* solib.c (update_solib_list): New function.
[deliverable/binutils-gdb.git] / gdb / solib.c
1 /* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include "defs.h"
24
25 /* This file is only compilable if link.h is available. */
26
27 #ifdef HAVE_LINK_H
28
29 #include <sys/types.h>
30 #include <signal.h>
31 #include "gdb_string.h"
32 #include <sys/param.h>
33 #include <fcntl.h>
34
35 #ifndef SVR4_SHARED_LIBS
36 /* SunOS shared libs need the nlist structure. */
37 #include <a.out.h>
38 #else
39 #include "elf/external.h"
40 #endif
41
42 #include <link.h>
43
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "symfile.h"
47 #include "objfiles.h"
48 #include "gdbcore.h"
49 #include "command.h"
50 #include "target.h"
51 #include "frame.h"
52 #include "gdb_regex.h"
53 #include "inferior.h"
54 #include "environ.h"
55 #include "language.h"
56 #include "gdbcmd.h"
57
58 #define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
59
60 /* On SVR4 systems, a list of symbols in the dynamic linker where
61 GDB can try to place a breakpoint to monitor shared library
62 events.
63
64 If none of these symbols are found, or other errors occur, then
65 SVR4 systems will fall back to using a symbol as the "startup
66 mapping complete" breakpoint address. */
67
68 #ifdef SVR4_SHARED_LIBS
69 static char *solib_break_names[] =
70 {
71 "r_debug_state",
72 "_r_debug_state",
73 "_dl_debug_state",
74 "rtld_db_dlactivity",
75 NULL
76 };
77 #endif
78
79 #define BKPT_AT_SYMBOL 1
80
81 #if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
82 static char *bkpt_names[] =
83 {
84 #ifdef SOLIB_BKPT_NAME
85 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
86 #endif
87 "_start",
88 "main",
89 NULL
90 };
91 #endif
92
93 /* Symbols which are used to locate the base of the link map structures. */
94
95 #ifndef SVR4_SHARED_LIBS
96 static char *debug_base_symbols[] =
97 {
98 "_DYNAMIC",
99 "_DYNAMIC__MGC",
100 NULL
101 };
102 #endif
103
104 static char *main_name_list[] =
105 {
106 "main_$main",
107 NULL
108 };
109
110 /* local data declarations */
111
112 /* Macro to extract an address from a solib structure.
113 When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
114 sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
115 64 bits. We have to extract only the significant bits of addresses
116 to get the right address when accessing the core file BFD. */
117
118 #define SOLIB_EXTRACT_ADDRESS(member) \
119 extract_address (&member, sizeof (member))
120
121 #ifndef SVR4_SHARED_LIBS
122
123 #define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
124 #define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
125 #define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
126 /* Test for first link map entry; first entry is a shared library. */
127 #define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
128 static struct link_dynamic dynamic_copy;
129 static struct link_dynamic_2 ld_2_copy;
130 static struct ld_debug debug_copy;
131 static CORE_ADDR debug_addr;
132 static CORE_ADDR flag_addr;
133
134 #else /* SVR4_SHARED_LIBS */
135
136 #define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
137 #define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
138 #define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
139 /* Test for first link map entry; first entry is the exec-file. */
140 #define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
141 (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
142 static struct r_debug debug_copy;
143 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
144
145 #endif /* !SVR4_SHARED_LIBS */
146
147 struct so_list
148 {
149 /* The following fields of the structure come directly from the
150 dynamic linker's tables in the inferior, and are initialized by
151 current_sos. */
152
153 struct so_list *next; /* next structure in linked list */
154 struct link_map lm; /* copy of link map from inferior */
155 CORE_ADDR lmaddr; /* addr in inferior lm was read from */
156
157 /* Shared object file name, exactly as it appears in the
158 inferior's link map. This may be a relative path, or something
159 which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
160 to tell which entries in the inferior's dynamic linker's link
161 map we've already loaded. */
162 char so_original_name[MAX_PATH_SIZE];
163
164 /* shared object file name, expanded to something GDB can open */
165 char so_name[MAX_PATH_SIZE];
166
167 /* The following fields of the structure are built from
168 information gathered from the shared object file itself, and
169 are initialized when we actually add it to our symbol tables. */
170
171 bfd *abfd;
172 CORE_ADDR lmend; /* upper addr bound of mapped object */
173 char symbols_loaded; /* flag: symbols read in yet? */
174 char from_tty; /* flag: print msgs? */
175 struct objfile *objfile; /* objfile for loaded lib */
176 struct section_table *sections;
177 struct section_table *sections_end;
178 struct section_table *textsection;
179 };
180
181 static struct so_list *so_list_head; /* List of known shared objects */
182 static CORE_ADDR debug_base; /* Base of dynamic linker structures */
183 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
184
185 static int solib_cleanup_queued = 0; /* make_run_cleanup called */
186
187 extern int
188 fdmatch PARAMS ((int, int)); /* In libiberty */
189
190 /* Local function prototypes */
191
192 static void
193 do_clear_solib PARAMS ((PTR));
194
195 static int
196 match_main PARAMS ((char *));
197
198 static void
199 special_symbol_handling PARAMS ((void));
200
201 static void
202 sharedlibrary_command PARAMS ((char *, int));
203
204 static int
205 enable_break PARAMS ((void));
206
207 static void
208 info_sharedlibrary_command PARAMS ((char *, int));
209
210 static int symbol_add_stub PARAMS ((PTR));
211
212 static CORE_ADDR
213 first_link_map_member PARAMS ((void));
214
215 static CORE_ADDR
216 locate_base PARAMS ((void));
217
218 static int solib_map_sections PARAMS ((PTR));
219
220 #ifdef SVR4_SHARED_LIBS
221
222 static CORE_ADDR
223 elf_locate_base PARAMS ((void));
224
225 #else
226
227 static struct so_list *current_sos (void);
228 static void free_so (struct so_list *node);
229
230 static int
231 disable_break PARAMS ((void));
232
233 static void
234 allocate_rt_common_objfile PARAMS ((void));
235
236 static void
237 solib_add_common_symbols (CORE_ADDR);
238
239 #endif
240
241 void _initialize_solib PARAMS ((void));
242
243 /* If non-zero, this is a prefix that will be added to the front of the name
244 shared libraries with an absolute filename for loading. */
245 static char *solib_absolute_prefix = NULL;
246
247 /* If non-empty, this is a search path for loading non-absolute shared library
248 symbol files. This takes precedence over the environment variables PATH
249 and LD_LIBRARY_PATH. */
250 static char *solib_search_path = NULL;
251
252 /*
253
254 LOCAL FUNCTION
255
256 solib_map_sections -- open bfd and build sections for shared lib
257
258 SYNOPSIS
259
260 static int solib_map_sections (struct so_list *so)
261
262 DESCRIPTION
263
264 Given a pointer to one of the shared objects in our list
265 of mapped objects, use the recorded name to open a bfd
266 descriptor for the object, build a section table, and then
267 relocate all the section addresses by the base address at
268 which the shared object was mapped.
269
270 FIXMES
271
272 In most (all?) cases the shared object file name recorded in the
273 dynamic linkage tables will be a fully qualified pathname. For
274 cases where it isn't, do we really mimic the systems search
275 mechanism correctly in the below code (particularly the tilde
276 expansion stuff?).
