7e7079181741eee67a347940abb25eddde7f3aed
[deliverable/binutils-gdb.git] / gdb / sparc64-tdep.c
1 /* Target-dependent code for UltraSPARC.
2
3 Copyright 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "floatformat.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "regcache.h"
35 #include "target.h"
36 #include "value.h"
37
38 #include "gdb_assert.h"
39 #include "gdb_string.h"
40
41 #include "sparc64-tdep.h"
42
43 /* This file implements the The SPARC 64-bit ABI as defined by the
44 section "Low-Level System Information" of the SPARC Compliance
45 Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
46 SPARC. */
47
48 /* Please use the sparc32_-prefix for 32-bit specific code, the
49 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
50 code can handle both. */
51 \f
52 /* The functions on this page are intended to be used to classify
53 function arguments. */
54
55 /* Return the contents if register REGNUM as an address. */
56
57 static CORE_ADDR
58 sparc_address_from_register (int regnum)
59 {
60 ULONGEST addr;
61
62 regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
63 return addr;
64 }
65
66 /* Check whether TYPE is "Integral or Pointer". */
67
68 static int
69 sparc64_integral_or_pointer_p (const struct type *type)
70 {
71 switch (TYPE_CODE (type))
72 {
73 case TYPE_CODE_INT:
74 case TYPE_CODE_BOOL:
75 case TYPE_CODE_CHAR:
76 case TYPE_CODE_ENUM:
77 case TYPE_CODE_RANGE:
78 {
79 int len = TYPE_LENGTH (type);
80 gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
81 }
82 return 1;
83 case TYPE_CODE_PTR:
84 case TYPE_CODE_REF:
85 {
86 int len = TYPE_LENGTH (type);
87 gdb_assert (len == 8);
88 }
89 return 1;
90 default:
91 break;
92 }
93
94 return 0;
95 }
96
97 /* Check whether TYPE is "Floating". */
98
99 static int
100 sparc64_floating_p (const struct type *type)
101 {
102 switch (TYPE_CODE (type))
103 {
104 case TYPE_CODE_FLT:
105 {
106 int len = TYPE_LENGTH (type);
107 gdb_assert (len == 4 || len == 8 || len == 16);
108 }
109 return 1;
110 default:
111 break;
112 }
113
114 return 0;
115 }
116
117 /* Check whether TYPE is "Structure or Union". */
118
119 static int
120 sparc64_structure_or_union_p (const struct type *type)
121 {
122 switch (TYPE_CODE (type))
123 {
124 case TYPE_CODE_STRUCT:
125 case TYPE_CODE_UNION:
126 return 1;
127 default:
128 break;
129 }
130
131 return 0;
132 }
133
134 /* Register information. */
135
136 struct sparc64_register_info
137 {
138 char *name;
139 struct type **type;
140 };
141
142 static struct sparc64_register_info sparc64_register_info[] =
143 {
144 { "g0", &builtin_type_int64 },
145 { "g1", &builtin_type_int64 },
146 { "g2", &builtin_type_int64 },
147 { "g3", &builtin_type_int64 },
148 { "g4", &builtin_type_int64 },
149 { "g5", &builtin_type_int64 },
150 { "g6", &builtin_type_int64 },
151 { "g7", &builtin_type_int64 },
152
153 { "o0", &builtin_type_int64 },
154 { "o1", &builtin_type_int64 },
155 { "o2", &builtin_type_int64 },
156 { "o3", &builtin_type_int64 },
157 { "o4", &builtin_type_int64 },
158 { "o5", &builtin_type_int64 },
159 { "sp", &builtin_type_void_data_ptr },
160 { "o7", &builtin_type_int64 },
161
162 { "l0", &builtin_type_int64 },
163 { "l1", &builtin_type_int64 },
164 { "l2", &builtin_type_int64 },
165 { "l3", &builtin_type_int64 },
166 { "l4", &builtin_type_int64 },
167 { "l5", &builtin_type_int64 },
168 { "l6", &builtin_type_int64 },
169 { "l7", &builtin_type_int64 },
170
171 { "i0", &builtin_type_int64 },
172 { "i1", &builtin_type_int64 },
173 { "i2", &builtin_type_int64 },
174 { "i3", &builtin_type_int64 },
175 { "i4", &builtin_type_int64 },
176 { "i5", &builtin_type_int64 },
177 { "fp", &builtin_type_void_data_ptr },
178 { "i7", &builtin_type_int64 },
179
180 { "f0", &builtin_type_float },
181 { "f1", &builtin_type_float },
182 { "f2", &builtin_type_float },
183 { "f3", &builtin_type_float },
184 { "f4", &builtin_type_float },
185 { "f5", &builtin_type_float },
186 { "f6", &builtin_type_float },
187 { "f7", &builtin_type_float },
188 { "f8", &builtin_type_float },
189 { "f9", &builtin_type_float },
190 { "f10", &builtin_type_float },
191 { "f11", &builtin_type_float },
192 { "f12", &builtin_type_float },
193 { "f13", &builtin_type_float },
194 { "f14", &builtin_type_float },
195 { "f15", &builtin_type_float },
196 { "f16", &builtin_type_float },
197 { "f17", &builtin_type_float },
198 { "f18", &builtin_type_float },
199 { "f19", &builtin_type_float },
200 { "f20", &builtin_type_float },
201 { "f21", &builtin_type_float },
202 { "f22", &builtin_type_float },
203 { "f23", &builtin_type_float },
204 { "f24", &builtin_type_float },
205 { "f25", &builtin_type_float },
206 { "f26", &builtin_type_float },
207 { "f27", &builtin_type_float },
208 { "f28", &builtin_type_float },
209 { "f29", &builtin_type_float },
