* gdbarch.sh (software_single_step): Replace REGCACHE argument by
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "dwarf2-frame.h"
26 #include "floatformat.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "gdbcore.h"
31 #include "gdbtypes.h"
32 #include "inferior.h"
33 #include "symtab.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "target.h"
38 #include "value.h"
39
40 #include "gdb_assert.h"
41 #include "gdb_string.h"
42
43 #include "sparc-tdep.h"
44
45 struct regset;
46
47 /* This file implements the SPARC 32-bit ABI as defined by the section
48 "Low-Level System Information" of the SPARC Compliance Definition
49 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
50 lists changes with respect to the original 32-bit psABI as defined
51 in the "System V ABI, SPARC Processor Supplement".
52
53 Note that if we talk about SunOS, we mean SunOS 4.x, which was
54 BSD-based, which is sometimes (retroactively?) referred to as
55 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
56 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
57 suffering from severe version number inflation). Solaris 2.x is
58 also known as SunOS 5.x, since that's what uname(1) says. Solaris
59 2.x is SVR4-based. */
60
61 /* Please use the sparc32_-prefix for 32-bit specific code, the
62 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
63 code that can handle both. The 64-bit specific code lives in
64 sparc64-tdep.c; don't add any here. */
65
66 /* The SPARC Floating-Point Quad-Precision format is similar to
67 big-endian IA-64 Quad-recision format. */
68 #define floatformats_sparc_quad floatformats_ia64_quad
69
70 /* The stack pointer is offset from the stack frame by a BIAS of 2047
71 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
72 hosts, so undefine it first. */
73 #undef BIAS
74 #define BIAS 2047
75
76 /* Macros to extract fields from SPARC instructions. */
77 #define X_OP(i) (((i) >> 30) & 0x3)
78 #define X_RD(i) (((i) >> 25) & 0x1f)
79 #define X_A(i) (((i) >> 29) & 1)
80 #define X_COND(i) (((i) >> 25) & 0xf)
81 #define X_OP2(i) (((i) >> 22) & 0x7)
82 #define X_IMM22(i) ((i) & 0x3fffff)
83 #define X_OP3(i) (((i) >> 19) & 0x3f)
84 #define X_RS1(i) (((i) >> 14) & 0x1f)
85 #define X_RS2(i) ((i) & 0x1f)
86 #define X_I(i) (((i) >> 13) & 1)
87 /* Sign extension macros. */
88 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
89 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
90 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
91
92 /* Fetch the instruction at PC. Instructions are always big-endian
93 even if the processor operates in little-endian mode. */
94
95 unsigned long
96 sparc_fetch_instruction (CORE_ADDR pc)
97 {
98 gdb_byte buf[4];
99 unsigned long insn;
100 int i;
101
102 /* If we can't read the instruction at PC, return zero. */
103 if (read_memory_nobpt (pc, buf, sizeof (buf)))
104 return 0;
105
106 insn = 0;
107 for (i = 0; i < sizeof (buf); i++)
108 insn = (insn << 8) | buf[i];
109 return insn;
110 }
111 \f
112
113 /* Return non-zero if the instruction corresponding to PC is an "unimp"
114 instruction. */
115
116 static int
117 sparc_is_unimp_insn (CORE_ADDR pc)
118 {
119 const unsigned long insn = sparc_fetch_instruction (pc);
120
121 return ((insn & 0xc1c00000) == 0);
122 }
123
124 /* OpenBSD/sparc includes StackGhost, which according to the author's
125 website http://stackghost.cerias.purdue.edu "... transparently and
126 automatically protects applications' stack frames; more
127 specifically, it guards the return pointers. The protection
128 mechanisms require no application source or binary modification and
129 imposes only a negligible performance penalty."
130
131 The same website provides the following description of how
132 StackGhost works:
133
134 "StackGhost interfaces with the kernel trap handler that would
135 normally write out registers to the stack and the handler that
136 would read them back in. By XORing a cookie into the
137 return-address saved in the user stack when it is actually written
138 to the stack, and then XOR it out when the return-address is pulled
139 from the stack, StackGhost can cause attacker corrupted return
140 pointers to behave in a manner the attacker cannot predict.
141 StackGhost can also use several unused bits in the return pointer
142 to detect a smashed return pointer and abort the process."
143
144 For GDB this means that whenever we're reading %i7 from a stack
145 frame's window save area, we'll have to XOR the cookie.
