Use ui_file_as_string in gdbarch.sh/gdbarch.c
[deliverable/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for SPARC.
2
3 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "dwarf2-frame.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "sparc-tdep.h"
39 #include "sparc-ravenscar-thread.h"
40 #include <algorithm>
41
42 struct regset;
43
44 /* This file implements the SPARC 32-bit ABI as defined by the section
45 "Low-Level System Information" of the SPARC Compliance Definition
46 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
47 lists changes with respect to the original 32-bit psABI as defined
48 in the "System V ABI, SPARC Processor Supplement".
49
50 Note that if we talk about SunOS, we mean SunOS 4.x, which was
51 BSD-based, which is sometimes (retroactively?) referred to as
52 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
53 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
54 suffering from severe version number inflation). Solaris 2.x is
55 also known as SunOS 5.x, since that's what uname(1) says. Solaris
56 2.x is SVR4-based. */
57
58 /* Please use the sparc32_-prefix for 32-bit specific code, the
59 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
60 code that can handle both. The 64-bit specific code lives in
61 sparc64-tdep.c; don't add any here. */
62
63 /* The SPARC Floating-Point Quad-Precision format is similar to
64 big-endian IA-64 Quad-Precision format. */
65 #define floatformats_sparc_quad floatformats_ia64_quad
66
67 /* The stack pointer is offset from the stack frame by a BIAS of 2047
68 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
69 hosts, so undefine it first. */
70 #undef BIAS
71 #define BIAS 2047
72
73 /* Macros to extract fields from SPARC instructions. */
74 #define X_OP(i) (((i) >> 30) & 0x3)
75 #define X_RD(i) (((i) >> 25) & 0x1f)
76 #define X_A(i) (((i) >> 29) & 1)
77 #define X_COND(i) (((i) >> 25) & 0xf)
78 #define X_OP2(i) (((i) >> 22) & 0x7)
79 #define X_IMM22(i) ((i) & 0x3fffff)
80 #define X_OP3(i) (((i) >> 19) & 0x3f)
81 #define X_RS1(i) (((i) >> 14) & 0x1f)
82 #define X_RS2(i) ((i) & 0x1f)
83 #define X_I(i) (((i) >> 13) & 1)
84 /* Sign extension macros. */
85 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
86 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
87 #define X_DISP10(i) ((((((i) >> 11) && 0x300) | (((i) >> 5) & 0xff)) ^ 0x200) - 0x200)
88 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
89 /* Macros to identify some instructions. */
90 /* RETURN (RETT in V8) */
91 #define X_RETTURN(i) ((X_OP (i) == 0x2) && (X_OP3 (i) == 0x39))
92
93 /* Fetch the instruction at PC. Instructions are always big-endian
94 even if the processor operates in little-endian mode. */
95
96 unsigned long
97 sparc_fetch_instruction (CORE_ADDR pc)
98 {
99 gdb_byte buf[4];
100 unsigned long insn;
101 int i;
102
103 /* If we can't read the instruction at PC, return zero. */
104 if (target_read_memory (pc, buf, sizeof (buf)))
105 return 0;
106
107 insn = 0;
108 for (i = 0; i < sizeof (buf); i++)
109 insn = (insn << 8) | buf[i];
110 return insn;
111 }
112 \f
113
114 /* Return non-zero if the instruction corresponding to PC is an "unimp"
115 instruction. */
116
117 static int
118 sparc_is_unimp_insn (CORE_ADDR pc)
119 {
120 const unsigned long insn = sparc_fetch_instruction (pc);
121
122 return ((insn & 0xc1c00000) == 0);
123 }
124
125 /* Return non-zero if the instruction corresponding to PC is an
126 "annulled" branch, i.e. the annul bit is set. */
127
128 int
129 sparc_is_annulled_branch_insn (CORE_ADDR pc)
130 {
131 /* The branch instructions featuring an annul bit can be identified
132 by the following bit patterns:
133
134 OP=0
135 OP2=1: Branch on Integer Condition Codes with Prediction (BPcc).
136 OP2=2: Branch on Integer Condition Codes (Bcc).
137 OP2=5: Branch on FP Condition Codes with Prediction (FBfcc).
138 OP2=6: Branch on FP Condition Codes (FBcc).
139 OP2=3 && Bit28=0:
140 Branch on Integer Register with Prediction (BPr).
141
142 This leaves out ILLTRAP (OP2=0), SETHI/NOP (OP2=4) and the V8
143 coprocessor branch instructions (Op2=7). */
144
145 const unsigned long insn = sparc_fetch_instruction (pc);
146 const unsigned op2 = X_OP2 (insn);
147
148 if ((X_OP (insn) == 0)
149 && ((op2 == 1) || (op2 == 2) || (op2 == 5) || (op2 == 6)
150 || ((op2 == 3) && ((insn & 0x10000000) == 0))))
151 return X_A (insn);
152 else
153 return 0;
154 }
155
156 /* OpenBSD/sparc includes StackGhost, which according to the author's
157 website http://stackghost.cerias.purdue.edu "... transparently and
158 automatically protects applications' stack frames; more
159 specifically, it guards the return pointers. The protection
160 mechanisms require no application source or binary modification and
161 imposes only a negligible performance penalty."
162
163 The same website provides the following description of how
164 StackGhost works:
165
166 "StackGhost interfaces with the kernel trap handler that would
167 normally write out registers to the stack and the handler that
168 would read them back in. By XORing a cookie into the
169 return-address saved in the user stack when it is actually written
170 to the stack, and then XOR it out when the return-address is pulled
171 from the stack, StackGhost can cause attacker corrupted return
172 pointers to behave in a manner the attacker cannot predict.
173 StackGhost can also use several unused bits in the return pointer
174 to detect a smashed return pointer and abort the process."
175
176 For GDB this means that whenever we're reading %i7 from a stack
177 frame's window save area, we'll have to XOR the cookie.
178
179 More information on StackGuard can be found on in:
180
181 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
182 Stack Protection." 2001. Published in USENIX Security Symposium
183 '01. */
184
185 /* Fetch StackGhost Per-Process XOR cookie. */
186
187 ULONGEST
188 sparc_fetch_wcookie (struct gdbarch *gdbarch)
189 {
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 struct target_ops *ops = &current_target;
192 gdb_byte buf[8];
193 int len;
194
195 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
196 if (len == -1)
197 return 0;
198
199 /* We should have either an 32-bit or an 64-bit cookie. */
200 gdb_assert (len == 4 || len == 8);
201
202 return extract_unsigned_integer (buf, len, byte_order);
203 }
204 \f
205
206 /* The functions on this page are intended to be used to classify
207 function arguments. */
208
209 /* Check whether TYPE is "Integral or Pointer". */
210
211 static int
212 sparc_integral_or_pointer_p (const struct type *type)
213 {
214 int len = TYPE_LENGTH (type);
215
216 switch (TYPE_CODE (type))
217 {
218 case TYPE_CODE_INT:
219 case TYPE_CODE_BOOL:
220 case TYPE_CODE_CHAR:
221 case TYPE_CODE_ENUM:
222 case TYPE_CODE_RANGE:
223 /* We have byte, half-word, word and extended-word/doubleword
224 integral types. The doubleword is an extension to the
225 original 32-bit ABI by the SCD 2.4.x. */
226 return (len == 1 || len == 2 || len == 4 || len == 8);
227 case TYPE_CODE_PTR:
228 case TYPE_CODE_REF:
229 /* Allow either 32-bit or 64-bit pointers. */
230 return (len == 4 || len == 8);
231 default:
232 break;
233 }
234
235 return 0;
236 }
237
238 /* Check whether TYPE is "Floating". */
239
240 static int
241 sparc_floating_p (const struct type *type)
242 {
243 switch (TYPE_CODE (type))
244 {
245 case TYPE_CODE_FLT:
246 {
247 int len = TYPE_LENGTH (type);
248 return (len == 4 || len == 8 || len == 16);
249 }
250 default:
251 break;
252 }
253
254 return 0;
255 }
256
257 /* Check whether TYPE is "Complex Floating". */
258
259 static int
260 sparc_complex_floating_p (const struct type *type)
261 {
262 switch (TYPE_CODE (type))
263 {
264 case TYPE_CODE_COMPLEX:
265 {
266 int len = TYPE_LENGTH (type);
267 return (len == 8 || len == 16 || len == 32);
268 }
269 default:
270 break;
271 }
272
273 return 0;
274 }
275
276 /* Check whether TYPE is "Structure or Union".