210 { "f30", &builtin_type_float },
211 { "f31", &builtin_type_float },
212 { "f32", &builtin_type_double },
213 { "f34", &builtin_type_double },
214 { "f36", &builtin_type_double },
215 { "f38", &builtin_type_double },
216 { "f40", &builtin_type_double },
217 { "f42", &builtin_type_double },
218 { "f44", &builtin_type_double },
219 { "f46", &builtin_type_double },
220 { "f48", &builtin_type_double },
221 { "f50", &builtin_type_double },
222 { "f52", &builtin_type_double },
223 { "f54", &builtin_type_double },
224 { "f56", &builtin_type_double },
225 { "f58", &builtin_type_double },
226 { "f60", &builtin_type_double },
227 { "f62", &builtin_type_double },
228
229 { "pc", &builtin_type_void_func_ptr },
230 { "npc", &builtin_type_void_func_ptr },
231
232 /* This raw register contains the contents of %cwp, %pstate, %asi
233 and %ccr as laid out in a %tstate register. */
234 /* FIXME: Give it a name until we start using register groups. */
235 { "state", &builtin_type_int64 },
236
237 { "fsr", &builtin_type_int64 },
238 { "fprs", &builtin_type_int64 },
239
240 /* "Although Y is a 64-bit register, its high-order 32 bits are
241 reserved and always read as 0." */
242 { "y", &builtin_type_int64 }
243 };
244
245 /* Total number of registers. */
246 #define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_info)
247
248 /* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
249 registers as "psuedo" registers. */
250
251 static struct sparc64_register_info sparc64_pseudo_register_info[] =
252 {
253 { "cwp", &builtin_type_int64 },
254 { "pstate", &builtin_type_int64 },
255 { "asi", &builtin_type_int64 },
256 { "ccr", &builtin_type_int64 },
257
258 { "d0", &builtin_type_double },
259 { "d2", &builtin_type_double },
260 { "d4", &builtin_type_double },
261 { "d6", &builtin_type_double },
262 { "d8", &builtin_type_double },
263 { "d10", &builtin_type_double },
264 { "d12", &builtin_type_double },
265 { "d14", &builtin_type_double },
266 { "d16", &builtin_type_double },
267 { "d18", &builtin_type_double },
268 { "d20", &builtin_type_double },
269 { "d22", &builtin_type_double },
270 { "d24", &builtin_type_double },
271 { "d26", &builtin_type_double },
272 { "d28", &builtin_type_double },
273 { "d30", &builtin_type_double },
274 { "d32", &builtin_type_double },
275 { "d34", &builtin_type_double },
276 { "d36", &builtin_type_double },
277 { "d38", &builtin_type_double },
278 { "d40", &builtin_type_double },
279 { "d42", &builtin_type_double },
280 { "d44", &builtin_type_double },
281 { "d46", &builtin_type_double },
282 { "d48", &builtin_type_double },
283 { "d50", &builtin_type_double },
284 { "d52", &builtin_type_double },
285 { "d54", &builtin_type_double },
286 { "d56", &builtin_type_double },
287 { "d58", &builtin_type_double },
288 { "d60", &builtin_type_double },
289 { "d62", &builtin_type_double },
290
291 { "q0", &builtin_type_long_double },
292 { "q4", &builtin_type_long_double },
293 { "q8", &builtin_type_long_double },
294 { "q12", &builtin_type_long_double },
295 { "q16", &builtin_type_long_double },
296 { "q20", &builtin_type_long_double },
297 { "q24", &builtin_type_long_double },
298 { "q28", &builtin_type_long_double },
299 { "q32", &builtin_type_long_double },
300 { "q36", &builtin_type_long_double },
301 { "q40", &builtin_type_long_double },
302 { "q44", &builtin_type_long_double },
303 { "q48", &builtin_type_long_double },
304 { "q52", &builtin_type_long_double },
305 { "q56", &builtin_type_long_double },
306 { "q60", &builtin_type_long_double }
307 };
308
309 /* Total number of pseudo registers. */
310 #define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_info)
311
312 /* Return the name of register REGNUM. */
313
314 static const char *
315 sparc64_register_name (int regnum)
316 {
317 if (regnum >= 0 && regnum < SPARC64_NUM_REGS)
318 return sparc64_register_info[regnum].name;
319
320 if (regnum >= SPARC64_NUM_REGS
321 && regnum < SPARC64_NUM_REGS + SPARC64_NUM_PSEUDO_REGS)
322 return sparc64_pseudo_register_info[regnum - SPARC64_NUM_REGS].name;
323
324 return NULL;
325 }
326
327 /* Return the GDB type object for the "standard" data type of data in
328 register REGNUM. */
329
330 static struct type *
331 sparc64_register_type (struct gdbarch *gdbarch, int regnum)
332 {
333 if (regnum >= SPARC64_NUM_REGS
334 && regnum < SPARC64_NUM_REGS + SPARC64_NUM_PSEUDO_REGS)
335 return *sparc64_pseudo_register_info[regnum - SPARC64_NUM_REGS].type;
336
337 gdb_assert (regnum >= 0 && regnum < SPARC64_NUM_REGS);
338 return *sparc64_register_info[regnum].type;
339 }
340
341 static void
342 sparc64_pseudo_register_read (struct gdbarch *gdbarch,
343 struct regcache *regcache,
344 int regnum, void *buf)
345 {
346 gdb_assert (regnum >= SPARC64_NUM_REGS);
347
348 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