277 */
278
279 static int
280 solib_map_sections (arg)
281 PTR arg;
282 {
283 struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
284 char *filename;
285 char *scratch_pathname;
286 int scratch_chan;
287 struct section_table *p;
288 struct cleanup *old_chain;
289 bfd *abfd;
290
291 filename = tilde_expand (so->so_name);
292
293 if (solib_absolute_prefix && ROOTED_P (filename))
294 /* Prefix shared libraries with absolute filenames with
295 SOLIB_ABSOLUTE_PREFIX. */
296 {
297 char *pfxed_fn;
298 int pfx_len;
299
300 pfx_len = strlen (solib_absolute_prefix);
301
302 /* Remove trailing slashes. */
303 while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
304 pfx_len--;
305
306 pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
307 strcpy (pfxed_fn, solib_absolute_prefix);
308 strcat (pfxed_fn, filename);
309 free (filename);
310
311 filename = pfxed_fn;
312 }
313
314 old_chain = make_cleanup (free, filename);
315
316 scratch_chan = -1;
317
318 if (solib_search_path)
319 scratch_chan = openp (solib_search_path,
320 1, filename, O_RDONLY, 0, &scratch_pathname);
321 if (scratch_chan < 0)
322 scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
323 1, filename, O_RDONLY, 0, &scratch_pathname);
324 if (scratch_chan < 0)
325 {
326 scratch_chan = openp (get_in_environ
327 (inferior_environ, "LD_LIBRARY_PATH"),
328 1, filename, O_RDONLY, 0, &scratch_pathname);
329 }
330 if (scratch_chan < 0)
331 {
332 perror_with_name (filename);
333 }
334 /* Leave scratch_pathname allocated. abfd->name will point to it. */
335
336 abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
337 if (!abfd)
338 {
339 close (scratch_chan);
340 error ("Could not open `%s' as an executable file: %s",
341 scratch_pathname, bfd_errmsg (bfd_get_error ()));
342 }
343 /* Leave bfd open, core_xfer_memory and "info files" need it. */
344 so->abfd = abfd;
345 abfd->cacheable = true;
346
347 /* copy full path name into so_name, so that later symbol_file_add can find
348 it */
349 if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
350 error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
351 strcpy (so->so_name, scratch_pathname);
352
353 if (!bfd_check_format (abfd, bfd_object))
354 {
355 error ("\"%s\": not in executable format: %s.",
356 scratch_pathname, bfd_errmsg (bfd_get_error ()));
357 }
358 if (build_section_table (abfd, &so->sections, &so->sections_end))
359 {
360 error ("Can't find the file sections in `%s': %s",
361 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
362 }
363
364 for (p = so->sections; p < so->sections_end; p++)
365 {
366 /* Relocate the section binding addresses as recorded in the shared
367 object's file by the base address to which the object was actually
368 mapped. */
369 p->addr += LM_ADDR (so);
370 p->endaddr += LM_ADDR (so);
371 so->lmend = max (p->endaddr, so->lmend);
372 if (STREQ (p->the_bfd_section->name, ".text"))
373 {
374 so->textsection = p;
375 }
376 }
377
378 /* Free the file names, close the file now. */
379 do_cleanups (old_chain);
380
381 return (1);
382 }
383
384 #ifndef SVR4_SHARED_LIBS
385
386 /* Allocate the runtime common object file. */
387
388 static void
389 allocate_rt_common_objfile ()
390 {
391 struct objfile *objfile;
392 struct objfile *last_one;
393
394 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
395 memset (objfile, 0, sizeof (struct objfile));
396 objfile->md = NULL;
397 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
398 xmalloc, free);
399 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
400 free);
401 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
402 free);
403 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
404 free);
405 objfile->name = mstrsave (objfile->md, "rt_common");
406
407 /* Add this file onto the tail of the linked list of other such files. */
408
409 objfile->next = NULL;
410 if (object_files == NULL)
411 object_files = objfile;
412 else
413 {
414 for (last_one = object_files;
415 last_one->next;
416 last_one = last_one->next);
417 last_one->next = objfile;
418 }
419
420 rt_common_objfile = objfile;
421 }
422
423 /* Read all dynamically loaded common symbol definitions from the inferior
424 and put them into the minimal symbol table for the runtime common
425 objfile. */
426
427 static void
428 solib_add_common_symbols (rtc_symp)
429 CORE_ADDR rtc_symp;
430 {
431 struct rtc_symb inferior_rtc_symb;
432 struct nlist inferior_rtc_nlist;
433 int len;
434 char *name;
435
436 /* Remove any runtime common symbols from previous runs. */
437
438 if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
439 {
440 obstack_free (&rt_common_objfile->symbol_obstack, 0);
441 obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
442 xmalloc, free);
443 rt_common_objfile->minimal_symbol_count = 0;
444 rt_common_objfile->msymbols = NULL;
445 }
446
447 init_minimal_symbol_collection ();
448 make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
449
450 while (rtc_symp)
451 {
452 read_memory (rtc_symp,
453 (char *) &inferior_rtc_symb,
454 sizeof (inferior_rtc_symb));
455 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
456 (char *) &inferior_rtc_nlist,
457 sizeof (inferior_rtc_nlist));
458 if (inferior_rtc_nlist.n_type == N_COMM)
459 {
460 /* FIXME: The length of the symbol name is not available, but in the
461 current implementation the common symbol is allocated immediately
462 behind the name of the symbol. */
463 len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
464
465 name = xmalloc (len);
466 read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
467 name, len);
468
469 /* Allocate the runtime common objfile if necessary. */
470 if (rt_common_objfile == NULL)
471 allocate_rt_common_objfile ();
472
473 prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
474 mst_bss, rt_common_objfile);
475 free (name);
476 }
477 rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
478 }
479
480 /* Install any minimal symbols that have been collected as the current
481 minimal symbols for the runtime common objfile. */
482
483 install_minimal_symbols (rt_common_objfile);
484 }
485
486 #endif /* SVR4_SHARED_LIBS */
487
488
489 #ifdef SVR4_SHARED_LIBS
490
491 static CORE_ADDR
492 bfd_lookup_symbol PARAMS ((bfd *, char *));
493
494 /*
495
496 LOCAL FUNCTION
497
498 bfd_lookup_symbol -- lookup the value for a specific symbol
499
500 SYNOPSIS
501
502 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
503
504 DESCRIPTION
505
506 An expensive way to lookup the value of a single symbol for
507 bfd's that are only temporary anyway. This is used by the
508 shared library support to find the address of the debugger
509 interface structures in the shared library.
510
511 Note that 0 is specifically allowed as an error return (no
512 such symbol).
513 */
514
515 static CORE_ADDR
516 bfd_lookup_symbol (abfd, symname)
517 bfd *abfd;
518 char *symname;
519 {
520 unsigned int storage_needed;
521 asymbol *sym;
522 asymbol **symbol_table;
523 unsigned int number_of_symbols;
524 unsigned int i;
525 struct cleanup *back_to;
526 CORE_ADDR symaddr = 0;
527
528 storage_needed = bfd_get_symtab_upper_bound (abfd);
529
530 if (storage_needed > 0)
531 {
532 symbol_table = (asymbol **) xmalloc (storage_needed);
533 back_to = make_cleanup (free, (PTR) symbol_table);
534 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
535
536 for (i = 0; i < number_of_symbols; i++)
537 {
538 sym = *symbol_table++;
539 if (STREQ (sym->name, symname))
540 {
541 /* Bfd symbols are section relative. */
542 symaddr = sym->value + sym->section->vma;
543 break;
544 }
545 }
546 do_cleanups (back_to);
547 }
548 return (symaddr);
549 }
550
551 #ifdef HANDLE_SVR4_EXEC_EMULATORS
552
553 /*
554 Solaris BCP (the part of Solaris which allows it to run SunOS4
555 a.out files) throws in another wrinkle. Solaris does not fill
556 in the usual a.out link map structures when running BCP programs,
557 the only way to get at them is via groping around in the dynamic
558 linker.
559 The dynamic linker and it's structures are located in the shared
560 C library, which gets run as the executable's "interpreter" by
561 the kernel.
562
563 Note that we can assume nothing about the process state at the time
564 we need to find these structures. We may be stopped on the first
565 instruction of the interpreter (C shared library), the first
566 instruction of the executable itself, or somewhere else entirely
567 (if we attached to the process for example).