277
278 In terms of Ada subprogram calls, arrays are treated the same as
279 struct and union types. So this function also returns non-zero
280 for array types. */
281
282 static int
283 sparc_structure_or_union_p (const struct type *type)
284 {
285 switch (TYPE_CODE (type))
286 {
287 case TYPE_CODE_STRUCT:
288 case TYPE_CODE_UNION:
289 case TYPE_CODE_ARRAY:
290 return 1;
291 default:
292 break;
293 }
294
295 return 0;
296 }
297
298 /* Register information. */
299
300 static const char *sparc32_register_names[] =
301 {
302 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
303 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
304 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
305 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
306
307 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
308 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
309 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
310 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
311
312 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
313 };
314
315 /* Total number of registers. */
316 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
317
318 /* We provide the aliases %d0..%d30 for the floating registers as
319 "psuedo" registers. */
320
321 static const char *sparc32_pseudo_register_names[] =
322 {
323 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
324 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
325 };
326
327 /* Total number of pseudo registers. */
328 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
329
330 /* Return the name of register REGNUM. */
331
332 static const char *
333 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
334 {
335 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
336 return sparc32_register_names[regnum];
337
338 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
339 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
340
341 return NULL;
342 }
343 \f
344 /* Construct types for ISA-specific registers. */
345
346 static struct type *
347 sparc_psr_type (struct gdbarch *gdbarch)
348 {
349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
350
351 if (!tdep->sparc_psr_type)
352 {
353 struct type *type;
354
355 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
356 append_flags_type_flag (type, 5, "ET");
357 append_flags_type_flag (type, 6, "PS");
358 append_flags_type_flag (type, 7, "S");
359 append_flags_type_flag (type, 12, "EF");
360 append_flags_type_flag (type, 13, "EC");
361
362 tdep->sparc_psr_type = type;
363 }
364
365 return tdep->sparc_psr_type;
366 }
367
368 static struct type *
369 sparc_fsr_type (struct gdbarch *gdbarch)
370 {
371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
372
373 if (!tdep->sparc_fsr_type)
374 {
375 struct type *type;
376
377 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
378 append_flags_type_flag (type, 0, "NXA");
379 append_flags_type_flag (type, 1, "DZA");
380 append_flags_type_flag (type, 2, "UFA");
381 append_flags_type_flag (type, 3, "OFA");
382 append_flags_type_flag (type, 4, "NVA");
383 append_flags_type_flag (type, 5, "NXC");
384 append_flags_type_flag (type, 6, "DZC");
385 append_flags_type_flag (type, 7, "UFC");
386 append_flags_type_flag (type, 8, "OFC");
387 append_flags_type_flag (type, 9, "NVC");
388 append_flags_type_flag (type, 22, "NS");
389 append_flags_type_flag (type, 23, "NXM");
390 append_flags_type_flag (type, 24, "DZM");
391 append_flags_type_flag (type, 25, "UFM");
392 append_flags_type_flag (type, 26, "OFM");
393 append_flags_type_flag (type, 27, "NVM");
394
395 tdep->sparc_fsr_type = type;
396 }
397
398 return tdep->sparc_fsr_type;
399 }
400
401 /* Return the GDB type object for the "standard" data type of data in
402 register REGNUM. */
403
404 static struct type *
405 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
406 {
407 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
408 return builtin_type (gdbarch)->builtin_float;
409
410 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
411 return builtin_type (gdbarch)->builtin_double;
412
413 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
414 return builtin_type (gdbarch)->builtin_data_ptr;
415
416 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
417 return builtin_type (gdbarch)->builtin_func_ptr;
418
419 if (regnum == SPARC32_PSR_REGNUM)
420 return sparc_psr_type (gdbarch);
421
422 if (regnum == SPARC32_FSR_REGNUM)
423 return sparc_fsr_type (gdbarch);
424
425 return builtin_type (gdbarch)->builtin_int32;
426 }
427
428 static enum register_status
429 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
430 struct regcache *regcache,
431 int regnum, gdb_byte *buf)
432 {
433 enum register_status status;
434
435 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
436
437 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
438 status = regcache_raw_read (regcache, regnum, buf);
439 if (status == REG_VALID)
440 status = regcache_raw_read (regcache, regnum + 1, buf + 4);
441 return status;
442 }
443
444 static void
445 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
446 struct regcache *regcache,
447 int regnum, const gdb_byte *buf)
448 {
449 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
450
451 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
452 regcache_raw_write (regcache, regnum, buf);
453 regcache_raw_write (regcache, regnum + 1, buf + 4);
454 }
455 \f
456 /* Implement the stack_frame_destroyed_p gdbarch method. */
457
458 int
459 sparc_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
460 {
461 /* This function must return true if we are one instruction after an
462 instruction that destroyed the stack frame of the current
463 function. The SPARC instructions used to restore the callers
464 stack frame are RESTORE and RETURN/RETT.
465
466 Of these RETURN/RETT is a branch instruction and thus we return
467 true if we are in its delay slot.
468
469 RESTORE is almost always found in the delay slot of a branch
470 instruction that transfers control to the caller, such as JMPL.