146
147 More information on StackGuard can be found on in:
148
149 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
150 Stack Protection." 2001. Published in USENIX Security Symposium
151 '01. */
152
153 /* Fetch StackGhost Per-Process XOR cookie. */
154
155 ULONGEST
156 sparc_fetch_wcookie (void)
157 {
158 struct target_ops *ops = &current_target;
159 gdb_byte buf[8];
160 int len;
161
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
163 if (len == -1)
164 return 0;
165
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
168
169 return extract_unsigned_integer (buf, len);
170 }
171 \f
172
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
175
176 /* Check whether TYPE is "Integral or Pointer". */
177
178 static int
179 sparc_integral_or_pointer_p (const struct type *type)
180 {
181 int len = TYPE_LENGTH (type);
182
183 switch (TYPE_CODE (type))
184 {
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
198 default:
199 break;
200 }
201
202 return 0;
203 }
204
205 /* Check whether TYPE is "Floating". */
206
207 static int
208 sparc_floating_p (const struct type *type)
209 {
210 switch (TYPE_CODE (type))
211 {
212 case TYPE_CODE_FLT:
213 {
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
216 }
217 default:
218 break;
219 }
220
221 return 0;
222 }
223
224 /* Check whether TYPE is "Structure or Union". */
225
226 static int
227 sparc_structure_or_union_p (const struct type *type)
228 {
229 switch (TYPE_CODE (type))
230 {
231 case TYPE_CODE_STRUCT:
232 case TYPE_CODE_UNION:
233 return 1;
234 default:
235 break;
236 }
237
238 return 0;
239 }
240
241 /* Register information. */
242
243 static const char *sparc32_register_names[] =
244 {
245 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
246 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
247 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
248 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
249
250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
254
255 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
256 };
257
258 /* Total number of registers. */
259 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
260
261 /* We provide the aliases %d0..%d30 for the floating registers as
262 "psuedo" registers. */
263
264 static const char *sparc32_pseudo_register_names[] =
265 {
266 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
267 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
268 };
269
270 /* Total number of pseudo registers. */
271 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
272
273 /* Return the name of register REGNUM. */
274
275 static const char *
276 sparc32_register_name (int regnum)
277 {
278 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
279 return sparc32_register_names[regnum];
280
281 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
282 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
283
284 return NULL;
285 }
286 \f
287
288 /* Type for %psr. */
289 struct type *sparc_psr_type;
290
291 /* Type for %fsr. */
292 struct type *sparc_fsr_type;
293
294 /* Construct types for ISA-specific registers. */
295
296 static void
297 sparc_init_types (void)
298 {
299 struct type *type;
300
301 type = init_flags_type ("builtin_type_sparc_psr", 4);
302 append_flags_type_flag (type, 5, "ET");
303 append_flags_type_flag (type, 6, "PS");
304 append_flags_type_flag (type, 7, "S");
305 append_flags_type_flag (type, 12, "EF");
306 append_flags_type_flag (type, 13, "EC");
307 sparc_psr_type = type;
308
309 type = init_flags_type ("builtin_type_sparc_fsr", 4);
310 append_flags_type_flag (type, 0, "NXA");
311 append_flags_type_flag (type, 1, "DZA");
312 append_flags_type_flag (type, 2, "UFA");
313 append_flags_type_flag (type, 3, "OFA");
314 append_flags_type_flag (type, 4, "NVA");
315 append_flags_type_flag (type, 5, "NXC");
316 append_flags_type_flag (type, 6, "DZC");
317 append_flags_type_flag (type, 7, "UFC");
318 append_flags_type_flag (type, 8, "OFC");
319 append_flags_type_flag (type, 9, "NVC");
320 append_flags_type_flag (type, 22, "NS");
321 append_flags_type_flag (type, 23, "NXM");
322 append_flags_type_flag (type, 24, "DZM");
323 append_flags_type_flag (type, 25, "UFM");
324 append_flags_type_flag (type, 26, "OFM");
325 append_flags_type_flag (type, 27, "NVM");
326 sparc_fsr_type = type;
327 }
328
329 /* Return the GDB type object for the "standard" data type of data in
330 register REGNUM. */
331
332 static struct type *
333 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
334 {
335 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
336 return builtin_type_float;
337
338 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
339 return builtin_type_double;
340
341 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
342 return builtin_type_void_data_ptr;
343
344 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
345 return builtin_type_void_func_ptr;
346
347 if (regnum == SPARC32_PSR_REGNUM)
348 return sparc_psr_type;
349
350 if (regnum == SPARC32_FSR_REGNUM)
351 return sparc_fsr_type;
352
353 return builtin_type_int32;
354 }
355
356 static void
357 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
358 struct regcache *regcache,
359 int regnum, gdb_byte *buf)
360 {
361 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
362
363 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
364 regcache_raw_read (regcache, regnum, buf);
365 regcache_raw_read (regcache, regnum + 1, buf + 4);
366 }
367
368 static void
369 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
370 struct regcache *regcache,
371 int regnum, const gdb_byte *buf)
372 {
373 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
374
375 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
376 regcache_raw_write (regcache, regnum, buf);
377 regcache_raw_write (regcache, regnum + 1, buf + 4);
378 }
379 \f
380
381 static CORE_ADDR
382 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
383 CORE_ADDR funcaddr, int using_gcc,
384 struct value **args, int nargs,
385 struct type *value_type,
386 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
387 {
388 *bp_addr = sp - 4;
389 *real_pc = funcaddr;
390
391 if (using_struct_return (value_type, using_gcc))
392 {
393 gdb_byte buf[4];
394
395 /* This is an UNIMP instruction. */
396 store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff);
397 write_memory (sp - 8, buf, 4);
398 return sp - 8;
399 }
400
401 return sp - 4;
402 }
403
404 static CORE_ADDR
405 sparc32_store_arguments (struct regcache *regcache, int nargs,
406 struct value **args, CORE_ADDR sp,
407 int struct_return, CORE_ADDR struct_addr)
408 {
409 /* Number of words in the "parameter array". */