568 */
569
570 static char *debug_base_symbols[] =
571 {
572 "r_debug", /* Solaris 2.3 */
573 "_r_debug", /* Solaris 2.1, 2.2 */
574 NULL
575 };
576
577 static int
578 look_for_base PARAMS ((int, CORE_ADDR));
579
580 /*
581
582 LOCAL FUNCTION
583
584 look_for_base -- examine file for each mapped address segment
585
586 SYNOPSYS
587
588 static int look_for_base (int fd, CORE_ADDR baseaddr)
589
590 DESCRIPTION
591
592 This function is passed to proc_iterate_over_mappings, which
593 causes it to get called once for each mapped address space, with
594 an open file descriptor for the file mapped to that space, and the
595 base address of that mapped space.
596
597 Our job is to find the debug base symbol in the file that this
598 fd is open on, if it exists, and if so, initialize the dynamic
599 linker structure base address debug_base.
600
601 Note that this is a computationally expensive proposition, since
602 we basically have to open a bfd on every call, so we specifically
603 avoid opening the exec file.
604 */
605
606 static int
607 look_for_base (fd, baseaddr)
608 int fd;
609 CORE_ADDR baseaddr;
610 {
611 bfd *interp_bfd;
612 CORE_ADDR address = 0;
613 char **symbolp;
614
615 /* If the fd is -1, then there is no file that corresponds to this
616 mapped memory segment, so skip it. Also, if the fd corresponds
617 to the exec file, skip it as well. */
618
619 if (fd == -1
620 || (exec_bfd != NULL
621 && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
622 {
623 return (0);
624 }
625
626 /* Try to open whatever random file this fd corresponds to. Note that
627 we have no way currently to find the filename. Don't gripe about
628 any problems we might have, just fail. */
629
630 if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
631 {
632 return (0);
633 }
634 if (!bfd_check_format (interp_bfd, bfd_object))
635 {
636 /* FIXME-leak: on failure, might not free all memory associated with
637 interp_bfd. */
638 bfd_close (interp_bfd);
639 return (0);
640 }
641
642 /* Now try to find our debug base symbol in this file, which we at
643 least know to be a valid ELF executable or shared library. */
644
645 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
646 {
647 address = bfd_lookup_symbol (interp_bfd, *symbolp);
648 if (address != 0)
649 {
650 break;
651 }
652 }
653 if (address == 0)
654 {
655 /* FIXME-leak: on failure, might not free all memory associated with
656 interp_bfd. */
657 bfd_close (interp_bfd);
658 return (0);
659 }
660
661 /* Eureka! We found the symbol. But now we may need to relocate it
662 by the base address. If the symbol's value is less than the base
663 address of the shared library, then it hasn't yet been relocated
664 by the dynamic linker, and we have to do it ourself. FIXME: Note
665 that we make the assumption that the first segment that corresponds
666 to the shared library has the base address to which the library
667 was relocated. */
668
669 if (address < baseaddr)
670 {
671 address += baseaddr;
672 }
673 debug_base = address;
674 /* FIXME-leak: on failure, might not free all memory associated with
675 interp_bfd. */
676 bfd_close (interp_bfd);
677 return (1);
678 }
679 #endif /* HANDLE_SVR4_EXEC_EMULATORS */
680
681 /*
682
683 LOCAL FUNCTION
684
685 elf_locate_base -- locate the base address of dynamic linker structs
686 for SVR4 elf targets.
687
688 SYNOPSIS
689
690 CORE_ADDR elf_locate_base (void)
691
692 DESCRIPTION
693
694 For SVR4 elf targets the address of the dynamic linker's runtime
695 structure is contained within the dynamic info section in the
696 executable file. The dynamic section is also mapped into the
697 inferior address space. Because the runtime loader fills in the
698 real address before starting the inferior, we have to read in the
699 dynamic info section from the inferior address space.
700 If there are any errors while trying to find the address, we
701 silently return 0, otherwise the found address is returned.
702
703 */
704
705 static CORE_ADDR
706 elf_locate_base ()
707 {
708 sec_ptr dyninfo_sect;
709 int dyninfo_sect_size;
710 CORE_ADDR dyninfo_addr;
711 char *buf;
712 char *bufend;
713
714 /* Find the start address of the .dynamic section. */
715 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
716 if (dyninfo_sect == NULL)
717 return 0;
718 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
719
720 /* Read in .dynamic section, silently ignore errors. */
721 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
722 buf = alloca (dyninfo_sect_size);
723 if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
724 return 0;
725
726 /* Find the DT_DEBUG entry in the the .dynamic section.
727 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
728 no DT_DEBUG entries. */
729 #ifndef TARGET_ELF64
730 for (bufend = buf + dyninfo_sect_size;
731 buf < bufend;
732 buf += sizeof (Elf32_External_Dyn))
733 {
734 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
735 long dyn_tag;
736 CORE_ADDR dyn_ptr;
737
738 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
739 if (dyn_tag == DT_NULL)
740 break;
741 else if (dyn_tag == DT_DEBUG)
742 {
743 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
744 return dyn_ptr;
745 }
746 #ifdef DT_MIPS_RLD_MAP
747 else if (dyn_tag == DT_MIPS_RLD_MAP)
748 {
749 char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
750
751 /* DT_MIPS_RLD_MAP contains a pointer to the address
752 of the dynamic link structure. */
753 dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
754 if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
755 return 0;
756 return extract_unsigned_integer (pbuf, sizeof (pbuf));
757 }
758 #endif
759 }
760 #else /* ELF64 */
761 for (bufend = buf + dyninfo_sect_size;
762 buf < bufend;
763 buf += sizeof (Elf64_External_Dyn))
764 {
765 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
766 long dyn_tag;
767 CORE_ADDR dyn_ptr;
768
769 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
770 if (dyn_tag == DT_NULL)
771 break;
772 else if (dyn_tag == DT_DEBUG)
773 {
774 dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
775 return dyn_ptr;
776 }
777 }
778 #endif
779
780 /* DT_DEBUG entry not found. */
781 return 0;
782 }
783
784 #endif /* SVR4_SHARED_LIBS */
785
786 /*
787
788 LOCAL FUNCTION
789
790 locate_base -- locate the base address of dynamic linker structs
791
792 SYNOPSIS
793
794 CORE_ADDR locate_base (void)
795
796 DESCRIPTION
797
798 For both the SunOS and SVR4 shared library implementations, if the
799 inferior executable has been linked dynamically, there is a single
800 address somewhere in the inferior's data space which is the key to
801 locating all of the dynamic linker's runtime structures. This
802 address is the value of the debug base symbol. The job of this
803 function is to find and return that address, or to return 0 if there
804 is no such address (the executable is statically linked for example).
805
806 For SunOS, the job is almost trivial, since the dynamic linker and
807 all of it's structures are statically linked to the executable at
808 link time. Thus the symbol for the address we are looking for has
809 already been added to the minimal symbol table for the executable's
810 objfile at the time the symbol file's symbols were read, and all we
811 have to do is look it up there. Note that we explicitly do NOT want
812 to find the copies in the shared library.
813
814 The SVR4 version is a bit more complicated because the address
815 is contained somewhere in the dynamic info section. We have to go
816 to a lot more work to discover the address of the debug base symbol.
817 Because of this complexity, we cache the value we find and return that
818 value on subsequent invocations. Note there is no copy in the
819 executable symbol tables.
