Remove unused functions and declarations
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "sparc-tdep.h"
39 #include "sparc-ravenscar-thread.h"
40 #include <algorithm>
41
42 struct regset;
43
44 /* This file implements the SPARC 32-bit ABI as defined by the section
45 "Low-Level System Information" of the SPARC Compliance Definition
46 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
47 lists changes with respect to the original 32-bit psABI as defined
48 in the "System V ABI, SPARC Processor Supplement".
49
50 Note that if we talk about SunOS, we mean SunOS 4.x, which was
51 BSD-based, which is sometimes (retroactively?) referred to as
52 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
53 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
54 suffering from severe version number inflation). Solaris 2.x is
55 also known as SunOS 5.x, since that's what uname(1) says. Solaris
56 2.x is SVR4-based. */
57
58 /* Please use the sparc32_-prefix for 32-bit specific code, the
59 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
60 code that can handle both. The 64-bit specific code lives in
61 sparc64-tdep.c; don't add any here. */
62
63 /* The SPARC Floating-Point Quad-Precision format is similar to
64 big-endian IA-64 Quad-Precision format. */
65 #define floatformats_sparc_quad floatformats_ia64_quad
66
67 /* The stack pointer is offset from the stack frame by a BIAS of 2047
68 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
69 hosts, so undefine it first. */
70 #undef BIAS
71 #define BIAS 2047
72
73 /* Macros to extract fields from SPARC instructions. */
74 #define X_OP(i) (((i) >> 30) & 0x3)
75 #define X_RD(i) (((i) >> 25) & 0x1f)
76 #define X_A(i) (((i) >> 29) & 1)
77 #define X_COND(i) (((i) >> 25) & 0xf)
78 #define X_OP2(i) (((i) >> 22) & 0x7)
79 #define X_IMM22(i) ((i) & 0x3fffff)
80 #define X_OP3(i) (((i) >> 19) & 0x3f)
81 #define X_RS1(i) (((i) >> 14) & 0x1f)
82 #define X_RS2(i) ((i) & 0x1f)
83 #define X_I(i) (((i) >> 13) & 1)
84 /* Sign extension macros. */
85 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
86 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
87 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
88 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
89 /* Macros to identify some instructions. */
90 /* RETURN (RETT in V8) */
91 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
92
93 /* Fetch the instruction at PC. Instructions are always big-endian
94 even if the processor operates in little-endian mode. */
95
96 unsigned long
97 sparc_fetch_instruction (CORE_ADDR pc)
98 {
99 gdb_byte buf[4];
100 unsigned long insn;
101 int i;
102
103 /* If we can't read the instruction at PC, return zero. */
104 if (target_read_memory (pc, buf, sizeof (buf)))
105 return 0;
106
107 insn = 0;
108 for (i = 0; i < sizeof (buf); i++)
109 insn = (insn << 8) | buf[i];
110 return insn;
111 }
112 \f
113
114 /* Return non-zero if the instruction corresponding to PC is an "unimp"
115 instruction. */
116
117 static int
118 sparc_is_unimp_insn (CORE_ADDR pc)
119 {
120 const unsigned long insn = sparc_fetch_instruction (pc);
121
122 return ((insn & 0xc1c00000) == 0);
123 }
124
125 /* Return non-zero if the instruction corresponding to PC is an
126 "annulled" branch, i.e. the annul bit is set. */
127
128 int
129 sparc_is_annulled_branch_insn (CORE_ADDR pc)
130 {
131 /* The branch instructions featuring an annul bit can be identified
132 by the following bit patterns:
133
134 OP=0
135 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
136 OP2=2: Branch on Integer Condition Codes (Bcc).
137 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
138 OP2=6: Branch on FP Condition Codes (FBcc).
139 OP2=3 && Bit28=0:
140 Branch on Integer Register with Prediction (BPr).
141
142 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
143 coprocessor branch instructions (Op2=7). */
144
145 const unsigned long insn = sparc_fetch_instruction (pc);
146 const unsigned op2 = X_OP2 (insn);
147
148 if ((X_OP (insn) == 0)
149 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
150 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
151 return X_A (insn);
152 else
153 return 0;
154 }
155
156 /* OpenBSD/sparc includes StackGhost, which according to the author's
157 website http://stackghost.cerias.purdue.edu "... transparently and
158 automatically protects applications' stack frames; more
159 specifically, it guards the return pointers. The protection
160 mechanisms require no application source or binary modification and
161 imposes only a negligible performance penalty."
162
163 The same website provides the following description of how
164 StackGhost works:
165
166 "StackGhost interfaces with the kernel trap handler that would
167 normally write out registers to the stack and the handler that
168 would read them back in. By XORing a cookie into the
169 return-address saved in the user stack when it is actually written
170 to the stack, and then XOR it out when the return-address is pulled
171 from the stack, StackGhost can cause attacker corrupted return
172 pointers to behave in a manner the attacker cannot predict.
173 StackGhost can also use several unused bits in the return pointer
174 to detect a smashed return pointer and abort the process."
175
176 For GDB this means that whenever we're reading %i7 from a stack
177 frame's window save area, we'll have to XOR the cookie.
178
179 More information on StackGuard can be found on in:
180
181 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
182 Stack Protection." 2001. Published in USENIX Security Symposium
183 '01. */
184
185 /* Fetch StackGhost Per-Process XOR cookie. */
186
187 ULONGEST
188 sparc_fetch_wcookie (struct gdbarch *gdbarch)
189 {
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 struct target_ops *ops = &current_target;
192 gdb_byte buf[8];
193 int len;
194
195 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
196 if (len == -1)
197 return 0;
198
199 /* We should have either an 32-bit or an 64-bit cookie. */
200 gdb_assert (len == 4 || len == 8);
201
202 return extract_unsigned_integer (buf, len, byte_order);
203 }
204 \f
205
206 /* The functions on this page are intended to be used to classify
207 function arguments. */
208
209 /* Check whether TYPE is "Integral or Pointer". */
210
211 static int
212 sparc_integral_or_pointer_p (const struct type *type)
213 {
214 int len = TYPE_LENGTH (type);
215
216 switch (TYPE_CODE (type))
217 {
218 case TYPE_CODE_INT:
219 case TYPE_CODE_BOOL:
220 case TYPE_CODE_CHAR:
221 case TYPE_CODE_ENUM:
222 case TYPE_CODE_RANGE:
223 /* We have byte, half-word, word and extended-word/doubleword
224 integral types. The doubleword is an extension to the
225 original 32-bit ABI by the SCD 2.4.x. */
226 return (len == 1 || len == 2 || len == 4 || len == 8);
227 case TYPE_CODE_PTR:
228 case TYPE_CODE_REF:
229 /* Allow either 32-bit or 64-bit pointers. */
230 return (len == 4 || len == 8);
231 default:
232 break;
233 }
234
235 return 0;
236 }
237
238 /* Check whether TYPE is "Floating". */
239
240 static int
241 sparc_floating_p (const struct type *type)
242 {
243 switch (TYPE_CODE (type))
244 {
245 case TYPE_CODE_FLT:
246 {
247 int len = TYPE_LENGTH (type);
248 return (len == 4 || len == 8 || len == 16);
249 }
250 default:
251 break;
252 }
253
254 return 0;
255 }
256
257 /* Check whether TYPE is "Complex Floating". */
258
259 static int
260 sparc_complex_floating_p (const struct type *type)
261 {
262 switch (TYPE_CODE (type))
263 {
264 case TYPE_CODE_COMPLEX:
265 {
266 int len = TYPE_LENGTH (type);
267 return (len == 8 || len == 16 || len == 32);
268 }
269 default:
270 break;
271 }
272
273 return 0;
274 }
275
276 /* Check whether TYPE is "Structure or Union".