471 Thus the next instruction is in the caller frame and we don't
472 need to do anything about it. */
473
474 unsigned int insn = sparc_fetch_instruction (pc - 4);
475
476 return X_RETTURN (insn);
477 }
478 \f
479
480 static CORE_ADDR
481 sparc32_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
482 {
483 /* The ABI requires double-word alignment. */
484 return address & ~0x7;
485 }
486
487 static CORE_ADDR
488 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
489 CORE_ADDR funcaddr,
490 struct value **args, int nargs,
491 struct type *value_type,
492 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
493 struct regcache *regcache)
494 {
495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
496
497 *bp_addr = sp - 4;
498 *real_pc = funcaddr;
499
500 if (using_struct_return (gdbarch, NULL, value_type))
501 {
502 gdb_byte buf[4];
503
504 /* This is an UNIMP instruction. */
505 store_unsigned_integer (buf, 4, byte_order,
506 TYPE_LENGTH (value_type) & 0x1fff);
507 write_memory (sp - 8, buf, 4);
508 return sp - 8;
509 }
510
511 return sp - 4;
512 }
513
514 static CORE_ADDR
515 sparc32_store_arguments (struct regcache *regcache, int nargs,
516 struct value **args, CORE_ADDR sp,
517 int struct_return, CORE_ADDR struct_addr)
518 {
519 struct gdbarch *gdbarch = get_regcache_arch (regcache);
520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
521 /* Number of words in the "parameter array". */
522 int num_elements = 0;
523 int element = 0;
524 int i;
525
526 for (i = 0; i < nargs; i++)
527 {
528 struct type *type = value_type (args[i]);
529 int len = TYPE_LENGTH (type);
530
531 if (sparc_structure_or_union_p (type)
532 || (sparc_floating_p (type) && len == 16)
533 || sparc_complex_floating_p (type))
534 {
535 /* Structure, Union and Quad-Precision Arguments. */
536 sp -= len;
537
538 /* Use doubleword alignment for these values. That's always
539 correct, and wasting a few bytes shouldn't be a problem. */
540 sp &= ~0x7;
541
542 write_memory (sp, value_contents (args[i]), len);
543 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
544 num_elements++;
545 }
546 else if (sparc_floating_p (type))
547 {
548 /* Floating arguments. */
549 gdb_assert (len == 4 || len == 8);
550 num_elements += (len / 4);
551 }
552 else
553 {
554 /* Integral and pointer arguments. */
555 gdb_assert (sparc_integral_or_pointer_p (type));
556
557 if (len < 4)
558 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
559 args[i]);
560 num_elements += ((len + 3) / 4);
561 }
562 }
563
564 /* Always allocate at least six words. */
565 sp -= std::max (6, num_elements) * 4;
566
567 /* The psABI says that "Software convention requires space for the
568 struct/union return value pointer, even if the word is unused." */
569 sp -= 4;
570
571 /* The psABI says that "Although software convention and the
572 operating system require every stack frame to be doubleword
573 aligned." */
574 sp &= ~0x7;
575
576 for (i = 0; i < nargs; i++)
577 {
578 const bfd_byte *valbuf = value_contents (args[i]);
579 struct type *type = value_type (args[i]);
580 int len = TYPE_LENGTH (type);
581
582 gdb_assert (len == 4 || len == 8);
583
584 if (element < 6)
585 {
586 int regnum = SPARC_O0_REGNUM + element;
587
588 regcache_cooked_write (regcache, regnum, valbuf);
589 if (len > 4 && element < 5)
590 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
591 }
592
593 /* Always store the argument in memory. */
594 write_memory (sp + 4 + element * 4, valbuf, len);
595 element += len / 4;
596 }
597
598 gdb_assert (element == num_elements);
599
600 if (struct_return)
601 {
602 gdb_byte buf[4];
603
604 store_unsigned_integer (buf, 4, byte_order, struct_addr);
605 write_memory (sp, buf, 4);
606 }
607
608 return sp;
609 }
610
611 static CORE_ADDR
612 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
613 struct regcache *regcache, CORE_ADDR bp_addr,
614 int nargs, struct value **args, CORE_ADDR sp,
615 int struct_return, CORE_ADDR struct_addr)
616 {
617 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
618
619 /* Set return address. */
620 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
621
622 /* Set up function arguments. */
623 sp = sparc32_store_arguments (regcache, nargs, args, sp,
624 struct_return, struct_addr);
625
626 /* Allocate the 16-word window save area. */
627 sp -= 16 * 4;
628
629 /* Stack should be doubleword aligned at this point. */
630 gdb_assert (sp % 8 == 0);
631
632 /* Finally, update the stack pointer. */
633 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
634
635 return sp;
636 }
637 \f
638
639 /* Use the program counter to determine the contents and size of a
640 breakpoint instruction. Return a pointer to a string of bytes that
641 encode a breakpoint instruction, store the length of the string in
642 *LEN and optionally adjust *PC to point to the correct memory
643 location for inserting the breakpoint. */
644 constexpr gdb_byte sparc_break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
645
646 typedef BP_MANIPULATION (sparc_break_insn) sparc_breakpoint;
647 \f
648
649 /* Allocate and initialize a frame cache. */
650
651 static struct sparc_frame_cache *
652 sparc_alloc_frame_cache (void)
653 {
654 struct sparc_frame_cache *cache;
655
656 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
657
658 /* Base address. */
659 cache->base = 0;
660 cache->pc = 0;
661
662 /* Frameless until proven otherwise. */
663 cache->frameless_p = 1;
664 cache->frame_offset = 0;
665 cache->saved_regs_mask = 0;
666 cache->copied_regs_mask = 0;
667 cache->struct_return_p = 0;
668
669 return cache;
670 }
671
672 /* GCC generates several well-known sequences of instructions at the begining
673 of each function prologue when compiling with -fstack-check. If one of
674 such sequences starts at START_PC, then return the address of the
675 instruction immediately past this sequence. Otherwise, return START_PC. */
676
677 static CORE_ADDR
678 sparc_skip_stack_check (const CORE_ADDR start_pc)
679 {
680 CORE_ADDR pc = start_pc;
681 unsigned long insn;
682 int probing_loop = 0;
683
684 /* With GCC, all stack checking sequences begin with the same two
685 instructions, plus an optional one in the case of a probing loop:
686
687 sethi <some immediate>, %g1
688 sub %sp, %g1, %g1
689
690 or:
691
692 sethi <some immediate>, %g1
693 sethi <some immediate>, %g4
694 sub %sp, %g1, %g1
695
696 or:
697
698 sethi <some immediate>, %g1
699 sub %sp, %g1, %g1
700 sethi <some immediate>, %g4
701
702 If the optional instruction is found (setting g4), assume that a
703 probing loop will follow. */
704
705 /* sethi <some immediate>, %g1 */
706 insn = sparc_fetch_instruction (pc);
707 pc = pc + 4;
708 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
709 return start_pc;
710
711 /* optional: sethi <some immediate>, %g4 */
712 insn = sparc_fetch_instruction (pc);
713 pc = pc + 4;
714 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
715 {
716 probing_loop = 1;
717 insn = sparc_fetch_instruction (pc);
718 pc = pc + 4;
719 }
720
721 /* sub %sp, %g1, %g1 */
722 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
723 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
724 return start_pc;
725
726 insn = sparc_fetch_instruction (pc);
727 pc = pc + 4;
728
729 /* optional: sethi <some immediate>, %g4 */
730 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
731 {
732 probing_loop = 1;
733 insn = sparc_fetch_instruction (pc);
734 pc = pc + 4;
735 }
736
737 /* First possible sequence:
738 [first two instructions above]
739 clr [%g1 - some immediate] */
740
741 /* clr [%g1 - some immediate] */
742 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
743 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
744 {
745 /* Valid stack-check sequence, return the new PC. */
746 return pc;
747 }
748
749 /* Second possible sequence: A small number of probes.
750 [first two instructions above]
751 clr [%g1]
752 add %g1, -<some immediate>, %g1
753 clr [%g1]
754 [repeat the two instructions above any (small) number of times]
755 clr [%g1 - some immediate] */
756
757 /* clr [%g1] */
758 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
759 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
760 {
761 while (1)
762 {
763 /* add %g1, -<some immediate>, %g1 */
764 insn = sparc_fetch_instruction (pc);
765 pc = pc + 4;
766 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
767 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
768 break;
769
770 /* clr [%g1] */
771 insn = sparc_fetch_instruction (pc);
772 pc = pc + 4;
773 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
774 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
775 return start_pc;
776 }
777
778 /* clr [%g1 - some immediate] */
779 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
780 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
781 return start_pc;
782
783 /* We found a valid stack-check sequence, return the new PC. */
784 return pc;
785 }
786
787 /* Third sequence: A probing loop.