820
821 */
822
823 static CORE_ADDR
824 locate_base ()
825 {
826
827 #ifndef SVR4_SHARED_LIBS
828
829 struct minimal_symbol *msymbol;
830 CORE_ADDR address = 0;
831 char **symbolp;
832
833 /* For SunOS, we want to limit the search for the debug base symbol to the
834 executable being debugged, since there is a duplicate named symbol in the
835 shared library. We don't want the shared library versions. */
836
837 for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
838 {
839 msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
840 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
841 {
842 address = SYMBOL_VALUE_ADDRESS (msymbol);
843 return (address);
844 }
845 }
846 return (0);
847
848 #else /* SVR4_SHARED_LIBS */
849
850 /* Check to see if we have a currently valid address, and if so, avoid
851 doing all this work again and just return the cached address. If
852 we have no cached address, try to locate it in the dynamic info
853 section for ELF executables. */
854
855 if (debug_base == 0)
856 {
857 if (exec_bfd != NULL
858 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
859 debug_base = elf_locate_base ();
860 #ifdef HANDLE_SVR4_EXEC_EMULATORS
861 /* Try it the hard way for emulated executables. */
862 else if (inferior_pid != 0 && target_has_execution)
863 proc_iterate_over_mappings (look_for_base);
864 #endif
865 }
866 return (debug_base);
867
868 #endif /* !SVR4_SHARED_LIBS */
869
870 }
871
872 /*
873
874 LOCAL FUNCTION
875
876 first_link_map_member -- locate first member in dynamic linker's map
877
878 SYNOPSIS
879
880 static CORE_ADDR first_link_map_member (void)
881
882 DESCRIPTION
883
884 Find the first element in the inferior's dynamic link map, and
885 return its address in the inferior. This function doesn't copy the
886 link map entry itself into our address space; current_sos actually
887 does the reading. */
888
889 static CORE_ADDR
890 first_link_map_member ()
891 {
892 CORE_ADDR lm = 0;
893
894 #ifndef SVR4_SHARED_LIBS
895
896 read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
897 if (dynamic_copy.ld_version >= 2)
898 {
899 /* It is a version that we can deal with, so read in the secondary
900 structure and find the address of the link map list from it. */
901 read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
902 (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
903 lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
904 }
905
906 #else /* SVR4_SHARED_LIBS */
907
908 read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
909 /* FIXME: Perhaps we should validate the info somehow, perhaps by
910 checking r_version for a known version number, or r_state for
911 RT_CONSISTENT. */
912 lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
913
914 #endif /* !SVR4_SHARED_LIBS */
915
916 return (lm);
917 }
918
919 #ifdef SVR4_SHARED_LIBS
920 /*
921
922 LOCAL FUNCTION
923
924 open_symbol_file_object
925
926 SYNOPSIS
927
928 void open_symbol_file_object (int from_tty)
929
930 DESCRIPTION
931
932 If no open symbol file, attempt to locate and open the main symbol
933 file. On SVR4 systems, this is the first link map entry. If its
934 name is here, we can open it. Useful when attaching to a process
935 without first loading its symbol file.
936
937 */
938
939 static int
940 open_symbol_file_object (from_ttyp)
941 int *from_ttyp; /* sneak past catch_errors */
942 {
943 CORE_ADDR lm;
944 struct link_map lmcopy;
945 char *filename;
946 int errcode;
947
948 if (symfile_objfile)
949 if (!query ("Attempt to reload symbols from process? "))
950 return 0;
951
952 if ((debug_base = locate_base ()) == 0)
953 return 0; /* failed somehow... */
954
955 /* First link map member should be the executable. */
956 if ((lm = first_link_map_member ()) == 0)
957 return 0; /* failed somehow... */
958
959 /* Read from target memory to GDB. */
960 read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
961
962 if (lmcopy.l_name == 0)
963 return 0; /* no filename. */
964
965 /* Now fetch the filename from target memory. */
966 target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
967 MAX_PATH_SIZE - 1, &errcode);
968 if (errcode)
969 {
970 warning ("failed to read exec filename from attached file: %s",
971 safe_strerror (errcode));
972 return 0;
973 }
974
975 make_cleanup ((make_cleanup_func) free, (void *) filename);
976 /* Have a pathname: read the symbol file. */
977 symbol_file_command (filename, *from_ttyp);
978
979 return 1;
980 }
981 #endif /* SVR4_SHARED_LIBS */
982
983
984 /* LOCAL FUNCTION
985
986 free_so --- free a `struct so_list' object
987
988 SYNOPSIS
989
990 void free_so (struct so_list *so)
991
992 DESCRIPTION
993
994 Free the storage associated with the `struct so_list' object SO.
995 If we have opened a BFD for SO, close it.
996
997 The caller is responsible for removing SO from whatever list it is
998 a member of. If we have placed SO's sections in some target's
999 section table, the caller is responsible for removing them.
1000
1001 This function doesn't mess with objfiles at all. If there is an
1002 objfile associated with SO that needs to be removed, the caller is
1003 responsible for taking care of that. */
1004
1005 static void
1006 free_so (struct so_list *so)
1007 {
1008 char *bfd_filename = 0;
1009
1010 if (so->sections)
1011 free (so->sections);
1012
1013 if (so->abfd)
1014 {
1015 bfd_filename = bfd_get_filename (so->abfd);
1016 if (! bfd_close (so->abfd))
1017 warning ("cannot close \"%s\": %s",
1018 bfd_filename, bfd_errmsg (bfd_get_error ()));
1019 }
1020
1021 if (bfd_filename)
1022 free (bfd_filename);
1023
1024 free (so);
1025 }
1026
1027
1028 /* On some systems, the only way to recognize the link map entry for
1029 the main executable file is by looking at its name. Return
1030 non-zero iff SONAME matches one of the known main executable names. */
1031
1032 static int
1033 match_main (soname)
1034 char *soname;
1035 {
1036 char **mainp;
1037
1038 for (mainp = main_name_list; *mainp != NULL; mainp++)
1039 {
1040 if (strcmp (soname, *mainp) == 0)
1041 return (1);
1042 }
1043
1044 return (0);
1045 }
1046
1047
1048 /* LOCAL FUNCTION
1049
1050 current_sos -- build a list of currently loaded shared objects
1051
1052 SYNOPSIS
1053
1054 struct so_list *current_sos ()
1055
1056 DESCRIPTION
1057
1058 Build a list of `struct so_list' objects describing the shared
1059 objects currently loaded in the inferior. This list does not
1060 include an entry for the main executable file.
1061
1062 Note that we only gather information directly available from the
1063 inferior --- we don't examine any of the shared library files
1064 themselves. The declaration of `struct so_list' says which fields
1065 we provide values for. */
1066
1067 static struct so_list *
1068 current_sos ()
1069 {
1070 CORE_ADDR lm;
1071 struct so_list *head = 0;
1072 struct so_list **link_ptr = &head;
1073
1074 /* Make sure we've looked up the inferior's dynamic linker's base
1075 structure. */
1076 if (! debug_base)
1077 {
1078 debug_base = locate_base ();
1079
1080 /* If we can't find the dynamic linker's base structure, this
1081 must not be a dynamically linked executable. Hmm. */
1082 if (! debug_base)
1083 return 0;
1084 }
1085
1086 /* Walk the inferior's link map list, and build our list of
1087 `struct so_list' nodes. */
1088 lm = first_link_map_member ();
1089 while (lm)
1090 {
1091 struct so_list *new
1092 = (struct so_list *) xmalloc (sizeof (struct so_list));
1093 struct cleanup *old_chain = make_cleanup (free, new);
1094 memset (new, 0, sizeof (*new));
1095
1096 new->lmaddr = lm;
1097 read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
1098
1099 lm = LM_NEXT (new);
1100
1101 /* For SVR4 versions, the first entry in the link map is for the
1102 inferior executable, so we must ignore it. For some versions of
1103 SVR4, it has no name. For others (Solaris 2.3 for example), it
1104 does have a name, so we can no longer use a missing name to
1105 decide when to ignore it. */
1106 if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
1107 free_so (new);
1108 else
1109 {
1110 int errcode;
1111 char *buffer;
1112
1113 /* Extract this shared object's name. */
1114 target_read_string (LM_NAME (new), &buffer,
1115 MAX_PATH_SIZE - 1, &errcode);
1116 if (errcode != 0)
1117 {
1118 warning ("current_sos: Can't read pathname for load map: %s\n",
1119 safe_strerror (errcode));
1120 }
1121 else
1122 {
1123 strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1124 new->so_name[MAX_PATH_SIZE - 1] = '\0';
1125 free (buffer);
1126 strcpy (new->so_original_name, new->so_name);
1127 }
1128
1129 /* If this entry has no name, or its name matches the name
1130 for the main executable, don't include it in the list. */
1131 if (! new->so_name[0]
1132 || match_main (new->so_name))
1133 free_so (new);
1134 else
1135 {
1136 new->next = 0;
1137 *link_ptr = new;
1138 link_ptr = &new->next;
1139 }
1140 }
1141
1142 discard_cleanups (old_chain);
1143 }
1144
1145 return head;
1146 }
1147
1148
1149 /* A small stub to get us past the arg-passing pinhole of catch_errors. */
1150
1151 static int
1152 symbol_add_stub (arg)
1153 PTR arg;
1154 {
1155 register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
1156 CORE_ADDR text_addr = 0;
1157 struct section_addr_info *sap;
1158
1159 /* Have we already loaded this shared object? */
1160 ALL_OBJFILES (so->objfile)
1161 {
1162 if (strcmp (so->objfile->name, so->so_name) == 0)
1163 return 1;
1164 }
1165
1166 /* Find the shared object's text segment. */
1167 if (so->textsection)
1168 text_addr = so->textsection->addr;
1169 else if (so->abfd != NULL)
1170 {
1171 asection *lowest_sect;
1172
1173 /* If we didn't find a mapped non zero sized .text section, set up
1174 text_addr so that the relocation in symbol_file_add does no harm. */
1175 lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
1176 if (lowest_sect == NULL)
1177 bfd_map_over_sections (so->abfd, find_lowest_section,
1178 (PTR) &lowest_sect);
1179 if (lowest_sect)
1180 text_addr = bfd_section_vma (so->abfd, lowest_sect)
1181 + LM_ADDR (so);
1182 }
1183
1184 sap = build_section_addr_info_from_section_table (so->sections,
1185 so->sections_end);
1186 sap->text_addr = text_addr;
1187 so->objfile = symbol_file_add (so->so_name, so->from_tty,
1188 sap, 0, OBJF_SHARED);
1189 free_section_addr_info (sap);
1190
1191 return (1);
1192 }
1193
1194
1195 /* LOCAL FUNCTION
1196
1197 update_solib_list --- synchronize GDB's shared object list with inferior's
1198
1199 SYNOPSIS
1200
1201 void update_solib_list (int from_tty, struct target_ops *TARGET)
1202
1203 Extract the list of currently loaded shared objects from the
1204 inferior, and compare it with the list of shared objects currently
1205 in GDB's so_list_head list. Edit so_list_head to bring it in sync
1206 with the inferior's new list.