277
278 In terms of Ada subprogram calls, arrays are treated the same as
279 struct and union types. So this function also returns non-zero
280 for array types. */
281
282 static int
283 sparc_structure_or_union_p (const struct type *type)
284 {
285 switch (TYPE_CODE (type))
286 {
287 case TYPE_CODE_STRUCT:
288 case TYPE_CODE_UNION:
289 case TYPE_CODE_ARRAY:
290 return 1;
291 default:
292 break;
293 }
294
295 return 0;
296 }
297
298 /* Register information. */
299
300 static const char *sparc32_register_names[] =
301 {
302 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
303 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
304 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
305 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
306
307 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
308 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
309 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
310 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
311
312 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
313 };
314
315 /* Total number of registers. */
316 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
317
318 /* We provide the aliases %d0..%d30 for the floating registers as
319 "psuedo" registers. */
320
321 static const char *sparc32_pseudo_register_names[] =
322 {
323 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
324 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
325 };
326
327 /* Total number of pseudo registers. */
328 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
329
330 /* Return the name of register REGNUM. */
331
332 static const char *
333 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
334 {
335 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
336 return sparc32_register_names[regnum];
337
338 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
339 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
340
341 return NULL;
342 }
343 \f
344 /* Construct types for ISA-specific registers. */
345
346 static struct type *
347 sparc_psr_type (struct gdbarch *gdbarch)
348 {
349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
350
351 if (!tdep->sparc_psr_type)
352 {
353 struct type *type;
354
355 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
356 append_flags_type_flag (type, 5, "ET");
357 append_flags_type_flag (type, 6, "PS");
358 append_flags_type_flag (type, 7, "S");
359 append_flags_type_flag (type, 12, "EF");
360 append_flags_type_flag (type, 13, "EC");
361
362 tdep->sparc_psr_type = type;
363 }
364
365 return tdep->sparc_psr_type;
366 }
367
368 static struct type *
369 sparc_fsr_type (struct gdbarch *gdbarch)
370 {
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (!tdep->sparc_fsr_type)
374 {
375 struct type *type;
376
377 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
378 append_flags_type_flag (type, 0, "NXA");
379 append_flags_type_flag (type, 1, "DZA");
380 append_flags_type_flag (type, 2, "UFA");
381 append_flags_type_flag (type, 3, "OFA");
382 append_flags_type_flag (type, 4, "NVA");
383 append_flags_type_flag (type, 5, "NXC");
384 append_flags_type_flag (type, 6, "DZC");
385 append_flags_type_flag (type, 7, "UFC");
386 append_flags_type_flag (type, 8, "OFC");
387 append_flags_type_flag (type, 9, "NVC");
388 append_flags_type_flag (type, 22, "NS");
389 append_flags_type_flag (type, 23, "NXM");
390 append_flags_type_flag (type, 24, "DZM");
391 append_flags_type_flag (type, 25, "UFM");
392 append_flags_type_flag (type, 26, "OFM");
393 append_flags_type_flag (type, 27, "NVM");
394
395 tdep->sparc_fsr_type = type;
396 }
397
398 return tdep->sparc_fsr_type;
399 }
400
401 /* Return the GDB type object for the "standard" data type of data in
402 register REGNUM. */
403
404 static struct type *
405 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
406 {
407 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
408 return builtin_type (gdbarch)->builtin_float;
409
410 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
411 return builtin_type (gdbarch)->builtin_double;
412
413 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
414 return builtin_type (gdbarch)->builtin_data_ptr;
415
416 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
417 return builtin_type (gdbarch)->builtin_func_ptr;
418
419 if (regnum == SPARC32_PSR_REGNUM)
420 return sparc_psr_type (gdbarch);
421
422 if (regnum == SPARC32_FSR_REGNUM)
423 return sparc_fsr_type (gdbarch);
424
425 return builtin_type (gdbarch)->builtin_int32;
426 }
427
428 static enum register_status
429 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
430 struct regcache *regcache,
431 int regnum, gdb_byte *buf)
432 {
433 enum register_status status;
434
435 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
436
437 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
438 status = regcache_raw_read (regcache, regnum, buf);
439 if (status == REG_VALID)
440 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
441 return status;
442 }
443
444 static void
445 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
446 struct regcache *regcache,
447 int regnum, const gdb_byte *buf)
448 {
449 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
450
451 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
452 regcache_raw_write (regcache, regnum, buf);
453 regcache_raw_write (regcache, regnum + 1, buf + 4);
454 }
455 \f
456 /* Implement the stack_frame_destroyed_p gdbarch method. */
457
458 int
459 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
460 {
461 /* This function must return true if we are one instruction after an
462 instruction that destroyed the stack frame of the current
463 function. The SPARC instructions used to restore the callers
464 stack frame are RESTORE and RETURN/RETT.
465
466 Of these RETURN/RETT is a branch instruction and thus we return
467 true if we are in its delay slot.
468
469 RESTORE is almost always found in the delay slot of a branch
470 instruction that transfers control to the caller, such as JMPL.