410 int num_elements = 0;
411 int element = 0;
412 int i;
413
414 for (i = 0; i < nargs; i++)
415 {
416 struct type *type = value_type (args[i]);
417 int len = TYPE_LENGTH (type);
418
419 if (sparc_structure_or_union_p (type)
420 || (sparc_floating_p (type) && len == 16))
421 {
422 /* Structure, Union and Quad-Precision Arguments. */
423 sp -= len;
424
425 /* Use doubleword alignment for these values. That's always
426 correct, and wasting a few bytes shouldn't be a problem. */
427 sp &= ~0x7;
428
429 write_memory (sp, value_contents (args[i]), len);
430 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
431 num_elements++;
432 }
433 else if (sparc_floating_p (type))
434 {
435 /* Floating arguments. */
436 gdb_assert (len == 4 || len == 8);
437 num_elements += (len / 4);
438 }
439 else
440 {
441 /* Integral and pointer arguments. */
442 gdb_assert (sparc_integral_or_pointer_p (type));
443
444 if (len < 4)
445 args[i] = value_cast (builtin_type_int32, args[i]);
446 num_elements += ((len + 3) / 4);
447 }
448 }
449
450 /* Always allocate at least six words. */
451 sp -= max (6, num_elements) * 4;
452
453 /* The psABI says that "Software convention requires space for the
454 struct/union return value pointer, even if the word is unused." */
455 sp -= 4;
456
457 /* The psABI says that "Although software convention and the
458 operating system require every stack frame to be doubleword
459 aligned." */
460 sp &= ~0x7;
461
462 for (i = 0; i < nargs; i++)
463 {
464 const bfd_byte *valbuf = value_contents (args[i]);
465 struct type *type = value_type (args[i]);
466 int len = TYPE_LENGTH (type);
467
468 gdb_assert (len == 4 || len == 8);
469
470 if (element < 6)
471 {
472 int regnum = SPARC_O0_REGNUM + element;
473
474 regcache_cooked_write (regcache, regnum, valbuf);
475 if (len > 4 && element < 5)
476 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
477 }
478
479 /* Always store the argument in memory. */
480 write_memory (sp + 4 + element * 4, valbuf, len);
481 element += len / 4;
482 }
483
484 gdb_assert (element == num_elements);
485
486 if (struct_return)
487 {
488 gdb_byte buf[4];
489
490 store_unsigned_integer (buf, 4, struct_addr);
491 write_memory (sp, buf, 4);
492 }
493
494 return sp;
495 }
496
497 static CORE_ADDR
498 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
499 struct regcache *regcache, CORE_ADDR bp_addr,
500 int nargs, struct value **args, CORE_ADDR sp,
501 int struct_return, CORE_ADDR struct_addr)
502 {
503 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
504
505 /* Set return address. */
506 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
507
508 /* Set up function arguments. */
509 sp = sparc32_store_arguments (regcache, nargs, args, sp,
510 struct_return, struct_addr);
511
512 /* Allocate the 16-word window save area. */
513 sp -= 16 * 4;
514
515 /* Stack should be doubleword aligned at this point. */
516 gdb_assert (sp % 8 == 0);
517
518 /* Finally, update the stack pointer. */
519 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
520
521 return sp;
522 }
523 \f
524
525 /* Use the program counter to determine the contents and size of a
526 breakpoint instruction. Return a pointer to a string of bytes that
527 encode a breakpoint instruction, store the length of the string in
528 *LEN and optionally adjust *PC to point to the correct memory
529 location for inserting the breakpoint. */
530
531 static const gdb_byte *
532 sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
533 {
534 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
535
536 *len = sizeof (break_insn);
537 return break_insn;
538 }
539 \f
540
541 /* Allocate and initialize a frame cache. */
542
543 static struct sparc_frame_cache *
544 sparc_alloc_frame_cache (void)
545 {
546 struct sparc_frame_cache *cache;
547 int i;
548
549 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
550
551 /* Base address. */
552 cache->base = 0;
553 cache->pc = 0;
554
555 /* Frameless until proven otherwise. */
556 cache->frameless_p = 1;
557
558 cache->struct_return_p = 0;
559
560 return cache;
561 }
562
563 /* GCC generates several well-known sequences of instructions at the begining
564 of each function prologue when compiling with -fstack-check. If one of
565 such sequences starts at START_PC, then return the address of the
566 instruction immediately past this sequence. Otherwise, return START_PC. */
567
568 static CORE_ADDR
569 sparc_skip_stack_check (const CORE_ADDR start_pc)
570 {
571 CORE_ADDR pc = start_pc;
572 unsigned long insn;
573 int offset_stack_checking_sequence = 0;
574
575 /* With GCC, all stack checking sequences begin with the same two
576 instructions. */
577
578 /* sethi <some immediate>,%g1 */
579 insn = sparc_fetch_instruction (pc);
580 pc = pc + 4;
581 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
582 return start_pc;
583
584 /* sub %sp, %g1, %g1 */
585 insn = sparc_fetch_instruction (pc);
586 pc = pc + 4;
587 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
588 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
589 return start_pc;
590
591 insn = sparc_fetch_instruction (pc);
592 pc = pc + 4;
593
594 /* First possible sequence:
595 [first two instructions above]
596 clr [%g1 - some immediate] */
597
598 /* clr [%g1 - some immediate] */
599 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
600 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
601 {
602 /* Valid stack-check sequence, return the new PC. */
603 return pc;
604 }
605
606 /* Second possible sequence: A small number of probes.
607 [first two instructions above]
608 clr [%g1]
609 add %g1, -<some immediate>, %g1
610 clr [%g1]
611 [repeat the two instructions above any (small) number of times]
612 clr [%g1 - some immediate] */
613
614 /* clr [%g1] */
615 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
616 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
617 {
618 while (1)
619 {
620 /* add %g1, -<some immediate>, %g1 */
621 insn = sparc_fetch_instruction (pc);
622 pc = pc + 4;
623 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
624 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
625 break;
626
627 /* clr [%g1] */
628 insn = sparc_fetch_instruction (pc);
629 pc = pc + 4;
630 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
631 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
632 return start_pc;
633 }
634
635 /* clr [%g1 - some immediate] */
636 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
637 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
638 return start_pc;
639
640 /* We found a valid stack-check sequence, return the new PC. */
641 return pc;
642 }
643
644 /* Third sequence: A probing loop.