1207
1208 If we notice that the inferior has unloaded some shared objects,
1209 free any symbolic info GDB had read about those shared objects.
1210
1211 Don't load symbolic info for any new shared objects; just add them
1212 to the list, and leave their symbols_loaded flag clear.
1213
1214 If FROM_TTY is non-null, feel free to print messages about what
1215 we're doing.
1216
1217 If TARGET is non-null, add the sections of all new shared objects
1218 to TARGET's section table. Note that this doesn't remove any
1219 sections for shared objects that have been unloaded, and it
1220 doesn't check to see if the new shared objects are already present in
1221 the section table. But we only use this for core files and
1222 processes we've just attached to, so that's okay. */
1223
1224 void
1225 update_solib_list (int from_tty, struct target_ops *target)
1226 {
1227 struct so_list *inferior = current_sos ();
1228 struct so_list *gdb, **gdb_link;
1229
1230 #ifdef SVR4_SHARED_LIBS
1231 /* If we are attaching to a running process for which we
1232 have not opened a symbol file, we may be able to get its
1233 symbols now! */
1234 if (attach_flag &&
1235 symfile_objfile == NULL)
1236 catch_errors (open_symbol_file_object, (PTR) &from_tty,
1237 "Error reading attached process's symbol file.\n",
1238 RETURN_MASK_ALL);
1239
1240 #endif SVR4_SHARED_LIBS
1241
1242 /* Since this function might actually add some elements to the
1243 so_list_head list, arrange for it to be cleaned up when
1244 appropriate. */
1245 if (!solib_cleanup_queued)
1246 {
1247 make_run_cleanup (do_clear_solib, NULL);
1248 solib_cleanup_queued = 1;
1249 }
1250
1251 /* GDB and the inferior's dynamic linker each maintain their own
1252 list of currently loaded shared objects; we want to bring the
1253 former in sync with the latter. Scan both lists, seeing which
1254 shared objects appear where. There are three cases:
1255
1256 - A shared object appears on both lists. This means that GDB
1257 knows about it already, and it's still loaded in the inferior.
1258 Nothing needs to happen.
1259
1260 - A shared object appears only on GDB's list. This means that
1261 the inferior has unloaded it. We should remove the shared
1262 object from GDB's tables.
1263
1264 - A shared object appears only on the inferior's list. This
1265 means that it's just been loaded. We should add it to GDB's
1266 tables.
1267
1268 So we walk GDB's list, checking each entry to see if it appears
1269 in the inferior's list too. If it does, no action is needed, and
1270 we remove it from the inferior's list. If it doesn't, the
1271 inferior has unloaded it, and we remove it from GDB's list. By
1272 the time we're done walking GDB's list, the inferior's list
1273 contains only the new shared objects, which we then add. */
1274
1275 gdb = so_list_head;
1276 gdb_link = &so_list_head;
1277 while (gdb)
1278 {
1279 struct so_list *i = inferior;
1280 struct so_list **i_link = &inferior;
1281
1282 /* Check to see whether the shared object *gdb also appears in
1283 the inferior's current list. */
1284 while (i)
1285 {
1286 if (! strcmp (gdb->so_original_name, i->so_original_name))
1287 break;
1288
1289 i_link = &i->next;
1290 i = *i_link;
1291 }
1292
1293 /* If the shared object appears on the inferior's list too, then
1294 it's still loaded, so we don't need to do anything. Delete
1295 it from the inferior's list, and leave it on GDB's list. */
1296 if (i)
1297 {
1298 *i_link = i->next;
1299 free_so (i);
1300 gdb_link = &gdb->next;
1301 gdb = *gdb_link;
1302 }
1303
1304 /* If it's not on the inferior's list, remove it from GDB's tables. */
1305 else
1306 {
1307 *gdb_link = gdb->next;
1308
1309 /* Unless the user loaded it explicitly, free SO's objfile. */
1310 if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED))
1311 free_objfile (gdb->objfile);
1312
1313 /* Some targets' section tables might be referring to
1314 sections from so->abfd; remove them. */
1315 remove_target_sections (gdb->abfd);
1316
1317 free_so (gdb);
1318 gdb = *gdb_link;
1319 }
1320 }
1321
1322 /* Now the inferior's list contains only shared objects that don't
1323 appear in GDB's list --- those that are newly loaded. Add them
1324 to GDB's shared object list. */
1325 if (inferior)
1326 {
1327 struct so_list *i;
1328
1329 /* Add the new shared objects to GDB's list. */
1330 *gdb_link = inferior;
1331
1332 /* Fill in the rest of each of the `struct so_list' nodes. */
1333 for (i = inferior; i; i = i->next)
1334 {
1335 i->from_tty = from_tty;
1336
1337 /* Fill in the rest of the `struct so_list' node. */
1338 catch_errors (solib_map_sections, i,
1339 "Error while mapping shared library sections:\n",
1340 RETURN_MASK_ALL);
1341 }
1342
1343 /* If requested, add the shared objects' sections to the the
1344 TARGET's section table. */
1345 if (target)
1346 {
1347 int new_sections;
1348
1349 /* Figure out how many sections we'll need to add in total. */
1350 new_sections = 0;
1351 for (i = inferior; i; i = i->next)
1352 new_sections += (i->sections_end - i->sections);
1353
1354 if (new_sections > 0)
1355 {
1356 int space = target_resize_to_sections (target, new_sections);
1357
1358 for (i = inferior; i; i = i->next)
1359 {
1360 int count = (i->sections_end - i->sections);
1361 memcpy (target->to_sections + space,
1362 i->sections,
1363 count * sizeof (i->sections[0]));
1364 space += count;
1365 }
1366 }
1367 }
1368 }
1369 }
1370
1371
1372 /* GLOBAL FUNCTION
1373
1374 solib_add -- read in symbol info for newly added shared libraries
1375
1376 SYNOPSIS
1377
1378 void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
1379
1380 DESCRIPTION
1381
1382 Read in symbolic information for any shared objects whose names
1383 match PATTERN. (If we've already read a shared object's symbol
1384 info, leave it alone.) If PATTERN is zero, read them all.