471 Thus the next instruction is in the caller frame and we don't
472 need to do anything about it. */
473
474 unsigned int insn = sparc_fetch_instruction (pc - 4);
475
476 return X_RETTURN (insn);
477 }
478 \f
479
480 static CORE_ADDR
481 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
482 {
483 /* The ABI requires double-word alignment. */
484 return address & ~0x7;
485 }
486
487 static CORE_ADDR
488 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
489 CORE_ADDR funcaddr,
490 struct value **args, int nargs,
491 struct type *value_type,
492 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
493 struct regcache *regcache)
494 {
495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
496
497 *bp_addr = sp - 4;
498 *real_pc = funcaddr;
499
500 if (using_struct_return (gdbarch, NULL, value_type))
501 {
502 gdb_byte buf[4];
503
504 /* This is an UNIMP instruction. */
505 store_unsigned_integer (buf, 4, byte_order,
506 TYPE_LENGTH (value_type) & 0x1fff);
507 write_memory (sp - 8, buf, 4);
508 return sp - 8;
509 }
510
511 return sp - 4;
512 }
513
514 static CORE_ADDR
515 sparc32_store_arguments (struct regcache *regcache, int nargs,
516 struct value **args, CORE_ADDR sp,
517 int struct_return, CORE_ADDR struct_addr)
518 {
519 struct gdbarch *gdbarch = get_regcache_arch (regcache);
520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
521 /* Number of words in the "parameter array". */
522 int num_elements = 0;
523 int element = 0;
524 int i;
525
526 for (i = 0; i < nargs; i++)
527 {
528 struct type *type = value_type (args[i]);
529 int len = TYPE_LENGTH (type);
530
531 if (sparc_structure_or_union_p (type)
532 || (sparc_floating_p (type) && len == 16)
533 || sparc_complex_floating_p (type))
534 {
535 /* Structure, Union and Quad-Precision Arguments. */
536 sp -= len;
537
538 /* Use doubleword alignment for these values. That's always
539 correct, and wasting a few bytes shouldn't be a problem. */
540 sp &= ~0x7;
541
542 write_memory (sp, value_contents (args[i]), len);
543 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
544 num_elements++;
545 }
546 else if (sparc_floating_p (type))
547 {
548 /* Floating arguments. */
549 gdb_assert (len == 4 || len == 8);
550 num_elements += (len / 4);
551 }
552 else
553 {
554 /* Integral and pointer arguments. */
555 gdb_assert (sparc_integral_or_pointer_p (type));
556
557 if (len < 4)
558 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
559 args[i]);
560 num_elements += ((len + 3) / 4);
561 }
562 }
563
564 /* Always allocate at least six words. */
565 sp -= std::max (6, num_elements) * 4;
566
567 /* The psABI says that "Software convention requires space for the
568 struct/union return value pointer, even if the word is unused." */
569 sp -= 4;
570
571 /* The psABI says that "Although software convention and the
572 operating system require every stack frame to be doubleword
573 aligned." */
574 sp &= ~0x7;
575
576 for (i = 0; i < nargs; i++)
577 {
578 const bfd_byte *valbuf = value_contents (args[i]);
579 struct type *type = value_type (args[i]);
580 int len = TYPE_LENGTH (type);
581
582 gdb_assert (len == 4 || len == 8);
583
584 if (element < 6)
585 {
586 int regnum = SPARC_O0_REGNUM + element;
587
588 regcache_cooked_write (regcache, regnum, valbuf);
589 if (len > 4 && element < 5)
590 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
591 }
592
593 /* Always store the argument in memory. */
594 write_memory (sp + 4 + element * 4, valbuf, len);
595 element += len / 4;
596 }
597
598 gdb_assert (element == num_elements);
599
600 if (struct_return)
601 {
602 gdb_byte buf[4];
603
604 store_unsigned_integer (buf, 4, byte_order, struct_addr);
605 write_memory (sp, buf, 4);
606 }
607
608 return sp;
609 }
610
611 static CORE_ADDR
612 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
613 struct regcache *regcache, CORE_ADDR bp_addr,
614 int nargs, struct value **args, CORE_ADDR sp,
615 int struct_return, CORE_ADDR struct_addr)
616 {
617 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
618
619 /* Set return address. */
620 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
621
622 /* Set up function arguments. */
623 sp = sparc32_store_arguments (regcache, nargs, args, sp,
624 struct_return, struct_addr);
625
626 /* Allocate the 16-word window save area. */
627 sp -= 16 * 4;
628
629 /* Stack should be doubleword aligned at this point. */
630 gdb_assert (sp % 8 == 0);
631
632 /* Finally, update the stack pointer. */
633 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
634
635 return sp;
636 }
637 \f
638
639 /* Use the program counter to determine the contents and size of a
640 breakpoint instruction. Return a pointer to a string of bytes that
641 encode a breakpoint instruction, store the length of the string in
642 *LEN and optionally adjust *PC to point to the correct memory
643 location for inserting the breakpoint. */
644 constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
645
646 typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
647 \f
648
649 /* Allocate and initialize a frame cache. */
650
651 static struct sparc_frame_cache *
652 sparc_alloc_frame_cache (void)
653 {
654 struct sparc_frame_cache *cache;
655
656 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
657
658 /* Base address. */
659 cache->base = 0;
660 cache->pc = 0;
661
662 /* Frameless until proven otherwise. */
663 cache->frameless_p = 1;
664 cache->frame_offset = 0;
665 cache->saved_regs_mask = 0;
666 cache->copied_regs_mask = 0;
667 cache->struct_return_p = 0;
668
669 return cache;
670 }
671
672 /* GCC generates several well-known sequences of instructions at the begining
673 of each function prologue when compiling with -fstack-check. If one of
674 such sequences starts at START_PC, then return the address of the
675 instruction immediately past this sequence. Otherwise, return START_PC. */
676
677 static CORE_ADDR
678 sparc_skip_stack_check (const CORE_ADDR start_pc)
679 {
680 CORE_ADDR pc = start_pc;
681 unsigned long insn;
682 int probing_loop = 0;
683
684 /* With GCC, all stack checking sequences begin with the same two
685 instructions, plus an optional one in the case of a probing loop:
686
687 sethi <some immediate>, %g1
688 sub %sp, %g1, %g1
689
690 or:
691
692 sethi <some immediate>, %g1
693 sethi <some immediate>, %g4
694 sub %sp, %g1, %g1
695
696 or:
697
698 sethi <some immediate>, %g1
699 sub %sp, %g1, %g1
700 sethi <some immediate>, %g4
701
702 If the optional instruction is found (setting g4), assume that a
703 probing loop will follow. */
704
705 /* sethi <some immediate>, %g1 */
706 insn = sparc_fetch_instruction (pc);
707 pc = pc + 4;
708 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
709 return start_pc;
710
711 /* optional: sethi <some immediate>, %g4 */
712 insn = sparc_fetch_instruction (pc);
713 pc = pc + 4;
714 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
715 {
716 probing_loop = 1;
717 insn = sparc_fetch_instruction (pc);
718 pc = pc + 4;
719 }
720
721 /* sub %sp, %g1, %g1 */
722 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
723 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
724 return start_pc;
725
726 insn = sparc_fetch_instruction (pc);
727 pc = pc + 4;
728
729 /* optional: sethi <some immediate>, %g4 */
730 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
731 {
732 probing_loop = 1;
733 insn = sparc_fetch_instruction (pc);
734 pc = pc + 4;
735 }
736
737 /* First possible sequence:
738 [first two instructions above]
739 clr [%g1 - some immediate] */
740
741 /* clr [%g1 - some immediate] */
742 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
743 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
744 {
745 /* Valid stack-check sequence, return the new PC. */
746 return pc;
747 }
748
749 /* Second possible sequence: A small number of probes.
