo_sect == NULL)
688 return 0;
689 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
690
691 /* Read in .dynamic section, silently ignore errors. */
692 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
693 buf = alloca (dyninfo_sect_size);
694 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
695 return 0;
696
697 /* Find the DT_DEBUG entry in the the .dynamic section.
698 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
699 no DT_DEBUG entries. */
700 #ifndef TARGET_ELF64
701 for (bufend = buf + dyninfo_sect_size;
702 buf < bufend;
703 buf += sizeof (Elf32_External_Dyn))
704 {
705 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
706 long dyn_tag;
707 CORE_ADDR dyn_ptr;
708
709 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
710 if (dyn_tag == DT_NULL)
711 break;
712 else if (dyn_tag == DT_DEBUG)
713 {
714 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
715 return dyn_ptr;
716 }
717 #ifdef DT_MIPS_RLD_MAP
718 else if (dyn_tag == DT_MIPS_RLD_MAP)
719 {
720 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
721
722 /* DT_MIPS_RLD_MAP contains a pointer to the address
723 of the dynamic link structure. */
724 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
725 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
726 return 0;
727 return extract_unsigned_integer (pbuf, sizeof (pbuf));
728 }
729 #endif
730 }
731 #else /* ELF64 */
732 for (bufend = buf + dyninfo_sect_size;
733 buf < bufend;
734 buf += sizeof (Elf64_External_Dyn))
735 {
736 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
737 long dyn_tag;
738 CORE_ADDR dyn_ptr;
739
740 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
741 if (dyn_tag == DT_NULL)
742 break;
743 else if (dyn_tag == DT_DEBUG)
744 {
745 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
746 return dyn_ptr;
747 }
748 }
749 #endif
750
751 /* DT_DEBUG entry not found. */
752 return 0;
753 }
754
755 #endif /* SVR4_SHARED_LIBS */
756
757 /*
758
759 LOCAL FUNCTION
760
761 locate_base -- locate the base address of dynamic linker structs
762
763 SYNOPSIS
764
765 CORE_ADDR locate_base (void)
766
767 DESCRIPTION
768
769 For both the SunOS and SVR4 shared library implementations, if the
770 inferior executable has been linked dynamically, there is a single
771 address somewhere in the inferior's data space which is the key to
772 locating all of the dynamic linker's runtime structures. This
773 address is the value of the debug base symbol. The job of this
774 function is to find and return that address, or to return 0 if there
775 is no such address (the executable is statically linked for example).
776
777 For SunOS, the job is almost trivial, since the dynamic linker and
778 all of it's structures are statically linked to the executable at
779 link time. Thus the symbol for the address we are looking for has
780 already been added to the minimal symbol table for the executable's
781 objfile at the time the symbol file's symbols were read, and all we
782 have to do is look it up there. Note that we explicitly do NOT want
783 to find the copies in the shared library.
784
785 The SVR4 version is a bit more complicated because the address
786 is contained somewhere in the dynamic info section. We have to go
787 to a lot more work to discover the address of the debug base symbol.
788 Because of this complexity, we cache the value we find and return that
789 value on subsequent invocations. Note there is no copy in the
790 executable symbol tables.
791
792 */
793
794 static CORE_ADDR
795 locate_base ()
796 {
797
798 #ifndef SVR4_SHARED_LIBS
799
800 struct minimal_symbol *msymbol;
801 CORE_ADDR address = 0;
802 char **symbolp;
803
804 /* For SunOS, we want to limit the search for the debug base symbol to the
805 executable being debugged, since there is a duplicate named symbol in the
806 shared library. We don't want the shared library versions. */
807
808 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
809 {
810 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
811 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
812 {
813 address = SYMBOL_VALUE_ADDRESS (msymbol);
814 return (address);
815 }
816 }
817 return (0);
818
819 #else /* SVR4_SHARED_LIBS */
820
821 /* Check to see if we have a currently valid address, and if so, avoid
822 doing all this work again and just return the cached address. If
823 we have no cached address, try to locate it in the dynamic info
824 section for ELF executables. */
825
826 if (debug_base == 0)
827 {
828 if (exec_bfd != NULL
829 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
830 debug_base = elf_locate_base ();
831 #ifdef HANDLE_SVR4_EXEC_EMULATORS
832 /* Try it the hard way for emulated executables. */
833 else if (inferior_pid != 0 && target_has_execution)
834 proc_iterate_over_mappings (look_for_base);
835 #endif
836 }
837 return (debug_base);
838
839 #endif /* !SVR4_SHARED_LIBS */
840
841 }
842
843 /*
844
845 LOCAL FUNCTION
846
847 first_link_map_member -- locate first member in dynamic linker's map
848
849 SYNOPSIS
850
851 static struct link_map *first_link_map_member (void)
852
853 DESCRIPTION
854
855 Read in a copy of the first member in the inferior's dynamic
856 link map from the inferior's dynamic linker structures, and return
857 a pointer to the copy in our address space.