788 [first three instructions above]
789 sub %g1, %g4, %g4
790 cmp %g1, %g4
791 be <disp>
792 add %g1, -<some immediate>, %g1
793 ba <disp>
794 clr [%g1]
795
796 And an optional last probe for the remainder:
797
798 clr [%g4 - some immediate] */
799
800 if (probing_loop)
801 {
802 /* sub %g1, %g4, %g4 */
803 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
804 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
805 return start_pc;
806
807 /* cmp %g1, %g4 */
808 insn = sparc_fetch_instruction (pc);
809 pc = pc + 4;
810 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
811 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
812 return start_pc;
813
814 /* be <disp> */
815 insn = sparc_fetch_instruction (pc);
816 pc = pc + 4;
817 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
818 return start_pc;
819
820 /* add %g1, -<some immediate>, %g1 */
821 insn = sparc_fetch_instruction (pc);
822 pc = pc + 4;
823 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
824 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
825 return start_pc;
826
827 /* ba <disp> */
828 insn = sparc_fetch_instruction (pc);
829 pc = pc + 4;
830 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
831 return start_pc;
832
833 /* clr [%g1] (st %g0, [%g1] or st %g0, [%g1+0]) */
834 insn = sparc_fetch_instruction (pc);
835 pc = pc + 4;
836 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4
837 && X_RD (insn) == 0 && X_RS1 (insn) == 1
838 && (!X_I(insn) || X_SIMM13 (insn) == 0)))
839 return start_pc;
840
841 /* We found a valid stack-check sequence, return the new PC. */
842
843 /* optional: clr [%g4 - some immediate] */
844 insn = sparc_fetch_instruction (pc);
845 pc = pc + 4;
846 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
847 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
848 return pc - 4;
849 else
850 return pc;
851 }
852
853 /* No stack check code in our prologue, return the start_pc. */
854 return start_pc;
855 }
856
857 /* Record the effect of a SAVE instruction on CACHE. */
858
859 void
860 sparc_record_save_insn (struct sparc_frame_cache *cache)
861 {
862 /* The frame is set up. */
863 cache->frameless_p = 0;
864
865 /* The frame pointer contains the CFA. */
866 cache->frame_offset = 0;
867
868 /* The `local' and `in' registers are all saved. */
869 cache->saved_regs_mask = 0xffff;
870
871 /* The `out' registers are all renamed. */
872 cache->copied_regs_mask = 0xff;
873 }
874
875 /* Do a full analysis of the prologue at PC and update CACHE accordingly.
876 Bail out early if CURRENT_PC is reached. Return the address where
877 the analysis stopped.
878
879 We handle both the traditional register window model and the single
880 register window (aka flat) model. */
881
882 CORE_ADDR
883 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
884 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
885 {
886 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
887 unsigned long insn;
888 int offset = 0;
889 int dest = -1;
890
891 pc = sparc_skip_stack_check (pc);
892
893 if (current_pc <= pc)
894 return current_pc;
895
896 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
897 SPARC the linker usually defines a symbol (typically
898 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
899 This symbol makes us end up here with PC pointing at the start of
900 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
901 would do our normal prologue analysis, we would probably conclude
902 that we've got a frame when in reality we don't, since the
903 dynamic linker patches up the first PLT with some code that
904 starts with a SAVE instruction. Patch up PC such that it points
905 at the start of our PLT entry. */
906 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc))
907 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
908
909 insn = sparc_fetch_instruction (pc);
910
911 /* Recognize store insns and record their sources. */
912 while (X_OP (insn) == 3
913 && (X_OP3 (insn) == 0x4 /* stw */
914 || X_OP3 (insn) == 0x7 /* std */
915 || X_OP3 (insn) == 0xe) /* stx */
916 && X_RS1 (insn) == SPARC_SP_REGNUM)
917 {
918 int regnum = X_RD (insn);
919
920 /* Recognize stores into the corresponding stack slots. */
921 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
922 && ((X_I (insn)
923 && X_SIMM13 (insn) == (X_OP3 (insn) == 0xe
924 ? (regnum - SPARC_L0_REGNUM) * 8 + BIAS
925 : (regnum - SPARC_L0_REGNUM) * 4))
926 || (!X_I (insn) && regnum == SPARC_L0_REGNUM)))
927 {
928 cache->saved_regs_mask |= (1 << (regnum - SPARC_L0_REGNUM));
929 if (X_OP3 (insn) == 0x7)
930 cache->saved_regs_mask |= (1 << (regnum + 1 - SPARC_L0_REGNUM));
931 }
932
933 offset += 4;
934
935 insn = sparc_fetch_instruction (pc + offset);
936 }
937
938 /* Recognize a SETHI insn and record its destination. */
939 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
940 {
941 dest = X_RD (insn);
942 offset += 4;
943
944 insn = sparc_fetch_instruction (pc + offset);
945 }
946
947 /* Allow for an arithmetic operation on DEST or %g1. */
948 if (X_OP (insn) == 2 && X_I (insn)
949 && (X_RD (insn) == 1 || X_RD (insn) == dest))
950 {
951 offset += 4;
952
953 insn = sparc_fetch_instruction (pc + offset);
954 }
955
956 /* Check for the SAVE instruction that sets up the frame. */
957 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
958 {
959 sparc_record_save_insn (cache);
960 offset += 4;
961 return pc + offset;
962 }
963
964 /* Check for an arithmetic operation on %sp. */
965 if (X_OP (insn) == 2
966 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
967 && X_RS1 (insn) == SPARC_SP_REGNUM
968 && X_RD (insn) == SPARC_SP_REGNUM)
969 {
970 if (X_I (insn))
971 {
972 cache->frame_offset = X_SIMM13 (insn);
973 if (X_OP3 (insn) == 0)
974 cache->frame_offset = -cache->frame_offset;
975 }
976 offset += 4;
977
978 insn = sparc_fetch_instruction (pc + offset);
979
980 /* Check for an arithmetic operation that sets up the frame. */
981 if (X_OP (insn) == 2
982 && (X_OP3 (insn) == 0 || X_OP3 (insn) == 0x4)
983 && X_RS1 (insn) == SPARC_SP_REGNUM
984 && X_RD (insn) == SPARC_FP_REGNUM)
985 {
986 cache->frameless_p = 0;
987 cache->frame_offset = 0;
988 /* We could check that the amount subtracted to %sp above is the
989 same as the one added here, but this seems superfluous. */
990 cache->copied_regs_mask |= 0x40;
991 offset += 4;
992
993 insn = sparc_fetch_instruction (pc + offset);
994 }
995
996 /* Check for a move (or) operation that copies the return register. */
997 if (X_OP (insn) == 2
998 && X_OP3 (insn) == 0x2
999 && !X_I (insn)
1000 && X_RS1 (insn) == SPARC_G0_REGNUM
1001 && X_RS2 (insn) == SPARC_O7_REGNUM
1002 && X_RD (insn) == SPARC_I7_REGNUM)
1003 {
1004 cache->copied_regs_mask |= 0x80;
1005 offset += 4;
1006 }
1007
1008 return pc + offset;
1009 }
1010
1011 return pc;
1012 }
1013
1014 static CORE_ADDR
1015 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1016 {
1017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1018 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
1019 }
1020
1021 /* Return PC of first real instruction of the function starting at
1022 START_PC. */
1023
1024 static CORE_ADDR
1025 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1026 {
1027 struct symtab_and_line sal;
1028 CORE_ADDR func_start, func_end;
1029 struct sparc_frame_cache cache;
1030
1031 /* This is the preferred method, find the end of the prologue by
1032 using the debugging information. */
1033 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
1034 {
1035 sal = find_pc_line (func_start, 0);
1036
1037 if (sal.end < func_end
1038 && start_pc <= sal.end)
1039 return sal.end;
1040 }
1041
1042 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
1043
1044 /* The psABI says that "Although the first 6 words of arguments