645 [first two instructions above]
646 sethi <some immediate>, %g4
647 sub %g1, %g4, %g4
648 cmp %g1, %g4
649 be <disp>
650 add %g1, -<some immediate>, %g1
651 ba <disp>
652 clr [%g1]
653 clr [%g4 - some immediate] */
654
655 /* sethi <some immediate>, %g4 */
656 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
657 {
658 /* sub %g1, %g4, %g4 */
659 insn = sparc_fetch_instruction (pc);
660 pc = pc + 4;
661 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
662 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
663 return start_pc;
664
665 /* cmp %g1, %g4 */
666 insn = sparc_fetch_instruction (pc);
667 pc = pc + 4;
668 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
669 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
670 return start_pc;
671
672 /* be <disp> */
673 insn = sparc_fetch_instruction (pc);
674 pc = pc + 4;
675 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
676 return start_pc;
677
678 /* add %g1, -<some immediate>, %g1 */
679 insn = sparc_fetch_instruction (pc);
680 pc = pc + 4;
681 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
682 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
683 return start_pc;
684
685 /* ba <disp> */
686 insn = sparc_fetch_instruction (pc);
687 pc = pc + 4;
688 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
689 return start_pc;
690
691 /* clr [%g1] */
692 insn = sparc_fetch_instruction (pc);
693 pc = pc + 4;
694 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
695 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
696 return start_pc;
697
698 /* clr [%g4 - some immediate] */
699 insn = sparc_fetch_instruction (pc);
700 pc = pc + 4;
701 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
702 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
703 return start_pc;
704
705 /* We found a valid stack-check sequence, return the new PC. */
706 return pc;
707 }
708
709 /* No stack check code in our prologue, return the start_pc. */
710 return start_pc;
711 }
712
713 CORE_ADDR
714 sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
715 struct sparc_frame_cache *cache)
716 {
717 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
718 unsigned long insn;
719 int offset = 0;
720 int dest = -1;
721
722 pc = sparc_skip_stack_check (pc);
723
724 if (current_pc <= pc)
725 return current_pc;
726
727 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
728 SPARC the linker usually defines a symbol (typically
729 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
730 This symbol makes us end up here with PC pointing at the start of
731 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
732 would do our normal prologue analysis, we would probably conclude
733 that we've got a frame when in reality we don't, since the
734 dynamic linker patches up the first PLT with some code that
735 starts with a SAVE instruction. Patch up PC such that it points
736 at the start of our PLT entry. */
737 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
738 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
739
740 insn = sparc_fetch_instruction (pc);
741
742 /* Recognize a SETHI insn and record its destination. */
743 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
744 {
745 dest = X_RD (insn);
746 offset += 4;
747
748 insn = sparc_fetch_instruction (pc + 4);
749 }
750
751 /* Allow for an arithmetic operation on DEST or %g1. */
752 if (X_OP (insn) == 2 && X_I (insn)
753 && (X_RD (insn) == 1 || X_RD (insn) == dest))
754 {
755 offset += 4;
756
757 insn = sparc_fetch_instruction (pc + 8);
758 }
759
760 /* Check for the SAVE instruction that sets up the frame. */
761 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
762 {
763 cache->frameless_p = 0;
764 return pc + offset + 4;
765 }
766
767 return pc;
768 }
769
770 static CORE_ADDR
771 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
772 {
773 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
774 return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
775 }
776
777 /* Return PC of first real instruction of the function starting at
778 START_PC. */
779
780 static CORE_ADDR
781 sparc32_skip_prologue (CORE_ADDR start_pc)
782 {
783 struct symtab_and_line sal;
784 CORE_ADDR func_start, func_end;
785 struct sparc_frame_cache cache;
786
787 /* This is the preferred method, find the end of the prologue by
788 using the debugging information. */
789 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
790 {
791 sal = find_pc_line (func_start, 0);
792
793 if (sal.end < func_end
794 && start_pc <= sal.end)
795 return sal.end;
796 }
797
798 start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache);
799
800 /* The psABI says that "Although the first 6 words of arguments
801 reside in registers, the standard stack frame reserves space for
802 them.". It also suggests that a function may use that space to
803 "write incoming arguments 0 to 5" into that space, and that's
804 indeed what GCC seems to be doing. In that case GCC will
805 generate debug information that points to the stack slots instead
806 of the registers, so we should consider the instructions that
807 write out these incoming arguments onto the stack. Of course we
808 only need to do this if we have a stack frame. */
809
810 while (!cache.frameless_p)
811 {
812 unsigned long insn = sparc_fetch_instruction (start_pc);
813
814 /* Recognize instructions that store incoming arguments in
815 %i0...%i5 into the corresponding stack slot. */
816 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
817 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
818 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
819 {
820 start_pc += 4;
821 continue;
822 }
823
824 break;
825 }
826
827 return start_pc;
828 }
829
830 /* Normal frames. */
831
832 struct sparc_frame_cache *
833 sparc_frame_cache (struct frame_info *next_frame, void **this_cache)
834 {
835 struct sparc_frame_cache *cache;
836
837 if (*this_cache)
838 return *this_cache;
839
840 cache = sparc_alloc_frame_cache ();
841 *this_cache = cache;
842
843 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
844 if (cache->pc != 0)
845 sparc_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
846
847 if (cache->frameless_p)
848 {
849 /* This function is frameless, so %fp (%i6) holds the frame
850 pointer for our calling frame. Use %sp (%o6) as this frame's
851 base address. */
852 cache->base =
853 frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
854 }
855 else
856 {
857 /* For normal frames, %fp (%i6) holds the frame pointer, the
858 base address for the current stack frame. */
859 cache->base =
860 frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
861 }
862
863 if (cache->base & 1)
864 cache->base += BIAS;
865
866 return cache;
867 }
868
869 static int
