* defs.h: Incorporate param.h. All users changed.
[deliverable/binutils-gdb.git] / gdb / sparc-xdep.c
1 /* Host-dependent code for SPARC host systems, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <stdio.h>
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24
25 #include <sys/param.h>
26 #include <sys/file.h> /* For L_SET */
27
28 #include <sys/ptrace.h>
29 #include <machine/reg.h>
30
31 #include "gdbcore.h"
32 #include <sys/core.h>
33
34 extern char register_valid[];
35
36 /* We don't store all registers immediately when requested, since they
37 get sent over in large chunks anyway. Instead, we accumulate most
38 of the changes and send them over once. "deferred_stores" keeps
39 track of which sets of registers we have locally-changed copies of,
40 so we only need send the groups that have changed. */
41
42 #define INT_REGS 1
43 #define STACK_REGS 2
44 #define FP_REGS 4
45
46 int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
47
48 /* Fetch one or more registers from the inferior. REGNO == -1 to get
49 them all. We actually fetch more than requested, when convenient,
50 marking them as valid so we won't fetch them again. */
51 void
52 fetch_inferior_registers (regno)
53 int regno;
54 {
55 struct regs inferior_registers;
56 struct fp_status inferior_fp_registers;
57 int i;
58
59 /* We should never be called with deferred stores, because a prerequisite
60 for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
61 if (deferred_stores) abort();
62
63 DO_DEFERRED_STORES;
64
65 /* Global and Out regs are fetched directly, as well as the control
66 registers. If we're getting one of the in or local regs,
67 and the stack pointer has not yet been fetched,
68 we have to do that first, since they're found in memory relative
69 to the stack pointer. */
70 if (regno < O7_REGNUM /* including -1 */
71 || regno >= Y_REGNUM
72 || (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
73 {
74 if (0 != ptrace (PTRACE_GETREGS, inferior_pid, &inferior_registers))
75 perror("ptrace_getregs");
76
77 registers[REGISTER_BYTE (0)] = 0;
78 bcopy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (1)], 15 * REGISTER_RAW_SIZE (G0_REGNUM));
79 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
80 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
81 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
82 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
83
84 for (i = G0_REGNUM; i <= O7_REGNUM; i++)
85 register_valid[i] = 1;
86 register_valid[Y_REGNUM] = 1;
87 register_valid[PS_REGNUM] = 1;
88 register_valid[PC_REGNUM] = 1;
89 register_valid[NPC_REGNUM] = 1;
90 /* If we don't set these valid, read_register_bytes() rereads
91 all the regs every time it is called! FIXME. */
92 register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
93 register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
94 register_valid[FPS_REGNUM] = 1; /* Not true yet, FIXME */
95 register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
96 }
97
98 /* Floating point registers */
99 if (regno == -1 || (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
100 {
101 if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid, &inferior_fp_registers))
102 perror("ptrace_getfpregs");
103 bcopy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
104 sizeof inferior_fp_registers.fpu_fr);
105 /* bcopy (&inferior_fp_registers.Fpu_fsr,
106 &registers[REGISTER_BYTE (FPS_REGNUM)],
107 sizeof (FPU_FSR_TYPE)); FIXME??? -- gnu@cyg */
108 for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
109 register_valid[i] = 1;
110 register_valid[FPS_REGNUM] = 1;
111 }
112
113 /* These regs are saved on the stack by the kernel. Only read them
114 all (16 ptrace calls!) if we really need them. */
115 if (regno == -1)
116 {
117 target_xfer_memory (*(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)],
118 &registers[REGISTER_BYTE (L0_REGNUM)],
119 16*REGISTER_RAW_SIZE (L0_REGNUM), 0);
120 for (i = L0_REGNUM; i <= I7_REGNUM; i++)
121 register_valid[i] = 1;
122 }
123 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
124 {
125 CORE_ADDR sp = *(CORE_ADDR*)&registers[REGISTER_BYTE (SP_REGNUM)];
126 i = REGISTER_BYTE (regno);
127 if (register_valid[regno])
128 printf("register %d valid and read\n", regno);
129 target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
130 &registers[i], REGISTER_RAW_SIZE (regno), 0);
131 register_valid[regno] = 1;
132 }
133 }
134
135 /* Store our register values back into the inferior.
136 If REGNO is -1, do this for all registers.
137 Otherwise, REGNO specifies which register (so we can save time). */
138
139 int
140 store_inferior_registers (regno)
141 int regno;
142 {
143 struct regs inferior_registers;
144 struct fp_status inferior_fp_registers;
145 int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
146
147 /* First decide which pieces of machine-state we need to modify.