349 {
350 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
351 regcache_raw_read (regcache, regnum, buf);
352 regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
353 }
354 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
355 {
356 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
357 regcache_raw_read (regcache, regnum, buf);
358 }
359 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
360 {
361 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
362 regcache_raw_read (regcache, regnum, buf);
363 regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
364 regcache_raw_read (regcache, regnum + 2, ((char *)buf) + 8);
365 regcache_raw_read (regcache, regnum + 3, ((char *)buf) + 12);
366 }
367 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
368 {
369 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
370 regcache_raw_read (regcache, regnum, buf);
371 regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 8);
372 }
373 else if (regnum == SPARC64_CWP_REGNUM
374 || regnum == SPARC64_PSTATE_REGNUM
375 || regnum == SPARC64_ASI_REGNUM
376 || regnum == SPARC64_CCR_REGNUM)
377 {
378 ULONGEST state;
379
380 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
381 switch (regnum)
382 {
383 case SPARC64_CWP_REGNUM:
384 state = (state >> 0) & ((1 << 5) - 1);
385 break;
386 case SPARC64_PSTATE_REGNUM:
387 state = (state >> 8) & ((1 << 12) - 1);
388 break;
389 case SPARC64_ASI_REGNUM:
390 state = (state >> 24) & ((1 << 8) - 1);
391 break;
392 case SPARC64_CCR_REGNUM:
393 state = (state >> 32) & ((1 << 8) - 1);
394 break;
395 }
396 store_unsigned_integer (buf, 8, state);
397 }
398 }
399
400 static void
401 sparc64_pseudo_register_write (struct gdbarch *gdbarch,
402 struct regcache *regcache,
403 int regnum, const void *buf)
404 {
405 gdb_assert (regnum >= SPARC64_NUM_REGS);
406
407 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
408 {
409 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
410 regcache_raw_write (regcache, regnum, buf);
411 regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
412 }
413 else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
414 {
415 regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
416 regcache_raw_write (regcache, regnum, buf);
417 }
418 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
419 {
420 regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
421 regcache_raw_write (regcache, regnum, buf);
422 regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
423 regcache_raw_write (regcache, regnum + 2, ((const char *)buf) + 8);
424 regcache_raw_write (regcache, regnum + 3, ((const char *)buf) + 12);
425 }
426 else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
427 {
428 regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
429 regcache_raw_write (regcache, regnum, buf);
430 regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 8);
431 }
432 else if (regnum == SPARC64_CWP_REGNUM
433 || regnum == SPARC64_PSTATE_REGNUM
434 || regnum == SPARC64_ASI_REGNUM
435 || regnum == SPARC64_CCR_REGNUM)
436 {
437 ULONGEST state, bits;
438
439 regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
440 bits = extract_unsigned_integer (buf, 8);
441 switch (regnum)
442 {
443 case SPARC64_CWP_REGNUM:
444 state |= ((bits & ((1 << 5) - 1)) << 0);
445 break;
446 case SPARC64_PSTATE_REGNUM:
447 state |= ((bits & ((1 << 12) - 1)) << 8);
448 break;
449 case SPARC64_ASI_REGNUM:
450 state |= ((bits & ((1 << 8) - 1)) << 24);
451 break;
452 case SPARC64_CCR_REGNUM:
453 state |= ((bits & ((1 << 8) - 1)) << 32);
454 break;
455 }
456 regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
457 }
458 }
459 \f
460
461 /* Return PC of first real instruction of the function starting at
462 START_PC. */
463
464 static CORE_ADDR
465 sparc64_skip_prologue (CORE_ADDR start_pc)
466 {
467 struct symtab_and_line sal;
468 CORE_ADDR func_start, func_end;
469 struct sparc_frame_cache cache;
470
471 /* This is the preferred method, find the end of the prologue by
472 using the debugging information. */
473 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
474 {
475 sal = find_pc_line (func_start, 0);
476
477 if (sal.end < func_end
478 && start_pc <= sal.end)
479 return sal.end;
480 }
481
482 return sparc_analyze_prologue (start_pc, 0xffffffffffffffffULL, &cache);
483 }
484
485 /* Normal frames. */
486
487 static struct sparc_frame_cache *
488 sparc64_frame_cache (struct frame_info *next_frame, void **this_cache)
489 {
490 return sparc_frame_cache (next_frame, this_cache);
491 }
492
493 static void
494 sparc64_frame_this_id (struct frame_info *next_frame, void **this_cache,
495 struct frame_id *this_id)
496 {
497 struct sparc_frame_cache *cache =
498 sparc64_frame_cache (next_frame, this_cache);
499
500 /* This marks the outermost frame. */