870 sparc32_struct_return_from_sym (struct symbol *sym)
871 {
872 struct type *type = check_typedef (SYMBOL_TYPE (sym));
873 enum type_code code = TYPE_CODE (type);
874
875 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
876 {
877 type = check_typedef (TYPE_TARGET_TYPE (type));
878 if (sparc_structure_or_union_p (type)
879 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
880 return 1;
881 }
882
883 return 0;
884 }
885
886 struct sparc_frame_cache *
887 sparc32_frame_cache (struct frame_info *next_frame, void **this_cache)
888 {
889 struct sparc_frame_cache *cache;
890 struct symbol *sym;
891
892 if (*this_cache)
893 return *this_cache;
894
895 cache = sparc_frame_cache (next_frame, this_cache);
896
897 sym = find_pc_function (cache->pc);
898 if (sym)
899 {
900 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
901 }
902 else
903 {
904 /* There is no debugging information for this function to
905 help us determine whether this function returns a struct
906 or not. So we rely on another heuristic which is to check
907 the instruction at the return address and see if this is
908 an "unimp" instruction. If it is, then it is a struct-return
909 function. */
910 CORE_ADDR pc;
911 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
912
913 pc = frame_unwind_register_unsigned (next_frame, regnum) + 8;
914 if (sparc_is_unimp_insn (pc))
915 cache->struct_return_p = 1;
916 }
917
918 return cache;
919 }
920
921 static void
922 sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache,
923 struct frame_id *this_id)
924 {
925 struct sparc_frame_cache *cache =
926 sparc32_frame_cache (next_frame, this_cache);
927
928 /* This marks the outermost frame. */
929 if (cache->base == 0)
930 return;
931
932 (*this_id) = frame_id_build (cache->base, cache->pc);
933 }
934
935 static void
936 sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache,
937 int regnum, int *optimizedp,
938 enum lval_type *lvalp, CORE_ADDR *addrp,
939 int *realnump, gdb_byte *valuep)
940 {
941 struct sparc_frame_cache *cache =
942 sparc32_frame_cache (next_frame, this_cache);
943
944 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
945 {
946 *optimizedp = 0;
947 *lvalp = not_lval;
948 *addrp = 0;
949 *realnump = -1;
950 if (valuep)
951 {
952 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
953
954 /* If this functions has a Structure, Union or
955 Quad-Precision return value, we have to skip the UNIMP
956 instruction that encodes the size of the structure. */
957 if (cache->struct_return_p)
958 pc += 4;
959
960 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
961 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
962 store_unsigned_integer (valuep, 4, pc);
963 }
964 return;
965 }
966
967 /* Handle StackGhost. */
968 {
969 ULONGEST wcookie = sparc_fetch_wcookie ();
970
971 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
972 {
973 *optimizedp = 0;
974 *lvalp = not_lval;
975 *addrp = 0;
976 *realnump = -1;
977 if (valuep)
978 {
979 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
980 ULONGEST i7;
981
982 /* Read the value in from memory. */
983 i7 = get_frame_memory_unsigned (next_frame, addr, 4);
984 store_unsigned_integer (valuep, 4, i7 ^ wcookie);
985 }
986 return;
987 }
988 }
989
990 /* The previous frame's `local' and `in' registers have been saved
991 in the register save area. */
992 if (!cache->frameless_p
993 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
994 {
995 *optimizedp = 0;
996 *lvalp = lval_memory;
997 *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
998 *realnump = -1;
999 if (valuep)
1000 {
1001 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1002
1003 /* Read the value in from memory. */
1004 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
1005 }
1006 return;
1007 }
1008
1009 /* The previous frame's `out' registers are accessable as the
1010 current frame's `in' registers. */
1011 if (!cache->frameless_p
1012 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1013 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1014
1015 *optimizedp = 0;
1016 *lvalp = lval_register;
1017 *addrp = 0;
1018 *realnump = regnum;
1019 if (valuep)
1020 frame_unwind_register (next_frame, (*realnump), valuep);
1021 }
1022
1023 static const struct frame_unwind sparc32_frame_unwind =
1024 {
1025 NORMAL_FRAME,
1026 sparc32_frame_this_id,
1027 sparc32_frame_prev_register
1028 };
1029
1030 static const struct frame_unwind *
1031 sparc32_frame_sniffer (struct frame_info *next_frame)
1032 {
1033 return &sparc32_frame_unwind;
1034 }
1035 \f
1036
1037 static CORE_ADDR
1038 sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache)
1039 {
1040 struct sparc_frame_cache *cache =
1041 sparc32_frame_cache (next_frame, this_cache);
1042
1043 return cache->base;
1044 }
1045
1046 static const struct frame_base sparc32_frame_base =
1047 {
1048 &sparc32_frame_unwind,
1049 sparc32_frame_base_address,
1050 sparc32_frame_base_address,
1051 sparc32_frame_base_address
1052 };
1053
1054 static struct frame_id
1055 sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1056 {
1057 CORE_ADDR sp;
1058
1059 sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
1060 if (sp & 1)
1061 sp += BIAS;
1062 return frame_id_build (sp, frame_pc_unwind (next_frame));
1063 }
1064 \f
1065
1066 /* Extract from an array REGBUF containing the (raw) register state, a
1067 function return value of TYPE, and copy that into VALBUF. */
1068
1069 static void
1070 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1071 gdb_byte *valbuf)
1072 {
1073 int len = TYPE_LENGTH (type);
1074 gdb_byte buf[8];
1075
1076 gdb_assert (!sparc_structure_or_union_p (type));
1077 gdb_assert (!(sparc_floating_p (type) && len == 16));
1078
1079 if (sparc_floating_p (type))
1080 {
1081 /* Floating return values. */
1082 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1083 if (len > 4)
1084 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1085 memcpy (valbuf, buf, len);
1086 }
1087 else
1088 {
1089 /* Integral and pointer return values. */
1090 gdb_assert (sparc_integral_or_pointer_p (type));
1091
1092 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1093 if (len > 4)
1094 {
1095 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1096 gdb_assert (len == 8);
1097 memcpy (valbuf, buf, 8);
1098 }
1099 else
1100 {
1101 /* Just stripping off any unused bytes should preserve the
1102 signed-ness just fine. */
1103 memcpy (valbuf, buf + 4 - len, len);
1104 }
1105 }
1106 }
1107
1108 /* Write into the appropriate registers a function return value stored
1109 in VALBUF of type TYPE. */
1110
1111 static void
1112 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1113 const gdb_byte *valbuf)
1114 {
1115 int len = TYPE_LENGTH (type);
1116 gdb_byte buf[8];
1117
1118 gdb_assert (!sparc_structure_or_union_p (type));