750 [first two instructions above]
751 clr [%g1]
752 add %g1, -<some immediate>, %g1
753 clr [%g1]
754 [repeat the two instructions above any (small) number of times]
755 clr [%g1 - some immediate] */
756
757 /* clr [%g1] */
758 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
759 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
760 {
761 while (1)
762 {
763 /* add %g1, -<some immediate>, %g1 */
764 insn = sparc_fetch_instruction (pc);
765 pc = pc + 4;
766 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
767 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
768 break;
769
770 /* clr [%g1] */
771 insn = sparc_fetch_instruction (pc);
772 pc = pc + 4;
773 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
774 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
775 return start_pc;
776 }
777
778 /* clr [%g1 - some immediate] */
779 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
780 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
781 return start_pc;
782
783 /* We found a valid stack-check sequence, return the new PC. */
784 return pc;
785 }
786
787 /* Third sequence: A probing loop.
788 [first three instructions above]
789 sub %g1, %g4, %g4
790 cmp %g1, %g4
791 be <disp>
792 add %g1, -<some immediate>, %g1
793 ba <disp>
794 clr [%g1]
795
796 And an optional last probe for the remainder:
797
798 clr [%g4 - some immediate] */
799
800 if (probing_loop)
801 {
802 /* sub %g1, %g4, %g4 */
803 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
804 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
805 return start_pc;
806
807 /* cmp %g1, %g4 */
808 insn = sparc_fetch_instruction (pc);
809 pc = pc + 4;
810 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
811 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
812 return start_pc;
813
814 /* be <disp> */
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
817 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
818 return start_pc;
819
820 /* add %g1, -<some immediate>, %g1 */
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
823 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
824 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
825 return start_pc;
826
827 /* ba <disp> */
828 insn = sparc_fetch_instruction (pc);
829 pc = pc + 4;
830 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
831 return start_pc;
832
833 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
834 insn = sparc_fetch_instruction (pc);
835 pc = pc + 4;
836 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
837 && X_RD (insn) == 0 && X_RS1 (insn) == 1
838 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
839 return start_pc;
840
841 /* We found a valid stack-check sequence, return the new PC. */
842
843 /* optional: clr [%g4 - some immediate] */
844 insn = sparc_fetch_instruction (pc);
845 pc = pc + 4;
846 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
847 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
848 return pc - 4;
849 else
850 return pc;
851 }
852
853 /* No stack check code in our prologue, return the start_pc. */
854 return start_pc;
855 }
856
857 /* Record the effect of a SAVE instruction on CACHE. */
858
859 void
860 sparc_record_save_insn (struct sparc_frame_cache *cache)
861 {
862 /* The frame is set up. */
863 cache->frameless_p = 0;
864
865 /* The frame pointer contains the CFA. */
866 cache->frame_offset = 0;
867
868 /* The `local' and `in' registers are all saved. */
869 cache->saved_regs_mask = 0xffff;
870
871 /* The `out' registers are all renamed. */
872 cache->copied_regs_mask = 0xff;
873 }
874
875 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
876 Bail out early if CURRENT_PC is reached. Return the address where
877 the analysis stopped.
878
879 We handle both the traditional register window model and the single
880 register window (aka flat) model. */
881
882 CORE_ADDR
883 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
884 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
885 {
886 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
887 unsigned long insn;
888 int offset = 0;
889 int dest = -1;
890
891 pc = sparc_skip_stack_check (pc);
892
893 if (current_pc <= pc)
894 return current_pc;
895
896 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
897 SPARC the linker usually defines a symbol (typically
898 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
899 This symbol makes us end up here with PC pointing at the start of
900 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
901 would do our normal prologue analysis, we would probably conclude
902 that we've got a frame when in reality we don't, since the
903 dynamic linker patches up the first PLT with some code that
904 starts with a SAVE instruction. Patch up PC such that it points
905 at the start of our PLT entry. */
906 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
907 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
908
909 insn = sparc_fetch_instruction (pc);
910
911 /* Recognize store insns and record their sources. */
912 while (X_OP (insn) == 3
913 && (X_OP3 (insn) == 0x4 /* stw */
914 || X_OP3 (insn) == 0x7 /* std */
915 || X_OP3 (insn) == 0xe) /* stx */
916 && X_RS1 (insn) == SPARC_SP_REGNUM)
917 {
918 int regnum = X_RD (insn);
919
920 /* Recognize stores into the corresponding stack slots. */
921 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
922 && ((X_I (insn)
923 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
924 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
925 : (regnum - SPARC_L0_REGNUM) * 4))
926 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
927 {
928 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
929 if (X_OP3 (insn) == 0x7)
930 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
931 }
932
933 offset += 4;
934
935 insn = sparc_fetch_instruction (pc + offset);
936 }
937
938 /* Recognize a SETHI insn and record its destination. */
939 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
940 {
941 dest = X_RD (insn);
942 offset += 4;
943
944 insn = sparc_fetch_instruction (pc + offset);
945 }
946
947 /* Allow for an arithmetic operation on DEST or %g1. */
948 if (X_OP (insn) == 2 && X_I (insn)
949 && (X_RD (insn) == 1 || X_RD (insn) == dest))
950 {
951 offset += 4;
952
953 insn = sparc_fetch_instruction (pc + offset);
954 }
955
956 /* Check for the SAVE instruction that sets up the frame. */
957 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
958 {
959 sparc_record_save_insn (cache);
960 offset += 4;
961 return pc + offset;
962 }
963
964 /* Check for an arithmetic operation on %sp. */
965 if (X_OP (insn) == 2
966 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
967 && X_RS1 (insn) == SPARC_SP_REGNUM
968 && X_RD (insn) == SPARC_SP_REGNUM)
969 {
970 if (X_I (insn))
971 {
972 cache->frame_offset = X_SIMM13 (insn);
973 if (X_OP3 (insn) == 0)
974 cache->frame_offset = -cache->frame_offset;
975 }
976 offset += 4;
977
978 insn = sparc_fetch_instruction (pc + offset);
979
980 /* Check for an arithmetic operation that sets up the frame. */
981 if (X_OP (insn) == 2
982 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
983 && X_RS1 (insn) == SPARC_SP_REGNUM
984 && X_RD (insn) == SPARC_FP_REGNUM)
985 {
986 cache->frameless_p = 0;
987 cache->frame_offset = 0;
988 /* We could check that the amount subtracted to %sp above is the
989 same as the one added here, but this seems superfluous. */
990 cache->copied_regs_mask |= 0x40;
991 offset += 4;
992
993 insn = sparc_fetch_instruction (pc + offset);
994 }
995
996 /* Check for a move (or) operation that copies the return register. */
997 if (X_OP (insn) == 2
998 && X_OP3 (insn) == 0x2
999 && !X_I (insn)
1000 && X_RS1 (insn) == SPARC_G0_REGNUM
1001 && X_RS2 (insn) == SPARC_O7_REGNUM
1002 && X_RD (insn) == SPARC_I7_REGNUM)
1003 {
1004 cache->copied_regs_mask |= 0x80;
1005 offset += 4;
1006 }
1007
1008 return pc + offset;
1009 }
1010