1045 reside in registers, the standard stack frame reserves space for
1046 them.". It also suggests that a function may use that space to
1047 "write incoming arguments 0 to 5" into that space, and that's
1048 indeed what GCC seems to be doing. In that case GCC will
1049 generate debug information that points to the stack slots instead
1050 of the registers, so we should consider the instructions that
1051 write out these incoming arguments onto the stack. */
1052
1053 while (1)
1054 {
1055 unsigned long insn = sparc_fetch_instruction (start_pc);
1056
1057 /* Recognize instructions that store incoming arguments into the
1058 corresponding stack slots. */
1059 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04
1060 && X_I (insn) && X_RS1 (insn) == SPARC_FP_REGNUM)
1061 {
1062 int regnum = X_RD (insn);
1063
1064 /* Case of arguments still in %o[0..5]. */
1065 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O5_REGNUM
1066 && !(cache.copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM)))
1067 && X_SIMM13 (insn) == 68 + (regnum - SPARC_O0_REGNUM) * 4)
1068 {
1069 start_pc += 4;
1070 continue;
1071 }
1072
1073 /* Case of arguments copied into %i[0..5]. */
1074 if (regnum >= SPARC_I0_REGNUM && regnum <= SPARC_I5_REGNUM
1075 && (cache.copied_regs_mask & (1 << (regnum - SPARC_I0_REGNUM)))
1076 && X_SIMM13 (insn) == 68 + (regnum - SPARC_I0_REGNUM) * 4)
1077 {
1078 start_pc += 4;
1079 continue;
1080 }
1081 }
1082
1083 break;
1084 }
1085
1086 return start_pc;
1087 }
1088
1089 /* Normal frames. */
1090
1091 struct sparc_frame_cache *
1092 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
1093 {
1094 struct sparc_frame_cache *cache;
1095
1096 if (*this_cache)
1097 return (struct sparc_frame_cache *) *this_cache;
1098
1099 cache = sparc_alloc_frame_cache ();
1100 *this_cache = cache;
1101
1102 cache->pc = get_frame_func (this_frame);
1103 if (cache->pc != 0)
1104 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
1105 get_frame_pc (this_frame), cache);
1106
1107 if (cache->frameless_p)
1108 {
1109 /* This function is frameless, so %fp (%i6) holds the frame
1110 pointer for our calling frame. Use %sp (%o6) as this frame's
1111 base address. */
1112 cache->base =
1113 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1114 }
1115 else
1116 {
1117 /* For normal frames, %fp (%i6) holds the frame pointer, the
1118 base address for the current stack frame. */
1119 cache->base =
1120 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
1121 }
1122
1123 cache->base += cache->frame_offset;
1124
1125 if (cache->base & 1)
1126 cache->base += BIAS;
1127
1128 return cache;
1129 }
1130
1131 static int
1132 sparc32_struct_return_from_sym (struct symbol *sym)
1133 {
1134 struct type *type = check_typedef (SYMBOL_TYPE (sym));
1135 enum type_code code = TYPE_CODE (type);
1136
1137 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1138 {
1139 type = check_typedef (TYPE_TARGET_TYPE (type));
1140 if (sparc_structure_or_union_p (type)
1141 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1142 return 1;
1143 }
1144
1145 return 0;
1146 }
1147
1148 struct sparc_frame_cache *
1149 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
1150 {
1151 struct sparc_frame_cache *cache;
1152 struct symbol *sym;
1153
1154 if (*this_cache)
1155 return (struct sparc_frame_cache *) *this_cache;
1156
1157 cache = sparc_frame_cache (this_frame, this_cache);
1158
1159 sym = find_pc_function (cache->pc);
1160 if (sym)
1161 {
1162 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
1163 }
1164 else
1165 {
1166 /* There is no debugging information for this function to
1167 help us determine whether this function returns a struct
1168 or not. So we rely on another heuristic which is to check
1169 the instruction at the return address and see if this is
1170 an "unimp" instruction. If it is, then it is a struct-return
1171 function. */
1172 CORE_ADDR pc;
1173 int regnum =
1174 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1175
1176 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
1177 if (sparc_is_unimp_insn (pc))
1178 cache->struct_return_p = 1;
1179 }
1180
1181 return cache;
1182 }
1183
1184 static void
1185 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
1186 struct frame_id *this_id)
1187 {
1188 struct sparc_frame_cache *cache =
1189 sparc32_frame_cache (this_frame, this_cache);
1190
1191 /* This marks the outermost frame. */
1192 if (cache->base == 0)
1193 return;
1194
1195 (*this_id) = frame_id_build (cache->base, cache->pc);
1196 }
1197
1198 static struct value *
1199 sparc32_frame_prev_register (struct frame_info *this_frame,
1200 void **this_cache, int regnum)
1201 {
1202 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1203 struct sparc_frame_cache *cache =
1204 sparc32_frame_cache (this_frame, this_cache);
1205
1206 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
1207 {
1208 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
1209
1210 /* If this functions has a Structure, Union or Quad-Precision
1211 return value, we have to skip the UNIMP instruction that encodes
1212 the size of the structure. */
1213 if (cache->struct_return_p)
1214 pc += 4;
1215
1216 regnum =
1217 (cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
1218 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
1219 return frame_unwind_got_constant (this_frame, regnum, pc);
1220 }
1221
1222 /* Handle StackGhost. */
1223 {
1224 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1225
1226 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
1227 {
1228 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1229 ULONGEST i7;
1230
1231 /* Read the value in from memory. */
1232 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
1233 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
1234 }
1235 }
1236
1237 /* The previous frame's `local' and `in' registers may have been saved
1238 in the register save area. */
1239 if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
1240 && (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
1241 {
1242 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1243
1244 return frame_unwind_got_memory (this_frame, regnum, addr);
1245 }
1246
1247 /* The previous frame's `out' registers may be accessible as the current
1248 frame's `in' registers. */
1249 if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
1250 && (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
1251 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1252
1253 return frame_unwind_got_register (this_frame, regnum, regnum);
1254 }
1255
1256 static const struct frame_unwind sparc32_frame_unwind =
1257 {
1258 NORMAL_FRAME,
1259 default_frame_unwind_stop_reason,
1260 sparc32_frame_this_id,
1261 sparc32_frame_prev_register,
1262 NULL,
1263 default_frame_sniffer
1264 };
1265 \f
1266
1267 static CORE_ADDR
1268 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1269 {
1270 struct sparc_frame_cache *cache =
1271 sparc32_frame_cache (this_frame, this_cache);
1272
1273 return cache->base;
1274 }
1275
1276 static const struct frame_base sparc32_frame_base =
1277 {
1278 &sparc32_frame_unwind,
1279 sparc32_frame_base_address,
1280 sparc32_frame_base_address,
1281 sparc32_frame_base_address
1282 };
1283
1284 static struct frame_id
1285 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1286 {
1287 CORE_ADDR sp;
1288
1289 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1290 if (sp & 1)
1291 sp += BIAS;
1292 return frame_id_build (sp, get_frame_pc (this_frame));
1293 }
1294 \f
1295
1296 /* Extract a function return value of TYPE from REGCACHE, and copy
1297 that into VALBUF. */
1298
1299 static void
1300 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1301 gdb_byte *valbuf)
1302 {