858 */
859
860 static struct link_map *
861 first_link_map_member ()
862 {
863 struct link_map *lm = NULL;
864
865 #ifndef SVR4_SHARED_LIBS
866
867 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
868 if (dynamic_copy.ld_version >= 2)
869 {
870 /* It is a version that we can deal with, so read in the secondary
871 structure and find the address of the link map list from it. */
872 read_memory ((CORE_ADDR) dynamic_copy.ld_un.ld_2, (char *) &ld_2_copy,
873 sizeof (struct link_dynamic_2));
874 lm = ld_2_copy.ld_loaded;
875 }
876
877 #else /* SVR4_SHARED_LIBS */
878
879 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
880 /* FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
883 lm = debug_copy.r_map;
884
885 #endif /* !SVR4_SHARED_LIBS */
886
887 return (lm);
888 }
889
890 #ifdef SVR4_SHARED_LIBS
891 /*
892
893 LOCAL FUNCTION
894
895 open_exec_file_object
896
897 SYNOPSIS
898
899 void open_symbol_file_object (int from_tty)
900
901 DESCRIPTION
902
903 If no open symbol file, attempt to locate and open the main symbol
904 file. On SVR4 systems, this is the first link map entry. If its
905 name is here, we can open it. Useful when attaching to a process
906 without first loading its symbol file.
907
908 */
909
910 int
911 open_symbol_file_object (arg)
912 PTR arg;
913 {
914 int from_tty = (int) arg; /* sneak past catch_errors */
915 struct link_map *lm, lmcopy;
916 char *filename;
917 int errcode;
918
919 if (symfile_objfile)
920 if (!query ("Attempt to reload symbols from process? "))
921 return 0;
922
923 if ((debug_base = locate_base ()) == 0)
924 return 0; /* failed somehow... */
925
926 /* First link map member should be the executable. */
927 if ((lm = first_link_map_member ()) == NULL)
928 return 0; /* failed somehow... */
929
930 /* Read from target memory to GDB. */
931 read_memory ((CORE_ADDR) lm, (void *) &lmcopy, sizeof (lmcopy));
932
933 if (lmcopy.l_name == 0)
934 return 0; /* no filename. */
935
936 /* Now fetch the filename from target memory. */
937 target_read_string ((CORE_ADDR) lmcopy.l_name, &filename,
938 MAX_PATH_SIZE - 1, &errcode);
939 if (errcode)
940 {
941 warning ("failed to read exec filename from attached file: %s",
942 safe_strerror (errcode));
943 return 0;
944 }
945
946 make_cleanup ((make_cleanup_func) free, (void *) filename);
947 /* Have a pathname: read the symbol file. */
948 symbol_file_command (filename, from_tty);
949
950 return 1;
951 }
952 #endif /* SVR4_SHARED_LIBS */
953
954 /*
955
956 LOCAL FUNCTION
957
958 find_solib -- step through list of shared objects
959
960 SYNOPSIS
961
962 struct so_list *find_solib (struct so_list *so_list_ptr)
963
964 DESCRIPTION
965
966 This module contains the routine which finds the names of any
967 loaded "images" in the current process. The argument in must be
968 NULL on the first call, and then the returned value must be passed
969 in on subsequent calls. This provides the capability to "step" down
970 the list of loaded objects. On the last object, a NULL value is
971 returned.
972
973 The arg and return value are "struct link_map" pointers, as defined
974 in <link.h>.
975 */
976
977 static struct so_list *
978 find_solib (so_list_ptr)
979 struct so_list *so_list_ptr; /* Last lm or NULL for first one */
980 {
981 struct so_list *so_list_next = NULL;
982 struct link_map *lm = NULL;
983 struct so_list *new;
984
985 if (so_list_ptr == NULL)
986 {
987 /* We are setting up for a new scan through the loaded images. */
988 if ((so_list_next = so_list_head) == NULL)
989 {
990 /* We have not already read in the dynamic linking structures
991 from the inferior, lookup the address of the base structure. */
992 debug_base = locate_base ();
993 if (debug_base != 0)
994 {
995 /* Read the base structure in and find the address of the first
996 link map list member. */
997 lm = first_link_map_member ();
998 }
999 }
1000 }
1001 else
1002 {
1003 /* We have been called before, and are in the process of walking
1004 the shared library list. Advance to the next shared object. */
1005 if ((lm = LM_NEXT (so_list_ptr)) == NULL)
1006 {
1007 /* We have hit the end of the list, so check to see if any were
1008 added, but be quiet if we can't read from the target any more. */
1009 int status = target_read_memory ((CORE_ADDR) so_list_ptr->lmaddr,