1385
1386 FROM_TTY and TARGET are as described for update_solib_list, above. */
1387
1388 void
1389 solib_add (char *pattern, int from_tty, struct target_ops *target)
1390 {
1391 struct so_list *gdb;
1392
1393 if (pattern)
1394 {
1395 char *re_err = re_comp (pattern);
1396
1397 if (re_err)
1398 error ("Invalid regexp: %s", re_err);
1399 }
1400
1401 update_solib_list (from_tty, target);
1402
1403 /* Walk the list of currently loaded shared libraries, and read
1404 symbols for any that match the pattern --- or any whose symbols
1405 aren't already loaded, if no pattern was given. */
1406 {
1407 int any_matches = 0;
1408 int loaded_any_symbols = 0;
1409
1410 for (gdb = so_list_head; gdb; gdb = gdb->next)
1411 if (! pattern || re_exec (gdb->so_name))
1412 {
1413 any_matches = 1;
1414
1415 if (gdb->symbols_loaded)
1416 {
1417 if (from_tty)
1418 printf_unfiltered ("Symbols already loaded for %s\n",
1419 gdb->so_name);
1420 }
1421 else
1422 {
1423 if (catch_errors
1424 (symbol_add_stub, gdb,
1425 "Error while reading shared library symbols:\n",
1426 RETURN_MASK_ALL))
1427 {
1428 if (from_tty)
1429 printf_unfiltered ("Loaded symbols for %s\n",
1430 gdb->so_name);
1431 gdb->symbols_loaded = 1;
1432 loaded_any_symbols = 1;
1433 }
1434 }
1435 }
1436
1437 if (from_tty && pattern && ! any_matches)
1438 printf_unfiltered
1439 ("No loaded shared libraries match the pattern `%s'.\n", pattern);
1440
1441 if (loaded_any_symbols)
1442 {
1443 /* Getting new symbols may change our opinion about what is
1444 frameless. */
1445 reinit_frame_cache ();
1446
1447 special_symbol_handling ();
1448 }
1449 }
1450 }
1451
1452
1453 /*
1454
1455 LOCAL FUNCTION
1456
1457 info_sharedlibrary_command -- code for "info sharedlibrary"
1458
1459 SYNOPSIS
1460
1461 static void info_sharedlibrary_command ()
1462
1463 DESCRIPTION
1464
1465 Walk through the shared library list and print information
1466 about each attached library.
1467 */
1468
1469 static void
1470 info_sharedlibrary_command (ignore, from_tty)
1471 char *ignore;
1472 int from_tty;
1473 {
1474 register struct so_list *so = NULL; /* link map state variable */
1475 int header_done = 0;
1476 int addr_width;
1477 char *addr_fmt;
1478
1479 if (exec_bfd == NULL)
1480 {
1481 printf_unfiltered ("No executable file.\n");
1482 return;
1483 }
1484
1485 #ifndef TARGET_ELF64
1486 addr_width = 8 + 4;
1487 addr_fmt = "08l";
1488 #else
1489 addr_width = 16 + 4;
1490 addr_fmt = "016l";
1491 #endif
1492
1493 update_solib_list (from_tty, 0);
1494
1495 for (so = so_list_head; so; so = so->next)
1496 {
1497 if (so->so_name[0])
1498 {
1499 if (!header_done)
1500 {
1501 printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1502 addr_width, "To", "Syms Read",
1503 "Shared Object Library");
1504 header_done++;
1505 }
1506
1507 printf_unfiltered ("%-*s", addr_width,
1508 local_hex_string_custom ((unsigned long) LM_ADDR (so),
1509 addr_fmt));
1510 printf_unfiltered ("%-*s", addr_width,
1511 local_hex_string_custom ((unsigned long) so->lmend,
1512 addr_fmt));
1513 printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1514 printf_unfiltered ("%s\n", so->so_name);
1515 }
1516 }
1517 if (so_list_head == NULL)
1518 {
1519 printf_unfiltered ("No shared libraries loaded at this time.\n");
1520 }
1521 }
1522
1523 /*
1524
1525 GLOBAL FUNCTION
1526
1527 solib_address -- check to see if an address is in a shared lib
1528
1529 SYNOPSIS
1530
1531 char * solib_address (CORE_ADDR address)
1532
1533 DESCRIPTION
1534
1535 Provides a hook for other gdb routines to discover whether or
1536 not a particular address is within the mapped address space of
1537 a shared library. Any address between the base mapping address
1538 and the first address beyond the end of the last mapping, is
1539 considered to be within the shared library address space, for
1540 our purposes.
1541
1542 For example, this routine is called at one point to disable
1543 breakpoints which are in shared libraries that are not currently
1544 mapped in.
1545 */
1546
1547 char *
1548 solib_address (address)
1549 CORE_ADDR address;
1550 {
1551 register struct so_list *so = 0; /* link map state variable */
1552
1553 for (so = so_list_head; so; so = so->next)
1554 {
1555 if (LM_ADDR (so) <= address && address < so->lmend)
1556 return (so->so_name);
1557 }
1558
1559 return (0);
1560 }
1561
1562 /* Called by free_all_symtabs */
1563
1564 void
1565 clear_solib ()
1566 {
1567 /* This function is expected to handle ELF shared libraries. It is
1568 also used on Solaris, which can run either ELF or a.out binaries
1569 (for compatibility with SunOS 4), both of which can use shared
1570 libraries. So we don't know whether we have an ELF executable or
1571 an a.out executable until the user chooses an executable file.
1572
1573 ELF shared libraries don't get mapped into the address space
1574 until after the program starts, so we'd better not try to insert
1575 breakpoints in them immediately. We have to wait until the
1576 dynamic linker has loaded them; we'll hit a bp_shlib_event
1577 breakpoint (look for calls to create_solib_event_breakpoint) when
1578 it's ready.
1579
1580 SunOS shared libraries seem to be different --- they're present
1581 as soon as the process begins execution, so there's no need to
1582 put off inserting breakpoints. There's also nowhere to put a
1583 bp_shlib_event breakpoint, so if we put it off, we'll never get
1584 around to it.
1585
1586 So: disable breakpoints only if we're using ELF shared libs. */
1587 if (exec_bfd != NULL
1588 && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1589 disable_breakpoints_in_shlibs (1);
1590
1591 while (so_list_head)
1592 {
1593 struct so_list *so = so_list_head;
1594 so_list_head = so->next;
1595 free_so (so);
1596 }
1597
1598 debug_base = 0;
1599 }
1600
1601 static void
1602 do_clear_solib (dummy)
1603 PTR dummy;
1604 {
1605 solib_cleanup_queued = 0;
1606 clear_solib ();
1607 }
1608
1609 #ifdef SVR4_SHARED_LIBS
1610
1611 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1612 SVR4 run time loader. */
1613
1614 static CORE_ADDR interp_text_sect_low;
1615 static CORE_ADDR interp_text_sect_high;
1616 static CORE_ADDR interp_plt_sect_low;
1617 static CORE_ADDR interp_plt_sect_high;
1618
1619 int
1620 in_svr4_dynsym_resolve_code (pc)
1621 CORE_ADDR pc;
1622 {
1623 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1624 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1625 || in_plt_section (pc, NULL));
1626 }
1627 #endif
1628
1629 /*
1630
1631 LOCAL FUNCTION
1632
1633 disable_break -- remove the "mapping changed" breakpoint
1634
1635 SYNOPSIS
1636
1637 static int disable_break ()
1638
1639 DESCRIPTION
1640
1641 Removes the breakpoint that gets hit when the dynamic linker
1642 completes a mapping change.