501 if (cache->base == 0)
502 return;
503
504 (*this_id) = frame_id_build (cache->base, cache->pc);
505 }
506
507 static void
508 sparc64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
509 int regnum, int *optimizedp,
510 enum lval_type *lvalp, CORE_ADDR *addrp,
511 int *realnump, void *valuep)
512 {
513 struct sparc_frame_cache *cache =
514 sparc64_frame_cache (next_frame, this_cache);
515
516 if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
517 {
518 *optimizedp = 0;
519 *lvalp = not_lval;
520 *addrp = 0;
521 *realnump = -1;
522 if (valuep)
523 {
524 CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
525
526 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
527 pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
528 store_unsigned_integer (valuep, 8, pc);
529 }
530 return;
531 }
532
533 /* The previous frame's `local' and `in' registers have been saved
534 in the register save area. */
535 if (!cache->frameless_p
536 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
537 {
538 *optimizedp = 0;
539 *lvalp = lval_memory;
540 *addrp = cache->base + BIAS + (regnum - SPARC_L0_REGNUM) * 8;
541 *realnump = -1;
542 if (valuep)
543 {
544 struct gdbarch *gdbarch = get_frame_arch (next_frame);
545
546 /* Read the value in from memory. */
547 read_memory (*addrp, valuep, register_size (gdbarch, regnum));
548 }
549 return;
550 }
551
552 /* The previous frame's `out' registers are accessable as the
553 current frame's `in' registers. */
554 if (!cache->frameless_p
555 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
556 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
557
558 frame_register_unwind (next_frame, regnum,
559 optimizedp, lvalp, addrp, realnump, valuep);
560 }
561
562 static const struct frame_unwind sparc64_frame_unwind =
563 {
564 NORMAL_FRAME,
565 sparc64_frame_this_id,
566 sparc64_frame_prev_register
567 };
568
569 static const struct frame_unwind *
570 sparc64_frame_sniffer (struct frame_info *next_frame)
571 {
572 return &sparc64_frame_unwind;
573 }
574 \f
575
576 static CORE_ADDR
577 sparc64_frame_base_address (struct frame_info *next_frame, void **this_cache)
578 {
579 struct sparc_frame_cache *cache =
580 sparc64_frame_cache (next_frame, this_cache);
581
582 /* ??? Should we take BIAS into account here? */
583 return cache->base;
584 }
585
586 static const struct frame_base sparc64_frame_base =
587 {
588 &sparc64_frame_unwind,
589 sparc64_frame_base_address,
590 sparc64_frame_base_address,
591 sparc64_frame_base_address
592 };
593 \f
594 /* Check whether TYPE must be 16-byte aligned. */
595
596 static int
597 sparc64_16_byte_align_p (struct type *type)
598 {
599 if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
600 return 1;
601
602 if (sparc64_structure_or_union_p (type))
603 {
604 int i;
605
606 for (i = 0; i < TYPE_NFIELDS (type); i++)
607 {
608 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
609
610 if (sparc64_16_byte_align_p (subtype))
611 return 1;
612 }
613 }
614
615 return 0;
616 }
617
618 /* Store floating fields of element ELEMENT of an "parameter array"
619 that has type TYPE and is stored at BITPOS in VALBUF in the
620 apropriate registers of REGCACHE. This function can be called
621 recursively and therefore handles floating types in addition to
622 structures. */
623
624 static void
625 sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
626 char *valbuf, int element, int bitpos)
627 {
628 gdb_assert (element < 16);
629
630 if (sparc64_floating_p (type))
631 {
632 int len = TYPE_LENGTH (type);
633 int regnum;
634
635 if (len == 16)
636 {
637 gdb_assert (bitpos == 0);
638 gdb_assert ((element % 2) == 0);
639
640 regnum = SPARC64_Q0_REGNUM + element / 2;
641 regcache_cooked_write (regcache, regnum, valbuf);
642 }
643 else if (len == 8)
644 {
645 gdb_assert (bitpos == 0 || bitpos == 64);
646
647 regnum = SPARC64_D0_REGNUM + element + bitpos / 64;
648 regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
649 }
650 else
651 {
652 gdb_assert (len == 4);
653 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
654
655 regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
656 regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
657 }
658 }
659 else if (sparc64_structure_or_union_p (type))
660 {
661 int i;
662
663 for (i = 0; i < TYPE_NFIELDS (type); i++)
664 {
665 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
666 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
667
668 sparc64_store_floating_fields (regcache, subtype, valbuf,
669 element, subpos);
670 }
671
672 /* GCC has an interesting bug. If TYPE is a structure that has
673 a single `float' member, GCC doesn't treat it as a structure
674 at all, but rather as an ordinary `float' argument. This
675 argument will be stored in %f1, as required by the psABI.