1010 (char *) &(so_list_ptr->lm),
1011 sizeof (struct link_map));
1012 if (status == 0)
1013 {
1014 lm = LM_NEXT (so_list_ptr);
1015 }
1016 else
1017 {
1018 lm = NULL;
1019 }
1020 }
1021 so_list_next = so_list_ptr->next;
1022 }
1023 if ((so_list_next == NULL) && (lm != NULL))
1024 {
1025 /* Get next link map structure from inferior image and build a local
1026 abbreviated load_map structure */
1027 new = (struct so_list *) xmalloc (sizeof (struct so_list));
1028 memset ((char *) new, 0, sizeof (struct so_list));
1029 new->lmaddr = lm;
1030 /* Add the new node as the next node in the list, or as the root
1031 node if this is the first one. */
1032 if (so_list_ptr != NULL)
1033 {
1034 so_list_ptr->next = new;
1035 }
1036 else
1037 {
1038 so_list_head = new;
1039
1040 if (!solib_cleanup_queued)
1041 {
1042 make_run_cleanup (do_clear_solib, NULL);
1043 solib_cleanup_queued = 1;
1044 }
1045
1046 }
1047 so_list_next = new;
1048 read_memory ((CORE_ADDR) lm, (char *) &(new->lm),
1049 sizeof (struct link_map));
1050 /* For SVR4 versions, the first entry in the link map is for the
1051 inferior executable, so we must ignore it. For some versions of
1052 SVR4, it has no name. For others (Solaris 2.3 for example), it
1053 does have a name, so we can no longer use a missing name to
1054 decide when to ignore it. */
1055 if (!IGNORE_FIRST_LINK_MAP_ENTRY (new->lm))
1056 {
1057 int errcode;
1058 char *buffer;
1059 target_read_string ((CORE_ADDR) LM_NAME (new), &buffer,
1060 MAX_PATH_SIZE - 1, &errcode);
1061 if (errcode != 0)
1062 {
1063 warning ("find_solib: Can't read pathname for load map: %s\n",
1064 safe_strerror (errcode));
1065 return (so_list_next);
1066 }
1067 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1068 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1069 free (buffer);
1070 catch_errors (solib_map_sections, new,
1071 "Error while mapping shared library sections:\n",
1072 RETURN_MASK_ALL);
1073 }
1074 }
1075 return (so_list_next);
1076 }
1077
1078 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
1079
1080 static int
1081 symbol_add_stub (arg)
1082 PTR arg;
1083 {
1084 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
1085 CORE_ADDR text_addr = 0;
1086
1087 if (so->textsection)
1088 text_addr = so->textsection->addr;
1089 else if (so->abfd != NULL)
1090 {
1091 asection *lowest_sect;
1092
1093 /* If we didn't find a mapped non zero sized .text section, set up
1094 text_addr so that the relocation in symbol_file_add does no harm. */
1095
1096 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
1097 if (lowest_sect == NULL)
1098 bfd_map_over_sections (so->abfd, find_lowest_section,
1099 (PTR) &lowest_sect);
1100 if (lowest_sect)
1101 text_addr = bfd_section_vma (so->abfd, lowest_sect)
1102 + (CORE_ADDR) LM_ADDR (so);
1103 }
1104
1105 ALL_OBJFILES (so->objfile)
1106 {
1107 if (strcmp (so->objfile->name, so->so_name) == 0)
1108 return 1;
1109 }
1110 so->objfile =
1111 symbol_file_add (so->so_name, so->from_tty,
1112 text_addr,
1113 0, 0, 0, 0, 1);
1114 return (1);
1115 }
1116
1117 /* This function will check the so name to see if matches the main list.
1118 In some system the main object is in the list, which we want to exclude */
1119
1120 static int
1121 match_main (soname)
1122 char *soname;
1123 {
1124 char **mainp;
1125
1126 for (mainp = main_name_list; *mainp != NULL; mainp++)
1127 {
1128 if (strcmp (soname, *mainp) == 0)
1129 return (1);
1130 }
1131
1132 return (0);
1133 }
1134
1135 /*
1136
1137 GLOBAL FUNCTION
1138
1139 solib_add -- add a shared library file to the symtab and section list
1140
1141 SYNOPSIS
1142
1143 void solib_add (char *arg_string, int from_tty,
1144 struct target_ops *target)
1145
1146 DESCRIPTION
1147
1148 */
1149
1150 void
1151 solib_add (arg_string, from_tty, target)
1152 char *arg_string;
1153 int from_tty;
1154 struct target_ops *target;
1155 {
1156 register struct so_list *so = NULL; /* link map state variable */
1157
1158 /* Last shared library that we read. */
1159 struct so_list *so_last = NULL;
1160
1161 char *re_err;
1162 int count;
1163 int old;
1164
1165 #ifdef SVR4_SHARED_LIBS
1166 /* If we are attaching to a running process for which we
1167 have not opened a symbol file, we may be able to get its
1168 symbols now! */