1643
1644 */
1645
1646 #ifndef SVR4_SHARED_LIBS
1647
1648 static int
1649 disable_break ()
1650 {
1651 int status = 1;
1652
1653 #ifndef SVR4_SHARED_LIBS
1654
1655 int in_debugger = 0;
1656
1657 /* Read the debugger structure from the inferior to retrieve the
1658 address of the breakpoint and the original contents of the
1659 breakpoint address. Remove the breakpoint by writing the original
1660 contents back. */
1661
1662 read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1663
1664 /* Set `in_debugger' to zero now. */
1665
1666 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1667
1668 breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
1669 write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1670 sizeof (debug_copy.ldd_bp_inst));
1671
1672 #else /* SVR4_SHARED_LIBS */
1673
1674 /* Note that breakpoint address and original contents are in our address
1675 space, so we just need to write the original contents back. */
1676
1677 if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1678 {
1679 status = 0;
1680 }
1681
1682 #endif /* !SVR4_SHARED_LIBS */
1683
1684 /* For the SVR4 version, we always know the breakpoint address. For the
1685 SunOS version we don't know it until the above code is executed.
1686 Grumble if we are stopped anywhere besides the breakpoint address. */
1687
1688 if (stop_pc != breakpoint_addr)
1689 {
1690 warning ("stopped at unknown breakpoint while handling shared libraries");
1691 }
1692
1693 return (status);
1694 }
1695
1696 #endif /* #ifdef SVR4_SHARED_LIBS */
1697
1698 /*
1699
1700 LOCAL FUNCTION
1701
1702 enable_break -- arrange for dynamic linker to hit breakpoint
1703
1704 SYNOPSIS
1705
1706 int enable_break (void)
1707
1708 DESCRIPTION
1709
1710 Both the SunOS and the SVR4 dynamic linkers have, as part of their
1711 debugger interface, support for arranging for the inferior to hit
1712 a breakpoint after mapping in the shared libraries. This function
1713 enables that breakpoint.
1714
1715 For SunOS, there is a special flag location (in_debugger) which we
1716 set to 1. When the dynamic linker sees this flag set, it will set
1717 a breakpoint at a location known only to itself, after saving the
1718 original contents of that place and the breakpoint address itself,
1719 in it's own internal structures. When we resume the inferior, it
1720 will eventually take a SIGTRAP when it runs into the breakpoint.
1721 We handle this (in a different place) by restoring the contents of
1722 the breakpointed location (which is only known after it stops),
1723 chasing around to locate the shared libraries that have been
1724 loaded, then resuming.
1725
1726 For SVR4, the debugger interface structure contains a member (r_brk)
1727 which is statically initialized at the time the shared library is
1728 built, to the offset of a function (_r_debug_state) which is guaran-
1729 teed to be called once before mapping in a library, and again when
1730 the mapping is complete. At the time we are examining this member,
1731 it contains only the unrelocated offset of the function, so we have
1732 to do our own relocation. Later, when the dynamic linker actually
1733 runs, it relocates r_brk to be the actual address of _r_debug_state().
1734
1735 The debugger interface structure also contains an enumeration which
1736 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1737 depending upon whether or not the library is being mapped or unmapped,
1738 and then set to RT_CONSISTENT after the library is mapped/unmapped.
1739 */
1740
1741 static int
1742 enable_break ()
1743 {
1744 int success = 0;
1745
1746 #ifndef SVR4_SHARED_LIBS
1747
1748 int j;
1749 int in_debugger;
1750
1751 /* Get link_dynamic structure */
1752
1753 j = target_read_memory (debug_base, (char *) &dynamic_copy,
1754 sizeof (dynamic_copy));
1755 if (j)
1756 {
1757 /* unreadable */
1758 return (0);
1759 }
1760
1761 /* Calc address of debugger interface structure */
1762
1763 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
1764
1765 /* Calc address of `in_debugger' member of debugger interface structure */
1766
1767 flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1768 (char *) &debug_copy);
1769
1770 /* Write a value of 1 to this member. */
1771
1772 in_debugger = 1;
1773 write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1774 success = 1;
1775
1776 #else /* SVR4_SHARED_LIBS */
1777
1778 #ifdef BKPT_AT_SYMBOL
1779
1780 struct minimal_symbol *msymbol;
1781 char **bkpt_namep;
1782 asection *interp_sect;
1783
1784 /* First, remove all the solib event breakpoints. Their addresses
1785 may have changed since the last time we ran the program. */
1786 remove_solib_event_breakpoints ();
1787
1788 #ifdef SVR4_SHARED_LIBS
1789 interp_text_sect_low = interp_text_sect_high = 0;
1790 interp_plt_sect_low = interp_plt_sect_high = 0;
1791
1792 /* Find the .interp section; if not found, warn the user and drop
1793 into the old breakpoint at symbol code. */
1794 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1795 if (interp_sect)
1796 {
1797 unsigned int interp_sect_size;
1798 char *buf;
1799 CORE_ADDR load_addr;
1800 bfd *tmp_bfd;
1801 CORE_ADDR sym_addr = 0;
1802
1803 /* Read the contents of the .interp section into a local buffer;
1804 the contents specify the dynamic linker this program uses. */
1805 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1806 buf = alloca (interp_sect_size);
1807 bfd_get_section_contents (exec_bfd, interp_sect,
1808 buf, 0, interp_sect_size);
1809
1810 /* Now we need to figure out where the dynamic linker was
1811 loaded so that we can load its symbols and place a breakpoint
1812 in the dynamic linker itself.
1813
1814 This address is stored on the stack. However, I've been unable
1815 to find any magic formula to find it for Solaris (appears to
1816 be trivial on GNU/Linux). Therefore, we have to try an alternate
1817 mechanism to find the dynamic linker's base address. */
1818 tmp_bfd = bfd_openr (buf, gnutarget);
1819 if (tmp_bfd == NULL)
1820 goto bkpt_at_symbol;
1821
1822 /* Make sure the dynamic linker's really a useful object. */
1823 if (!bfd_check_format (tmp_bfd, bfd_object))
1824 {
1825 warning ("Unable to grok dynamic linker %s as an object file", buf);
1826 bfd_close (tmp_bfd);
1827 goto bkpt_at_symbol;
1828 }
1829
1830 /* We find the dynamic linker's base address by examining the
1831 current pc (which point at the entry point for the dynamic
1832 linker) and subtracting the offset of the entry point. */
1833 load_addr = read_pc () - tmp_bfd->start_address;
1834
1835 /* Record the relocated start and end address of the dynamic linker
1836 text and plt section for in_svr4_dynsym_resolve_code. */
1837 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1838 if (interp_sect)
1839 {
1840 interp_text_sect_low =
1841 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1842 interp_text_sect_high =
1843 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1844 }
1845 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1846 if (interp_sect)
1847 {
1848 interp_plt_sect_low =
1849 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1850 interp_plt_sect_high =
1851 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1852 }
1853
1854 /* Now try to set a breakpoint in the dynamic linker. */
1855 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1856 {
1857 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1858 if (sym_addr != 0)
1859 break;
1860 }
1861
1862 /* We're done with the temporary bfd. */
1863 bfd_close (tmp_bfd);
1864
1865 if (sym_addr != 0)
1866 {
1867 create_solib_event_breakpoint (load_addr + sym_addr);
1868 return 1;
1869 }
1870
1871 /* For whatever reason we couldn't set a breakpoint in the dynamic
1872 linker. Warn and drop into the old code. */
1873 bkpt_at_symbol:
1874 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1875 }
1876 #endif
1877
1878 /* Scan through the list of symbols, trying to look up the symbol and
1879 set a breakpoint there. Terminate loop when we/if we succeed. */
1880
1881 breakpoint_addr = 0;
1882 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1883 {
1884 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1885 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1886 {
1887 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1888 return 1;
1889 }
1890 }
1891
1892 /* Nothing good happened. */
1893 success = 0;
1894
1895 #endif /* BKPT_AT_SYMBOL */
1896
1897 #endif /* !SVR4_SHARED_LIBS */
1898
1899 return (success);
1900 }
1901
1902 /*
1903
1904 GLOBAL FUNCTION
1905
1906 solib_create_inferior_hook -- shared library startup support
1907
1908 SYNOPSIS
1909
1910 void solib_create_inferior_hook()
1911
1912 DESCRIPTION
1913
1914 When gdb starts up the inferior, it nurses it along (through the
1915 shell) until it is ready to execute it's first instruction. At this
1916 point, this function gets called via expansion of the macro
1917 SOLIB_CREATE_INFERIOR_HOOK.
1918
1919 For SunOS executables, this first instruction is typically the
1920 one at "_start", or a similar text label, regardless of whether
1921 the executable is statically or dynamically linked. The runtime
1922 startup code takes care of dynamically linking in any shared
1923 libraries, once gdb allows the inferior to continue.