1011 return pc;
1012 }
1013
1014 static CORE_ADDR
1015 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1016 {
1017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1018 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
1019 }
1020
1021 /* Return PC of first real instruction of the function starting at
1022 START_PC. */
1023
1024 static CORE_ADDR
1025 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1026 {
1027 struct symtab_and_line sal;
1028 CORE_ADDR func_start, func_end;
1029 struct sparc_frame_cache cache;
1030
1031 /* This is the preferred method, find the end of the prologue by
1032 using the debugging information. */
1033 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1034 {
1035 sal = find_pc_line (func_start, 0);
1036
1037 if (sal.end < func_end
1038 && start_pc <= sal.end)
1039 return sal.end;
1040 }
1041
1042 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1043
1044 /* The psABI says that "Although the first 6 words of arguments
1045 reside in registers, the standard stack frame reserves space for
1046 them.". It also suggests that a function may use that space to
1047 "write incoming arguments 0 to 5" into that space, and that's
1048 indeed what GCC seems to be doing. In that case GCC will
1049 generate debug information that points to the stack slots instead
1050 of the registers, so we should consider the instructions that
1051 write out these incoming arguments onto the stack. */
1052
1053 while (1)
1054 {
1055 unsigned long insn = sparc_fetch_instruction (start_pc);
1056
1057 /* Recognize instructions that store incoming arguments into the
1058 corresponding stack slots. */
1059 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1060 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1061 {
1062 int regnum = X_RD (insn);
1063
1064 /* Case of arguments still in %o[0..5]. */
1065 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1066 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1067 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1068 {
1069 start_pc += 4;
1070 continue;
1071 }
1072
1073 /* Case of arguments copied into %i[0..5]. */
1074 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1075 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1076 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1077 {
1078 start_pc += 4;
1079 continue;
1080 }
1081 }
1082
1083 break;
1084 }
1085
1086 return start_pc;
1087 }
1088
1089 /* Normal frames. */
1090
1091 struct sparc_frame_cache *
1092 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1093 {
1094 struct sparc_frame_cache *cache;
1095
1096 if (*this_cache)
1097 return (struct sparc_frame_cache *) *this_cache;
1098
1099 cache = sparc_alloc_frame_cache ();
1100 *this_cache = cache;
1101
1102 cache->pc = get_frame_func (this_frame);
1103 if (cache->pc != 0)
1104 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1105 get_frame_pc (this_frame), cache);
1106
1107 if (cache->frameless_p)
1108 {
1109 /* This function is frameless, so %fp (%i6) holds the frame
1110 pointer for our calling frame. Use %sp (%o6) as this frame's
1111 base address. */
1112 cache->base =
1113 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1114 }
1115 else
1116 {
1117 /* For normal frames, %fp (%i6) holds the frame pointer, the
1118 base address for the current stack frame. */
1119 cache->base =
1120 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1121 }
1122
1123 cache->base += cache->frame_offset;
1124
1125 if (cache->base & 1)
1126 cache->base += BIAS;
1127
1128 return cache;
1129 }
1130
1131 static int
1132 sparc32_struct_return_from_sym (struct symbol *sym)
1133 {
1134 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1135 enum type_code code = TYPE_CODE (type);
1136
1137 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1138 {
1139 type = check_typedef (TYPE_TARGET_TYPE (type));
1140 if (sparc_structure_or_union_p (type)
1141 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1142 return 1;
1143 }
1144
1145 return 0;
1146 }
1147
1148 struct sparc_frame_cache *
1149 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1150 {
1151 struct sparc_frame_cache *cache;
1152 struct symbol *sym;
1153
1154 if (*this_cache)
1155 return (struct sparc_frame_cache *) *this_cache;
1156
1157 cache = sparc_frame_cache (this_frame, this_cache);
1158
1159 sym = find_pc_function (cache->pc);
1160 if (sym)
1161 {
1162 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1163 }
1164 else
1165 {
1166 /* There is no debugging information for this function to
1167 help us determine whether this function returns a struct
1168 or not. So we rely on another heuristic which is to check
1169 the instruction at the return address and see if this is
1170 an "unimp" instruction. If it is, then it is a struct-return
1171 function. */
1172 CORE_ADDR pc;
1173 int regnum =
1174 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1175
1176 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1177 if (sparc_is_unimp_insn (pc))
1178 cache->struct_return_p = 1;
1179 }
1180
1181 return cache;
1182 }
1183
1184 static void
1185 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1186 struct frame_id *this_id)
1187 {
1188 struct sparc_frame_cache *cache =
1189 sparc32_frame_cache (this_frame, this_cache);
1190
1191 /* This marks the outermost frame. */
1192 if (cache->base == 0)
1193 return;
1194
1195 (*this_id) = frame_id_build (cache->base, cache->pc);
1196 }
1197
1198 static struct value *
1199 sparc32_frame_prev_register (struct frame_info *this_frame,
1200 void **this_cache, int regnum)
1201 {
1202 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1203 struct sparc_frame_cache *cache =
1204 sparc32_frame_cache (this_frame, this_cache);
1205
1206 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1207 {
1208 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1209
1210 /* If this functions has a Structure, Union or Quad-Precision
1211 return value, we have to skip the UNIMP instruction that encodes
1212 the size of the structure. */
1213 if (cache->struct_return_p)
1214 pc += 4;
1215
1216 regnum =
1217 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1218 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1219 return frame_unwind_got_constant (this_frame, regnum, pc);
1220 }
1221
1222 /* Handle StackGhost. */
1223 {
1224 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1225
1226 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1227 {
1228 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1229 ULONGEST i7;
1230
1231 /* Read the value in from memory. */
1232 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1233 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1234 }
1235 }
1236
1237 /* The previous frame's `local' and `in' registers may have been saved
1238 in the register save area. */
1239 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1240 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1241 {
1242 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1243
1244 return frame_unwind_got_memory (this_frame, regnum, addr);
1245 }
1246
1247 /* The previous frame's `out' registers may be accessible as the current
1248 frame's `in' registers. */
1249 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1250 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1251 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1252
1253 return frame_unwind_got_register (this_frame, regnum, regnum);
1254 }
1255
1256 static const struct frame_unwind sparc32_frame_unwind =
1257 {
1258 NORMAL_FRAME,
1259 default_frame_unwind_stop_reason,
1260 sparc32_frame_this_id,
1261 sparc32_frame_prev_register,
1262 NULL,
1263 default_frame_sniffer
1264 };
1265 \f
1266
1267 static CORE_ADDR
1268 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1269 {
1270 struct sparc_frame_cache *cache =
1271 sparc32_frame_cache (this_frame, this_cache);
1272
1273 return cache->base;
1274 }