148 Default for regno == -1 case is all pieces. */
149 if (regno >= 0)
150 if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
151 {
152 wanna_store = FP_REGS;
153 }
154 else
155 {
156 if (regno == SP_REGNUM)
157 wanna_store = INT_REGS + STACK_REGS;
158 else if (regno < L0_REGNUM || regno > I7_REGNUM)
159 wanna_store = INT_REGS;
160 else
161 wanna_store = STACK_REGS;
162 }
163
164 /* See if we're forcing the stores to happen now, or deferring. */
165 if (regno == -2)
166 {
167 wanna_store = deferred_stores;
168 deferred_stores = 0;
169 }
170 else
171 {
172 if (wanna_store == STACK_REGS)
173 {
174 /* Fall through and just store one stack reg. If we deferred
175 it, we'd have to store them all, or remember more info. */
176 }
177 else
178 {
179 deferred_stores |= wanna_store;
180 return 0;
181 }
182 }
183
184 if (wanna_store & STACK_REGS)
185 {
186 CORE_ADDR sp = *(CORE_ADDR *)&registers[REGISTER_BYTE (SP_REGNUM)];
187
188 if (regno < 0 || regno == SP_REGNUM)
189 {
190 if (!register_valid[L0_REGNUM+5]) abort();
191 target_xfer_memory (sp,
192 &registers[REGISTER_BYTE (L0_REGNUM)],
193 16*REGISTER_RAW_SIZE (L0_REGNUM), 1);
194 }
195 else
196 {
197 if (!register_valid[regno]) abort();
198 target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
199 &registers[REGISTER_BYTE (regno)],
200 REGISTER_RAW_SIZE (regno), 1);
201 }
202
203 }
204
205 if (wanna_store & INT_REGS)
206 {
207 if (!register_valid[G1_REGNUM]) abort();
208
209 bcopy (&registers[REGISTER_BYTE (G1_REGNUM)],
210 &inferior_registers.r_g1, 15 * REGISTER_RAW_SIZE (G1_REGNUM));
211
212 inferior_registers.r_ps =
213 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)];
214 inferior_registers.r_pc =
215 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)];
216 inferior_registers.r_npc =
217 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)];
218 inferior_registers.r_y =
219 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)];
220
221 if (0 != ptrace (PTRACE_SETREGS, inferior_pid, &inferior_registers))
222 perror("ptrace_setregs");
223 }
224
225 if (wanna_store & FP_REGS)
226 {
227 if (!register_valid[FP0_REGNUM+9]) abort();
228 bcopy (&registers[REGISTER_BYTE (FP0_REGNUM)],
229 &inferior_fp_registers,
230 sizeof inferior_fp_registers.fpu_fr);
231
232 /* bcopy (&registers[REGISTER_BYTE (FPS_REGNUM)],
233 &inferior_fp_registers.Fpu_fsr,
234 sizeof (FPU_FSR_TYPE));
235 ****/
236 if (0 !=
237 ptrace (PTRACE_SETFPREGS, inferior_pid, &inferior_fp_registers))
238 perror("ptrace_setfpregs");
239 }
240 return 0;
241 }
242 \f
243 void
244 fetch_core_registers (core_reg_sect, core_reg_size, which)
245 char *core_reg_sect;
246 unsigned core_reg_size;
247 int which;
248 {
249
250 if (which == 0) {
251
252 /* Integer registers */
253
254 #define gregs ((struct regs *)core_reg_sect)
255 /* G0 *always* holds 0. */
256 *(int *)&registers[REGISTER_BYTE (0)] = 0;
257
258 /* The globals and output registers. */
259 bcopy (&gregs->r_g1,
260 &registers[REGISTER_BYTE (G1_REGNUM)],
261 15 * REGISTER_RAW_SIZE (G1_REGNUM));
262 *(int *)&registers[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
263 *(int *)&registers[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
264 *(int *)&registers[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
265 *(int *)&registers[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
266
267 /* My best guess at where to get the locals and input
268 registers is exactly where they usually are, right above
269 the stack pointer. If the core dump was caused by a bus error
270 from blowing away the stack pointer (as is possible) then this
271 won't work, but it's worth the try. */
272 {
273 int sp;
274
275 sp = *(int *)&registers[REGISTER_BYTE (SP_REGNUM)];
276 if (0 != target_read_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
277 16 * REGISTER_RAW_SIZE (L0_REGNUM)))
278 {
279 /* fprintf so user can still use gdb */
280 fprintf (stderr,
281 "Couldn't read input and local registers from core file\n");
282 }
283 }
284 } else if (which == 2) {
285
286 /* Floating point registers */
287
288 #define fpuregs ((struct fpu *) core_reg_sect)
289 if (core_reg_size >= sizeof (struct fpu))
290 {
291 bcopy (fpuregs->fpu_regs,
292 &registers[REGISTER_BYTE (FP0_REGNUM)],
293 sizeof (fpuregs->fpu_regs));
294 bcopy (&fpuregs->fpu_fsr,
295 &registers[REGISTER_BYTE (FPS_REGNUM)],
296 sizeof (FPU_FSR_TYPE));
297 }
298 else
299 fprintf (stderr, "Couldn't read float regs from core file\n");
300 }
301 }
This page took 0.036477 seconds and 4 git commands to generate.