1119 gdb_assert (!(sparc_floating_p (type) && len == 16));
1120
1121 if (sparc_floating_p (type))
1122 {
1123 /* Floating return values. */
1124 memcpy (buf, valbuf, len);
1125 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1126 if (len > 4)
1127 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1128 }
1129 else
1130 {
1131 /* Integral and pointer return values. */
1132 gdb_assert (sparc_integral_or_pointer_p (type));
1133
1134 if (len > 4)
1135 {
1136 gdb_assert (len == 8);
1137 memcpy (buf, valbuf, 8);
1138 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1139 }
1140 else
1141 {
1142 /* ??? Do we need to do any sign-extension here? */
1143 memcpy (buf + 4 - len, valbuf, len);
1144 }
1145 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1146 }
1147 }
1148
1149 static enum return_value_convention
1150 sparc32_return_value (struct gdbarch *gdbarch, struct type *type,
1151 struct regcache *regcache, gdb_byte *readbuf,
1152 const gdb_byte *writebuf)
1153 {
1154 /* The psABI says that "...every stack frame reserves the word at
1155 %fp+64. If a function returns a structure, union, or
1156 quad-precision value, this word should hold the address of the
1157 object into which the return value should be copied." This
1158 guarantees that we can always find the return value, not just
1159 before the function returns. */
1160
1161 if (sparc_structure_or_union_p (type)
1162 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1163 {
1164 if (readbuf)
1165 {
1166 ULONGEST sp;
1167 CORE_ADDR addr;
1168
1169 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1170 addr = read_memory_unsigned_integer (sp + 64, 4);
1171 read_memory (addr, readbuf, TYPE_LENGTH (type));
1172 }
1173
1174 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1175 }
1176
1177 if (readbuf)
1178 sparc32_extract_return_value (type, regcache, readbuf);
1179 if (writebuf)
1180 sparc32_store_return_value (type, regcache, writebuf);
1181
1182 return RETURN_VALUE_REGISTER_CONVENTION;
1183 }
1184
1185 static int
1186 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1187 {
1188 return (sparc_structure_or_union_p (type)
1189 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1190 }
1191
1192 static int
1193 sparc32_dwarf2_struct_return_p (struct frame_info *next_frame)
1194 {
1195 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1196 struct symbol *sym = find_pc_function (pc);
1197
1198 if (sym)
1199 return sparc32_struct_return_from_sym (sym);
1200 return 0;
1201 }
1202
1203 static void
1204 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1205 struct dwarf2_frame_state_reg *reg,
1206 struct frame_info *next_frame)
1207 {
1208 int off;
1209
1210 switch (regnum)
1211 {
1212 case SPARC_G0_REGNUM:
1213 /* Since %g0 is always zero, there is no point in saving it, and
1214 people will be inclined omit it from the CFI. Make sure we
1215 don't warn about that. */
1216 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1217 break;
1218 case SPARC_SP_REGNUM:
1219 reg->how = DWARF2_FRAME_REG_CFA;
1220 break;
1221 case SPARC32_PC_REGNUM:
1222 case SPARC32_NPC_REGNUM:
1223 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1224 off = 8;
1225 if (sparc32_dwarf2_struct_return_p (next_frame))
1226 off += 4;
1227 if (regnum == SPARC32_NPC_REGNUM)
1228 off += 4;
1229 reg->loc.offset = off;
1230 break;
1231 }
1232 }
1233
1234 \f
1235 /* The SPARC Architecture doesn't have hardware single-step support,
1236 and most operating systems don't implement it either, so we provide
1237 software single-step mechanism. */
1238
1239 static CORE_ADDR
1240 sparc_analyze_control_transfer (struct frame_info *frame,
1241 CORE_ADDR pc, CORE_ADDR *npc)
1242 {
1243 unsigned long insn = sparc_fetch_instruction (pc);
1244 int conditional_p = X_COND (insn) & 0x7;
1245 int branch_p = 0;
1246 long offset = 0; /* Must be signed for sign-extend. */
1247
1248 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1249 {
1250 /* Branch on Integer Register with Prediction (BPr). */
1251 branch_p = 1;
1252 conditional_p = 1;
1253 }
1254 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1255 {
1256 /* Branch on Floating-Point Condition Codes (FBfcc). */
1257 branch_p = 1;
1258 offset = 4 * X_DISP22 (insn);
1259 }
1260 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1261 {
1262 /* Branch on Floating-Point Condition Codes with Prediction
1263 (FBPfcc). */
1264 branch_p = 1;
1265 offset = 4 * X_DISP19 (insn);
1266 }
1267 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1268 {
1269 /* Branch on Integer Condition Codes (Bicc). */
1270 branch_p = 1;
1271 offset = 4 * X_DISP22 (insn);
1272 }
1273 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1274 {
1275 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1276 branch_p = 1;
1277 offset = 4 * X_DISP19 (insn);
1278 }
1279 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1280 {
1281 /* Trap instruction (TRAP). */
1282 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1283 }
1284
1285 /* FIXME: Handle DONE and RETRY instructions. */
1286
1287 if (branch_p)
1288 {
1289 if (conditional_p)
1290 {
1291 /* For conditional branches, return nPC + 4 iff the annul
1292 bit is 1. */
1293 return (X_A (insn) ? *npc + 4 : 0);
1294 }
1295 else
1296 {
1297 /* For unconditional branches, return the target if its
1298 specified condition is "always" and return nPC + 4 if the
1299 condition is "never". If the annul bit is 1, set *NPC to
1300 zero. */
1301 if (X_COND (insn) == 0x0)
1302 pc = *npc, offset = 4;
1303 if (X_A (insn))
1304 *npc = 0;
1305
1306 gdb_assert (offset != 0);
1307 return pc + offset;
1308 }
1309 }
1310
1311 return 0;
1312 }
1313
1314 static CORE_ADDR
1315 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1316 {
1317 return 0;
1318 }
1319
1320 int
1321 sparc_software_single_step (struct frame_info *frame)
1322 {
1323 struct gdbarch *arch = get_frame_arch (frame);
1324 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1325 CORE_ADDR npc, nnpc;
1326
1327 CORE_ADDR pc, orig_npc;
1328
1329 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1330 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1331
1332 /* Analyze the instruction at PC. */
1333 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1334 if (npc != 0)
1335 insert_single_step_breakpoint (npc);
1336
1337 if (nnpc != 0)
1338 insert_single_step_breakpoint (nnpc);
1339
1340 /* Assert that we have set at least one breakpoint, and that
1341 they're not set at the same spot - unless we're going
1342 from here straight to NULL, i.e. a call or jump to 0. */
1343 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1344 gdb_assert (nnpc != npc || orig_npc == 0);
1345
1346 return 1;
1347 }
1348
1349 static void
1350 sparc_write_pc (CORE_ADDR pc, ptid_t ptid)
1351 {