1303 int len = TYPE_LENGTH (type);
1304 gdb_byte buf[32];
1305
1306 gdb_assert (!sparc_structure_or_union_p (type));
1307 gdb_assert (!(sparc_floating_p (type) && len == 16));
1308
1309 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1310 {
1311 /* Floating return values. */
1312 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1313 if (len > 4)
1314 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1315 if (len > 8)
1316 {
1317 regcache_cooked_read (regcache, SPARC_F2_REGNUM, buf + 8);
1318 regcache_cooked_read (regcache, SPARC_F3_REGNUM, buf + 12);
1319 }
1320 if (len > 16)
1321 {
1322 regcache_cooked_read (regcache, SPARC_F4_REGNUM, buf + 16);
1323 regcache_cooked_read (regcache, SPARC_F5_REGNUM, buf + 20);
1324 regcache_cooked_read (regcache, SPARC_F6_REGNUM, buf + 24);
1325 regcache_cooked_read (regcache, SPARC_F7_REGNUM, buf + 28);
1326 }
1327 memcpy (valbuf, buf, len);
1328 }
1329 else
1330 {
1331 /* Integral and pointer return values. */
1332 gdb_assert (sparc_integral_or_pointer_p (type));
1333
1334 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1335 if (len > 4)
1336 {
1337 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1338 gdb_assert (len == 8);
1339 memcpy (valbuf, buf, 8);
1340 }
1341 else
1342 {
1343 /* Just stripping off any unused bytes should preserve the
1344 signed-ness just fine. */
1345 memcpy (valbuf, buf + 4 - len, len);
1346 }
1347 }
1348 }
1349
1350 /* Store the function return value of type TYPE from VALBUF into
1351 REGCACHE. */
1352
1353 static void
1354 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1355 const gdb_byte *valbuf)
1356 {
1357 int len = TYPE_LENGTH (type);
1358 gdb_byte buf[8];
1359
1360 gdb_assert (!sparc_structure_or_union_p (type));
1361 gdb_assert (!(sparc_floating_p (type) && len == 16));
1362 gdb_assert (len <= 8);
1363
1364 if (sparc_floating_p (type) || sparc_complex_floating_p (type))
1365 {
1366 /* Floating return values. */
1367 memcpy (buf, valbuf, len);
1368 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1369 if (len > 4)
1370 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1371 if (len > 8)
1372 {
1373 regcache_cooked_write (regcache, SPARC_F2_REGNUM, buf + 8);
1374 regcache_cooked_write (regcache, SPARC_F3_REGNUM, buf + 12);
1375 }
1376 if (len > 16)
1377 {
1378 regcache_cooked_write (regcache, SPARC_F4_REGNUM, buf + 16);
1379 regcache_cooked_write (regcache, SPARC_F5_REGNUM, buf + 20);
1380 regcache_cooked_write (regcache, SPARC_F6_REGNUM, buf + 24);
1381 regcache_cooked_write (regcache, SPARC_F7_REGNUM, buf + 28);
1382 }
1383 }
1384 else
1385 {
1386 /* Integral and pointer return values. */
1387 gdb_assert (sparc_integral_or_pointer_p (type));
1388
1389 if (len > 4)
1390 {
1391 gdb_assert (len == 8);
1392 memcpy (buf, valbuf, 8);
1393 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1394 }
1395 else
1396 {
1397 /* ??? Do we need to do any sign-extension here? */
1398 memcpy (buf + 4 - len, valbuf, len);
1399 }
1400 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1401 }
1402 }
1403
1404 static enum return_value_convention
1405 sparc32_return_value (struct gdbarch *gdbarch, struct value *function,
1406 struct type *type, struct regcache *regcache,
1407 gdb_byte *readbuf, const gdb_byte *writebuf)
1408 {
1409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1410
1411 /* The psABI says that "...every stack frame reserves the word at
1412 %fp+64. If a function returns a structure, union, or
1413 quad-precision value, this word should hold the address of the
1414 object into which the return value should be copied." This
1415 guarantees that we can always find the return value, not just
1416 before the function returns. */
1417
1418 if (sparc_structure_or_union_p (type)
1419 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1420 {
1421 ULONGEST sp;
1422 CORE_ADDR addr;
1423
1424 if (readbuf)
1425 {
1426 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1427 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1428 read_memory (addr, readbuf, TYPE_LENGTH (type));
1429 }
1430 if (writebuf)
1431 {
1432 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1433 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1434 write_memory (addr, writebuf, TYPE_LENGTH (type));
1435 }
1436
1437 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1438 }
1439
1440 if (readbuf)
1441 sparc32_extract_return_value (type, regcache, readbuf);
1442 if (writebuf)
1443 sparc32_store_return_value (type, regcache, writebuf);
1444
1445 return RETURN_VALUE_REGISTER_CONVENTION;
1446 }
1447
1448 static int
1449 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1450 {
1451 return (sparc_structure_or_union_p (type)
1452 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)
1453 || sparc_complex_floating_p (type));
1454 }
1455
1456 static int
1457 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1458 {
1459 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1460 struct symbol *sym = find_pc_function (pc);
1461
1462 if (sym)
1463 return sparc32_struct_return_from_sym (sym);
1464 return 0;
1465 }
1466
1467 static void
1468 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1469 struct dwarf2_frame_state_reg *reg,
1470 struct frame_info *this_frame)
1471 {
1472 int off;
1473
1474 switch (regnum)
1475 {
1476 case SPARC_G0_REGNUM:
1477 /* Since %g0 is always zero, there is no point in saving it, and
1478 people will be inclined omit it from the CFI. Make sure we
1479 don't warn about that. */
1480 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1481 break;
1482 case SPARC_SP_REGNUM:
1483 reg->how = DWARF2_FRAME_REG_CFA;
1484 break;
1485 case SPARC32_PC_REGNUM:
1486 case SPARC32_NPC_REGNUM:
1487 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1488 off = 8;
1489 if (sparc32_dwarf2_struct_return_p (this_frame))
1490 off += 4;
1491 if (regnum == SPARC32_NPC_REGNUM)
1492 off += 4;
1493 reg->loc.offset = off;
1494 break;
1495 }
1496 }
1497
1498 \f
1499 /* The SPARC Architecture doesn't have hardware single-step support,
1500 and most operating systems don't implement it either, so we provide
1501 software single-step mechanism. */
1502
1503 static CORE_ADDR
1504 sparc_analyze_control_transfer (struct frame_info *frame,
1505 CORE_ADDR pc, CORE_ADDR *npc)
1506 {
1507 unsigned long insn = sparc_fetch_instruction (pc);
1508 int conditional_p = X_COND (insn) & 0x7;
1509 int branch_p = 0, fused_p = 0;
1510 long offset = 0; /* Must be signed for sign-extend. */
1511
1512 if (X_OP (insn) == 0 && X_OP2 (insn) == 3)
1513 {
1514 if ((insn & 0x10000000) == 0)
1515 {
1516 /* Branch on Integer Register with Prediction (BPr). */
1517 branch_p = 1;
1518 conditional_p = 1;
1519 }
1520 else
1521 {
1522 /* Compare and Branch */
1523 branch_p = 1;
1524 fused_p = 1;
1525 offset = 4 * X_DISP10 (insn);
1526 }
1527 }
1528 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1529 {
1530 /* Branch on Floating-Point Condition Codes (FBfcc). */
1531 branch_p = 1;
1532 offset = 4 * X_DISP22 (insn);
1533 }
1534 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1535 {
1536 /* Branch on Floating-Point Condition Codes with Prediction
1537 (FBPfcc). */
1538 branch_p = 1;
1539 offset = 4 * X_DISP19 (insn);
1540 }
1541 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1542 {
1543 /* Branch on Integer Condition Codes (Bicc). */
1544 branch_p = 1;
1545 offset = 4 * X_DISP22 (insn);
1546 }
1547 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1548 {
1549 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1550 branch_p = 1;
1551 offset = 4 * X_DISP19 (insn);
1552 }
1553 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1554 {
1555 /* Trap instruction (TRAP). */
1556 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1557 }
1558