1169 if (attach_flag &&
1170 symfile_objfile == NULL)
1171 catch_errors (open_symbol_file_object, (PTR) from_tty,
1172 "Error reading attached process's symbol file.\n",
1173 RETURN_MASK_ALL);
1174
1175 #endif SVR4_SHARED_LIBS
1176
1177 if ((re_err = re_comp (arg_string? arg_string : ".")) != NULL)
1178 {
1179 error ("Invalid regexp: %s", re_err);
1180 }
1181
1182 /* Add the shared library sections to the section table of the
1183 specified target, if any. */
1184 if (target)
1185 {
1186 /* Count how many new section_table entries there are. */
1187 so = NULL;
1188 count = 0;
1189 while ((so = find_solib (so)) != NULL)
1190 {
1191 if (so->so_name[0] && !match_main (so->so_name))
1192 {
1193 count += so->sections_end - so->sections;
1194 }
1195 }
1196
1197 if (count)
1198 {
1199
1200 /* Add these section table entries to the target's table. */
1201 old = target_resize_to_sections (target, count);
1202 while ((so = find_solib (so)) != NULL)
1203 {
1204 if (so->so_name[0])
1205 {
1206 count = so->sections_end - so->sections;
1207 memcpy ((char *) (target->to_sections + old),
1208 so->sections,
1209 (sizeof (struct section_table)) * count);
1210 old += count;
1211 }
1212 }
1213 }
1214 }
1215
1216 /* Now add the symbol files. */
1217 while ((so = find_solib (so)) != NULL)
1218 {
1219 if (so->so_name[0] && re_exec (so->so_name) &&
1220 !match_main (so->so_name))
1221 {
1222 so->from_tty = from_tty;
1223 if (so->symbols_loaded)
1224 {
1225 if (from_tty)
1226 {
1227 printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
1228 }
1229 }
1230 else if (catch_errors
1231 (symbol_add_stub, so,
1232 "Error while reading shared library symbols:\n",
1233 RETURN_MASK_ALL))
1234 {
1235 so_last = so;
1236 so->symbols_loaded = 1;
1237 }
1238 }
1239 }
1240
1241 /* Getting new symbols may change our opinion about what is
1242 frameless. */
1243 if (so_last)
1244 reinit_frame_cache ();
1245
1246 if (so_last)
1247 special_symbol_handling (so_last);
1248 }
1249
1250 /*
1251
1252 LOCAL FUNCTION
1253
1254 info_sharedlibrary_command -- code for "info sharedlibrary"
1255
1256 SYNOPSIS
1257
1258 static void info_sharedlibrary_command ()
1259
1260 DESCRIPTION
1261
1262 Walk through the shared library list and print information
1263 about each attached library.
1264 */
1265
1266 static void
1267 info_sharedlibrary_command (ignore, from_tty)
1268 char *ignore;
1269 int from_tty;
1270 {
1271 register struct so_list *so = NULL; /* link map state variable */
1272 int header_done = 0;
1273 int addr_width;
1274 char *addr_fmt;
1275
1276 if (exec_bfd == NULL)
1277 {
1278 printf_unfiltered ("No exec file.\n");
1279 return;
1280 }
1281
1282 #ifndef TARGET_ELF64
1283 addr_width = 8 + 4;
1284 addr_fmt = "08l";
1285 #else
1286 addr_width = 16 + 4;
1287 addr_fmt = "016l";
1288 #endif
1289
1290 while ((so = find_solib (so)) != NULL)
1291 {
1292 if (so->so_name[0])
1293 {
1294 if (!header_done)
1295 {
1296 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1297 addr_width, "To", "Syms Read",
1298 "Shared Object Library");
1299 header_done++;
1300 }
1301
1302 printf_unfiltered ("%-*s", addr_width,
1303 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1304 addr_fmt));
1305 printf_unfiltered ("%-*s", addr_width,
1306 local_hex_string_custom ((unsigned long) so->lmend,
1307 addr_fmt));
1308 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1309 printf_unfiltered ("%s\n", so->so_name);
1310 }
1311 }
1312 if (so_list_head == NULL)
1313 {
1314 printf_unfiltered ("No shared libraries loaded at this time.\n");
1315 }
1316 }
1317
1318 /*
1319
1320 GLOBAL FUNCTION
1321
1322 solib_address -- check to see if an address is in a shared lib
1323
1324 SYNOPSIS
1325
1326 char * solib_address (CORE_ADDR address)
1327
1328 DESCRIPTION
1329
1330 Provides a hook for other gdb routines to discover whether or
1331 not a particular address is within the mapped address space of
1332 a shared library. Any address between the base mapping address
1333 and the first address beyond the end of the last mapping, is
1334 considered to be within the shared library address space, for
1335 our purposes.
1336
1337 For example, this routine is called at one point to disable
1338 breakpoints which are in shared libraries that are not currently
1339 mapped in.