1352 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1353
1354 write_register_pid (tdep->pc_regnum, pc, ptid);
1355 write_register_pid (tdep->npc_regnum, pc + 4, ptid);
1356 }
1357 \f
1358 /* Unglobalize NAME. */
1359
1360 char *
1361 sparc_stabs_unglobalize_name (char *name)
1362 {
1363 /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop,
1364 SunPRO) convert file static variables into global values, a
1365 process known as globalization. In order to do this, the
1366 compiler will create a unique prefix and prepend it to each file
1367 static variable. For static variables within a function, this
1368 globalization prefix is followed by the function name (nested
1369 static variables within a function are supposed to generate a
1370 warning message, and are left alone). The procedure is
1371 documented in the Stabs Interface Manual, which is distrubuted
1372 with the compilers, although version 4.0 of the manual seems to
1373 be incorrect in some places, at least for SPARC. The
1374 globalization prefix is encoded into an N_OPT stab, with the form
1375 "G=<prefix>". The globalization prefix always seems to start
1376 with a dollar sign '$'; a dot '.' is used as a seperator. So we
1377 simply strip everything up until the last dot. */
1378
1379 if (name[0] == '$')
1380 {
1381 char *p = strrchr (name, '.');
1382 if (p)
1383 return p + 1;
1384 }
1385
1386 return name;
1387 }
1388 \f
1389
1390 /* Return the appropriate register set for the core section identified
1391 by SECT_NAME and SECT_SIZE. */
1392
1393 const struct regset *
1394 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1395 const char *sect_name, size_t sect_size)
1396 {
1397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1398
1399 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1400 return tdep->gregset;
1401
1402 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1403 return tdep->fpregset;
1404
1405 return NULL;
1406 }
1407 \f
1408
1409 static struct gdbarch *
1410 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1411 {
1412 struct gdbarch_tdep *tdep;
1413 struct gdbarch *gdbarch;
1414
1415 /* If there is already a candidate, use it. */
1416 arches = gdbarch_list_lookup_by_info (arches, &info);
1417 if (arches != NULL)
1418 return arches->gdbarch;
1419
1420 /* Allocate space for the new architecture. */
1421 tdep = XMALLOC (struct gdbarch_tdep);
1422 gdbarch = gdbarch_alloc (&info, tdep);
1423
1424 tdep->pc_regnum = SPARC32_PC_REGNUM;
1425 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1426 tdep->gregset = NULL;
1427 tdep->sizeof_gregset = 0;
1428 tdep->fpregset = NULL;
1429 tdep->sizeof_fpregset = 0;
1430 tdep->plt_entry_size = 0;
1431 tdep->step_trap = sparc_step_trap;
1432
1433 set_gdbarch_long_double_bit (gdbarch, 128);
1434 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1435
1436 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1437 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1438 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1439 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1440 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1441 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1442
1443 /* Register numbers of various important registers. */
1444 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1445 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1446 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1447
1448 /* Call dummy code. */
1449 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1450 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1451 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1452
1453 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1454 set_gdbarch_stabs_argument_has_addr
1455 (gdbarch, sparc32_stabs_argument_has_addr);
1456
1457 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1458
1459 /* Stack grows downward. */
1460 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1461
1462 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1463
1464 set_gdbarch_frame_args_skip (gdbarch, 8);
1465
1466 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1467
1468 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1469 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1470
1471 set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
1472
1473 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1474
1475 frame_base_set_default (gdbarch, &sparc32_frame_base);
1476
1477 /* Hook in the DWARF CFI frame unwinder. */
1478 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1479 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1480 StackGhost issues have been resolved. */
1481
1482 /* Hook in ABI-specific overrides, if they have been registered. */
1483 gdbarch_init_osabi (info, gdbarch);
1484
1485 frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer);
1486
1487 /* If we have register sets, enable the generic core file support. */
1488 if (tdep->gregset)
1489 set_gdbarch_regset_from_core_section (gdbarch,
1490 sparc_regset_from_core_section);
1491
1492 return gdbarch;
1493 }
1494 \f
1495 /* Helper functions for dealing with register windows. */
1496
1497 void
1498 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1499 {
1500 int offset = 0;
1501 gdb_byte buf[8];
1502 int i;
1503
1504 if (sp & 1)
1505 {
1506 /* Registers are 64-bit. */
1507 sp += BIAS;
1508
1509 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1510 {
1511 if (regnum == i || regnum == -1)
1512 {
1513 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1514
1515 /* Handle StackGhost. */
1516 if (i == SPARC_I7_REGNUM)
1517 {
1518 ULONGEST wcookie = sparc_fetch_wcookie ();
1519 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1520
1521 store_unsigned_integer (buf + offset, 8, i7 ^ wcookie);
1522 }
1523
1524 regcache_raw_supply (regcache, i, buf);
1525 }
1526 }
1527 }
1528 else
1529 {
1530 /* Registers are 32-bit. Toss any sign-extension of the stack
1531 pointer. */
1532 sp &= 0xffffffffUL;
1533
1534 /* Clear out the top half of the temporary buffer, and put the
1535 register value in the bottom half if we're in 64-bit mode. */
1536 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1537 {
1538 memset (buf, 0, 4);
1539 offset = 4;
1540 }
1541
1542 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1543 {
1544 if (regnum == i || regnum == -1)
1545 {
1546 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1547 buf + offset, 4);
1548
1549 /* Handle StackGhost. */
1550 if (i == SPARC_I7_REGNUM)
1551 {
1552 ULONGEST wcookie = sparc_fetch_wcookie ();
1553 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1554
1555 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1556 }
1557
1558 regcache_raw_supply (regcache, i, buf);
1559 }
1560 }
1561 }
1562 }
1563
1564 void