1275
1276 static const struct frame_base sparc32_frame_base =
1277 {
1278 &sparc32_frame_unwind,
1279 sparc32_frame_base_address,
1280 sparc32_frame_base_address,
1281 sparc32_frame_base_address
1282 };
1283
1284 static struct frame_id
1285 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1286 {
1287 CORE_ADDR sp;
1288
1289 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1290 if (sp & 1)
1291 sp += BIAS;
1292 return frame_id_build (sp, get_frame_pc (this_frame));
1293 }
1294 \f
1295
1296 /* Extract a function return value of TYPE from REGCACHE, and copy
1297 that into VALBUF. */
1298
1299 static void
1300 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1301 gdb_byte *valbuf)
1302 {
1303 int len = TYPE_LENGTH (type);
1304 gdb_byte buf[32];
1305
1306 gdb_assert (!sparc_structure_or_union_p (type));
1307 gdb_assert (!(sparc_floating_p (type) && len == 16));
1308
1309 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1310 {
1311 /* Floating return values. */
1312 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1313 if (len > 4)
1314 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1315 if (len > 8)
1316 {
1317 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1318 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1319 }
1320 if (len > 16)
1321 {
1322 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1323 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1324 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1325 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1326 }
1327 memcpy (valbuf, buf, len);
1328 }
1329 else
1330 {
1331 /* Integral and pointer return values. */
1332 gdb_assert (sparc_integral_or_pointer_p (type));
1333
1334 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1335 if (len > 4)
1336 {
1337 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1338 gdb_assert (len == 8);
1339 memcpy (valbuf, buf, 8);
1340 }
1341 else
1342 {
1343 /* Just stripping off any unused bytes should preserve the
1344 signed-ness just fine. */
1345 memcpy (valbuf, buf + 4 - len, len);
1346 }
1347 }
1348 }
1349
1350 /* Store the function return value of type TYPE from VALBUF into
1351 REGCACHE. */
1352
1353 static void
1354 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1355 const gdb_byte *valbuf)
1356 {
1357 int len = TYPE_LENGTH (type);
1358 gdb_byte buf[8];
1359
1360 gdb_assert (!sparc_structure_or_union_p (type));
1361 gdb_assert (!(sparc_floating_p (type) && len == 16));
1362 gdb_assert (len <= 8);
1363
1364 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1365 {
1366 /* Floating return values. */
1367 memcpy (buf, valbuf, len);
1368 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1369 if (len > 4)
1370 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1371 if (len > 8)
1372 {
1373 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1374 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1375 }
1376 if (len > 16)
1377 {
1378 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1379 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1380 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1381 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1382 }
1383 }
1384 else
1385 {
1386 /* Integral and pointer return values. */
1387 gdb_assert (sparc_integral_or_pointer_p (type));
1388
1389 if (len > 4)
1390 {
1391 gdb_assert (len == 8);
1392 memcpy (buf, valbuf, 8);
1393 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1394 }
1395 else
1396 {
1397 /* ??? Do we need to do any sign-extension here? */
1398 memcpy (buf + 4 - len, valbuf, len);
1399 }
1400 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1401 }
1402 }
1403
1404 static enum return_value_convention
1405 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1406 struct type *type, struct regcache *regcache,
1407 gdb_byte *readbuf, const gdb_byte *writebuf)
1408 {
1409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1410
1411 /* The psABI says that "...every stack frame reserves the word at
1412 %fp+64. If a function returns a structure, union, or
1413 quad-precision value, this word should hold the address of the
1414 object into which the return value should be copied." This
1415 guarantees that we can always find the return value, not just
1416 before the function returns. */
1417
1418 if (sparc_structure_or_union_p (type)
1419 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1420 {
1421 ULONGEST sp;
1422 CORE_ADDR addr;
1423
1424 if (readbuf)
1425 {
1426 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1427 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1428 read_memory (addr, readbuf, TYPE_LENGTH (type));
1429 }
1430 if (writebuf)
1431 {
1432 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1433 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1434 write_memory (addr, writebuf, TYPE_LENGTH (type));
1435 }
1436
1437 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1438 }
1439
1440 if (readbuf)
1441 sparc32_extract_return_value (type, regcache, readbuf);
1442 if (writebuf)
1443 sparc32_store_return_value (type, regcache, writebuf);
1444
1445 return RETURN_VALUE_REGISTER_CONVENTION;
1446 }
1447
1448 static int
1449 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1450 {
1451 return (sparc_structure_or_union_p (type)
1452 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1453 || sparc_complex_floating_p (type));
1454 }
1455
1456 static int
1457 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1458 {
1459 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1460 struct symbol *sym = find_pc_function (pc);
1461
1462 if (sym)
1463 return sparc32_struct_return_from_sym (sym);
1464 return 0;
1465 }
1466
1467 static void
1468 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1469 struct dwarf2_frame_state_reg *reg,
1470 struct frame_info *this_frame)
1471 {
1472 int off;
1473
1474 switch (regnum)
1475 {
1476 case SPARC_G0_REGNUM:
1477 /* Since %g0 is always zero, there is no point in saving it, and
1478 people will be inclined omit it from the CFI. Make sure we
1479 don't warn about that. */
1480 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1481 break;
1482 case SPARC_SP_REGNUM:
1483 reg->how = DWARF2_FRAME_REG_CFA;
1484 break;
1485 case SPARC32_PC_REGNUM:
1486 case SPARC32_NPC_REGNUM:
1487 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1488 off = 8;
1489 if (sparc32_dwarf2_struct_return_p (this_frame))
1490 off += 4;
1491 if (regnum == SPARC32_NPC_REGNUM)
1492 off += 4;
1493 reg->loc.offset = off;
1494 break;
1495 }
1496 }
1497
1498 \f
1499 /* The SPARC Architecture doesn't have hardware single-step support,
1500 and most operating systems don't implement it either, so we provide
1501 software single-step mechanism. */
1502
1503 static CORE_ADDR
1504 sparc_analyze_control_transfer (struct regcache *regcache,
1505 CORE_ADDR pc, CORE_ADDR *npc)
1506 {
1507 unsigned long insn = sparc_fetch_instruction (pc);
1508 int conditional_p = X_COND (insn) & 0x7;
1509 int branch_p = 0, fused_p = 0;
1510 long offset = 0; /* Must be signed for sign-extend. */
1511
1512 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1513 {
1514 if ((insn & 0x10000000) == 0)
1515 {
1516 /* Branch on Integer Register with Prediction (BPr). */
1517 branch_p = 1;
1518 conditional_p = 1;
1519 }
1520 else
1521 {
1522 /* Compare and Branch */
1523 branch_p = 1;
1524 fused_p = 1;
1525 offset = 4 * X_DISP10 (insn);
1526 }
1527 }
1528 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1529 {
1530 /* Branch on Floating-Point Condition Codes (FBfcc). */
1531 branch_p = 1;
1532 offset = 4 * X_DISP22 (insn);
1533 }
1534 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1535 {
1536 /* Branch on Floating-Point Condition Codes with Prediction
1537 (FBPfcc). */
1538 branch_p = 1;
1539 offset = 4 * X_DISP19 (insn);
1540 }
1541 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1542 {
1543 /* Branch on Integer Condition Codes (Bicc). */