1559 /* FIXME: Handle DONE and RETRY instructions. */
1560
1561 if (branch_p)
1562 {
1563 if (fused_p)
1564 {
1565 /* Fused compare-and-branch instructions are non-delayed,
1566 and do not have an annuling capability. So we need to
1567 always set a breakpoint on both the NPC and the branch
1568 target address. */
1569 gdb_assert (offset != 0);
1570 return pc + offset;
1571 }
1572 else if (conditional_p)
1573 {
1574 /* For conditional branches, return nPC + 4 iff the annul
1575 bit is 1. */
1576 return (X_A (insn) ? *npc + 4 : 0);
1577 }
1578 else
1579 {
1580 /* For unconditional branches, return the target if its
1581 specified condition is "always" and return nPC + 4 if the
1582 condition is "never". If the annul bit is 1, set *NPC to
1583 zero. */
1584 if (X_COND (insn) == 0x0)
1585 pc = *npc, offset = 4;
1586 if (X_A (insn))
1587 *npc = 0;
1588
1589 return pc + offset;
1590 }
1591 }
1592
1593 return 0;
1594 }
1595
1596 static CORE_ADDR
1597 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1598 {
1599 return 0;
1600 }
1601
1602 static VEC (CORE_ADDR) *
1603 sparc_software_single_step (struct frame_info *frame)
1604 {
1605 struct gdbarch *arch = get_frame_arch (frame);
1606 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1607 struct address_space *aspace = get_frame_address_space (frame);
1608 CORE_ADDR npc, nnpc;
1609
1610 CORE_ADDR pc, orig_npc;
1611 VEC (CORE_ADDR) *next_pcs = NULL;
1612
1613 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1614 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1615
1616 /* Analyze the instruction at PC. */
1617 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1618 if (npc != 0)
1619 VEC_safe_push (CORE_ADDR, next_pcs, npc);
1620
1621 if (nnpc != 0)
1622 VEC_safe_push (CORE_ADDR, next_pcs, nnpc);
1623
1624 /* Assert that we have set at least one breakpoint, and that
1625 they're not set at the same spot - unless we're going
1626 from here straight to NULL, i.e. a call or jump to 0. */
1627 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1628 gdb_assert (nnpc != npc || orig_npc == 0);
1629
1630 return next_pcs;
1631 }
1632
1633 static void
1634 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1635 {
1636 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1637
1638 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1639 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1640 }
1641 \f
1642
1643 /* Iterate over core file register note sections. */
1644
1645 static void
1646 sparc_iterate_over_regset_sections (struct gdbarch *gdbarch,
1647 iterate_over_regset_sections_cb *cb,
1648 void *cb_data,
1649 const struct regcache *regcache)
1650 {
1651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1652
1653 cb (".reg", tdep->sizeof_gregset, tdep->gregset, NULL, cb_data);
1654 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
1655 }
1656 \f
1657
1658 static struct gdbarch *
1659 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1660 {
1661 struct gdbarch_tdep *tdep;
1662 struct gdbarch *gdbarch;
1663
1664 /* If there is already a candidate, use it. */
1665 arches = gdbarch_list_lookup_by_info (arches, &info);
1666 if (arches != NULL)
1667 return arches->gdbarch;
1668
1669 /* Allocate space for the new architecture. */
1670 tdep = XCNEW (struct gdbarch_tdep);
1671 gdbarch = gdbarch_alloc (&info, tdep);
1672
1673 tdep->pc_regnum = SPARC32_PC_REGNUM;
1674 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1675 tdep->step_trap = sparc_step_trap;
1676
1677 set_gdbarch_long_double_bit (gdbarch, 128);
1678 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1679
1680 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1681 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1682 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1683 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1684 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1685 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1686
1687 /* Register numbers of various important registers. */
1688 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1689 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1690 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1691
1692 /* Call dummy code. */
1693 set_gdbarch_frame_align (gdbarch, sparc32_frame_align);
1694 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1695 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1696 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1697
1698 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1699 set_gdbarch_stabs_argument_has_addr
1700 (gdbarch, sparc32_stabs_argument_has_addr);
1701
1702 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1703
1704 /* Stack grows downward. */
1705 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1706
1707 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1708 sparc_breakpoint::kind_from_pc);
1709 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1710 sparc_breakpoint::bp_from_kind);
1711
1712 set_gdbarch_frame_args_skip (gdbarch, 8);
1713
1714 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1715
1716 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1717 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1718
1719 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1720
1721 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1722
1723 frame_base_set_default (gdbarch, &sparc32_frame_base);
1724
1725 /* Hook in the DWARF CFI frame unwinder. */
1726 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1727 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1728 StackGhost issues have been resolved. */
1729
1730 /* Hook in ABI-specific overrides, if they have been registered. */
1731 gdbarch_init_osabi (info, gdbarch);
1732
1733 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1734
1735 /* If we have register sets, enable the generic core file support. */
1736 if (tdep->gregset)
1737 set_gdbarch_iterate_over_regset_sections
1738 (gdbarch, sparc_iterate_over_regset_sections);
1739
1740 register_sparc_ravenscar_ops (gdbarch);
1741
1742 return gdbarch;
1743 }
1744 \f
1745 /* Helper functions for dealing with register windows. */
1746
1747 void
1748 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1749 {
1750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1751 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1752 int offset = 0;
1753 gdb_byte buf[8];
1754 int i;
1755
1756 if (sp & 1)
1757 {
1758 /* Registers are 64-bit. */
1759 sp += BIAS;
1760
1761 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1762 {
1763 if (regnum == i || regnum == -1)
1764 {
1765 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1766
1767 /* Handle StackGhost. */
1768 if (i == SPARC_I7_REGNUM)
1769 {
1770 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1771 ULONGEST i7;
1772
1773 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1774 store_unsigned_integer (buf + offset, 8, byte_order,
1775 i7 ^ wcookie);
1776 }
1777
1778 regcache_raw_supply (regcache, i, buf);
1779 }
1780 }
1781 }
1782 else
1783 {
1784 /* Registers are 32-bit. Toss any sign-extension of the stack
1785 pointer. */
1786 sp &= 0xffffffffUL;
1787
1788 /* Clear out the top half of the temporary buffer, and put the
1789 register value in the bottom half if we're in 64-bit mode. */
1790 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1791 {
1792 memset (buf, 0, 4);
1793 offset = 4;
1794 }
1795
1796 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1797 {
1798 if (regnum == i || regnum == -1)
1799 {
1800 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1801 buf + offset, 4);
1802
1803 /* Handle StackGhost. */
1804 if (i == SPARC_I7_REGNUM)
1805 {
1806 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1807 ULONGEST i7;
1808