676 However, as a member of a structure the psABI requires it to
677 be stored in %f0. This bug is present in GCC 3.3.2, but
678 probably in older releases to. To appease GCC, if a
679 structure has only a single `float' member, we store its
680 value in %f1 too (we already have stored in %f0). */
681 if (TYPE_NFIELDS (type) == 1)
682 {
683 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, 0));
684
685 if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
686 regcache_cooked_write (regcache, SPARC_F1_REGNUM, valbuf);
687 }
688 }
689 }
690
691 /* Fetch floating fields from a variable of type TYPE from the
692 appropriate registers for BITPOS in REGCACHE and store it at BITPOS
693 in VALBUF. This function can be called recursively and therefore
694 handles floating types in addition to structures. */
695
696 static void
697 sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
698 char *valbuf, int bitpos)
699 {
700 if (sparc64_floating_p (type))
701 {
702 int len = TYPE_LENGTH (type);
703 int regnum;
704
705 if (len == 16)
706 {
707 gdb_assert (bitpos == 0 || bitpos == 128);
708
709 regnum = SPARC64_Q0_REGNUM + bitpos / 128;
710 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
711 }
712 else if (len == 8)
713 {
714 gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
715
716 regnum = SPARC64_D0_REGNUM + bitpos / 64;
717 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
718 }
719 else
720 {
721 gdb_assert (len == 4);
722 gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
723
724 regnum = SPARC_F0_REGNUM + bitpos / 32;
725 regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
726 }
727 }
728 else if (sparc64_structure_or_union_p (type))
729 {
730 int i;
731
732 for (i = 0; i < TYPE_NFIELDS (type); i++)
733 {
734 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
735 int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
736
737 sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
738 }
739 }
740 }
741
742 /* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
743 non-zero) in REGCACHE and on the stack (starting from address SP). */
744
745 static CORE_ADDR
746 sparc64_store_arguments (struct regcache *regcache, int nargs,
747 struct value **args, CORE_ADDR sp,
748 int struct_return, CORE_ADDR struct_addr)
749 {
750 /* Number of extended words in the "parameter array". */
751 int num_elements = 0;
752 int element = 0;
753 int i;
754
755 /* Take BIAS into account. */
756 sp += BIAS;
757
758 /* First we calculate the number of extended words in the "parameter
759 array". While doing so we also convert some of the arguments. */
760
761 if (struct_return)
762 num_elements++;
763
764 for (i = 0; i < nargs; i++)
765 {
766 struct type *type = VALUE_TYPE (args[i]);
767 int len = TYPE_LENGTH (type);
768
769 if (sparc64_structure_or_union_p (type))
770 {
771 /* Structure or Union arguments. */
772 if (len <= 16)
773 {
774 if (num_elements % 2 && sparc64_16_byte_align_p (type))
775 num_elements++;
776 num_elements += ((len + 7) / 8);
777 }
778 else
779 {
780 /* The psABI says that "Structures or unions larger than
781 sixteen bytes are copied by the caller and passed
782 indirectly; the caller will pass the address of a
783 correctly aligned structure value. This sixty-four
784 bit address will occupy one word in the parameter
785 array, and may be promoted to an %o register like any
786 other pointer value." Allocate memory for these
787 values on the stack. */
788 sp -= len;
789
790 /* Use 16-byte alignment for these values. That's
791 always correct, and wasting a few bytes shouldn't be
792 a problem. */
793 sp &= ~0xf;
794
795 write_memory (sp, VALUE_CONTENTS (args[i]), len);
796 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
797 num_elements++;
798 }
799 }
800 else if (sparc64_floating_p (type))
801 {
802 /* Floating arguments. */
803
804 if (len == 16)
805 {
806 /* The psABI says that "Each quad-precision parameter
807 value will be assigned to two extended words in the
808 parameter array. */
809 num_elements += 2;
810
811 /* The psABI says that "Long doubles must be
812 quad-aligned, and thus a hole might be introduced
813 into the parameter array to force alignment." Skip
814 an element if necessary. */
815 if (num_elements % 2)
816 num_elements++;
817 }
818 else
819 num_elements++;
820 }
821 else
822 {
823 /* Integral and pointer arguments. */
824 gdb_assert (sparc64_integral_or_pointer_p (type));
825
826 /* The psABI says that "Each argument value of integral type
827 smaller than an extended word will be widened by the
828 caller to an extended word according to the signed-ness
829 of the argument type." */
830 if (len < 8)
831 args[i] = value_cast (builtin_type_int64, args[i]);
832 num_elements++;
833 }
834 }
835
836 /* Allocate the "parameter array". */
837 sp -= num_elements * 8;
838
839 /* The psABI says that "Every stack frame must be 16-byte aligned." */
840 sp &= ~0xf;
841
842 /* Now we store the arguments in to the "paramater array". Some
843 Integer or Pointer arguments and Structure or Union arguments
844 will be passed in %o registers. Some Floating arguments and
845 floating members of structures are passed in floating-point
846 registers. However, for functions with variable arguments,
847 floating arguments are stored in an %0 register, and for
848 functions without a prototype floating arguments are stored in
849 both a floating-point and an %o registers, or a floating-point
850 register and memory. To simplify the logic here we always pass
851 arguments in memory, an %o register, and a floating-point
852 register if appropriate. This should be no problem since the
853 contents of any unused memory or registers in the "parameter
854 array" are undefined. */
855
856 if (struct_return)
857 {
858 regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