1924
1925 For SVR4 executables, this first instruction is either the first
1926 instruction in the dynamic linker (for dynamically linked
1927 executables) or the instruction at "start" for statically linked
1928 executables. For dynamically linked executables, the system
1929 first exec's /lib/libc.so.N, which contains the dynamic linker,
1930 and starts it running. The dynamic linker maps in any needed
1931 shared libraries, maps in the actual user executable, and then
1932 jumps to "start" in the user executable.
1933
1934 For both SunOS shared libraries, and SVR4 shared libraries, we
1935 can arrange to cooperate with the dynamic linker to discover the
1936 names of shared libraries that are dynamically linked, and the
1937 base addresses to which they are linked.
1938
1939 This function is responsible for discovering those names and
1940 addresses, and saving sufficient information about them to allow
1941 their symbols to be read at a later time.
1942
1943 FIXME
1944
1945 Between enable_break() and disable_break(), this code does not
1946 properly handle hitting breakpoints which the user might have
1947 set in the startup code or in the dynamic linker itself. Proper
1948 handling will probably have to wait until the implementation is
1949 changed to use the "breakpoint handler function" method.
1950
1951 Also, what if child has exit()ed? Must exit loop somehow.
1952 */
1953
1954 void
1955 solib_create_inferior_hook ()
1956 {
1957 /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1958 yet. In fact, in the case of a SunOS4 executable being run on
1959 Solaris, we can't get it yet. current_sos will get it when it needs
1960 it. */
1961 #if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1962 if ((debug_base = locate_base ()) == 0)
1963 {
1964 /* Can't find the symbol or the executable is statically linked. */
1965 return;
1966 }
1967 #endif
1968
1969 if (!enable_break ())
1970 {
1971 warning ("shared library handler failed to enable breakpoint");
1972 return;
1973 }
1974
1975 #if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1976 /* SCO and SunOS need the loop below, other systems should be using the
1977 special shared library breakpoints and the shared library breakpoint
1978 service routine.
1979
1980 Now run the target. It will eventually hit the breakpoint, at
1981 which point all of the libraries will have been mapped in and we
1982 can go groveling around in the dynamic linker structures to find
1983 out what we need to know about them. */
1984
1985 clear_proceed_status ();
1986 stop_soon_quietly = 1;
1987 stop_signal = TARGET_SIGNAL_0;
1988 do
1989 {
1990 target_resume (-1, 0, stop_signal);
1991 wait_for_inferior ();
1992 }
1993 while (stop_signal != TARGET_SIGNAL_TRAP);
1994 stop_soon_quietly = 0;
1995
1996 #if !defined(_SCO_DS)
1997 /* We are now either at the "mapping complete" breakpoint (or somewhere
1998 else, a condition we aren't prepared to deal with anyway), so adjust
1999 the PC as necessary after a breakpoint, disable the breakpoint, and
2000 add any shared libraries that were mapped in. */
2001
2002 if (DECR_PC_AFTER_BREAK)
2003 {
2004 stop_pc -= DECR_PC_AFTER_BREAK;
2005 write_register (PC_REGNUM, stop_pc);
2006 }
2007
2008 if (!disable_break ())
2009 {
2010 warning ("shared library handler failed to disable breakpoint");
2011 }
2012
2013 if (auto_solib_add)
2014 solib_add ((char *) 0, 0, (struct target_ops *) 0);
2015 #endif /* ! _SCO_DS */
2016 #endif
2017 }
2018
2019 /*
2020
2021 LOCAL FUNCTION
2022
2023 special_symbol_handling -- additional shared library symbol handling
2024
2025 SYNOPSIS
2026
2027 void special_symbol_handling ()
2028
2029 DESCRIPTION
2030
2031 Once the symbols from a shared object have been loaded in the usual
2032 way, we are called to do any system specific symbol handling that
2033 is needed.
2034
2035 For SunOS4, this consists of grunging around in the dynamic
2036 linkers structures to find symbol definitions for "common" symbols
2037 and adding them to the minimal symbol table for the runtime common
2038 objfile.
2039
2040 */
2041
2042 static void
2043 special_symbol_handling ()
2044 {
2045 #ifndef SVR4_SHARED_LIBS
2046 int j;
2047
2048 if (debug_addr == 0)
2049 {
2050 /* Get link_dynamic structure */
2051
2052 j = target_read_memory (debug_base, (char *) &dynamic_copy,
2053 sizeof (dynamic_copy));
2054 if (j)
2055 {
2056 /* unreadable */
2057 return;
2058 }
2059
2060 /* Calc address of debugger interface structure */
2061 /* FIXME, this needs work for cross-debugging of core files
2062 (byteorder, size, alignment, etc). */
2063
2064 debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
2065 }
2066
2067 /* Read the debugger structure from the inferior, just to make sure
2068 we have a current copy. */
2069
2070 j = target_read_memory (debug_addr, (char *) &debug_copy,
2071 sizeof (debug_copy));
2072 if (j)
2073 return; /* unreadable */
2074
2075 /* Get common symbol definitions for the loaded object. */
2076
2077 if (debug_copy.ldd_cp)
2078 {
2079 solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
2080 }
2081
2082 #endif /* !SVR4_SHARED_LIBS */
2083 }
2084
2085
2086 /*
2087
2088 LOCAL FUNCTION
2089
2090 sharedlibrary_command -- handle command to explicitly add library
2091
2092 SYNOPSIS
2093
2094 static void sharedlibrary_command (char *args, int from_tty)
2095
2096 DESCRIPTION
2097
2098 */
2099
2100 static void
2101 sharedlibrary_command (args, from_tty)
2102 char *args;
2103 int from_tty;
2104 {
2105 dont_repeat ();
2106 solib_add (args, from_tty, (struct target_ops *) 0);
2107 }
2108
2109 #endif /* HAVE_LINK_H */
2110
2111 void
2112 _initialize_solib ()
2113 {
2114 #ifdef HAVE_LINK_H
2115
2116 add_com ("sharedlibrary", class_files, sharedlibrary_command,
2117 "Load shared object library symbols for files matching REGEXP.");
2118 add_info ("sharedlibrary", info_sharedlibrary_command,
2119 "Status of loaded shared object libraries.");
2120
2121 add_show_from_set
2122 (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
2123 (char *) &auto_solib_add,
2124 "Set autoloading of shared library symbols.\n\
2125 If nonzero, symbols from all shared object libraries will be loaded\n\
2126 automatically when the inferior begins execution or when the dynamic linker\n\
2127 informs gdb that a new library has been loaded. Otherwise, symbols\n\
2128 must be loaded manually, using `sharedlibrary'.",
2129 &setlist),
2130 &showlist);
2131
2132 add_show_from_set
2133 (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
2134 (char *) &solib_absolute_prefix,
2135 "Set prefix for loading absolute shared library symbol files.\n\
2136 For other (relative) files, you can add values using `set solib-search-path'.",
2137 &setlist),
2138 &showlist);
2139 add_show_from_set
2140 (add_set_cmd ("solib-search-path", class_support, var_string,
2141 (char *) &solib_search_path,
2142 "Set the search path for loading non-absolute shared library symbol files.\n\
2143 This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
2144 &setlist),
2145 &showlist);
2146
2147 #endif /* HAVE_LINK_H */
2148 }
This page took 0.074319 seconds and 4 git commands to generate.