1340 */
1341
1342 char *
1343 solib_address (address)
1344 CORE_ADDR address;
1345 {
1346 register struct so_list *so = 0; /* link map state variable */
1347
1348 while ((so = find_solib (so)) != NULL)
1349 {
1350 if (so->so_name[0])
1351 {
1352 if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
1353 (address < (CORE_ADDR) so->lmend))
1354 return (so->so_name);
1355 }
1356 }
1357 return (0);
1358 }
1359
1360 /* Called by free_all_symtabs */
1361
1362 void
1363 clear_solib ()
1364 {
1365 struct so_list *next;
1366 char *bfd_filename;
1367
1368 /* This function is expected to handle ELF shared libraries. It is
1369 also used on Solaris, which can run either ELF or a.out binaries
1370 (for compatibility with SunOS 4), both of which can use shared
1371 libraries. So we don't know whether we have an ELF executable or
1372 an a.out executable until the user chooses an executable file.
1373
1374 ELF shared libraries don't get mapped into the address space
1375 until after the program starts, so we'd better not try to insert
1376 breakpoints in them immediately. We have to wait until the
1377 dynamic linker has loaded them; we'll hit a bp_shlib_event
1378 breakpoint (look for calls to create_solib_event_breakpoint) when
1379 it's ready.
1380
1381 SunOS shared libraries seem to be different --- they're present
1382 as soon as the process begins execution, so there's no need to
1383 put off inserting breakpoints. There's also nowhere to put a
1384 bp_shlib_event breakpoint, so if we put it off, we'll never get
1385 around to it.
1386
1387 So: disable breakpoints only if we're using ELF shared libs. */
1388 if (exec_bfd != NULL
1389 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1390 disable_breakpoints_in_shlibs (1);
1391
1392 while (so_list_head)
1393 {
1394 if (so_list_head->sections)
1395 {
1396 free ((PTR) so_list_head->sections);
1397 }
1398 if (so_list_head->abfd)
1399 {
1400 bfd_filename = bfd_get_filename (so_list_head->abfd);
1401 if (!bfd_close (so_list_head->abfd))
1402 warning ("cannot close \"%s\": %s",
1403 bfd_filename, bfd_errmsg (bfd_get_error ()));
1404 }
1405 else
1406 /* This happens for the executable on SVR4. */
1407 bfd_filename = NULL;
1408
1409 next = so_list_head->next;
1410 if (bfd_filename)
1411 free ((PTR) bfd_filename);
1412 free ((PTR) so_list_head);
1413 so_list_head = next;
1414 }
1415 debug_base = 0;
1416 }
1417
1418 static void
1419 do_clear_solib (dummy)
1420 PTR dummy;
1421 {
1422 solib_cleanup_queued = 0;
1423 clear_solib ();
1424 }
1425
1426 #ifdef SVR4_SHARED_LIBS
1427
1428 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1429 SVR4 run time loader. */
1430
1431 static CORE_ADDR interp_text_sect_low;
1432 static CORE_ADDR interp_text_sect_high;
1433 static CORE_ADDR interp_plt_sect_low;
1434 static CORE_ADDR interp_plt_sect_high;
1435
1436 int
1437 in_svr4_dynsym_resolve_code (pc)
1438 CORE_ADDR pc;
1439 {
1440 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1441 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1442 || in_plt_section (pc, NULL));
1443 }
1444 #endif
1445
1446 /*
1447
1448 LOCAL FUNCTION
1449
1450 disable_break -- remove the "mapping changed" breakpoint
1451
1452 SYNOPSIS
1453
1454 static int disable_break ()
1455
1456 DESCRIPTION
1457
1458 Removes the breakpoint that gets hit when the dynamic linker
1459 completes a mapping change.
1460
1461 */
1462
1463 #ifndef SVR4_SHARED_LIBS
1464
1465 static int
1466 disable_break ()
1467 {
1468 int status = 1;
1469
1470 #ifndef SVR4_SHARED_LIBS
1471
1472 int in_debugger = 0;
1473
1474 /* Read the debugger structure from the inferior to retrieve the
1475 address of the breakpoint and the original contents of the
1476 breakpoint address. Remove the breakpoint by writing the original
1477 contents back. */
1478
1479 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1480
1481 /* Set `in_debugger' to zero now. */
1482
1483 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1484
1485 breakpoint_addr = (CORE_ADDR) debug_copy.ldd_bp_addr;
1486 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1487 sizeof (debug_copy.ldd_bp_inst));
1488
1489 #else /* SVR4_SHARED_LIBS */
1490
1491 /* Note that breakpoint address and original contents are in our address
1492 space, so we just need to write the original contents back. */
1493
1494 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1495 {
1496 status = 0;
1497 }
1498
1499 #endif /* !SVR4_SHARED_LIBS */
1500
1501 /* For the SVR4 version, we always know the breakpoint address. For the
1502 SunOS version we don't know it until the above code is executed.
1503 Grumble if we are stopped anywhere besides the breakpoint address. */
1504
1505 if (stop_pc != breakpoint_addr)
1506 {
1507 warning ("stopped at unknown breakpoint while handling shared libraries");
1508 }
1509
1510 return (status);
1511 }
1512
1513 #endif /* #ifdef SVR4_SHARED_LIBS */
1514
1515 /*
1516
1517 LOCAL FUNCTION
1518
1519 enable_break -- arrange for dynamic linker to hit breakpoint
1520
1521 SYNOPSIS
1522
1523 int enable_break (void)
1524
1525 DESCRIPTION
1526
1527 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1528 debugger interface, support for arranging for the inferior to hit
1529 a breakpoint after mapping in the shared libraries. This function
1530 enables that breakpoint.