859 element++;
860 }
861
862 for (i = 0; i < nargs; i++)
863 {
864 char *valbuf = VALUE_CONTENTS (args[i]);
865 struct type *type = VALUE_TYPE (args[i]);
866 int len = TYPE_LENGTH (type);
867 int regnum = -1;
868 char buf[16];
869
870 if (sparc64_structure_or_union_p (type))
871 {
872 /* Structure or Union arguments. */
873 gdb_assert (len <= 16);
874 memset (buf, 0, sizeof (buf));
875 valbuf = memcpy (buf, valbuf, len);
876
877 if (element % 2 && sparc64_16_byte_align_p (type))
878 element++;
879
880 if (element < 6)
881 {
882 regnum = SPARC_O0_REGNUM + element;
883 if (len > 8 && element < 5)
884 regcache_cooked_write (regcache, regnum + 1, valbuf + 8);
885 }
886
887 if (element < 16)
888 sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
889 }
890 else if (sparc64_floating_p (type))
891 {
892 /* Floating arguments. */
893 if (len == 16)
894 {
895 if (element % 2)
896 element++;
897 if (element < 16)
898 regnum = SPARC64_Q0_REGNUM + element / 2;
899 }
900 else if (len == 8)
901 {
902 if (element < 16)
903 regnum = SPARC64_D0_REGNUM + element;
904 }
905 else
906 {
907 /* The psABI says "Each single-precision parameter value
908 will be assigned to one extended word in the
909 parameter array, and right-justified within that
910 word; the left half (even floatregister) is
911 undefined." Even though the psABI says that "the
912 left half is undefined", set it to zero here. */
913 memset (buf, 0, 4);
914 valbuf = memcpy (buf + 4, valbuf, 4);
915 len = 8;
916 if (element < 16)
917 regnum = SPARC64_D0_REGNUM;
918 }
919 }
920 else
921 {
922 /* Integral and pointer arguments. */
923 gdb_assert (len == 8);
924 if (element < 6)
925 regnum = SPARC_O0_REGNUM + element;
926 }
927
928 if (regnum != -1)
929 {
930 regcache_cooked_write (regcache, regnum, valbuf);
931
932 /* If we're storing the value in a floating-point register,
933 also store it in the corresponding %0 register(s). */
934 if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
935 {
936 gdb_assert (element < 6);
937 regnum = SPARC_O0_REGNUM + element;
938 regcache_cooked_write (regcache, regnum, valbuf);
939 }
940 else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
941 {
942 gdb_assert (element < 6);
943 regnum = SPARC_O0_REGNUM + element;
944 regcache_cooked_write (regcache, regnum, valbuf);
945 regcache_cooked_write (regcache, regnum + 1, valbuf);
946 }
947 }
948
949 /* Always store the argument in memeory. */
950 write_memory (sp + element * 8, valbuf, len);
951 element += ((len + 7) / 8);
952 }
953
954 gdb_assert (element == num_elements);
955
956 /* Take BIAS into account. */
957 sp -= BIAS;
958 return sp;
959 }
960
961 static CORE_ADDR
962 sparc64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
963 struct regcache *regcache, CORE_ADDR bp_addr,
964 int nargs, struct value **args, CORE_ADDR sp,
965 int struct_return, CORE_ADDR struct_addr)
966 {
967 /* Set return address. */
968 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
969
970 /* Set up function arguments. */
971 sp = sparc64_store_arguments (regcache, nargs, args, sp,
972 struct_return, struct_addr);
973
974 /* Allocate the register save area. */
975 sp -= 16 * 8;
976
977 /* Stack should be 16-byte aligned at this point. */
978 gdb_assert ((sp + BIAS) % 16 == 0);
979
980 /* Finally, update the stack pointer. */
981 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
982
983 return sp;
984 }
985 \f
986
987 /* Extract from an array REGBUF containing the (raw) register state, a
988 function return value of TYPE, and copy that into VALBUF. */
989
990 static void
991 sparc64_extract_return_value (struct type *type, struct regcache *regcache,
992 void *valbuf)
993 {
994 int len = TYPE_LENGTH (type);
995 char buf[32];
996 int i;
997
998 if (sparc64_structure_or_union_p (type))
999 {
1000 /* Structure or Union return values. */
1001 gdb_assert (len <= 32);
1002
1003 for (i = 0; i < ((len + 7) / 8); i++)
1004 regcache_cooked_read (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1005 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1006 sparc64_extract_floating_fields (regcache, type, buf, 0);
1007 memcpy (valbuf, buf, len);
1008 }
1009 else if (sparc64_floating_p (type))
1010 {
1011 /* Floating return values. */
1012 for (i = 0; i < len / 4; i++)
1013 regcache_cooked_read (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
1014 memcpy (valbuf, buf, len);
1015 }
1016 else
1017 {
1018 /* Integral and pointer return values. */
1019 gdb_assert (sparc64_integral_or_pointer_p (type));
1020
1021 /* Just stripping off any unused bytes should preserve the
1022 signed-ness just fine. */
1023 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1024 memcpy (valbuf, buf + 8 - len, len);
1025 }
1026 }
1027
1028 /* Write into the appropriate registers a function return value stored
1029 in VALBUF of type TYPE. */
1030
1031 static void
1032 sparc64_store_return_value (struct type *type, struct regcache *regcache,
1033 const void *valbuf)
1034 {
1035 int len = TYPE_LENGTH (type);
1036 char buf[16];
1037 int i;
1038
1039 if (sparc64_structure_or_union_p (type))
1040 {
1041 /* Structure or Union return values. */
1042 gdb_assert (len <= 32);
1043
1044 /* Simplify matters by storing the complete value (including
1045 floating members) into %o0 and %o1. Floating members are
1046 also store in the appropriate floating-point registers. */
1047 memset (buf, 0, sizeof (buf));
1048 memcpy (buf, valbuf, len);
1049 for (i = 0; i < ((len + 7) / 8); i++)
1050 regcache_cooked_write (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
1051 if (TYPE_CODE (type) != TYPE_CODE_UNION)
1052 sparc64_store_floating_fields (regcache, type, buf, 0, 0);
1053 }
1054 else if (sparc64_floating_p (type))
1055 {
1056 /* Floating return values. */
1057 memcpy (buf, valbuf, len);