1544 branch_p = 1;
1545 offset = 4 * X_DISP22 (insn);
1546 }
1547 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1548 {
1549 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1550 branch_p = 1;
1551 offset = 4 * X_DISP19 (insn);
1552 }
1553 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1554 {
1555 struct frame_info *frame = get_current_frame ();
1556
1557 /* Trap instruction (TRAP). */
1558 return gdbarch_tdep (get_regcache_arch (regcache))->step_trap (frame,
1559 insn);
1560 }
1561
1562 /* FIXME: Handle DONE and RETRY instructions. */
1563
1564 if (branch_p)
1565 {
1566 if (fused_p)
1567 {
1568 /* Fused compare-and-branch instructions are non-delayed,
1569 and do not have an annuling capability. So we need to
1570 always set a breakpoint on both the NPC and the branch
1571 target address. */
1572 gdb_assert (offset != 0);
1573 return pc + offset;
1574 }
1575 else if (conditional_p)
1576 {
1577 /* For conditional branches, return nPC + 4 iff the annul
1578 bit is 1. */
1579 return (X_A (insn) ? *npc + 4 : 0);
1580 }
1581 else
1582 {
1583 /* For unconditional branches, return the target if its
1584 specified condition is "always" and return nPC + 4 if the
1585 condition is "never". If the annul bit is 1, set *NPC to
1586 zero. */
1587 if (X_COND (insn) == 0x0)
1588 pc = *npc, offset = 4;
1589 if (X_A (insn))
1590 *npc = 0;
1591
1592 return pc + offset;
1593 }
1594 }
1595
1596 return 0;
1597 }
1598
1599 static CORE_ADDR
1600 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1601 {
1602 return 0;
1603 }
1604
1605 static VEC (CORE_ADDR) *
1606 sparc_software_single_step (struct regcache *regcache)
1607 {
1608 struct gdbarch *arch = get_regcache_arch (regcache);
1609 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1610 CORE_ADDR npc, nnpc;
1611
1612 CORE_ADDR pc, orig_npc;
1613 VEC (CORE_ADDR) *next_pcs = NULL;
1614
1615 pc = regcache_raw_get_unsigned (regcache, tdep->pc_regnum);
1616 orig_npc = npc = regcache_raw_get_unsigned (regcache, tdep->npc_regnum);
1617
1618 /* Analyze the instruction at PC. */
1619 nnpc = sparc_analyze_control_transfer (regcache, pc, &npc);
1620 if (npc != 0)
1621 VEC_safe_push (CORE_ADDR, next_pcs, npc);
1622
1623 if (nnpc != 0)
1624 VEC_safe_push (CORE_ADDR, next_pcs, nnpc);
1625
1626 /* Assert that we have set at least one breakpoint, and that
1627 they're not set at the same spot - unless we're going
1628 from here straight to NULL, i.e. a call or jump to 0. */
1629 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1630 gdb_assert (nnpc != npc || orig_npc == 0);
1631
1632 return next_pcs;
1633 }
1634
1635 static void
1636 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1637 {
1638 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1639
1640 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1641 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1642 }
1643 \f
1644
1645 /* Iterate over core file register note sections. */
1646
1647 static void
1648 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1649 iterate_over_regset_sections_cb *cb,
1650 void *cb_data,
1651 const struct regcache *regcache)
1652 {
1653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1654
1655 cb (".reg", tdep->sizeof_gregset, tdep->gregset, NULL, cb_data);
1656 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
1657 }
1658 \f
1659
1660 static struct gdbarch *
1661 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1662 {
1663 struct gdbarch_tdep *tdep;
1664 struct gdbarch *gdbarch;
1665
1666 /* If there is already a candidate, use it. */
1667 arches = gdbarch_list_lookup_by_info (arches, &info);
1668 if (arches != NULL)
1669 return arches->gdbarch;
1670
1671 /* Allocate space for the new architecture. */
1672 tdep = XCNEW (struct gdbarch_tdep);
1673 gdbarch = gdbarch_alloc (&info, tdep);
1674
1675 tdep->pc_regnum = SPARC32_PC_REGNUM;
1676 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1677 tdep->step_trap = sparc_step_trap;
1678
1679 set_gdbarch_long_double_bit (gdbarch, 128);
1680 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1681
1682 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1683 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1684 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1685 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1686 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1687 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1688
1689 /* Register numbers of various important registers. */
1690 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1691 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1692 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1693
1694 /* Call dummy code. */
1695 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1696 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1697 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1698 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1699
1700 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1701 set_gdbarch_stabs_argument_has_addr
1702 (gdbarch, sparc32_stabs_argument_has_addr);
1703
1704 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1705
1706 /* Stack grows downward. */
1707 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1708
1709 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1710 sparc_breakpoint::kind_from_pc);
1711 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1712 sparc_breakpoint::bp_from_kind);
1713
1714 set_gdbarch_frame_args_skip (gdbarch, 8);
1715
1716 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1717
1718 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1719 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1720
1721 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1722
1723 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1724
1725 frame_base_set_default (gdbarch, &sparc32_frame_base);
1726
1727 /* Hook in the DWARF CFI frame unwinder. */
1728 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1729 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1730 StackGhost issues have been resolved. */
1731
1732 /* Hook in ABI-specific overrides, if they have been registered. */
1733 gdbarch_init_osabi (info, gdbarch);
1734
1735 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1736
1737 /* If we have register sets, enable the generic core file support. */
1738 if (tdep->gregset)
1739 set_gdbarch_iterate_over_regset_sections
1740 (gdbarch, sparc_iterate_over_regset_sections);
1741
1742 register_sparc_ravenscar_ops (gdbarch);
1743
1744 return gdbarch;
1745 }
1746 \f
1747 /* Helper functions for dealing with register windows. */
1748
1749 void
1750 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1751 {
1752 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1754 int offset = 0;
1755 gdb_byte buf[8];
1756 int i;
1757
1758 if (sp & 1)
1759 {
1760 /* Registers are 64-bit. */
1761 sp += BIAS;
1762
1763 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1764 {
1765 if (regnum == i || regnum == -1)
1766 {
1767 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1768
1769 /* Handle StackGhost. */
1770 if (i == SPARC_I7_REGNUM)
1771 {
1772 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1773 ULONGEST i7;
1774
1775 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1776 store_unsigned_integer (buf + offset, 8, byte_order,
1777 i7 ^ wcookie);
1778 }
1779
1780 regcache_raw_supply (regcache, i, buf);
1781 }
1782 }
1783 }
1784 else
1785 {
1786 /* Registers are 32-bit. Toss any sign-extension of the stack
1787 pointer. */
1788 sp &= 0xffffffffUL;
1789
1790 /* Clear out the top half of the temporary buffer, and put the
1791 register value in the bottom half if we're in 64-bit mode. */
1792 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1793 {
1794 memset (buf, 0, 4);
1795 offset = 4;
1796 }
1797
1798 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1799 {