1809 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1810 store_unsigned_integer (buf + offset, 4, byte_order,
1811 i7 ^ wcookie);
1812 }
1813
1814 regcache_raw_supply (regcache, i, buf);
1815 }
1816 }
1817 }
1818 }
1819
1820 void
1821 sparc_collect_rwindow (const struct regcache *regcache,
1822 CORE_ADDR sp, int regnum)
1823 {
1824 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1825 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1826 int offset = 0;
1827 gdb_byte buf[8];
1828 int i;
1829
1830 if (sp & 1)
1831 {
1832 /* Registers are 64-bit. */
1833 sp += BIAS;
1834
1835 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1836 {
1837 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1838 {
1839 regcache_raw_collect (regcache, i, buf);
1840
1841 /* Handle StackGhost. */
1842 if (i == SPARC_I7_REGNUM)
1843 {
1844 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1845 ULONGEST i7;
1846
1847 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1848 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1849 }
1850
1851 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1852 }
1853 }
1854 }
1855 else
1856 {
1857 /* Registers are 32-bit. Toss any sign-extension of the stack
1858 pointer. */
1859 sp &= 0xffffffffUL;
1860
1861 /* Only use the bottom half if we're in 64-bit mode. */
1862 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1863 offset = 4;
1864
1865 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1866 {
1867 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1868 {
1869 regcache_raw_collect (regcache, i, buf);
1870
1871 /* Handle StackGhost. */
1872 if (i == SPARC_I7_REGNUM)
1873 {
1874 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1875 ULONGEST i7;
1876
1877 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1878 store_unsigned_integer (buf + offset, 4, byte_order,
1879 i7 ^ wcookie);
1880 }
1881
1882 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1883 buf + offset, 4);
1884 }
1885 }
1886 }
1887 }
1888
1889 /* Helper functions for dealing with register sets. */
1890
1891 void
1892 sparc32_supply_gregset (const struct sparc_gregmap *gregmap,
1893 struct regcache *regcache,
1894 int regnum, const void *gregs)
1895 {
1896 const gdb_byte *regs = (const gdb_byte *) gregs;
1897 gdb_byte zero[4] = { 0 };
1898 int i;
1899
1900 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1901 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1902 regs + gregmap->r_psr_offset);
1903
1904 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1905 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1906 regs + gregmap->r_pc_offset);
1907
1908 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1909 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1910 regs + gregmap->r_npc_offset);
1911
1912 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1913 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1914 regs + gregmap->r_y_offset);
1915
1916 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1917 regcache_raw_supply (regcache, SPARC_G0_REGNUM, &zero);
1918
1919 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1920 {
1921 int offset = gregmap->r_g1_offset;
1922
1923 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1924 {
1925 if (regnum == i || regnum == -1)
1926 regcache_raw_supply (regcache, i, regs + offset);
1927 offset += 4;
1928 }
1929 }
1930
1931 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1932 {
1933 /* Not all of the register set variants include Locals and
1934 Inputs. For those that don't, we read them off the stack. */
1935 if (gregmap->r_l0_offset == -1)
1936 {
1937 ULONGEST sp;
1938
1939 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1940 sparc_supply_rwindow (regcache, sp, regnum);
1941 }
1942 else
1943 {
1944 int offset = gregmap->r_l0_offset;
1945
1946 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1947 {
1948 if (regnum == i || regnum == -1)
1949 regcache_raw_supply (regcache, i, regs + offset);
1950 offset += 4;
1951 }
1952 }
1953 }
1954 }
1955
1956 void
1957 sparc32_collect_gregset (const struct sparc_gregmap *gregmap,
1958 const struct regcache *regcache,
1959 int regnum, void *gregs)
1960 {
1961 gdb_byte *regs = (gdb_byte *) gregs;
1962 int i;
1963
1964 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1965 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1966 regs + gregmap->r_psr_offset);
1967
1968 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1969 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1970 regs + gregmap->r_pc_offset);
1971
1972 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1973 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1974 regs + gregmap->r_npc_offset);
1975
1976 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1977 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1978 regs + gregmap->r_y_offset);
1979
1980 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1981 {
1982 int offset = gregmap->r_g1_offset;
1983
1984 /* %g0 is always zero. */
1985 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1986 {
1987 if (regnum == i || regnum == -1)
1988 regcache_raw_collect (regcache, i, regs + offset);
1989 offset += 4;
1990 }
1991 }
1992
1993 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1994 {
1995 /* Not all of the register set variants include Locals and
1996 Inputs. For those that don't, we read them off the stack. */
1997 if (gregmap->r_l0_offset != -1)
1998 {
1999 int offset = gregmap->r_l0_offset;
2000
2001 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
2002 {
2003 if (regnum == i || regnum == -1)
2004 regcache_raw_collect (regcache, i, regs + offset);
2005 offset += 4;
2006 }
2007 }
2008 }
2009 }
2010
2011 void
2012 sparc32_supply_fpregset (const struct sparc_fpregmap *fpregmap,
2013 struct regcache *regcache,
2014 int regnum, const void *fpregs)
2015 {
2016 const gdb_byte *regs = (const gdb_byte *) fpregs;
2017 int i;
2018
2019 for (i = 0; i < 32; i++)
2020 {
2021 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2022 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i,
2023 regs + fpregmap->r_f0_offset + (i * 4));
2024 }
2025
2026 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2027 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
2028 regs + fpregmap->r_fsr_offset);
2029 }
2030
2031 void
2032 sparc32_collect_fpregset (const struct sparc_fpregmap *fpregmap,
2033 const struct regcache *regcache,
2034 int regnum, void *fpregs)
2035 {
2036 gdb_byte *regs = (gdb_byte *) fpregs;
2037 int i;
2038
2039 for (i = 0; i < 32; i++)
2040 {
2041 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
2042 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i,
2043 regs + fpregmap->r_f0_offset + (i * 4));
2044 }
2045
2046 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
2047 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
2048 regs + fpregmap->r_fsr_offset);
2049 }
2050 \f
2051
2052 /* SunOS 4. */
2053
2054 /* From <machine/reg.h>. */
2055 const struct sparc_gregmap sparc32_sunos4_gregmap =
2056 {
2057 0 * 4, /* %psr */
2058 1 * 4, /* %pc */
2059 2 * 4, /* %npc */
2060 3 * 4, /* %y */
2061 -1, /* %wim */
2062 -1, /* %tbr */
2063 4 * 4, /* %g1 */
2064 -1 /* %l0 */
2065 };
2066
2067 const struct sparc_fpregmap sparc32_sunos4_fpregmap =
2068 {
2069 0 * 4, /* %f0 */
2070 33 * 4, /* %fsr */
2071 };
2072
2073 const struct sparc_fpregmap sparc32_bsd_fpregmap =
2074 {
2075 0 * 4, /* %f0 */
2076 32 * 4, /* %fsr */
2077 };
2078 \f
2079
2080 /* Provide a prototype to silence -Wmissing-prototypes. */
2081 void _initialize_sparc_tdep (void);
2082
2083 void
2084 _initialize_sparc_tdep (void)
2085 {
2086 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);
2087 }
This page took 0.074138 seconds and 4 git commands to generate.