1565 sparc_collect_rwindow (const struct regcache *regcache,
1566 CORE_ADDR sp, int regnum)
1567 {
1568 int offset = 0;
1569 gdb_byte buf[8];
1570 int i;
1571
1572 if (sp & 1)
1573 {
1574 /* Registers are 64-bit. */
1575 sp += BIAS;
1576
1577 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1578 {
1579 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1580 {
1581 regcache_raw_collect (regcache, i, buf);
1582
1583 /* Handle StackGhost. */
1584 if (i == SPARC_I7_REGNUM)
1585 {
1586 ULONGEST wcookie = sparc_fetch_wcookie ();
1587 ULONGEST i7 = extract_unsigned_integer (buf + offset, 8);
1588
1589 store_unsigned_integer (buf, 8, i7 ^ wcookie);
1590 }
1591
1592 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1593 }
1594 }
1595 }
1596 else
1597 {
1598 /* Registers are 32-bit. Toss any sign-extension of the stack
1599 pointer. */
1600 sp &= 0xffffffffUL;
1601
1602 /* Only use the bottom half if we're in 64-bit mode. */
1603 if (gdbarch_ptr_bit (current_gdbarch) == 64)
1604 offset = 4;
1605
1606 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1607 {
1608 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1609 {
1610 regcache_raw_collect (regcache, i, buf);
1611
1612 /* Handle StackGhost. */
1613 if (i == SPARC_I7_REGNUM)
1614 {
1615 ULONGEST wcookie = sparc_fetch_wcookie ();
1616 ULONGEST i7 = extract_unsigned_integer (buf + offset, 4);
1617
1618 store_unsigned_integer (buf + offset, 4, i7 ^ wcookie);
1619 }
1620
1621 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1622 buf + offset, 4);
1623 }
1624 }
1625 }
1626 }
1627
1628 /* Helper functions for dealing with register sets. */
1629
1630 void
1631 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1632 struct regcache *regcache,
1633 int regnum, const void *gregs)
1634 {
1635 const gdb_byte *regs = gregs;
1636 int i;
1637
1638 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1639 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1640 regs + gregset->r_psr_offset);
1641
1642 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1643 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1644 regs + gregset->r_pc_offset);
1645
1646 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1647 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1648 regs + gregset->r_npc_offset);
1649
1650 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1651 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1652 regs + gregset->r_y_offset);
1653
1654 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1655 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1656
1657 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1658 {
1659 int offset = gregset->r_g1_offset;
1660
1661 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1662 {
1663 if (regnum == i || regnum == -1)
1664 regcache_raw_supply (regcache, i, regs + offset);
1665 offset += 4;
1666 }
1667 }
1668
1669 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1670 {
1671 /* Not all of the register set variants include Locals and
1672 Inputs. For those that don't, we read them off the stack. */
1673 if (gregset->r_l0_offset == -1)
1674 {
1675 ULONGEST sp;
1676
1677 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1678 sparc_supply_rwindow (regcache, sp, regnum);
1679 }
1680 else
1681 {
1682 int offset = gregset->r_l0_offset;
1683
1684 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1685 {
1686 if (regnum == i || regnum == -1)
1687 regcache_raw_supply (regcache, i, regs + offset);
1688 offset += 4;
1689 }
1690 }
1691 }
1692 }
1693
1694 void
1695 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1696 const struct regcache *regcache,
1697 int regnum, void *gregs)
1698 {
1699 gdb_byte *regs = gregs;
1700 int i;
1701
1702 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1703 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1704 regs + gregset->r_psr_offset);
1705
1706 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1707 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1708 regs + gregset->r_pc_offset);
1709
1710 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1711 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1712 regs + gregset->r_npc_offset);
1713
1714 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1715 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1716 regs + gregset->r_y_offset);
1717
1718 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1719 {
1720 int offset = gregset->r_g1_offset;
1721
1722 /* %g0 is always zero. */
1723 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1724 {
1725 if (regnum == i || regnum == -1)
1726 regcache_raw_collect (regcache, i, regs + offset);
1727 offset += 4;
1728 }
1729 }
1730
1731 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1732 {
1733 /* Not all of the register set variants include Locals and
1734 Inputs. For those that don't, we read them off the stack. */
1735 if (gregset->r_l0_offset != -1)
1736 {
1737 int offset = gregset->r_l0_offset;
1738
1739 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1740 {
1741 if (regnum == i || regnum == -1)
1742 regcache_raw_collect (regcache, i, regs + offset);
1743 offset += 4;
1744 }
1745 }
1746 }
1747 }
1748
1749 void
1750 sparc32_supply_fpregset (struct regcache *regcache,
1751 int regnum, const void *fpregs)
1752 {
1753 const gdb_byte *regs = fpregs;
1754 int i;
1755
1756 for (i = 0; i < 32; i++)
1757 {
1758 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1759 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1760 }
1761
1762 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1763 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1764 }
1765
1766 void
1767 sparc32_collect_fpregset (const struct regcache *regcache,
1768 int regnum, void *fpregs)
1769 {
1770 gdb_byte *regs = fpregs;
1771 int i;
1772
1773 for (i = 0; i < 32; i++)
1774 {
1775 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1776 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1777 }
1778
1779 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1780 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1781 }
1782 \f
1783
1784 /* SunOS 4. */
1785
1786 /* From <machine/reg.h>. */
1787 const struct sparc_gregset sparc32_sunos4_gregset =
1788 {
1789 0 * 4, /* %psr */
1790 1 * 4, /* %pc */
1791 2 * 4, /* %npc */
1792 3 * 4, /* %y */
1793 -1, /* %wim */
1794 -1, /* %tbr */
1795 4 * 4, /* %g1 */
1796 -1 /* %l0 */
1797 };
1798 \f
1799
1800 /* Provide a prototype to silence -Wmissing-prototypes. */
1801 void _initialize_sparc_tdep (void);
1802
1803 void
1804 _initialize_sparc_tdep (void)
1805 {
1806 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
1807
1808 /* Initialize the SPARC-specific register types. */
1809 sparc_init_types();
1810 }
This page took 0.505561 seconds and 4 git commands to generate.