1058 for (i = 0; i < len / 4; i++)
1059 regcache_cooked_write (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
1060 }
1061 else
1062 {
1063 /* Integral and pointer return values. */
1064 gdb_assert (sparc64_integral_or_pointer_p (type));
1065
1066 /* ??? Do we need to do any sign-extension here? */
1067 memset (buf, 0, 8);
1068 memcpy (buf + 8 - len, valbuf, len);
1069 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1070 }
1071 }
1072
1073 static enum return_value_convention
1074 sparc64_return_value (struct gdbarch *gdbarch, struct type *type,
1075 struct regcache *regcache, void *readbuf,
1076 const void *writebuf)
1077 {
1078 if (TYPE_LENGTH (type) > 32)
1079 return RETURN_VALUE_STRUCT_CONVENTION;
1080
1081 if (readbuf)
1082 sparc64_extract_return_value (type, regcache, readbuf);
1083 if (writebuf)
1084 sparc64_store_return_value (type, regcache, writebuf);
1085
1086 return RETURN_VALUE_REGISTER_CONVENTION;
1087 }
1088 \f
1089
1090 void
1091 sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1092 {
1093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1094
1095 tdep->pc_regnum = SPARC64_PC_REGNUM;
1096 tdep->npc_regnum = SPARC64_NPC_REGNUM;
1097
1098 /* This is what all the fuss is about. */
1099 set_gdbarch_long_bit (gdbarch, 64);
1100 set_gdbarch_long_long_bit (gdbarch, 64);
1101 set_gdbarch_ptr_bit (gdbarch, 64);
1102
1103 set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
1104 set_gdbarch_register_name (gdbarch, sparc64_register_name);
1105 set_gdbarch_register_type (gdbarch, sparc64_register_type);
1106 set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
1107 set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
1108 set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
1109
1110 /* Register numbers of various important registers. */
1111 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
1112
1113 /* Call dummy code. */
1114 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1115 set_gdbarch_push_dummy_code (gdbarch, NULL);
1116 set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
1117
1118 set_gdbarch_return_value (gdbarch, sparc64_return_value);
1119 set_gdbarch_return_value_on_stack
1120 (gdbarch, generic_return_value_on_stack_not);
1121 set_gdbarch_stabs_argument_has_addr
1122 (gdbarch, default_stabs_argument_has_addr);
1123
1124 set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
1125
1126 frame_unwind_append_sniffer (gdbarch, sparc64_frame_sniffer);
1127 frame_base_set_default (gdbarch, &sparc64_frame_base);
1128 }
1129 \f
1130
1131 /* Helper functions for dealing with register sets. */
1132
1133 #define TSTATE_CWP 0x000000000000001fULL
1134 #define TSTATE_ICC 0x0000000f00000000ULL
1135 #define TSTATE_XCC 0x000000f000000000ULL
1136
1137 #define PSR_S 0x00000080
1138 #define PSR_ICC 0x00f00000
1139 #define PSR_VERS 0x0f000000
1140 #define PSR_IMPL 0xf0000000
1141 #define PSR_V8PLUS 0xff000000
1142 #define PSR_XCC 0x000f0000
1143
1144 void
1145 sparc64_supply_gregset (const struct sparc_gregset *gregset,
1146 struct regcache *regcache,
1147 int regnum, const void *gregs)
1148 {
1149 int sparc32 = (gdbarch_ptr_bit (current_gdbarch) == 32);
1150 const char *regs = gregs;
1151 int i;
1152
1153 if (sparc32)
1154 {
1155 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1156 {
1157 int offset = gregset->r_tstate_offset;
1158 ULONGEST tstate, psr;
1159 char buf[4];
1160
1161 tstate = extract_unsigned_integer (regs + offset, 8);
1162 psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
1163 | ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
1164 store_unsigned_integer (buf, 4, psr);
1165 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM, buf);
1166 }
1167
1168 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1169 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1170 regs + gregset->r_pc_offset + 4);
1171
1172 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1173 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1174 regs + gregset->r_npc_offset + 4);
1175
1176 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1177 {
1178 int offset = gregset->r_y_offset + 8 - gregset->r_y_size;
1179 regcache_raw_supply (regcache, SPARC32_Y_REGNUM, regs + offset);
1180 }
1181 }
1182 else
1183 {
1184 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1185 regcache_raw_supply (regcache, SPARC64_STATE_REGNUM,
1186 regs + gregset->r_tstate_offset);
1187
1188 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1189 regcache_raw_supply (regcache, SPARC64_PC_REGNUM,
1190 regs + gregset->r_pc_offset);
1191
1192 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1193 regcache_raw_supply (regcache, SPARC64_NPC_REGNUM,
1194 regs + gregset->r_npc_offset);
1195
1196 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1197 {
1198 char buf[8];
1199
1200 memset (buf, 0, 8);
1201 memcpy (buf + 8 - gregset->r_y_size,
1202 regs + gregset->r_y_offset, gregset->r_y_size);
1203 regcache_raw_supply (regcache, SPARC64_Y_REGNUM, buf);
1204 }
1205
1206 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1207 && gregset->r_fprs_offset != -1)
1208 regcache_raw_supply (regcache, SPARC64_FPRS_REGNUM,
1209 regs + gregset->r_fprs_offset);
1210 }
1211
1212 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1213 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1214
1215 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1216 {
1217 int offset = gregset->r_g1_offset;
1218
1219 if (sparc32)
1220 offset += 4;
1221
1222 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1223 {
1224 if (regnum == i || regnum == -1)
1225 regcache_raw_supply (regcache, i, regs + offset);
1226 offset += 8;
1227 }
1228 }
1229
1230 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1231 {
1232 /* Not all of the register set variants include Locals and