1531
1532 For SunOS, there is a special flag location (in_debugger) which we
1533 set to 1. When the dynamic linker sees this flag set, it will set
1534 a breakpoint at a location known only to itself, after saving the
1535 original contents of that place and the breakpoint address itself,
1536 in it's own internal structures. When we resume the inferior, it
1537 will eventually take a SIGTRAP when it runs into the breakpoint.
1538 We handle this (in a different place) by restoring the contents of
1539 the breakpointed location (which is only known after it stops),
1540 chasing around to locate the shared libraries that have been
1541 loaded, then resuming.
1542
1543 For SVR4, the debugger interface structure contains a member (r_brk)
1544 which is statically initialized at the time the shared library is
1545 built, to the offset of a function (_r_debug_state) which is guaran-
1546 teed to be called once before mapping in a library, and again when
1547 the mapping is complete. At the time we are examining this member,
1548 it contains only the unrelocated offset of the function, so we have
1549 to do our own relocation. Later, when the dynamic linker actually
1550 runs, it relocates r_brk to be the actual address of _r_debug_state().
1551
1552 The debugger interface structure also contains an enumeration which
1553 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1554 depending upon whether or not the library is being mapped or unmapped,
1555 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1556 */
1557
1558 static int
1559 enable_break ()
1560 {
1561 int success = 0;
1562
1563 #ifndef SVR4_SHARED_LIBS
1564
1565 int j;
1566 int in_debugger;
1567
1568 /* Get link_dynamic structure */
1569
1570 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1571 sizeof (dynamic_copy));
1572 if (j)
1573 {
1574 /* unreadable */
1575 return (0);
1576 }
1577
1578 /* Calc address of debugger interface structure */
1579
1580 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1581
1582 /* Calc address of `in_debugger' member of debugger interface structure */
1583
1584 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1585 (char *) &debug_copy);
1586
1587 /* Write a value of 1 to this member. */
1588
1589 in_debugger = 1;
1590 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1591 success = 1;
1592
1593 #else /* SVR4_SHARED_LIBS */
1594
1595 #ifdef BKPT_AT_SYMBOL
1596
1597 struct minimal_symbol *msymbol;
1598 char **bkpt_namep;
1599 asection *interp_sect;
1600
1601 /* First, remove all the solib event breakpoints. Their addresses
1602 may have changed since the last time we ran the program. */
1603 remove_solib_event_breakpoints ();
1604
1605 #ifdef SVR4_SHARED_LIBS
1606 interp_text_sect_low = interp_text_sect_high = 0;
1607 interp_plt_sect_low = interp_plt_sect_high = 0;
1608
1609 /* Find the .interp section; if not found, warn the user and drop
1610 into the old breakpoint at symbol code. */
1611 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1612 if (interp_sect)
1613 {
1614 unsigned int interp_sect_size;
1615 char *buf;
1616 CORE_ADDR load_addr;
1617 bfd *tmp_bfd;
1618 CORE_ADDR sym_addr = 0;
1619
1620 /* Read the contents of the .interp section into a local buffer;
1621 the contents specify the dynamic linker this program uses. */
1622 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1623 buf = alloca (interp_sect_size);
1624 bfd_get_section_contents (exec_bfd, interp_sect,
1625 buf, 0, interp_sect_size);
1626
1627 /* Now we need to figure out where the dynamic linker was
1628 loaded so that we can load its symbols and place a breakpoint
1629 in the dynamic linker itself.