1800 if (regnum == i || regnum == -1)
1801 {
1802 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1803 buf + offset, 4);
1804
1805 /* Handle StackGhost. */
1806 if (i == SPARC_I7_REGNUM)
1807 {
1808 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1809 ULONGEST i7;
1810
1811 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1812 store_unsigned_integer (buf + offset, 4, byte_order,
1813 i7 ^ wcookie);
1814 }
1815
1816 regcache_raw_supply (regcache, i, buf);
1817 }
1818 }
1819 }
1820 }
1821
1822 void
1823 sparc_collect_rwindow (const struct regcache *regcache,
1824 CORE_ADDR sp, int regnum)
1825 {
1826 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1828 int offset = 0;
1829 gdb_byte buf[8];
1830 int i;
1831
1832 if (sp & 1)
1833 {
1834 /* Registers are 64-bit. */
1835 sp += BIAS;
1836
1837 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1838 {
1839 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1840 {
1841 regcache_raw_collect (regcache, i, buf);
1842
1843 /* Handle StackGhost. */
1844 if (i == SPARC_I7_REGNUM)
1845 {
1846 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1847 ULONGEST i7;
1848
1849 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1850 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1851 }
1852
1853 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1854 }
1855 }
1856 }
1857 else
1858 {
1859 /* Registers are 32-bit. Toss any sign-extension of the stack
1860 pointer. */
1861 sp &= 0xffffffffUL;
1862
1863 /* Only use the bottom half if we're in 64-bit mode. */
1864 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1865 offset = 4;
1866
1867 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1868 {
1869 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1870 {
1871 regcache_raw_collect (regcache, i, buf);
1872
1873 /* Handle StackGhost. */
1874 if (i == SPARC_I7_REGNUM)
1875 {
1876 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1877 ULONGEST i7;
1878
1879 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1880 store_unsigned_integer (buf + offset, 4, byte_order,
1881 i7 ^ wcookie);
1882 }
1883
1884 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1885 buf + offset, 4);
1886 }
1887 }
1888 }
1889 }
1890
1891 /* Helper functions for dealing with register sets. */
1892
1893 void
1894 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
1895 struct regcache *regcache,
1896 int regnum, const void *gregs)
1897 {
1898 const gdb_byte *regs = (const gdb_byte *) gregs;
1899 gdb_byte zero[4] = { 0 };
1900 int i;
1901
1902 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1903 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1904 regs + gregmap->r_psr_offset);
1905
1906 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1907 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1908 regs + gregmap->r_pc_offset);
1909
1910 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1911 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1912 regs + gregmap->r_npc_offset);
1913
1914 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1915 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1916 regs + gregmap->r_y_offset);
1917
1918 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1919 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1920
1921 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1922 {
1923 int offset = gregmap->r_g1_offset;
1924
1925 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1926 {
1927 if (regnum == i || regnum == -1)
1928 regcache_raw_supply (regcache, i, regs + offset);
1929 offset += 4;
1930 }
1931 }
1932
1933 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1934 {
1935 /* Not all of the register set variants include Locals and
1936 Inputs. For those that don't, we read them off the stack. */
1937 if (gregmap->r_l0_offset == -1)
1938 {
1939 ULONGEST sp;
1940
1941 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1942 sparc_supply_rwindow (regcache, sp, regnum);
1943 }
1944 else
1945 {
1946 int offset = gregmap->r_l0_offset;
1947
1948 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1949 {
1950 if (regnum == i || regnum == -1)
1951 regcache_raw_supply (regcache, i, regs + offset);
1952 offset += 4;
1953 }
1954 }
1955 }
1956 }
1957
1958 void
1959 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
1960 const struct regcache *regcache,
1961 int regnum, void *gregs)
1962 {
1963 gdb_byte *regs = (gdb_byte *) gregs;
1964 int i;
1965
1966 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1967 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1968 regs + gregmap->r_psr_offset);
1969
1970 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1971 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1972 regs + gregmap->r_pc_offset);
1973
1974 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1975 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1976 regs + gregmap->r_npc_offset);
1977
1978 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1979 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1980 regs + gregmap->r_y_offset);
1981
1982 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1983 {
1984 int offset = gregmap->r_g1_offset;
1985
1986 /* %g0 is always zero. */
1987 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1988 {
1989 if (regnum == i || regnum == -1)
1990 regcache_raw_collect (regcache, i, regs + offset);
1991 offset += 4;
1992 }
1993 }
1994
1995 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1996 {
1997 /* Not all of the register set variants include Locals and
1998 Inputs. For those that don't, we read them off the stack. */
1999 if (gregmap->r_l0_offset != -1)
2000 {
2001 int offset = gregmap->r_l0_offset;
2002
2003 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2004 {
2005 if (regnum == i || regnum == -1)
2006 regcache_raw_collect (regcache, i, regs + offset);
2007 offset += 4;
2008 }
2009 }
2010 }
2011 }
2012
2013 void
2014 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2015 struct regcache *regcache,
2016 int regnum, const void *fpregs)
2017 {
2018 const gdb_byte *regs = (const gdb_byte *) fpregs;
2019 int i;
2020
2021 for (i = 0; i < 32; i++)
2022 {
2023 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2024 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
2025 regs + fpregmap->r_f0_offset + (i * 4));
2026 }
2027
2028 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2029 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
2030 regs + fpregmap->r_fsr_offset);
2031 }
2032
2033 void
2034 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2035 const struct regcache *regcache,
2036 int regnum, void *fpregs)
2037 {
2038 gdb_byte *regs = (gdb_byte *) fpregs;
2039 int i;
2040
2041 for (i = 0; i < 32; i++)
2042 {
2043 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2044 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
2045 regs + fpregmap->r_f0_offset + (i * 4));
2046 }
2047
2048 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2049 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2050 regs + fpregmap->r_fsr_offset);
2051 }
2052 \f
2053
2054 /* SunOS 4. */
2055
2056 /* From <machine/reg.h>. */
2057 const struct sparc_gregmap sparc32_sunos4_gregmap =
2058 {
2059 0 * 4, /* %psr */
2060 1 * 4, /* %pc */
2061 2 * 4, /* %npc */
2062 3 * 4, /* %y */
2063 -1, /* %wim */
2064 -1, /* %tbr */
2065 4 * 4, /* %g1 */
2066 -1 /* %l0 */
2067 };
2068
2069 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2070 {
2071 0 * 4, /* %f0 */
2072 33 * 4, /* %fsr */
2073 };
2074
2075 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2076 {
2077 0 * 4, /* %f0 */
2078 32 * 4, /* %fsr */
2079 };
2080 \f
2081
2082 /* Provide a prototype to silence -Wmissing-prototypes. */
2083 void _initialize_sparc_tdep (void);
2084
2085 void
2086 _initialize_sparc_tdep (void)
2087 {
2088 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2089 }
This page took 0.074822 seconds and 4 git commands to generate.