1233 Inputs. For those that don't, we read them off the stack. */
1234 if (gregset->r_l0_offset == -1)
1235 {
1236 ULONGEST sp;
1237
1238 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1239 sparc_supply_rwindow (regcache, sp, regnum);
1240 }
1241 else
1242 {
1243 int offset = gregset->r_l0_offset;
1244
1245 if (sparc32)
1246 offset += 4;
1247
1248 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1249 {
1250 if (regnum == i || regnum == -1)
1251 regcache_raw_supply (regcache, i, regs + offset);
1252 offset += 8;
1253 }
1254 }
1255 }
1256 }
1257
1258 void
1259 sparc64_collect_gregset (const struct sparc_gregset *gregset,
1260 const struct regcache *regcache,
1261 int regnum, void *gregs)
1262 {
1263 int sparc32 = (gdbarch_ptr_bit (current_gdbarch) == 32);
1264 char *regs = gregs;
1265 int i;
1266
1267 if (sparc32)
1268 {
1269 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1270 {
1271 int offset = gregset->r_tstate_offset;
1272 ULONGEST tstate, psr;
1273 char buf[8];
1274
1275 tstate = extract_unsigned_integer (regs + offset, 8);
1276 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM, buf);
1277 psr = extract_unsigned_integer (buf, 4);
1278 tstate |= (psr & PSR_ICC) << 12;
1279 if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
1280 tstate |= (psr & PSR_XCC) << 20;
1281 store_unsigned_integer (buf, 8, tstate);
1282 memcpy (regs + offset, buf, 8);
1283 }
1284
1285 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1286 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1287 regs + gregset->r_pc_offset + 4);
1288
1289 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1290 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1291 regs + gregset->r_npc_offset + 4);
1292
1293 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1294 {
1295 int offset = gregset->r_y_offset + 8 - gregset->r_y_size;
1296 regcache_raw_collect (regcache, SPARC32_Y_REGNUM, regs + offset);
1297 }
1298 }
1299 else
1300 {
1301 if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
1302 regcache_raw_collect (regcache, SPARC64_STATE_REGNUM,
1303 regs + gregset->r_tstate_offset);
1304
1305 if (regnum == SPARC64_PC_REGNUM || regnum == -1)
1306 regcache_raw_collect (regcache, SPARC64_PC_REGNUM,
1307 regs + gregset->r_pc_offset);
1308
1309 if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
1310 regcache_raw_collect (regcache, SPARC64_NPC_REGNUM,
1311 regs + gregset->r_npc_offset);
1312
1313 if (regnum == SPARC64_Y_REGNUM || regnum == -1)
1314 {
1315 char buf[8];
1316
1317 regcache_raw_collect (regcache, SPARC64_Y_REGNUM, buf);
1318 memcpy (regs + gregset->r_y_offset,
1319 buf + 8 - gregset->r_y_size, gregset->r_y_size);
1320 }
1321
1322 if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
1323 && gregset->r_fprs_offset != -1)
1324 regcache_raw_collect (regcache, SPARC64_FPRS_REGNUM,
1325 regs + gregset->r_fprs_offset);
1326
1327 }
1328
1329 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1330 {
1331 int offset = gregset->r_g1_offset;
1332
1333 if (sparc32)
1334 offset += 4;
1335
1336 /* %g0 is always zero. */
1337 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1338 {
1339 if (regnum == i || regnum == -1)
1340 regcache_raw_collect (regcache, i, regs + offset);
1341 offset += 8;
1342 }
1343 }
1344
1345 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1346 {
1347 /* Not all of the register set variants include Locals and
1348 Inputs. For those that don't, we read them off the stack. */
1349 if (gregset->r_l0_offset != -1)
1350 {
1351 int offset = gregset->r_l0_offset;
1352
1353 if (sparc32)
1354 offset += 4;
1355
1356 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1357 {
1358 if (regnum == i || regnum == -1)
1359 regcache_raw_collect (regcache, i, regs + offset);
1360 offset += 8;
1361 }
1362 }
1363 }
1364 }
1365
1366 void
1367 sparc64_supply_fpregset (struct regcache *regcache,
1368 int regnum, const void *fpregs)
1369 {
1370 int sparc32 = (gdbarch_ptr_bit (current_gdbarch) == 32);
1371 const char *regs = fpregs;
1372 int i;
1373
1374 for (i = 0; i < 32; i++)
1375 {
1376 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1377 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1378 }
1379
1380 if (sparc32)
1381 {
1382 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1383 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM,
1384 regs + (32 * 4) + (16 * 8) + 4);
1385 }
1386 else
1387 {
1388 for (i = 0; i < 16; i++)
1389 {
1390 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
1391 regcache_raw_supply (regcache, SPARC64_F32_REGNUM + i,
1392 regs + (32 * 4) + (i * 8));
1393 }
1394
1395 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
1396 regcache_raw_supply (regcache, SPARC64_FSR_REGNUM,
1397 regs + (32 * 4) + (16 * 8));
1398 }
1399 }
1400
1401 void
1402 sparc64_collect_fpregset (const struct regcache *regcache,
1403 int regnum, void *fpregs)
1404 {
1405 int sparc32 = (gdbarch_ptr_bit (current_gdbarch) == 32);
1406 char *regs = fpregs;
1407 int i;
1408
1409 for (i = 0; i < 32; i++)
1410 {
1411 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1412 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1413 }
1414
1415 if (sparc32)
1416 {
1417 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1418 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM,
1419 regs + (32 * 4) + (16 * 8) + 4);
1420 }
1421 else
1422 {
1423 for (i = 0; i < 16; i++)
1424 {
1425 if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
1426 regcache_raw_collect (regcache, SPARC64_F32_REGNUM + i,
1427 regs + (32 * 4) + (i * 8));
1428 }
1429
1430 if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
1431 regcache_raw_collect (regcache, SPARC64_FSR_REGNUM,
1432 regs + (32 * 4) + (16 * 8));
1433 }
1434 }
This page took 0.065297 seconds and 4 git commands to generate.