1630
1631 This address is stored on the stack. However, I've been unable
1632 to find any magic formula to find it for Solaris (appears to
1633 be trivial on GNU/Linux). Therefore, we have to try an alternate
1634 mechanism to find the dynamic linker's base address. */
1635 tmp_bfd = bfd_openr (buf, gnutarget);
1636 if (tmp_bfd == NULL)
1637 goto bkpt_at_symbol;
1638
1639 /* Make sure the dynamic linker's really a useful object. */
1640 if (!bfd_check_format (tmp_bfd, bfd_object))
1641 {
1642 warning ("Unable to grok dynamic linker %s as an object file", buf);
1643 bfd_close (tmp_bfd);
1644 goto bkpt_at_symbol;
1645 }
1646
1647 /* We find the dynamic linker's base address by examining the
1648 current pc (which point at the entry point for the dynamic
1649 linker) and subtracting the offset of the entry point. */
1650 load_addr = read_pc () - tmp_bfd->start_address;
1651
1652 /* Record the relocated start and end address of the dynamic linker
1653 text and plt section for in_svr4_dynsym_resolve_code. */
1654 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1655 if (interp_sect)
1656 {
1657 interp_text_sect_low =
1658 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1659 interp_text_sect_high =
1660 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1661 }
1662 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1663 if (interp_sect)
1664 {
1665 interp_plt_sect_low =
1666 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1667 interp_plt_sect_high =
1668 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1669 }
1670
1671 /* Now try to set a breakpoint in the dynamic linker. */
1672 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1673 {
1674 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1675 if (sym_addr != 0)
1676 break;
1677 }
1678
1679 /* We're done with the temporary bfd. */
1680 bfd_close (tmp_bfd);
1681
1682 if (sym_addr != 0)
1683 {
1684 create_solib_event_breakpoint (load_addr + sym_addr);
1685 return 1;
1686 }
1687
1688 /* For whatever reason we couldn't set a breakpoint in the dynamic
1689 linker. Warn and drop into the old code. */
1690 bkpt_at_symbol:
1691 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1692 }
1693 #endif
1694
1695 /* Scan through the list of symbols, trying to look up the symbol and
1696 set a breakpoint there. Terminate loop when we/if we succeed. */
1697
1698 breakpoint_addr = 0;
1699 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1700 {
1701 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1702 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1703 {
1704 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1705 return 1;
1706 }
1707 }
1708
1709 /* Nothing good happened. */
1710 success = 0;
1711
1712 #endif /* BKPT_AT_SYMBOL */
1713
1714 #endif /* !SVR4_SHARED_LIBS */
1715
1716 return (success);
1717 }
1718
1719 /*
1720
1721 GLOBAL FUNCTION
1722
1723 solib_create_inferior_hook -- shared library startup support
1724
1725 SYNOPSIS
1726
1727 void solib_create_inferior_hook()
1728
1729 DESCRIPTION
1730
1731 When gdb starts up the inferior, it nurses it along (through the
1732 shell) until it is ready to execute it's first instruction. At this
1733 point, this function gets called via expansion of the macro
1734 SOLIB_CREATE_INFERIOR_HOOK.
1735
1736 For SunOS executables, this first instruction is typically the
1737 one at "_start", or a similar text label, regardless of whether
1738 the executable is statically or dynamically linked. The runtime
1739 startup code takes care of dynamically linking in any shared
1740 libraries, once gdb allows the inferior to continue.
1741
1742 For SVR4 executables, this first instruction is either the first
1743 instruction in the dynamic linker (for dynamically linked
1744 executables) or the instruction at "start" for statically linked
1745 executables. For dynamically linked executables, the system
1746 first exec's /lib/libc.so.N, which contains the dynamic linker,
1747 and starts it running. The dynamic linker maps in any needed
1748 shared libraries, maps in the actual user executable, and then
1749 jumps to "start" in the user executable.
1750
1751 For both SunOS shared libraries, and SVR4 shared libraries, we
1752 can arrange to cooperate with the dynamic linker to discover the
1753 names of shared libraries that are dynamically linked, and the
1754 base addresses to which they are linked.
1755
1756 This function is responsible for discovering those names and
1757 addresses, and saving sufficient information about them to allow
1758 their symbols to be read at a later time.
1759
1760 FIXME
1761
1762 Between enable_break() and disable_break(), this code does not
1763 properly handle hitting breakpoints which the user might have
1764 set in the startup code or in the dynamic linker itself. Proper
1765 handling will probably have to wait until the implementation is
1766 changed to use the "breakpoint handler function" method.
1767
1768 Also, what if child has exit()ed? Must exit loop somehow.
1769 */
1770
1771 void
1772 solib_create_inferior_hook ()
1773 {
1774 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1775 yet. In fact, in the case of a SunOS4 executable being run on
1776 Solaris, we can't get it yet. find_solib will get it when it needs
1777 it. */
1778 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1779 if ((debug_base = locate_base ()) == 0)
1780 {
1781 /* Can't find the symbol or the executable is statically linked. */
1782 return;
1783 }
1784 #endif
1785
1786 if (!enable_break ())
1787 {
1788 warning ("shared library handler failed to enable breakpoint");
1789 return;
1790 }
1791
1792 #if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1793 /* SCO and SunOS need the loop below, other systems should be using the
1794 special shared library breakpoints and the shared library breakpoint
1795 service routine.
1796
1797 Now run the target. It will eventually hit the breakpoint, at
1798 which point all of the libraries will have been mapped in and we
1799 can go groveling around in the dynamic linker structures to find
1800 out what we need to know about them. */
1801
1802 clear_proceed_status ();
1803 stop_soon_quietly = 1;
1804 stop_signal = TARGET_SIGNAL_0;
1805 do
1806 {
1807 target_resume (-1, 0, stop_signal);
1808 wait_for_inferior ();
1809 }
1810 while (stop_signal != TARGET_SIGNAL_TRAP);
1811 stop_soon_quietly = 0;
1812
1813 #if !defined(_SCO_DS)
1814 /* We are now either at the "mapping complete" breakpoint (or somewhere
1815 else, a condition we aren't prepared to deal with anyway), so adjust
1816 the PC as necessary after a breakpoint, disable the breakpoint, and
1817 add any shared libraries that were mapped in. */
1818
1819 if (DECR_PC_AFTER_BREAK)
1820 {
1821 stop_pc -= DECR_PC_AFTER_BREAK;
1822 write_register (PC_REGNUM, stop_pc);
1823 }
1824
1825 if (!disable_break ())
1826 {
1827 warning ("shared library handler failed to disable breakpoint");
1828 }
1829
1830 if (auto_solib_add)
1831 solib_add ((char *) 0, 0, (struct target_ops *) 0);
1832 #endif /* ! _SCO_DS */
1833 #endif
1834 }
1835
1836 /*
1837
1838 LOCAL FUNCTION
1839
1840 special_symbol_handling -- additional shared library symbol handling
1841
1842 SYNOPSIS
1843
1844 void special_symbol_handling (struct so_list *so)
1845
1846 DESCRIPTION
1847
1848 Once the symbols from a shared object have been loaded in the usual
1849 way, we are called to do any system specific symbol handling that
1850 is needed.
1851
1852 For SunOS4, this consists of grunging around in the dynamic
1853 linkers structures to find symbol definitions for "common" symbols
1854 and adding them to the minimal symbol table for the runtime common
1855 objfile.
1856
1857 */
1858
1859 static void
1860 special_symbol_handling (so)
1861 struct so_list *so;
1862 {
1863 #ifndef SVR4_SHARED_LIBS
1864 int j;
1865
1866 if (debug_addr == 0)
1867 {
1868 /* Get link_dynamic structure */
1869
1870 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1871 sizeof (dynamic_copy));
1872 if (j)
1873 {
1874 /* unreadable */
1875 return;
1876 }
1877
1878 /* Calc address of debugger interface structure */
1879 /* FIXME, this needs work for cross-debugging of core files
1880 (byteorder, size, alignment, etc). */
1881
1882 debug_addr = (CORE_ADDR) dynamic_copy.ldd;
1883 }
1884
1885 /* Read the debugger structure from the inferior, just to make sure
1886 we have a current copy. */
1887
1888 j = target_read_memory (debug_addr, (char *) &debug_copy,
1889 sizeof (debug_copy));
1890 if (j)
1891 return; /* unreadable */
1892
1893 /* Get common symbol definitions for the loaded object. */
1894
1895 if (debug_copy.ldd_cp)
1896 {
1897 solib_add_common_symbols (debug_copy.ldd_cp);
1898 }
1899
1900 #endif /* !SVR4_SHARED_LIBS */
1901 }
1902
1903
1904 /*
1905
1906 LOCAL FUNCTION
1907
1908 sharedlibrary_command -- handle command to explicitly add library
1909
1910 SYNOPSIS
1911
1912 static void sharedlibrary_command (char *args, int from_tty)
1913
1914 DESCRIPTION
1915
1916 */
1917
1918 static void
1919 sharedlibrary_command (args, from_tty)
1920 char *args;
1921 int from_tty;
1922 {
1923 dont_repeat ();
1924 solib_add (args, from_tty, (struct target_ops *) 0);
1925 }
1926
1927 #endif /* HAVE_LINK_H */
1928
1929 void
1930 _initialize_solib ()
1931 {
1932 #ifdef HAVE_LINK_H
1933
1934 add_com ("sharedlibrary", class_files, sharedlibrary_command,
1935 "Load shared object library symbols for files matching REGEXP.");
1936 add_info ("sharedlibrary", info_sharedlibrary_command,
1937 "Status of loaded shared object libraries.");
1938
1939 add_show_from_set
1940 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
1941 (char *) &auto_solib_add,
1942 "Set autoloading of shared library symbols.\n\
1943 If nonzero, symbols from all shared object libraries will be loaded\n\
1944 automatically when the inferior begins execution or when the dynamic linker\n\
1945 informs gdb that a new library has been loaded. Otherwise, symbols\n\
1946 must be loaded manually, using `sharedlibrary'.",
1947 &setlist),
1948 &showlist);
1949
1950 add_show_from_set
1951 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
1952 (char *) &solib_absolute_prefix,
1953 "Set prefix for loading absolute shared library symbol files.\n\
1954 For other (relative) files, you can add values using `set solib-search-path'.",
1955 &setlist),
1956 &showlist);
1957 add_show_from_set
1958 (add_set_cmd ("solib-search-path", class_support, var_string,
1959 (char *) &solib_search_path,
1960 "Set the search path for loading non-absolute shared library symbol files.\n\
1961 This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
1962 &setlist),
1963 &showlist);
1964
1965 #endif /* HAVE_LINK_H */
1966 }
This page took 0.068542 seconds and 4 git commands to generate.